Lecture -3-

1.7 Fundamentaltype of lattice

Crystal lattice can be carried into themselves by the lattice translations (T)andby other symmetry operations [Rotation about an **axis** (1, 2, 3, 4, and 6-fold), Reflection at a <u>plane</u>, and Inversion through a **point**].

We say that a crystal has n-fold axis of rotation if rotation through an angle ($\emptyset = 2\pi/n$) carry the lattice into itself. Lattice can be found such that 1, 2, 3, 4, and 6-fold rotation axes carry the lattice into itself, corresponding to rotations by $\emptyset = 2\pi$, $2\pi/2$, $2\pi/3$, $2\pi/4$, and $2\pi/6$ radians.

Axis of two fold symmetry

Axis of three f old symmetry

Q/Find all the possible elements symmetry for the SC.We cannot find a lattice that goes into itself under other rotation, such as $2\pi/7$, $2\pi/5$.This means that a 5- fold axis cannot exist in a periodic lattice. Explain why?.

As shown in Fig.(6), a fivefold axis cannot exist in a periodic lattice because it is not possible to fill the area of a plane with a connected group of pentagons (five).

ab

Fig.6a- Fivefold ,b-Eightfold

Q/ Check for 7-fold.

1.8 Three- dimensional lattice type

The 14 possible 3-D Bravais lattice listed in Table (1). The general lattice is triclinic and 13 special lattice. Fig.(7) shows the cubic space lattices.The characteristics of cubic lattices listed in Table (2).

امللة فلزية	شبکات ممرکزد الوجوه Face-centred (F)	شيكات معركزة الجسم Body-centred (1)	شبكات ممركزة القاعدتين Base-centred (C)	شيكات بسيطة Primitive (p)	النطام اليلوري System
اکسنیت Axinite Cu SO4 . 5H2O					فلادي نفيل Triclinic a ≠ b ≠ c α ≠ β ≠ γ ≠ 90
امنىيول Amphibale Naz Co3					الوحيد الميل Monoclinic a ≠ b ≠ c α = γ = 90 ≠ β
اولیدین Olivine Barytes AgNo3					الميني القائم Orthorhombic α=β=γ=90
کالسیت Calcite As					متلادي Trigonal Rhombohedral a = b = c $\alpha = \beta = \gamma \neq 90$
زرکون Zircon KH3PO4					الرياعي Tetragonal a=b≠c α=β=γ=90
اباتیت Apatite توارلز Quartz Zn					السداسي Hexagonal a = b ≠ c α=β = 90 γ=120
غارنت Garnet ماغنتیت Magnetite					$\alpha = \beta = \gamma = 90^{\alpha \alpha \alpha}$

الجدول (١) شبكات برافية

Table (2) Characteristics of cubic lattices.

	bCC	SC	FCC
	I	р	F
Volume unit cell	a ³	a ³	a ³
Number of lattice points per unit cell	2	1	4
Number of lattice points per volume	$\frac{2}{a^3}$	$\frac{1}{a^3}$	$\frac{4}{a^3}$
Number of points	8	6	12
neighboring first class			
Distance between adjacent points of first class	$\frac{\sqrt{3}}{2}a$	а	$\frac{1}{\sqrt{2}}a$
Number of points	6	12	6
neighboring second-class			2
Distance between adjacent points of first class	а	$\sqrt{2}$ a	а
Filling factor	0.68	0.52	0.74

Cubic simple Body centered cubic Face centered cubic CS BCC FCC 8x¹/₈=1 atom2x1=2atom 6x ¹/₂=3atomS Fig.7 Cubic space lattices.

Exercise:

prove that the distance between adjacent points of first class in FCC and BCC cells is equal $\frac{1}{\sqrt{2}}$ a and $\frac{\sqrt{3}}{2}$ a respectively.

Solution:

$$x = \sqrt{a^2 + a^2} = \sqrt{2} a$$
 $x = \sqrt{a^2 + 2a^2} = \sqrt{3} a$
 $\frac{x}{2} = \frac{\sqrt{2}}{2}a = \frac{a}{\sqrt{2}} = d\frac{x}{2} = \frac{\sqrt{3}}{2}a = d$