Lecture -3-

1.7 Fundamentaltype of lattice

Crystal lattice can be carried into themselves by the lattice translations (T)andby other symmetry operations [Rotation about an axis (1, 2, 3, 4, and 6fold), Reflection at a plane, and Inversion through a point].

Rectangular plane of symmetry

Diagonal plane of symmetry

We say that a crystal has n-fold axis of rotation if rotation through an angle ($\varnothing=2 \pi / n$) carry the lattice into itself. Lattice can be found such that 1, 2, 3, 4, and 6 -fold rotation axes carry the lattice into itself, corresponding to rotations by $\varnothing=2 \pi, 2 \pi / 2,2 \pi / 3$, $2 \pi / 4$,and $2 \pi / 6$ radians.

Axis of two fold symmetry

Axis of three fold symmetry

Q/Find all the possible elements symmetry for the SC.We cannot find a lattice that goes into itself under other rotation, such as $2 \pi / 7,2 \pi / 5$. This means that a 5 - fold axis cannot exist in a periodic lattice. Explain why?

As shown in Fig.(6), a fivefold axis cannot exist in a periodic lattice because it is not possible to fill the area of a plane with a connected group of pentagons (five).

ab
Fig.6a- Fivefold ,b-Eightfold
Q/ Check for 7-fold.

1.8 Three- dimensional lattice type

The 14 possible 3-D Bravais lattice listed in Table (1). The general lattice is triclinic and 13 special lattice. Fig.(7) shows the cubic space lattices.The characteristics of cubic lattices listed in Table (2).

	شبكت مnركزة الوجبر Face-centred (F)	شبكات Body-centred (1)	Base-centred (C)	Primitive (p)	النطام البالهو! System
$\begin{gathered} \text { Axisite } \\ \text { Axinite } \\ \mathrm{Cu} \mathrm{SO} 4.5 \mathrm{H} 2 \mathrm{O} \end{gathered}$					
Amphibale Na2 C 03					الوحه Monodinic $\begin{gathered} a \neq b \neq c \\ \alpha=\gamma=90 \neq \beta \end{gathered}$
 Barytes AgNo3					pilat jival Orthorhombic $\begin{gathered} a \neq b \neq c \\ \alpha=\beta=\gamma=90^{\circ} \end{gathered}$
$\begin{aligned} & \text { Calcite } \\ & \text { Crer } \end{aligned}$ As					Trigonal Rhombohedral $\begin{gathered} a=b=c \\ \alpha=\beta=\gamma \neq 90^{\circ} \end{gathered}$
					الرياءث Tetragonal $\begin{gathered} a-b+c \\ \alpha=\beta=\gamma=90^{\circ} \end{gathered}$
1 Apatite كَاريز Quartz Zn					Hexagonal $\begin{gathered} a=b \neq c \\ \alpha=\beta=90 \\ \gamma=120 \end{gathered}$
شارنت Garnet ماغثتّ Magnetite					$\begin{gathered} \text { cubic } \\ \substack{\text { und } \\ \alpha=\beta=\gamma=98} \\ \alpha=\beta=\gamma=90^{2} \end{gathered}$

الجدول (1) شبكات برافية

Table (2) Characteristics of cubic lattices.

	bCC	SC	FCC
Vumber of lattice points per unit cell	a^{3}	a^{3}	a^{3}
Number of lattice points per volume	$\frac{2}{a^{3}}$	$\frac{1}{a^{3}}$	$\frac{4}{a^{3}}$
Number of points neighboring first class Distance between adjacent points of first class	$\frac{\sqrt{3}}{2} \mathrm{a}$	a	4
Number of points neighboring second-class Distance between adjacent points of first class Filling factor	6	12	$\frac{1}{\sqrt{2}} \mathrm{a}$

Mailles des trois réseaux cubiques.

p

I

F

Cubic simple Body centered cubic Face centered cubic
CS BCC FCC
$8 \times 1 / 8=1$ atom $2 \times 1=2$ atom
$6 \times 1 / 2=3$ atomS
Fig. 7 Cubic space lattices.

Exercise:

prove that the distance between adjacent points of first class in FCC and BCC cells is equal $\frac{1}{\sqrt{2}}$ a and $\frac{\sqrt{3}}{2}$ a respectively.

Solution:

$$
\begin{aligned}
& \mathrm{x}=\sqrt{a^{2}+a^{2}}=\sqrt{2} \mathrm{a} \\
& \frac{x}{2}=\frac{\sqrt{2}}{2} \mathrm{a}=\frac{a}{\sqrt{2}}=\mathrm{d} \frac{x}{2}=\frac{\sqrt{3}}{2} \mathrm{a}=\mathrm{d}
\end{aligned}
$$

$$
x=\sqrt{a^{2}+2 a^{2}}=\sqrt{3} a
$$

