Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-05T13:01:47.747Z Has data issue: false hasContentIssue false

CHARACTERISTICS OF PINE NEEDLES EXPOSED TO POLLUTION IN SILESIA, POLAND: CARBON ISOTOPES, iWUE, AND TRACE ELEMENT CONCENTRATIONS IN PINE NEEDLES

Published online by Cambridge University Press:  02 February 2023

Barbara Sensuła*
Affiliation:
The Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, Gliwice 44-100, Poland
Natalia Piotrowska
Affiliation:
The Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, Gliwice 44-100, Poland
Katarzyna Nowińska
Affiliation:
The Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Department of Applied Geology, Akademicka 2, Gliwice 44-100, Poland
Michał Koruszowic
Affiliation:
The Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, Gliwice 44-100, Poland
Dawid Lazaj
Affiliation:
The Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, Gliwice 44-100, Poland
Rafał Osadnik
Affiliation:
The Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, Gliwice 44-100, Poland
Radosław Paluch
Affiliation:
The Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, Gliwice 44-100, Poland
Adam Stasiak
Affiliation:
The Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, Gliwice 44-100, Poland
Beniamin Strączek
Affiliation:
The Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, Gliwice 44-100, Poland
*
*Corresponding author. Email: Barbara.sensula@polsl.pl

Abstract

Here, we present the results of carbon isotope and elemental analysis of one-year-old Pinus Sylvestris L. needles collected in 2021 from 10 sampling sites in a highly populated and industrialized area of Poland. The needles were exposed to air pollution for one year. The chemical analysis of the samples was performed using different methods: radiocarbon analysis by accelerator mass spectrometry, stable isotope analysis using isotope ratio mass spectrometry, and elemental analysis by inductively coupled plasma-atomic emission spectroscopy. Variations in the carbon isotopes and elemental composition of pine needles were due to a mixture of carbon dioxide originating from different sources such as households, vehicle traffic, and industrial factories.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asseng, S, Ewert, F, Martre, P, Rötter, RP, Lobell, DB, Cammarano, D, Kimball, BA, Ottman, MJ, Wall, GW, White, JW, et al. 2015. Rising temperatures reduce global wheat production. Nature Climate Change 5:143147. doi: 10.1038/nclimate2470.Google Scholar
Ayrault, S. 2005. Multi-element analysis of plant and soil samples. Trace and ultratrace elements in plants and soils, hyper article en Ligne - Sciences de l’Homme et de la Société. https://hal.archives-ouvertes.fr/hal-02651214.Google Scholar
Barszczowska, L, Jędrysek, MO. 2005. Carbon isotope distribution along pine needles (Pinus Nigra Arnold). Acta Societatis Botanicorum Poloniae 74:9398.Google Scholar
Brendel, O, Handley, K, Griffiths, H. 2003. The δ13C of Scots pine (Pinus sylvestris L.) needles: spatial and temporal variations. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010) 60(2):97–104. ff10.1051/forest:2003001ff. ffhal-00883681f.Google Scholar
Cherubini, P, Battipaglia, G, Innes, JL. 2021. Tree vitality and forest health: can tree-ring stable isotopes be used as indicators? Current Forestry Reports 7:6980.CrossRefGoogle Scholar
Emmenegger, L, Leuenberger, M, Steinbacher, M, ICOS RI. 2021. ICOS ATC/CAL 14C release, Jungfraujoch (10.0 m), 2016-01-04–2019-08-12. Available at: https://hdl.handle.net/11676/JjmhH4pUyWlbqTAAx4x54deg.Google Scholar
Gamrat, R, Ligocka, K. 2018. Stężenia wybranych metali ciężkich w igłach sosny zwyczajnej z wybranych obszarów Polski. Inżynieria Ekologiczna 19(1):6165. doi: 10.12912/23920629/81653.CrossRefGoogle Scholar
Gilbert, ME, Zwieniecki, MA, Holbrook, NM. 2011. Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought. Journal of Experimental Botany 62(8):28752887. doi: 10.1093/jxb/erq461.CrossRefGoogle ScholarPubMed
Górka, M, Sauer, PE, Lewicka-Szczebak, D, Jędrysek, M-O. 2011. Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2 . Environmental Pollution 159(1):294301. doi: 10.1016/j.envpol.2010.08.027.Google ScholarPubMed
Goslar, T, Czernik, J, Goslar, E. 2004. Low-energy 14C AMS in Poznan Radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research B 223224:511.Google Scholar
Graven, H, Allison, CE, Etheridge, DM, Hammer, S, Keeling, RF, Levin, I, Meijer, HAJ, Rubino, M, Tans, PP, Trudinger, CM, Vaughn, BH, White, JWC. 2017. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geosci. Model Dev., 10:44054417. doi: 10.5194/gmd-10-4405-2017.Google Scholar
Guerrieri, R, Belmecheri, S, Ollinger, SV, Asbjornsen, H, Jennings, K, Xiao, J, Stocker, B. Martin, M, Hollinger, DY, Bracho-Garrillo, R, Clark, K, Dore, S, Kolb, T, Munger, J, Novick, K, Richardson, AD. 2019. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc Natl Acad Sci USA 116 (34): 1690916914.CrossRefGoogle ScholarPubMed
Hammer, S, Levin, I. 2017. Monthly mean atmospheric 14CO2 at Jungfraujochand Schauinsland from 1986 to 2016 [data set, www document]. University Library Heidelberg. https://doi.org/10.11588/data/10100.CrossRefGoogle Scholar
Kawashima, H, Haneishi, Y. 2012. Effects of combustion emissions from the Eurasian continent in winter on seasonal δ13C of elemental carbon in aerosols in Japan. Atmospheric Environment 46: 568579. doi: 10.1016/j.atmosenv.2011.05.015.Google Scholar
Keeling, CD. 1973. Industrial production of carbon dioxide from fossil fuel and limestone: Tellus 25:174198.Google Scholar
Letts, MG, Nakonechny, KN, Van Gaalen, KE, Smith, CM. 2009. Physiological acclimation of Pinus flexilis to drought stress on contrasting slope aspects in Waterton Lakes National Park, Alberta, Canada. Canadian Journal of Forest Research 39(3):629641.Google Scholar
Loader, NJ, Walsh, RPD, Robertson, I, Bidin, K, Ong, RC, Reynolds, G, McCarroll, D, Gagen, M, Young, GHF. 2011. Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo. Philosophical Transactions: Biological Sciences 366(1582): 33303339. doi: jstor.org/stable/23076297.Google Scholar
Mook, W, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.CrossRefGoogle Scholar
Pandey, B, Agrawal, M, Singh, S. 2014. Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research 5(1): 7986.CrossRefGoogle Scholar
Parzych, A, Mochnacky, S, Sobisz, Z, Kurhaluk, N, Polláková, N. 2017. Accumulation of heavy metals in needles and bark of Pinus species. Folia Forestalia Polonica 59:3444.CrossRefGoogle Scholar
Pazdur, A, Kuc, T, Pawełczyk, S, Piotrowska, N, Sensuła, BM, Różański, K. 2013. Carbon isotope composition of atmospheric carbon dioxide in southern Poland: imprint of anthropogenic CO2 emissions in regional biosphere. Radiocarbon 55(2–3):848864.Google Scholar
Pietrzykowski, M, Socha, J, van Doornd, N. 2014. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Science of the Total Environment 470–477:501510.CrossRefGoogle ScholarPubMed
Piotrowska, N, Pazdur, A, Pawełczyk, S, Rakowski, AZ, Sensuła, B, Tudyka, K. 2020. Human activity recorded in carbon isotopic composition of atmospheric CO2 in Gliwice urban area and surroundings (southern Poland) in the years 2011–2013. Radiocarbon 62(1): 141156. doi: 10.1017/rdc.2019.92.CrossRefGoogle Scholar
Rakowski, A. 2011. Radiocarbon method in monitoring of fossil fuel emission. Geochronometria 38(4):314332.Google Scholar
Sensuła, B, Fagel, N, Michczyński, A. 2021. Radiocarbon, trace elements and Pb isotope composition of pine needles from a highly industrialized region in southern Poland. Radiocarbon 63(2):713726. doi: 10.1017/RDC.2020.132.CrossRefGoogle Scholar
Sensuła, B, Michczyński, A, Piotrowska, N, Wilczyński, S. 2018. Anthropogenic CO2 emission records in Scots pine growing in the most industrialized region of Poland from 1975 to 2014. Radiocarbon 60(4):10411053. doi: 10.1017/RDC.2018.59.CrossRefGoogle Scholar
Sensuła, B, Pazdur, A. 2013. Influence of climate change on carbon and oxygen isotope fractionation factors between glucose and α-cellulose of pine wood. Geochronometria 40(2):145152.Google Scholar
Sensuła, B, Wilczynski, S, Opala, M. 2015. Tree growth and climate relationship: dynamics of Scots pine (Pinus Sylvestris L.) growing in the near-source region of the combined heat and power plant during the development of the pro-ecological strategy in Poland. Water Air and Soil Pollution 226(7), article 220.Google ScholarPubMed
Sensuła, BM. 2015. Spatial and short-temporal variability of δ13C and δ15N and water-use efficiency in pine needles of the three forests along the most industrialized part of Poland. Water Air Soil Pollut. 226(11):362. doi: 10.1007/s11270-015-2623-z.CrossRefGoogle ScholarPubMed
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122(3166): 415417.CrossRefGoogle Scholar
van der Plicht, J, Hogg, A. 2006. A note on reporting radiocarbon. Quat. Geochronol. 1(4):237–40.CrossRefGoogle Scholar
Wacker, L, Nemec, M, Bourquin, J. 2010. A revolutionary graphitisation system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931934.CrossRefGoogle Scholar
Zimnoch, M, Jelen, D, Galkowski, M, Kuc, T, Necki, J, Chmura, L, Gorczyca, Z, Jasek, A, Różański, K. 2012. Partitioning of atmospheric carbon dioxide over central Europe: composition. Isotopes in Environmental and Health Studies 48(3):421433.CrossRefGoogle ScholarPubMed