Academia.eduAcademia.edu
Botanical Excursions in Moravia Botanical Excursions in Moravia Field Guide for the 58 th IAVS Symposium Edited by Milan Chytrý, Jiří Danihelka & Dana Michalcová 1 Žďár Hills: 1a Dářko National Nature Reserve, 1b Louky u Černého lesa Nature Monument, 1c Žákova hora National Nature Reserve 2 Podyjí National Park: 2a Ledové sluje ridge, 2b Dyje valley near Hardegg, 2c Šobes meander, 2d Havraníky-Znojmo heathlands 3 Mohelno Serpentinite Steppe 4 Krumlov-Rokytná Conglomerates 5 Krumlov Wood 6 Moravian Karst: 6a Hády Hill, 6b Říčka valley, 6c Josefov valley, 6d Macocha abyss and the karst valleys nearby 7 Pouzdřany Steppe and Kolby Wood 8 Pavlov Hills: 8a Děvín Hill, 8b Tabulová National Nature Reserve, 8c Svatý kopeček Nature Reserve 9 Milovická stráň Nature Reserve 10 Dyje loodplain near Lednice (Lednice-Valtice Cultural Landscape): 10a Křivé jezero National Nature Reserve, 10b Lednice Chateau Park, 10c Pavelka Meadow 11 Dyje-Morava loodplain near Lanžhot 12 Špidláky Nature Reserve 13 Hodonínská Dúbrava Wood 14 White Carpathian Mountains: 14a Čertoryje meadows, 14b Zahrady pod Hájem meadows 15 Hrubý Jeseník Mountains: 15a Ovčárna chalet and Sedlové peatbog, 15b Mount Petrovy kameny, 15c Velká kotlina cirque 16 Botanical Garden of the Faculty of Science, Masaryk University, Brno Botanical Excursions in Moravia Botanical Excursions in Moravia Field Guide for the 58 th IAVS Symposium Edited by Milan Chytrý, Jiří Danihelka & Dana Michalcová Masaryk University, Brno, 2015 Contents Introduction (M. Chytrý) .................................................................................................................. 8 Geography and biogeography of Moravia (M. Chytrý) .................................................................... 11 Editors Milan Chytrý 1, Jiří Danihelka 1,2 & Dana Michalcová 1 Authors Magdaléna Chytrá 3, Milan Chytrý 1, Pavel Daněk 1,4, Jiří Danihelka 1,2, Vít Grulich 1, Radim Hédl 2,5, Jan W. Jongepier 6, Ivana Jongepierová 6,7, Martin Kočí 1, Pavel Novák 1, Tomáš Peterka 1, Jan Roleček 1,2, Kateřina Šumberová 2 & Lubomír Tichý 1 Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; 2 Department of Vegetation Ecology, Institute of Botany, The Czech Academy of Sciences, Lidická 25/27, 657 20 Brno, Czech Republic; 3 Botanical Garden, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; 4 Department of Forest Ecology, The Silva Tarouca Research Institute, Lidická 25/27, 602 00 Brno, Czech Republic; 5 Department of Botany, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic 6 Czech Union for Nature Conservation, Local Chapter ‘Bílé Karpaty’, 698 01 Veselí nad Moravou, Czech Republic; 7 White Carpathians Protected Landscape Area Authority, 763 26 Luhačovice, Czech Republic 1 Recommended citation Chytrý, M., Danihelka, J. & Michalcová, D. (eds.) 2015. Botanical excursions in Moravia. Field guide for the 58th IAVS Symposium. Masaryk University, Brno, CZ. © 2015 Masarykova univerzita © 2015 Milan Chytrý, Jiří Danihelka, Dana Michalcová, Magdaléna Chytrá, Pavel Daněk, Vít Grulich, Radim Hédl, Jan W. Jongepier, Ivana Jongepierová, Martin Kočí, Pavel Novák, Tomáš Peterka, Jan Roleček, Kateřina Šumberová & Lubomír Tichý © 2015 Photography: Gianmaria Bonari, Petr Bureš, Magdaléna Chytrá, Jan Chytrý, Kryštof Chytrý, Milan Chytrý, Radim Cibulka, Pavel Daněk, Jiří Danihelka, Jan Divíšek, Karel Fajmon, Zdeněk Glaser, Petra Hájková, Jana Halúzová, Eva Hettenbergerová, Petr Hrbáč, Martin Jiroušek, Ivana Jongepierová, Jiří Juřička, Veronika Kalníková, Martin Kočí, Petr Kocna, Martin Kohoutek, Štěpán Koval, Jana Kůrová, Ester Lajkepová, Zdeněk Losos, Zdeňka Lososová, Pavel Lustyk, Dana Michalcová, Iva Michalcová, Josef Navrátil, Jana Navrátilová, Vladimír Nejeschleba, Pavel Novák, Barbora Obstová, Tomáš Peterka, Jan Pokorný, Jiří Procházka, Kamila Reczyńska, Jitka Říhová, Jan Roleček, Hana Sekerková, Martina Sojneková, Jakub Štěpán, Kateřina Šumberová, Krzysztof Świerkosz, Petr Symon, Markéta Táborská, Lubomír Tichý, Pavel Veselý, David Zelený & Aleš Zvára Printed by: DaL tisk, s.r.o. 1 Žďár Hills (T. Peterka) ................................................................................................................ 1a Dářko National Nature Reserve ................................................................................................. 1b Louky u Černého lesa Nature Monument ................................................................................. 1c Žákova hora National Nature Reserve ..................................................................................... 22 28 32 2 Podyjí National Park (M. Chytrý & V. Grulich) .......................................................................... 2a Ledové sluje ridge ................................................................................................................... 2b Dyje valley near Hardegg ......................................................................................................... 2c Šobes meander ....................................................................................................................... 2d Havraníky-Znojmo heathlands ................................................................................................. 42 48 52 58 19 37 3 Mohelno Serpentinite Steppe (P. Daněk) ................................................................................ 65 4 Krumlov-Rokytná Conglomerates (P. Novák) ........................................................................ 75 5 Krumlov Wood (P. Novák) ........................................................................................................ 81 6 Moravian Karst (L. Tichý) ........................................................................................................ 85 6a Hády Hill ................................................................................................................................ 89 6b Říčka valley ............................................................................................................................ 94 6c Josefov valley ......................................................................................................................... 98 6d Macocha abyss and the karst valleys nearby .......................................................................... 103 7 Pouzdřany Steppe and Kolby Wood (J. Roleček) ................................................................... 109 8 Pavlov Hills (J. Danihelka, V. Grulich & M. Chytrý) ................................................................... 117 8a Děvín Hill ................................................................................................................................ 123 8b Tabulová National Nature Reserve .......................................................................................... 126 8c Svatý kopeček Nature Reserve ................................................................................................ 128 9 Milovická stráň Nature Reserve (J. Danihelka) ...................................................................... 139 10 Dyje loodplain near Lednice (Lednice-Valtice Cultural Landscape) (J. Danihelka).............. 147 10a Křivé jezero National Nature Reserve ..................................................................................... 148 10b Lednice Chateau Park .......................................................................................................... 154 10c Pavelka Meadow ................................................................................................................... 161 11 Dyje-Morava loodplain near Lanžhot (J. Danihelka, V. Grulich & K. Šumberová) .................. 163 12 Špidláky Nature Reserve (P. Novák & J. Roleček) .................................................................. 175 13 Hodonínská Dúbrava Wood (J. Roleček) ................................................................................. 181 14 White Carpathian Mountains (J.W. Jongepier, I. Jongepierová, M. Chytrý & V. Grulich) ........ 189 14a Čertoryje meadows ............................................................................................................... 196 14b Zahrady pod Hájem meadows ............................................................................................... 198 15 Hrubý Jeseník Mountains (R. Hédl & M. Kočí) ........................................................................ 205 15a Ovčárna chalet and Sedlové peatbog ..................................................................................... 207 15b Mount Petrovy kameny ......................................................................................................... 207 15c Velká kotlina cirque ............................................................................................................... 210 16 Botanical Garden of the Faculty of Science, Masaryk University, Brno (M. Chytrá & M. Chytrý) 217 ISBN 978-80-210-7862-8 List of vegetation units mentioned in the text ................................................................................. 221 Index of species photographs ......................................................................................................... 227 Introduction Milan Chytrý The 58th Annual Symposium of the International Association for Vegetation Science (IAVS), held in Brno in the Czech Republic on 19–24 July 2015, is an excellent opportunity for vegetation ecologists from all continents to meet, present the best of their research results and discuss current and future projects. IAVS symposia have also traditionally been associated with ield excursions giving the global community of vegetation ecologists the chance of learning about the vegetation, lora and environment of the host country. The Brno Symposium is to be no exception to this. The Local Organizing Committee of the 58th IAVS Symposium has prepared a series of ield excursions in Moravia, the eastern part of the Czech Republic, featuring sites that can easily be reached on one-day trips from the symposium venue in Brno. There will be a four-day excursion on 16–19 July 2015 and several one-day excursions on 18, 19 and 22 July 2015, mostly in the southern part of Moravia. The excursion sites are described in this volume. The post-symposium excursion on 25–30 July 2015 will visit the Western Carpathians in Slovakia; localities to be visited on this excursion are described in another volume (Janišová & Šibík 2015). International excursions of vegetation ecologists are not new to Brno. The Fifth International Phytogeographical Excursion (IPE) to Czechoslovakia and Poland was hosted by Professor Josef Podpěra at Masaryk University in July 1928. En excursion group of nineteen leading European and North American phytogeographers and vegetation ecologists, accompanied by nine Czech botanists, visited some of the sites in southern Moravia that are also to be visited during the 58th IAVS Symposium: the Moravian Karst, the Mohelno Serpentinite Steppe, the Pavlov Hills, the White Carpathian Mountains, the Masaryk University’s Botanical Garden and Mendel’s Memorial in Brno city centre (Rübel 1930). Thirty years later, Czechoslovakia was again host to the 12th International Phytogeographical Excursion (1 July to 5 August 1958) attended by 58 foreign and 60 Czechoslovak botanists. Brno and sites of botanical interest in southern Moravia were again visited at that time. History repeats itself, though the people are different and the vegetation in 2015 is somewhat different from the vegetation our predecessors saw at the same sites in 1928 and 1958. This volume is the result of an extensive update and the addition of new excursion sites to the texts prepared for previous conference excursions organized by botanists from Masaryk University: The Austrian-Czech Botanical Field Seminar in Moravia in Brno (June 1996; Danihelka et al. 1996), the 3rd Planta Europa Conference in Průhonice (June 2001) and the 17th International Workshop European Vegetation Survey in Brno (May 2008; Chytrý 2008). It contains basic information and lists of selected plant species that can be seen at individual sites. The taxonomy and nomenclature of vascular plant species follow the Checklist of vascular plants of the Czech Republic (Danihelka et al. 2012), while that of bryophytes and lichens follows Kučera et al. (2012) and Liška et al. (2008), respectively. Information on alien species (neophytes) is in accordance with Pyšek et al. (2012). The concept and nomenclature of vegetation types follows the four-volume monograph Vegetation of the Czech Republic (Chytrý 2007–2013). More condensed information on the country’s vegetation types is contained in the Habitat Catalogue of the Czech Republic (Chytrý et al. 2010). General information in English on the vegetation and lora of the Czech Republic can be found in reviews by Chytrý (2012) and Kaplan (2012), respectively. Detailed information on the country’s lora in Czech is contained in eight volumes of the Flora of the Czech Republic published in 1988–2011 (Hejný et al. 1988 et seq.) and in the Key to the lora of the Czech Republic (Kubát et al. 2002). Information on endangered lora is provided in the national Red Data Book (Čeřovský et al. 1999) and Red List (Grulich 2012). The classiication of the country into 91 biogeographical regions along with the description of these regions has been provided by Culek et al. (2013). Detailed descriptions of nature reserves and other 8 protected areas are found in the fourteen-volume encyclopedic series Protected Areas of the Czech Republic (Mackovčin & Sedláček 1999–2009). Basic information about 75 Important Plant Areas of the Czech Republic, several of them to be visited during the 58th IAVS Symposium, has been summarized by Čeřovský et al. (2007). Potential natural vegetation has been mapped by Neuhäuslová et al. (1997) and maps summarizing the environment and biogeography of the Czech Republic are available in the Landscape Atlas of the Czech Republic (Hrnčiarová et al. 2009). Spatial distribution of various climatic features based on the measurements from the period 1961–2000 is provided in the Climate Atlas of Czechia (Tolasz et al. 2007), which is also used as a reference for climate data throughout this volume unless indicated otherwise. An excellent set of maps of the Czech Republic including hiking maps, historical maps and aerial photographs is available on the server Mapy.cz; the maps of localities in this volume are taken from this source. As the guides of the 58th IAVS Symposium excursions and the authors of this volume, we hope that you enjoy the ield trips in our country. Record in the Memorial Book of the Institute of General and Systematic Botany of Masaryk University with signatures of the participants of the Fifth International Phytogeographical Excursion: E. Rübel, A. Tansley, F. Vierhapper, A. Borza, A. Pulle, H. Gams, H. Walter, V. Krajina, A. Iljinsky, K. Rudolph, W. Dokturowsky, C. Regel, J. Podpěra, K. Domin, B. Hryniewiecki, H. Brockmann-Jerosch, R. Nordhagen, C. Skottsberg, H. Gleason, N. Malta, A. Palmgren, J. Klika and I. Pevalek. 9 References Čeřovský, J., Feráková, V., Holub, J., Maglocký, Š. & Procházka, F. 1999. Červená kniha ohrožených a vzácných druhů rostlin a živočichů ČR a SR. Vol. 5. Vyšší rostliny [Red Data Book of endangered and rare species of plants and animals in the Czech Republic and Slovak Republic. Vol. 5. Higher plants]. Príroda, Bratislava. Čeřovský, J., Podhajská, Z. & Turoňová, D. (eds.) 2007. Botanicky významná území České republiky [Important Plant Areas in the Czech Republic]. Agentura ochrany přírody a krajiny ČR, Praha. Chytrý, M. (ed.) 2007–2013. Vegetace České republiky 1–4. Vegetation of the Czech Republic 1–4. Academia, Praha. Chytrý, M. (ed.) 2008. 17th International workshop European Vegetation Survey. Using phytosociological data to address ecological questions. 1–5 May 2008. Masaryk University, Brno, Czech Republic. Abstracts and Excursion Guides. Masaryk University, Brno. Chytrý, M. 2012. Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84: 427–504. Chytrý, M., Kučera, T., Kočí, M., Grulich, V. & Lustyk, P. (eds.) 2010. Katalog biotopů České republiky [Habitat Catalogue of the Czech Republic]. 2nd ed. Agentura ochrany přírody a krajiny ČR, Praha. Culek, M., Grulich, V., Laštůvka, Z. & Divíšek, J. 2013. Biogeograické regiony České republiky [Biogeographical regions of the Czech Republic]. 2nd ed. Masarykova univerzita, Brno. Danihelka, J., Chytrý, M. & Grulich, V. (eds.) 1996. Exkursionsführer für das österreichisch-tschechische botanische Geländeseminar in Mähren 15.–20. Juni 1996. Masaryk-Universität, Brno. Danihelka, J., Chrtek, J. Jr. & Kaplan, Z. 2012. Checklist of vascular plants of the Czech Republic. Preslia 84: 647–811. Grulich, V. 2012. Red List of vascular plants of the Czech Republic: 3rd edition. Preslia 84: 631–645. Hejný, S., Slavík, B., Chrtek, J., Tomšovic, P. & Kovanda, M. (eds.) 1988. Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. Academia, Praha. Hrnčiarová, T., Mackovčin, P., Zvara, I. et al. 2009. Atlas krajiny České republiky [Landscape Atlas of the Czech Republic]. Ministerstvo životního prostředí ČR, Praha & Výzkumný ústav Silva Taroucy pro krajinu a okrasné zahradnictví, Průhonice. Janišová, M. & Šibík, J. (eds.) 2015. From the Pannonian steppes to the Tatra summits. Manual to the IAVS post-symposium excursion (25–30 July 2015). Masaryk University, Brno. Kaplan, Z. 2012. Flora and phytogeography of the Czech Republic. Preslia 84: 505–574. Kubát, K., Hrouda, L., Chrtek, J. Jr., Kaplan, Z., Kirschner, J. & Štěpánek, J. (eds.) 2002. Klíč ke květeně České republiky [Key to the lora of the Czech Republic]. Academia, Praha. Kučera, J., Váňa, J. & Hradílek, Z. 2012. Bryophyte lora of the Czech Republic: updated checklist and Red List and a brief analysis. Preslia 84: 813–850. Liška, J., Palice, Z. & Slavíková, Š. 2008. Checklist and Red List of lichens of the Czech Republic. Preslia 80: 151–182. Mackovčin, P. & Sedláček, M. (eds.) 1999–2009. Chráněná území ČR I–XIV [Protected areas of the Czech Republic I–XIV]. Agentura ochrany přírody a krajiny ČR & Ekocentrum Brno, Praha. Pyšek, P., Danihelka, J., Sádlo, J., Chrtek, J. Jr., Chytrý, M., Jarošík, V., Kaplan, Z., Krahulec, F., Moravcová, L., Pergl, J., Štajerová, K. & Tichý, L. 2012. Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84: 155–255. Rübel, E. 1930. Chronik der Fünften I. P. E. Veröffentlichungen des Geobotanischen Institutes Rübel in Zürich 6: 7–29. Tolasz, R., Míková, T., Valeriánová, A. & Voženílek, V. (eds.) 2007. Atlas podnebí Česka [Climate atlas of Czechia]. Český hydrometeorologický ústav, Praha & Univerzita Palackého v Olomouci, Olomouc. 10 Geography and biogeography of Moravia Milan Chytrý Introduction Moravia (Morava in Czech) is a historical land encompassing the eastern part of the Czech Republic, with the cities of Brno and Olomouc being its historical capitals. It is one of the three historical Czech Lands, the others being Bohemia (Čechy, the western part of the Czech Republic) and the Czech part of Silesia (Slezsko, occupying a small area in the north-eastern part of the Czech Republic). Since 1949, Moravia has no longer been an administrative unit, although its name is preserved in the oficial names of some of the current administrative regions established on the territory of this historical land (e.g. the South Moravian Region). The eastern part of the Czech Republic (all maps in this chapter and the map on the inside cover were prepared by O. Hájek) Geology, geomorphology and soils Moravia is situated on the transition zone between two of Central Europe’s major mountain systems: the Bohemian Massif (Český masiv) in the north-west and the Western Carpathians (Západní Karpaty) in the south-east (Chlupáč et al. 2011). The Bohemian Massif is an old mountain system consisting of Proterozoic and Palaeozoic crystalline rocks (mainly gneiss and granite) which was formed during the Variscan (= Hercynian) Orogeny in the upper Palaeozoic. The core of the Bohemian Massif is in Bohemia, though two major ranges extend into Moravia. The irst is the Bohemian-Moravian Highlands (Českomoravská vrchovina) in western Moravia, characterized by a gently undulating landscape reaching greatest altitudes of 837 m in the Jihlava Hills (Jihlavské vrchy) and 836 m in the Žďár Hills (Žďárské vrchy). The second is the Sudetes (Sudety) running along the Czech-Polish border, with a greatest altitude of 1492 m in the Hrubý Jeseník Mountains. The summit areas of the Hrubý Jeseník Mountains lie above the timberline. The prevailing crystalline rocks of the Bohemian Massif give rise to poor acidic soils, particularly cambisol and, in the higher mountains, also podzol. Base-rich rocks occur mainly in the Moravian Karst near Brno (Devonian sedimentary limestone deposited over the crystallinic fundament) and in north-western Moravia where the Bohemian-Moravian Highlands border 11 on the Bohemian Cretaceous Basin which is illed with Upper Cretaceous mudstones, marls and sandstones. Small patches of metamorphosed limestone (marble, crystalline limestone) and serpentinite are found in the Bohemian-Moravian Highlands and other parts of the Bohemian Massif, usually exerting a remarkable inluence on the vegetation cover. The Carpathian Mountains were formed during the Alpine Orogeny in the Mesozoic and Tertiary (Chlupáč et al. 2011). As they are younger than the Bohemian Massif, they are generally more rugged and also contain many limestone areas in addition to crystallinic rocks. The north-western part of the Carpathians, located in Slovakia and adjacent areas, is called the Western Carpathians. In Moravia, the Western Carpathians are represented only by the Flysch Belt, an outer part of the Carpathian range which extends from Moravia along the Polish-Slovak borderland to western Ukraine. Flysch is a sedimentary series of the Palaeogene age consisting of alternating layers of shale (mudstone) and sandstone, which was deposited in the foreland basin of the Western Carpathians during the Alpine Orogeny. The Flysch Belt is formed of several nappes, large sheets of lysch sediments that have been moved over the Western Carpathian foreland. In some areas, particularly in southern Moravia, the lysch sediments tend to be calcareous, while in other areas (north-eastern Moravia in particular) they are mostly acidic. The lysch sediments are generally soft, resulting in a gently undulating landscape. Alternation of water-holding shales with permeable sandstones results in small-scale landslides, which often open up springs on lysch slopes. As in the Bohemian Massif, the predominant soil type in the Carpathian part of Moravia is cambisol and, at higher altitudes, also podzol, but the Carpathian lysch-derived soils are generally deeper and less stony or gravelly than the soils in the Bohemian Massif. The highest altitude of 1323 m in the Carpathian part of Moravia is reached in the Moravian-Silesian Beskids (Moravskoslezské Beskydy) in north-eastern Moravia. Climate The climate of Moravia is temperate subcontinental, generally supporting broad-leaved deciduous forest, but in the south it is transitional to a drier forest-steppe climate and on the summits of the Hrubý Jeseník Mountains it supports coniferous forests and even small areas of alpine tundra (Chytrý 2012). The warmest and driest part of Moravia are the lowlands south of Brno with mean annual temperatures of 9–10 °C and an annual precipitation sum of 450–550 mm (Tolasz et al. 2007). The low precipitation is due to the position of southern Moravia in the lee of the Bohemian-Moravian Highlands which capture a considerable proportion of the precipitation coming to Central Europe predominantly with the north-western winds from the Atlantic Ocean. The lowlands in north-eastern Moravia, such as those around the city of Ostrava, are also relatively warm (mean annual temperatures of 8–9 °C), though the precipitation is about 700–800 mm in this region which directly borders the Polish lowland and lacks orographic rain-shading. The lowest mean annual temperatures (1–2 °C) are on the summits of the Hrubý Jeseník Mountains in northern Moravia, and the highest precipitation (more than 1200 mm) on the summits of the Moravian-Silesian Beskids in north-eastern Moravia (Tolasz et al. 2007). The coldest month in Moravia is January with a mean temperature of about –1.5 °C in the lowlands and about –6 °C on the highest mountain summits. The warmest month is July with a mean temperature of about 19 °C in the lowlands and about 11 °C in the highest mountains. Precipitation is characterized by a distinct summer peak, with 150–500 mm falling within the three summer months and 50–300 mm within the three winter months, depending on the altitude (Tolasz et al. 2007). Mean annual temperatures of the eastern part of the Czech Republic (data from Tolasz et al. 2007) Geological map of the eastern part of the Czech Republic (based on the digital geological maps provided by the Czech Geological Survey in 1998 and 2004) Landscape and vegetation history The lowland area between the Bohemian Massif and the Western Carpathians at altitudes between 150 and 300 m is formed of Neogene and Quaternary sediments. In places there are remarkable accumulations of loess, an eolian sediment deposited in cold and dry phases of the Pleistocene, some of which contain a valuable fossil record of the Palaeolithic human cultures and their environment. The chernozems and related soils in this area are the most fertile in Moravia, for which reason most of the land has been converted to arable ields. 12 In the cold phases of the Pleistocene Moravia was located in a non-glaciated corridor between the continental ice sheet spreading over the Polish lowlands in the north and the extensive mountain glacier of the Alps in the south. During the Saale Glaciation (corresponding to the Riss Glaciation of the Alps) the continental ice sheet reached the lowlands along the Odra River in north-eastern Moravia, though the front of the continental ice sheet stopped about 250 km north of Moravia in central Poland during the last glaciation (Vistulian, Würm). Moravia was, therefore, an important biogeographical boundary between cold-suboceanic western Europe and continental eastern Europe. 13 for which reason the proportion of Fagus sylvatica in submontane and montane forests decreased while that of the conifers Picea abies and Abies alba increased (Nožička 1957). Since the early 19th century, plantations of Picea abies and Pinus sylvestris have been established throughout Moravia, now being the dominant type of forest, especially in the Bohemian-Moravian Highlands (ÚHÚL 2007). Alongside forests and arable land, grasslands are another important component of the current landscape in Moravia, in particular dry grasslands at low altitudes in southern Moravia, mesic grasslands at mid-altitudes and in the lowlands of northern Moravia, and wet grasslands at higher altitudes and in the loodplains (Chytrý 2007). Some of the dry grasslands may be of primary origin, being a direct continuation of the Pleistocene steppe, although used by humans for millennia (Kuneš et al. 2015). However, most of the grasslands are secondary, developed at the sites of potential forest from the native pools of light-demanding species and used by humans for livestock grazing or hay making (Hejcman et al. 2013). Some are extremely rich in species, including the meadows in the White Carpathian (Bílé Karpaty) Mountains with world-record counts of vascular plant species in a small area (Merunková et al. 2012; Wilson et al. 2012). Unfortunately, following the socio-economic changes after WWII, many of these grasslands were either abandoned or subjected to intensive management, both processes leading to a decline in biodiversity. Most valuable grasslands are currently mown or grazed as part of subsidized nature conservation management. Mean annual precipitation sum of the eastern part of the Czech Republic (data from Tolasz et al. 2007) Records of fossil molluscs and pollen indicate that the full-glacial landscape of the Moravian lowlands was probably covered by continental steppe-tundra and forest-steppe (Ložek 2001; Rybníčková & Rybníček 2014). It was an important migration corridor for large herbivores, and the camps of Palaeolithic hunter-gatherers were found in southern and central Moravia (Musil 2014). However, large areas in the Carpathian mountain valleys of north-eastern Moravia were probably covered by boreal coniferous forest with Picea, Larix, Pinus cembra, P. sylvestris and Betula (Jankovská & Pokorný 2008; Kuneš et al. 2008). Open landscape was gradually forested with the early Holocene climatic amelioration, starting ca. 11.6 cal. ka BP (calendar thousand years before present), irst with open forests of Pinus sylvestris and Betula pendula and later on with closed forests of more demanding broad-leaved trees such as Acer, Fraxinus, Quercus, Tilia and Ulmus, which created a mid-Holocene landscape mosaic referred to as ‘mixed oak forest’ (Quercetum mixtum) in the palynological literature. Picea abies spread at middle and higher altitudes. Although forest became dominant in the landscape, both the mollusc and pollen fossil records indicate that the Moravian lowlands never became completely forested even in the warm and precipitation-rich Holocene climatic optimum (Atlantic, ca. 8–4.5 cal. ka BP; Kuneš et al. 2015). In addition to large herbivores, the open landscape was probably maintained by the Mesolithic people and, since ca. 7.5 cal. ka BP, by Neolithic farmers. The continuity of open landscape supported the survival of many light-demanding species of the Late-glacial steppe and open pine-birch forests. The Moravian lowlands have been continuously settled and used for agriculture since the Neolithic, although the human population density varied, being particularly high in the Bronze Age and Iron Age (ca. 4–2 cal. ka BP) and low in the Roman Period and Migration Period (1st millennium AD). Carpinus betulus was the latest tree species, not spreading over the lowlands until the early Subatlantic (ca. 2.5–2 cal. ka BP), probably supported by forest disturbance by humans (Pokorný 2002). Its spread gave rise to the currently widespread oak-hornbeam forests in the Moravian lowlands and upland fringes. In contrast to the agricultural lowlands, higher altitudes above approximately 450 m in the Bohemian-Moravian Highlands, the Sudetes and the Carpathians had very sparse or no settlements and were covered by submontane and montane forests during most of the Holocene. Fagus sylvatica and Abies alba expanded in these forests in the Subboreal (ca 4.5–2.5 cal. ka BP), forming mixed spruceir-beech forests. These areas were not deforested until the High Medieval colonization which took place mainly in the 13th–14th centuries. Beech wood was extensively used for charcoal production, 14 Phytogeographical division of the eastern part of the Czech Republic (based on Skalický 1988) The main biogeographical patterns in Moravia The main biogeographical gradient in Moravia is that between the warm and dry lowlands of southern Moravia and the mountain areas in the north-west, north and north-east. This gradient is relected in the phytogeographical division of the Czech Republic (Skalický 1988; see also Kaplan 2012), which distinguishes the region of thermophilous lora (Thermophyticum) in the lowlands of southern and central Moravia, the region of mesophilous lora (Mesophyticum) in most other parts of Moravia, and the region of mountain lora (Oreophyticum) in the highest mountain areas. The Moravian Thermophyticum is a north-western promontory of the Pannonian Province (a part of the Pontic-South Siberian Region in the phytogeographical division of Meusel et al. 1965) which encompasses the forest-steppe region of Hungary and the adjacent parts of the Pannonian (= Carpathian) Basin. It is characterized 15 by the occurrence of many species of eastern and southern distribution. The boundary of the Pannonian Province with the Bohemian Massif (often referred to as the Hercynian region in biogeography) and the Carpathians is the most important biogeographical boundary in Central Europe, as these mountain areas belong to the Middle European Region (Meusel et al. 1965). Within the Mesophyticum and Oreophyticum, there is a clear biogeographical distinction between the Bohemian Massif and the Western Carpathians, relecting the different migration histories of these regions. Roughly the same regional patterns as in the phytogeographical division are relected in the zoogeographical division (Mařan 1958). The altitudinal zonation of Moravian vegetation can be described using the vegetation belts proposed by Skalický (1988): (1) The lowland belt at altitudes up to about 220 m is characterized by loodplain forests and meadows, wetlands, sand grasslands and, in fragmenary remnants in southern Moravia, by saline vegetation. (2) The colline belt in dry areas at altitudes up to about 500 m contains thermophilous oak forests, oak-hornbeam forests and steppe grasslands. (3) The supracolline belt occurs at the same altitudes as the colline belt though in areas with a wetter and cooler climate that supports oak-hornbeam, acidophilous oak, ir and beech forests, and mesic, semi-dry and wet grasslands. (4) The submontane belt reaches approximately 800 m a.s.l. and is dominated by ir-beech forests, mesic and wet meadows and pastures. (5) The montane belt at altitudes up to 1100 m is characterized by beech, ir and spruce forests, mesic and wet grasslands, and mires. (6) The supramontane belt is dominated by natural spruce forests which reach approximately 1300 m a.s.l. in the Hrubý Jeseník Mountains, with a maximum at 1405 m. (7) The subalpine belt includes the grassland and heathland areas above the timberline in the Hrubý Jeseník Mountains (1492 m) and on Mount Králický Sněžník (1424 m). Patches of alpine vegetation types occur locally in the Hrubý Jeseník Mountains, though the alpine vegetation is discontinuous here. The distribution of the hypothesized potential natural vegetation within the altitudinal belts is outlined in the map by Neuhäuslová et al. (1997). Nature conservation There is one National Park (Podyjí National Park) and eight Protected Landscape Areas (PLA) in Moravia (Mackovčin & Sedláček 1999–2009), the latter being large areas with a less strict conservation regime than that of the National Parks (IUCN category V). Each PLA has its own administration and management ofice. The following PLAs are described in this volume: Žďárské vrchy, Moravský kras, Pálava, Bílé Karpaty and Jeseníky. The other three PLAs are Litovelské Pomoraví, Poodří and Beskydy in central and north-eastern Moravia, the irst two protecting alluvial ecosystems along the Morava and Odra Rivers, respectively, the last protecting mountain ecosystems of the Moravian-Silesian Beskids. In additon to the National Parks and PLAs, the Czech legislation also recognizes the categories National Nature Reserve, Nature Reserve, National Nature Monument and Nature Monument. The legislative protection of valuable natural areas has a long tradition in this country and many of these territories have been protected for several decades. Many have recently been declared Sites of Community Importance within the European Union Natura 2000 network. There are two UNESCO Biosphere Reserves in Moravia: Bílé Karpaty (White Carpathians), overlapping with the PLA of the same name, and Lower Morava, including the PLA Pálava (with the Pavlov Hills) and adjacent areas, although the protection of a large part of the latter Biosphere Reserve has no legal support in the national legislation. Forest cover of the eastern part of the Czech Republic (based on the CORINE Land Cover 2000 data set; Bossard et al. 2000) Potential natural vegetation of the eastern part of the Czech Republic (data from Neuhäuslová et al. 1997) 16 References Bossard, M., Feranec, J. & Otahel, J. 2000. CORINE land cover technical guide – addendum 2000. European Environment Agency, Copenhagen. Chlupáč, I., Brzobohatý, R., Kovanda, J. & Stráník, Z. 2011. Geologická minulost České republiky [Geological history of the Czech Republic]. Academia, Praha. Chytrý, M. (ed.) 2007. Vegetace České republiky 1. Travinná a keříčková vegetace. Vegetation of the Czech Republic 1. Grassland and heathland vegetation. Academia, Praha. Chytrý, M. 2012. Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84: 427–504. 17 Hejcman, M., Hejcmanová, P., Pavlů, V. & Beneš, J. 2013. Origin and history of grasslands in Central Europe – a review. Grass and Forage Science 68: 345–363. Jankovská, V. & Pokorný, P. 2008. Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80: 307–324. Kaplan, Z. 2012. Flora and phytogeography of the Czech Republic. Preslia 84: 505–574. Kuneš, P., Pelánková, B., Chytrý, M., Jankovská, V., Pokorný, P. & Petr, L. 2008. Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. Journal of Biogeography 35: 2223–2236. Kuneš, P., Svobodová-Svitavská, H., Kolář, J., Hajnalová, M., Abraham, V., Macek, M., Tkáč, P. & Szabó, P. 2015. The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quaternary Science Reviews 116: 15–27. Ložek, V. 2001. Molluscan fauna from the loess series of Bohemia and Moravia. Quaternary International 76–77: 141–156. Mackovčin, P. & Sedláček, M. (eds.) 1999–2009. Chráněná území ČR I–XIV [Protected areas of the Czech Republic I–XIV]. Agentura ochrany přírody a krajiny ČR & Ekocentrum Brno, Praha. Mařan, J. 1958. Zoogeograické členění Československa [Zoogeographical division of Czechoslovakia]. Sborník Československé společnosti zeměpisné 63: 89–110. Merunková, K., Preislerová, Z. & Chytrý, M. 2012. White Carpathian grasslands: can local ecological factors explain their extraordinary species richness? Preslia 84: 311–325. Meusel, H., Jäger, E. & Weinert, E. 1965. Vergleichende Chorologie der zentraleuropäischen Flora. G. Fischer, Jena. Musil, R. 2014. Morava v době ledové. Prostředí posledního glaciálu a metody jeho poznávání [Morava in the Ice Age. Environment of the last glacial and methods of its study]. Masarykova univerzita, Brno. Neuhäuslová, Z., Moravec, J., Chytrý, M., Sádlo, J., Rybníček, K., Kolbek, J. & Jirásek, J. 1997. Mapa potenciální přirozené vegetace České republiky 1 : 500 000 [Map of potential natural vegetation of the Czech Republic 1 : 500 000]. Botanický ústav AV ČR, Průhonice. Nožička, J. 1957. Přehled vývoje našich lesů [Historical overview of our forests]. Státní zemědělské nakladatelství, Praha. Pokorný, P. 2002. Palaeogeography of forest trees in the Czech Republic around 2000 BP: methodical approach and selected results. Preslia 74: 235–246. Rybníčková, E. & Rybníček, K. 2014. Palaeovegetation in the Pavlovské vrchy hills region (South Moravia, Czech Republic) around 25,000 BP: the Bulhary core. Vegetation History and Archaeobotany 23: 719–728. Skalický, V. 1988. Regionálně fytogeograické členění [Regional phytogeographical division]. In: Hejný, S., Slavík, B., Chrtek, J., Tomšovic, P. & Kovanda, M. (eds.) Květena České socialistické republiky 1 [Flora of the Czech Socialist Republic 1], pp. 103–121. Academia, Praha. Tolasz, R., Míková, T., Valeriánová, A. & Voženílek, V. (eds.) 2007. Atlas podnebí Česka [Climate atlas of Czechia]. Český hydrometeorologický ústav, Praha & Univerzita Palackého v Olomouci, Olomouc. ÚHÚL 2007. Národní inventarizace lesů v České republice 2001–2004. Úvod, metody, výsledky [National forest inventory in the Czech Republic 2001–2004. Introduction, methods, results]. ÚHÚL, Brandýs nad Labem. Wilson, J.B., Peet, R.K., Dengler, J. & Pärtel, M. 2012. Plant species richness: the world records. Journal of Vegetation Science 23: 796–802. 18 1 Žďár Hills 1 Tomáš Peterka Introduction The Žďár Hills (Žďárské vrchy) are located on the border between Bohemia and Moravia in the north-eastern part of the Bohemian-Moravian Highlands between the towns of Hlinsko, Nové Město na Moravě, Polička, Žďár nad Sázavou and Ždírec nad Doubravou, about 50–80 km NW of Brno. The region is characterized by a picturesque cultural landscape with a mosaic of woods, meadows, pastures, small ields, ponds and scattered settlements. Fen meadows with Dactylorhiza majalis and Eriophorum angustifolium are a valuable habitat in the Žďár Hills. Photo T. Peterka. Geology, soils, climate and hydrology The bedrock of the Žďár Hills consists mostly of crystalline rocks of the Proterozoic and Palaeozoic age, i.e. various kinds of gneiss, migmatite, granite, granodiorite and phyllite with small bodies of amphibolite, marble, serpentinite and erlan (Čech et al. 2002). Calcium-rich Cretaceous sandstones and claystones occur locally in a narrow depression in the Dlouhé meze area that represents a spur of the geological unit of the Bohemian Cretaceous Basin. The region is characterized by broad and shallow valleys separated by lat crests with gentle slopes. Scattered rock formations and boulder ields occur on the crests, e.g. Čtyři palice, Devět skal, Dráteničky, Milovské perničky, Štarkov and Zkamenělý zámek. The altitude ranges from approximately 500 m to 836 m at the top of Mount Devět skal. The prevailing soil type in the Žďár Hills is cambisol, mostly acidic, with podzol occurring in the highest and precipitation-richest parts of the region. Calcium-rich Cretaceous sediments and marble and serpentinite outcrops are covered by shallow leptosols. Gleysols and histosols develop in places well-saturated with groundwater, with stagnosols (pseudogleys) at intermittently wet sites. 19 The mean annual temperature is 5 –7 °C and the annual precipitation sum is 650–800 mm over a large part of the area, though it can reach as much as 1100 mm at altitudes above 800 m. The European Continental Divide crosses the region. While the north-western part of the area is drained by the Chrudimka, Doubrava and Sázava Rivers to the Labe (Elbe) River and onwards to the North Sea, the south-eastern part is drained by the Oslava and the Svratka to the Danube and the Black Sea. The gently undulating landscape has proved suitable for ishpond construction. Today, the region has almost two hundred ishponds, of which Velké Dářko (205 ha) is the largest. Landscape history and nature conservation The site name Žďár and its adjective Žďárské are derived from the word žďáření which means slash-andburn. Arable ields were established in places of cleared forest during the High Medieval colonization of the area in the 13th century. Until then, the region had been covered by primeval forests in the borderland between the Kingdom of Bohemia and the Margraviate of Moravia. In the 15th and 16th centuries large farms, ponds, glassworks and iron works were established here. The higher altitudes were not colonized until the 18th century. By the beginning of the 19th century, the region was one of the most important iron-producing areas in Central Europe and the glass products made in the villages of Herálec and Milovy were known throughout Europe. Since that time most of the remaining natural forests have been clearcut and replaced with plantations of Norway spruce (Picea abies). The negative impact of human activity on nature and biodiversity strengthened in the second half of the 20th century when the ‘traditional’ extensive management of the landscape intensiied, including systematic draining of wet meadows and excessive use of heavy machinery, fertilizers and other chemicals. In spite of this, the region still harbours many endangered and rare plant species and sites with (semi-)natural habitats, for which reason it was declared a Protected Landscape Area in 1970. There are currently a total of ifty sites (mostly mires, wet meadows, rock formations and remnants of natural forests) protected as National Nature Reserves, Nature Reserves and Nature Monuments. Vegetation The Žďár Hills are situated in the submontane and montane vegetation belts. Until its colonization in the 13th century almost the entire area was covered with primeval beech forest of Fagus sylvatica with Abies alba and Picea abies (Rybníčková & Rybníček 1988). Although these forests were largely replaced by spruce plantations in the 19th century, natural forests still occur in the region and their best-preserved stands are protected in reserves. At higher altitudes, the predominant natural vegetation type are montane acidophilous beech forests of the association Calamagrostio villosae-Fagetum sylvaticae (alliance Luzulo-Fagion sylvaticae), while at lower altitudes, this type of forest is replaced by submontane acidophilous beech forest of the association Luzulo luzuloidis-Fagetum sylvaticae (Luzulo-Fagion sylvaticae) and herb-rich beech and ir forests (associations Galio odorati-Fagetum sylvaticae, Mercuriali perennis-Fagetum sylvaticae and Galio rotundifolii-Abietetum albae, alliance Fagion sylvaticae). Although spruce forests are largely represented by plantations, some spruce stands with a natural canopy structure and species composition are still preserved on wet sites, e.g. the bottoms of broad stream valleys and mire margins, and can be classiied as the associations Calamagrostio villosae-Piceetum abietis, Equiseto sylvatici-Piceetum abietis and Soldanello montanae-Piceetum abietis (alliance Piceion abietis). Their moss layer is well developed, containing mainly Sphagnum and Polytrichum species. The ravine forests (associations Mercuriali perennis-Fraxinetum excelsioris and Arunco dioici-Aceretum pseudoplatani, alliance Tilio platyphylli-Acerion), dominated principally by Acer pseudoplatanus, Fraxinus excelsior and Ulmus glabra, develop in places on the steep slopes. Riparian forests with Alnus glutinosa (alliance Alnion incanae) occur along slow-lowing streams and around forested springs. While the association Piceo abietis-Alnetum glutinosae is usually found in the montane belt at altitudes above 700 m, the association Carici remotae-Fraxinetum excelsioris is rather typical of the submontane vegetation belt. In the latter community, Alnus glutinosa often grows together with Fraxinus excelsior. A few outcrops of serpentinite or gneiss are covered by acidophilous forests of Pinus sylvestris (association Vaccinio myrtilli-Pinetum sylvestris, alliance Dicrano-Pinion sylvestris). Mire woodlands of the alliance Vaccinio uliginosi-Pinion sylvestris, dominated by Betula pubescens, Pinus sylvestris and rarely also by the Central European endemic bog pine Pinus uncinata subsp. uliginosa, have developed locally on peat accumulations. 20 Minerotrophic mires and mire meadows are one of the most remarkable habitats of the Žďár Hills, represented mainly by moderately rich fens (alliance Caricion canescenti-nigrae) and poor fens (alliance Sphagno-Caricion canescentis), and in places also by rich fens (alliance Sphagno warnstorii-Tomentypnion nitentis). Communities of extremely rich fens (alliance Caricion davallianae) are restricted to the calcium-rich bedrocks of the Dlouhé meze area. Although mires were destroyed in many places in the second half of the 20th century, there are still several well-preserved examples of this habitat that harbour endangered species of vascular plants (e.g. Carex dioica, Eleocharis quinquelora, Pedicularis palustris, Polygala amarella and Trichophorum alpinum) and bryophytes (e.g. Hamatocaulis vernicosus and Paludella squarrosa). The bog vegetation of the Sphagnion magellanici alliance covers only small patches within fen complexes with the exception of the Dářko site. Mires are usually accompanied by willow carrs dominated by Salix aurita and occasionally S. cinerea (association Salicetum auritae, alliance Salicion cinereae). Meadows and pastures are the most common type of secondary treeless vegetation in the Žďár Hills (Balátová-Tuláčková 1980). Wet meadows of the alliance Calthion palustris occur most frequently, while mesic meadows of the alliance Arrhenatherion elatioris and non-fertilized meadows of the alliance Molinion caeruleae, which are wet in spring but dry in summer, are less frequent. The oligotrophic grasslands dominated by Nardus stricta, Festuca iliformis and F. rubra occur on nutrient-poor, acidic, moderately dry and wet soils (associations Festuco capillatae-Nardetum strictae and Campanulo rotundifoliae-Dianthetum deltoidis, alliance Violion caninae). Semi-dry grasslands of the alliance Bromion erecti are present only on sunny slopes on the calcareous bedrock of Dlouhé meze. Rock outcrops are occupied by heathlands with Vaccinium myrtillus and V. vitis-idaea (association Calamagrostio arundinaceae-Vaccinietum myrtilli, alliance Genisto pilosae-Vaccinion). The structure and functioning of semi-natural submontane grasslands in the Žďár Hills were studied within the Kameničky project, part of the UNESCO Man and Biosphere Programme, by the team of plant ecologists from the Institute of Botany of the then Czechoslovak Academy of Sciences in Brno, led by Professor Milena Rychnovská, in 1975–1985. During this interdisciplinary research, the grassland ecosystems were explored with respect to edaphic factors, soil fertility, water budget, the nitrogen and carbon cycle, productivity, the population structure of stands and the interactions of plants with other organisms (Rychnovská et al. 1993). Experimental plots were situated near the ield station in the village of Kameničky in the north-central part of the Žďár Hills. Littoral zones of ponds and other water bodies are covered by communities of tall sedges or large perennial grasses such as Carex rostrata and Calamagrostis canescens (alliance Magno-Caricion elatae) in oligotrophic to mesotrophic water bodies, whereas Carex acuta or Phalaris arundinacea (alliance Magno-Caricion gracilis) and Equisetum luviatile, Phragmites australis or Typha latifolia (alliance Phragmition australis) prevail in mesotrophic to eutrophic habitats. The aquatic vegetation of the ishponds is mostly composed of Lemna minor, Persicaria amphibia and Utricularia australis. Some endangered or vulnerable aquatic plants (e.g. Callitriche hermaphroditica, Potamogeton alpinus, Sparganium natans and Utricularia minor) were also recorded within the region. Vegetation of low-growing annual to perennial graminoids and dicots can occur on exposed pond bottoms. The typical species of this habitat include Carex bohemica, Coleanthus subtilis, Elatine hydropiper, Eleocharis acicularis, E. ovata, Juncus bulbosus, Limosella aquatica, Rumex maritimus and (rarely) Elatine triandra, Spergularia echinosperma and Tillaea aquatica. Flora The irst loristic records from the Žďár Hills were published in monographic lora works by the Czech botanist Ladislav Čelakovský in the 1860s–1880s. Knowledge of local lora was further improved by the regional botanists Filip Kovář, Petr Havelka and Miroslav Servít at the turn of the 20th century (Smejkal 1958). Later, prominent Czech botanists Josef Podpěra, Karel Domin, Jan Šmarda and Emil Hadač visited the area and published their records of vascular plants and bryophytes. In the second half of the 20th century, the lora of the Žďár Hills was investigated principally by Miroslav Smejkal, Ivan Růžička, Vladimír Zabloudil and Petr Bureš. The lora of the Žďár Hills comprises approximately a thousand species of vascular plants (Bureš & Smejkal 1990). The occurrence of montane element is in marked contrast to adjacent areas, with species such as Blechnum spicant, Cicerbita alpina, Diphasiastrum tristachyum, Epilobium nutans (now probably extinct), Huperzia selago, Salix silesiaca, Streptopus amplexifolius and Thelypteris limbosperma (Bureš 1990). Another species group includes montane plants that occur frequently in the 21 1 Žďár Hills and that are also found in adjacent areas (e.g. Circaea alpina, Cirsium heterophyllum, Dryopteris dilatata, Lycopodium annotinum, Petasites albus, Polygonatum verticillatum, Rosa pendulina, Scorzonera humilis and Thalictrum aquilegiifolium). Taxa with a sub-Atlantic distribution range are represented by Hypericum humifusum, Juncus bulbosus, J. squarrosus, Lotus pedunculatus, Montia fontana agg., Pedicularis sylvatica and Taraxacum nordstedtii. Several species are on the eastern limit of their distribution range in the region, such as Carex pulicaris, Chrysosplenium oppositifolium and Lathyrus linifolius (Bureš & Ženíšková 1996; Bureš & Řepka 1991). Cardamine trifolia, Soldanella montana and Willemetia stipitata are examples of the Alpic element. An important group in the lora of the Žďár Hills is made up of plants that are widespread in the boreal zone of Europe and scattered in Central Europe. These species were much more frequent in Central Europe during the Late Glacial and early Holocene and are considered relicts from these periods. Most of them are conined to mires or coniferous forests, e.g. Andromeda polifolia, Carex chordorrhiza, C. dioica, C. lasiocarpa, C. paucilora (now missing), Dryopteris cristata, Eriophorum gracile, E. vaginatum, Stellaria longifolia, Trichophorum alpinum, Trientalis europaea, Vaccinium oxycoccos and V. uliginosum. The mosses Calliergon giganteum, Meesia triquetra, Paludella squarrosa and Scorpidium scorpioides, specialists of mineral-rich fens, also belong to this group (Rybníček 1966). The lora of the region also contains several taxa endemic to Central Europe and subendemic to the Czech Republic, namely Gentianella praecox subsp. bohemica, Knautia arvensis subsp. serpentinicola and Pinus uncinata subsp. uliginosa (Růžička 1999). A large fen complex was formed in the lat terrain below the hill by the terrestrialization of a shallow lake in the early Holocene (Čech et al. 2002). The older sediments of minerotrophic (ground-water fed) fen were gradually covered by bog peat of a depth of up to 8–9 m during the wet Atlantic period (Břízová 2009). The bog, known as Padrtiny, is the largest mire complex in the Bohemian-Moravian Highlands, covering an area of about 150 ha. The schematic vegetation transect of the northern part of the Dářko site. Orig. T. Peterka. The Žďár Hills with excursion sites and the boundary of the Žďárské vrchy Protected Landscape Area (green dashed line). All the maps used in the descriptions of excursion sites are taken from the server Mapy.cz. (1a) Dářko National Nature Reserve This site, situated 1–1.8 km south of the village of Radostín and 0.5–1 km west of the Velké Dářko ishpond at altitudes of 620–653 m, features contrasting natural phenomena that have been protected in a nature reserve since 1933. The bedrock is composed of Cretaceous calcareous sandstones and claystones which form the hill Radostínský kopec (653 m), a dominant feature of the local landscape. 22 Dářko National Nature Reserve west of the Velké Dářko ishpond. 23 1 The Padrtiny site is covered by pine bog woodlands (association Ledo palustris-Pinetum uncinatae, alliance Sphagnion magellanici). A sparse tree layer is composed mainly of Pinus uncinata subsp. uliginosa (syn. P. rotundata), P. sylvestris and their hybrid P. ×rhaetica nothosubsp. digenea. P. uncinata subsp. uliginosa is an endemic taxon of Central Europe, distributed mainly in the mountain areas of the Czech Republic (Krušné Mountains, Smrčiny, Český les, Slavkovský les, Šumava, Ždár Hills and Hrubý Jeseník Mountains) and the Třeboň Basin of South Bohemia, and extending slightly beyond the borders of the country (by less than 25–30 km) into Germany (Saxony and Bavaria), northern Austria and south-western Poland (Businský 2009). Only about thirty populations of P. uncinata subsp. uliginosa are known within the whole distribution range. The species-poor herb layer of the wooded bog is formed of tussocks of Eriophorum vaginatum and dwarf shrubs (Andromeda polifolia, Vaccinium myrtillus, V. oxycoccos and V. uliginosum). The moss layer contains predominantly Sphagnum species including S. angustifolium, S. fallax, S. magellanicum, S. rubellum and S. russowii, accompanied by Aulacomnium palustre, Polytrichum commune, P. strictum and Straminergon stramineum. Treeless patches are covered by stands of Eriophorum vaginatum and Sphagnum fallax (association Eriophoro vaginati-Sphagnetum recurvi, alliance Sphagnion magellanici). Towards the bog margins, the wooded bog vegetation of Sphagnion magellanici is replaced by peatland forest vegetation with a higher representation of Calluna vulgaris, Vaccinium vitis-idaea and Pleurozium schreberi and a lower cover of Sphagna (associations Vaccinio uliginosi-Pinetum sylvestris and Vaccinio-Pinetum montanae of the alliance Vaccinio uliginosi-Pinion sylvestris). The dominant tree species are Pinus sylvestris and P. uncinata subsp. uliginosa, accompanied by birches (Betula pendula and B. pubescens) and spruce (Picea abies). Pure birch forests are found on wetter sites in the lagg zone (association Vaccinio uliginosiBetuletum pubescentis, alliance Vaccinio uliginosi-Pinion sylvestris). weft-forming bryophytes such as Campylium stellatum and Tomentypnum nitens. This association is further characterized by species of boreal distribution, including Carex chordorrhiza, a critically endangered plant species growing here on one of about ten current localities in the Czech Republic. Poor acidic fens (associations Sphagno recurvi-Caricetum rostratae and Polytricho communis-Molinietum caeruleae, alliance Sphagno-Caricion canescentis) also occur here, dominated by Polytrichum commune or Sphagnum fallax and lacking species that require higher concentrations of minerals (e.g. Parnassia palustris and Valeriana dioica) as well as species of ombrotrophic mires (e.g. Andromeda polifolia and Eriophorum vaginatum). The south-facing slopes of Radostínský kopec are covered by semi-dry grasslands (association Carlino acaulis-Brometum erecti, alliance Bromion erecti) and mesic grasslands (association Ranunculo bulbosi-Arrhenatheretum elatioris, alliance Arrhenatherion elatioris), including Arrhenatherum elatius, Bromus erectus, Carex lacca, Carlina acaulis, Centaurea scabiosa, Cirsium acaulon (now probably replaced by the hybrid C. acaulon × C. oleraceum; Bureš et al. 2000), Galium album, Inula salicina, Knautia arvensis agg., Pimpinella saxifraga, Trifolium montanum and Trisetum lavescens. Such contact between a base-rich semi-dry grassland with a bog is extremely unusual in Central Europe. A ine-scale mosaic of wet and intermittently wet meadows (alliances Calthion palustris and Molinion caeruleae) has developed on the boundary between the hillside grasslands and the mires at the foothill. The species-rich herb layer contains a number of herbs (e.g. Cardamine pratensis, Cirsium rivulare, Galium boreale, G. uliginosum, Lychnis los-cuculi, Ranunculus acris, R. auricomus agg., Succisa pratensis and Valeriana dioica) and graminoids (e.g. Anthoxanthum odoratum, Avenula pubescens, Briza media, Carex nigra, C. pallescens, C. panicea, Deschampsia cespitosa, Festuca rubra and Molinia caerulea agg.). The grasslands and fens were formerly regularly mown for hay, but some competitively strong grasses (Calamagrostis epigejos and Molinia caerulea agg.) have expanded in some places following abandonment in the 20th century. Today, the most valuable communities are mown once a year. The mires of Padrtiny and its surroundings were investigated by Jaromír Klika and Jan Šmarda (Klika & Šmarda 1944) in the 1940s and thereafter by Kamil Rybníček (Rybníček 1964). In the 1970s, Robert Neuhäusl conducted a detailed study of the vegetation-environment relationships at this site, including extensive measurements of evapotranspiration, soil temperature and moisture, soil and groundwater chemistry and other variables (Neuhäusl 1975). Appendix 1a Selected species of vascular plants and bryophytes in the Dářko National Nature Reserve. In all Appendices alien species (neophytes) are indicated by ‘(neo)’. Forested peat bog at the Padrtiny site in the Dářko National Nature Reserve. Pinus sylvestris with reddish bark on the left and the Central European endemic Pinus uncinata subsp. uliginosa with dark bark and conic crown on the right. Photo J. Juřička. Fen vegetation occurs in a narrow belt on the northern margin of Padrtiny directly below the hill Radostínský kopec. Rich fens are represented by the association Menyantho trifoliatae-Sphagnetum teretis (alliance Sphagno warnstorii-Tomentypnion nitentis), dominated here by the tall sedge Carex lasiocarpa. Like other rich-fen communities, this vegetation type contains calcium-tolerant Sphagnum species (S. contortum, S. teres and S. warnstorii) and ‘brown mosses’, i.e. non-sphagnaceous 24 Vascular plants in the Padrtiny pine bog Alnus glutinosa Alnus incana Andromeda polifolia Athyrium ilix-femina Avenella lexuosa Betula pendula Betula pubescens Calamagrostis villosa Calluna vulgaris Carex canescens Carex nigra Carex paucilora (probably extinct) Carex pilulifera Carex rostrata Deschampsia cespitosa Drosera rotundifolia Dryopteris carthusiana Dryopteris dilatata Dryopteris ilix-mas Equisetum sylvaticum Eriophorum angustifolium Eriophorum vaginatum Frangula alnus Maianthemum bifolium Melampyrum pratense Molinia caerulea agg. Picea abies Pinus ×rhaetica nothosubsp. digenea (P. sylvestris × P. uncinata subsp. uliginosa) Pinus sylvestris Pinus uncinata subsp. uliginosa (= P. rotundata) Salix aurita Senecio nemorensis agg. Sorbus aucuparia Stellaria longifolia Trientalis europaea Vaccinium myrtillus Vaccinium oxycoccos Vaccinium uliginosum Vaccinium vitis-idaea Viola palustris Bryophytes in the Padrtiny pine bog Atrichum undulatum Aulacomnium palustre Bazzania trilobata Calypogeia azurea Calypogeia integristipula Calypogeia neesiana Cephalozia bicuspidata Cephalozia catenulata Cephalozia connivens Cephaloziella elachista Chiloscyphus cuspidatus Chiloscyphus profundus Dicranella heteromalla Dicranodontium denudatum Dicranum montanum Dicranum polysetum Dicranum scoparium Herzogiella seligeri Hylocomium splendens Hypnum cupressiforme Lepidozia reptans Leucobryum glaucum Mylia anomala Odontoschisma denudatum Orthodontium lineare Plagiothecium curvifolium 25 1 Plagiothecium denticulatum Pleurozium schreberi Pohlia nutans Polytrichum commune Polytrichum formosum Polytrichum strictum Ptilidium ciliare Sanionia uncinata Sciuro-hypnum curtum Sphagnum angustifolium Sphagnum capillifolium Sphagnum fallax Sphagnum imbriatum Sphagnum lexuosum Sphagnum girgensohnii Sphagnum magellanicum Sphagnum palustre Sphagnum papillosum Sphagnum rubellum Sphagnum russowii Straminergon stramineum Tetraphis pellucida Warnstoria luitans Vascular plants of mires and grasslands between the Padrtiny bog and the hill Radostínský kopec Achillea millefolium Agrostis canina Agrostis capillaris Alchemilla spp. Alopecurus pratensis Anthoxanthum odoratum Arrhenatherum elatius Avenula pubescens Betula pendula Betula pubescens Bistorta oficinalis Briza media Bromus erectus Calamagrostis epigejos Campanula patula Campanula rapunculoides Campanula rotundifolia Cardamine pratensis agg. Carex ×alsatica (C. demissa × C. lava) Carex appropinquata Carex canescens Carex cespitosa Carex chordorrhiza Carex demissa Carex dioica Carex echinata Carex lacca Carex lava Carex hartmanii Carex lasiocarpa Carex nigra 26 Carex pallescens Carex panicea Carex pilulifera Carex rostrata Carlina acaulis Carum carvi Centaurea jacea Centaurea scabiosa Cerastium holosteoides Cirsium acaulon (probably extinct) Cirsium palustre Cirsium rivulare Comarum palustre Crataegus sp. Cynosurus cristatus Dactylis glomerata Dactylorhiza majalis Deschampsia cespitosa Dianthus deltoides Epilobium angustifolium Epilobium palustre Equisetum luviatile Equisetum palustre Equisetum sylvaticum Eriophorum angustifolium Eriophorum vaginatum Festuca ovina Festuca rubra Frangula alnus Galium album Galium boreale Galium palustre agg. Galium pumilum Galium uliginosum Galium verum Gentianella praecox subsp. bohemica Geum rivale Gymnadenia conopsea Hypericum maculatum Inula salicina Juncus alpinoarticulatus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus effusus Juncus iliformis Knautia arvensis agg. Lathyrus pratensis Leontodon hispidus Leucanthemum vulgare agg. Linum catharticum Lotus corniculatus Luzula campestris Luzula multilora Lychnis los-cuculi Lysimachia vulgaris Mentha arvensis Molinia caerulea agg. Myosotis nemorosa Nardus stricta Orchis purpurea (extinct) Orchis ustulata (extinct) Parnassia palustris Pedicularis palustris (probably extinct) Pedicularis sylvatica Peucedanum palustre Phleum pratense Picea abies Pilosella lactucella Pilosella oficinarum Pimpinella major Pimpinella saxifraga Plantago lanceolata Plantago major Plantago media Poa humilis Poa pratensis Poa trivialis Polygala vulgaris Potentilla erecta Primula elatior Ranunculus acris Ranunculus auricomus agg. Ranunculus bulbosus Ranunculus lammula Ranunculus repens Rhinanthus minor Rosa canina agg. Rumex acetosa Salix aurita Salix caprea Salix pentandra Salix rosmarinifolia Salvia verticillata Sanguisorba minor Scorzonera humilis Scorzoneroides autumnalis Succisa pratensis Taraxacum sect. Palustria Taraxacum sect. Taraxacum Tephroseris crispa Thymus pulegioides Trichophorum alpinum (probably extinct) Trifolium dubium Trifolium montanum Trifolium pratense Trifolium repens Trisetum lavescens Urtica dioica Utricularia minor (probably extinct) Vaccinium myrtillus Vaccinium oxycoccos Vaccinium uliginosum Vaccinium vitis-idaea Valeriana dioica Veronica chamaedrys 1 Plate 1a Plants of the Dářko National Nature Reserve in the Žďár Hills: (a) Carex appropinquata, (b) Vaccinium oxycoccos, (c) Pinus sylvestris, (d) Succisa pratensis, (e) Carlina acaulis, (f) Carex lacca, (g) Eriophorum angustifolium, (h) Sanguisorba oficinalis, (i) Salix pentandra, (j) Potentilla erecta, (k) Vaccinium myrtillus, (l) Vaccinium uliginosum. Veronica scutellata Vicia cracca Viola canina Viola palustris Bryophytes of mires and grasslands between the Padrtiny bog and the hill Radostínský kopec Aneura pinguis Atrichum undulatum Aulacomnium palustre Breidleria pratensis Bryum pseudotriquetrum Calliergon cordifolium Calliergonella cuspidata Campylium stellatum Climacium dendroides Dicranum bonjeanii Fissidens adianthoides Plagiomnium elatum Plagiothecium denticulatum Pleurozium schreberi Pohlia nutans Polytrichum commune Pseudocampylium radicale Rhytidiadelphus squarrosus Rhytidiadelphus triquetrus Sarmentypnum exannulatum Scorpidium cossonii Scorpidium scorpioides (extinct) Sphagnum contortum Sphagnum fallax Sphagnum lexuosum Sphagnum palustre Sphagnum papillosum Sphagnum teres Sphagnum warnstorii Straminergon stramineum Thuidium assimile Thuidium recognitum Tomentypnum nitens 1 (1b) Louky u Černého lesa Nature Monument The locality is situated at the ishpond Konventský rybník north of the town of Žďár nad Sázavou in the valley of the stream Stržský potok. The Nature Monument was established in 1988 on an area of 10.6 ha at altitudes of 570–580 m. The locality is also listed as a Site of Community Importance within the Natura 2000 network due to the occurrence of the moss Hamatocaulis vernicosus. The bedrock is composed of gneiss with intercalated amphibolites (Čech et al. 2002). Louky u Černého lesa Nature Monument and the Pilgrimage Church of St. John of Nepomuk on the hill Zelená hora (UNESCO World Heritage Site) on the northern edge of the town of Žďár nad Sázavou. Fen meadows in the Louky u Černého lesa Nature Monument. Photo T. Peterka. The locality is a good example of the minerotrophic mire and mire meadow of the Žďár Hills. The mire vegetation here includes mainly rich fens (association Menyantho trifoliatae-Sphagnetum teretis, alliance Sphagno warnstorii-Tomentypnion nitentis) dominated by the tall sedge Carex lasiocarpa with an admixture of C. rostrata and less frequently C. diandra. The lower herb layer is composed of Eriophorum angustifolium, short sedges (Carex dioica, C. nigra and C. panicea) and hygrophilous dicot herbs (Menyanthes trifoliata, Valeriana dioica and Viola palustris). The species-rich moss layer contains calcium-tolerant peat mosses (e.g. yellow-brown Sphagnum contortum, brown-green S. teres and red S. warnstorii) and pleurocarpous mosses of the Amblystegiaceae family (Breidleria pratensis, Campylium stellatum, Scorpidium cossonii, Tomentypnum nitens and occasionally Hamatocaulis vernicosus). Small populations of the rare relict mosses Meesia triquetra and Paludella squarrosa 28 (with a total of 4 and 14 extant occurrences, respectively, in the Czech Republic) are present at this site (Novotný & Kubešová 2003). These circumpolar boreo-arctic species, conined to well-preserved rich fens, are endangered and declining in Central Europe. Rich fens are locally replaced by moderately rich fens (alliance Caricion canescenti-nigrae), poor fens (alliance Sphagno-Caricion canescentis) and wet meadows (alliance Calthion palustris). The latter contain more nutrient-demanding dicot herbs or graminoids, such as Bistorta oficinalis, Caltha palustris, Cardamine pratensis agg., Cirsium oleraceum, Filipendula ulmaria, Holcus lanatus, Lychnis los-cuculi, Mentha arvensis, Ranunculus acris, R. auricomus agg. and Scirpus sylvaticus. The permanently waterlogged depressions are covered by Carex rostrata without Sphagna (association Equiseto luviatilis-Caricetum rostratae, alliance Magno-Caricion elatae). Mires and wet meadows are surrounded by scattered willow carrs of Salix aurita and S. cinerea (association Salicetum auritae, alliance Salicion cinereae). The reserve also comprises low scrub of Salix rosmarinifolia. The meandering stream is fringed by galleries of Alnus glutinosa (alliance Alnion incanae) and Salix euxina (association Salicetum fragilis, alliance Salicion albae). The pond bank is covered by monodominant stands of Phalaris arundinacea (association Phalaridetum arundinaceae, alliance Magno-Caricion gracilis) and, locally, also Calamagrostis canescens (association Carici elatae-Calamagrostietum canescentis, alliance Magno-Caricion elatae). Monodominant stands of Phragmites australis (association Phragmitetum australis, alliance Phragmition australis) are found along the stream. 29 The mire meadow has been mown by nature conservationists once a year to prevent successional changes such as the expansion of trees, shrubs and tall graminoids or dicots, e.g. Filipendula ulmaria, Phalaris arundinacea and Phragmites australis. The Pilgrimage Church of St. John of Nepomuk (UNESCO World Heritage Site) is situated on the hill Zelená hora close to the site. The monks of the Cistercian order in Žďár nad Sázavou dedicated this church to the Czech martyr John of Nepomuk and began the project before his beatiication (Kotrba 1976). The church, built in 1719–1722, is a masterpiece by Jan Blažej Santini Aichl, a Czech architect of Italian descent. It combines elements of Baroque and Gothic architecture which was typical of the period of Re-Catholicization in the Czech Lands. The church is built on a ground plan of a ive-pointed star and is surrounded by a cloister in the form of a ten-pointed star. 1 Appendix 1b Selected species of vascular plants and bryophytes in the Louky u Černého lesa Nature Monument. Vascular plants Abies alba Acer platanoides Acer pseudoplatanus Aconitum lycoctonum Aegopodium podagraria Agrostis canina Alnus glutinosa Alopecurus pratensis Anemone nemorosa Angelica sylvestris Anthoxanthum odoratum Athyrium ilix-femina Avenella lexuosa Betula pendula Bistorta oficinalis Briza media Calamagrostis canescens Calamagrostis epigejos Calla palustris Caltha palustris Calystegia sepium Cardamine amara Cardamine pratensis agg. Carex canescens Carex diandra Carex dioica Carex echinata Carex elongata Carex lasiocarpa Carex nigra Carex panicea Carex rostrata Carex vesicaria Cirsium oleraceum Cirsium palustre Comarum palustre Crepis paludosa Dactylorhiza majalis Deschampsia cespitosa Dryopteris carthusiana Epilobium palustre Equisetum arvense Equisetum luviatile Equisetum sylvaticum Eriophorum angustifolium 30 Festuca rubra Ficaria verna subsp. verna Filipendula ulmaria Frangula alnus Galium palustre agg. Galium uliginosum Geum rivale Glyceria luitans Holcus lanatus Holcus mollis Hypericum maculatum Impatiens noli-tangere Juncus articulatus Juncus conglomeratus Juncus effusus Juncus iliformis Lathyrus pratensis Lemna minor Lonicera nigra Lotus corniculatus Lotus pedunculatus Luzula multilora Luzula sudetica Lychnis los-cuculi Lycopus europaeus Lysimachia nummularia Lysimachia thyrsilora Lysimachia vulgaris Lythrum salicaria Maianthemum bifolium Mentha aquatica Mentha arvensis Menyanthes trifoliata Myosotis nemorosa Myosoton aquaticum Parnassia palustris Pedicularis sylvatica Persicaria maculosa Peucedanum palustre Phalaris arundinacea Phragmites australis Picea abies Poa annua Populus tremula Potentilla erecta Primula elatior Prunella vulgaris Prunus avium Prunus padus Quercus robur Ranunculus acris Ranunculus auricomus agg. Ranunculus lammula Ranunculus repens Rubus idaeus Rubus ser. Glandulosi Rumex acetosa Rumex aquaticus Rumex obtusifolius Salix aurita Salix cinerea Salix euxina (= S. fragilis) Salix pentandra Salix rosmarinifolia Salix triandra Sanguisorba oficinalis Scirpus sylvaticus Scutellaria galericulata Sorbus aucuparia Stachys sylvatica Stellaria graminea Succisa pratensis Typha latifolia Urtica dioica Utricularia australis Vaccinium myrtillus Vaccinium vitis-idaea Valeriana dioica Veronica scutellata Viola palustris Bryophytes Aulacomnium palustre Brachythecium mildeanum Brachythecium rivulare Breidleria pratensis Bryum pseudotriquetrum Calliergon cordifolium Calliergon giganteum Calliergonella cuspidata Campylium stellatum Cirriphyllum piliferum Climacium dendroides Plate 1b Plants of the Louky u Černého lesa Nature Monument in the Žďár Hills: (a) Lysimachia vulgaris, (b) Carex rostrata, (c) Cirsium palustre, (d) Salix cinerea, (e) Menyanthes trifoliata, (f) Filipendula ulmaria, (g) Viola palustris, (h) Alnus glutinosa, (i) Comarum palustre, (j) Lychnis los-cuculi, (k) Cirsium oleraceum, (l) Juncus effusus. 31 Drepanocladus polygamus Hamatocaulis vernicosus Hypnum cupressiforme Marchantia polymorpha Meesia triquetra Paludella squarrosa Philonotis caespitosa Plagiomnium elatum Plagiomnium undulatum Polytrichum commune Polytrichum formosum Pseudobryum cinclidioides Pseudocampylium radicale Rhytidiadelphus squarrosus Riccardia multiida Scorpidium cossonii Sphagnum auriculatum Sphagnum contortum Sphagnum fallax Sphagnum lexuosum Sphagnum teres Sphagnum warnstorii Straminergon stramineum Tomentypnum nitens predators (bear, lynx, wolf) in the 18th–19th centuries. The herb layer includes elements of mesophilous broad-leaved forests such as Athyrium ilix-femina, Calamagrostis arundinacea, Corydalis cava, Daphne mezereum, Dentaria bulbifera, D. enneaphyllos, Dryopteris carthusiana, D. ilix-mas, Festuca altissima, Galium odoratum and Prenanthes purpurea. The association Mercuriali perennis-Fagetum sylvaticae is further characterized by a stronger representation of nutrient-demanding species such as Actaea spicata, Galeobdolon luteum agg., Geranium robertianum, Mercurialis perennis, Stachys sylvatica and Urtica dioica. (1c) Žákova hora National Natural Reserve Žákova hora protects a remnant of natural beech forest situated about 2–2.5 km NE of the village of Cikháj at altitudes of 726–810 m. It is quite unique as most of the natural forests of the BohemianMoravian Highlands have been converted into arable land, grasslands or coniferous forestry plantations. The reserve comprises forests on south-west-facing slopes and the lat summit of the hill Žákova hora. The bedrock consists of migmatites and gneiss with bodies of amphibolite (Čech et al. 2002). The prevailing soil type in the area is cambisol with transitions to cambic podzols. Gleysols and stagnosols are found around springs. Žákova hora National Nature Reserve near the village of Cikháj. Old-growth beech forest (Fagus sylvatica) in the Žákova hora National Nature Reserve. Photo T. Peterka. The forest remained untouched for a long time thanks to its location far from human settlements, but the growing need for charcoal led to selective felling in the 19th century. Later on, a natural uneven-aged forest structure regenerated spontaneously. The site has been protected since 1933 (Vrška et al. 2002). Mesotrophic beech forests (associations Galio odorati-Fagetum sylvaticae and Mercuriali perennis-Fagetum sylvaticae, alliance Fagion sylvaticae) predominate in the reserve. The tree layer consists of Fagus sylvatica with an admixture of Acer platanoides, A. pseudoplatanus, Picea abies and (rarely) Alnus glutinosa, Fraxinus excelsior and Ulmus glabra. Silver ir (Abies alba), one of the main woody plants of old-growth forests, now occurs sporadically. The main reasons for its decline may be selective felling in the past and browsing by deer which became abundant following the extermination of large 32 Mesotrophic beech forests are replaced by acidophilous beech forests on nutrient-poor soils (association Calamagrostio villosae-Fagetum sylvaticae, alliance Luzulo-Fagion sylvaticae). The herb layer contains acidotolerant species such as Avenella lexuosa, Calamagrostis villosa, Hieracium murorum, Maianthemum bifolium, Oxalis acetosella and Vaccinium myrtillus. Small stands of herbaceous spring vegetation of the alliance Caricion remotae (associations Caricetum remotae and Cardamino-Chrysosplenietum alternifolii) with Cardamine amara, Carex sylvatica, Chaerophyllum hirsutum, Circaea alpina, Petasites albus and Veronica montana are found in areas surrounding springs and on other wet sites. In contrast to the reserve, the neighbouring forests are mostly even-aged plantations of the native conifer Picea abies with herb and moss layers almost absent. Nevertheless, several stands on wetter sites (e.g. stream valleys) are very similar to the natural spruce forest of the associations Soldanello montanae-Piceetum abietis and Calamagrostio villosae-Piceetum abietis (alliance Piceion abietis). Their herb layer contains Calamagrostis villosa and typical species of boreo-continental coniferous forests, such as Avenella lexuosa, Dryopteris carthusiana, Maianthemum bifolium, Trientalis europaea and Vaccinium myrtillus. The moss layer is well developed with the prevailing species being Dicranum scoparium, Polytrichum formosum and Sphagnum girgensohnii. The bark of old broad-leaved trees is a substrate for numerous epiphytic bryophytes, e.g. Amblystegium serpens, Hypnum cupressiforme s.l., Isothecium alopecuroides and the rare moss Dicranum viride (Kučera et al. 2013). Rotting wood is a suitable habitat for wood-decay fungi and xylophagous beetles. The historical core of the reserve is unmanaged to enable natural forest development. The natural composition of the tree layer in the marginal part of the reserve (protected since 1990) is restored by the underplanting of beech and ir in spruce-dominated forests. 33 1 Appendix 1c Selected species of vascular plants and bryophytes in the Žákova hora National Nature Reserve. Vascular plants Abies alba Acer platanoides Acer pseudoplatanus Actaea spicata Aegopodium podagraria Agrostis stolonifera Ajuga reptans Alnus glutinosa Anemone nemorosa Asarum europaeum Athyrium ilix-femina Avenella lexuosa Calamagrostis arundinacea Calamagrostis epigejos Calamagrostis villosa Cardamine amara Cardamine lexuosa Carex pilulifera Carex remota Carex sylvatica Chaerophyllum hirsutum Circaea alpina Circaea ×intermedia (C. alpina × C. lutetiana) Circaea lutetiana Corydalis cava Daphne mezereum Dentaria bulbifera Dentaria enneaphyllos Deschampsia cespitosa Dryopteris carthusiana Dryopteris dilatata Dryopteris ilix-mas Epilobium angustifolium Epilobium montanum Equisetum sylvaticum Fagus sylvatica Festuca altissima Festuca gigantea Fragaria vesca Fraxinus excelsior Galeobdolon luteum agg. Galeopsis pubescens Galeopsis tetrahit Galium odoratum Geranium robertianum Gymnocarpium dryopteris Hieracium murorum Hordelymus europaeus Impatiens noli-tangere Lathraea squamaria Leucojum vernum Luzula pilosa Lysimachia nemorum Lysimachia nummularia Maianthemum bifolium Mercurialis perennis Milium effusum Moehringia trinervia Mycelis muralis Neottia nidus-avis Oxalis acetosella Paris quadrifolia Petasites albus Picea abies Poa nemoralis Polygonatum verticillatum Prenanthes purpurea Ranunculus repens Rubus idaeus Rubus ser. Glandulosi Rumex acetosella Sambucus nigra Sambucus racemosa Sanicula europaea Scrophularia nodosa Senecio nemorensis agg. Sorbus aucuparia Stachys sylvatica Stellaria alsine Stellaria nemorum Thelypteris limbosperma Trientalis europaea Ulmus glabra Urtica dioica Vaccinium myrtillus Veronica chamaedrys Veronica montana Veronica oficinalis 1 Viola reichenbachiana Viola riviniana Bryophytes Amblystegium serpens Atrichum undulatum Brachytheciastrum velutinum Brachythecium rutabulum Brachythecium salebrosum Bryum moravicum Calypogeia azurea Campylidium sommerfeltii Cephalozia bicuspidata Cephalozia catenulata Chiloscyphus coadunatus Chiloscyphus profundus Dicranella heteromalla Dicranum montanum Dicranum scoparium Dicranum viride Herzogiella seligeri Hypnum cupressiforme s.l. Hypnum pallescens Isothecium alopecuroides Lepidozia reptans Metzgeria furcata Paraleucobryum longifolium Plagiothecium curvifolium Plagiothecium laetum Plagiothecium nemorale/ succulentum Pleurozium schreberi Pogonatum aloides Pohlia nutans Polytrichum formosum Pterigynandrum iliforme Ptilidium pulcherrimum Rhizomnium punctatum Sanionia uncinata Scapania umbrosa Sciuro-hypnum curtum Sciuro-hypnum populeum Sciuro-hypnum relexum Solenostoma gracillimum Sphagnum girgensohnii Tetraphis pellucida References Balátová-Tuláčková, E. 1980. Übersicht der Vegetationseinheiten der Wiesen im Naturschutzgebiet Žďárské vrchy I. Preslia 52: 311–331. Břízová, E. 2009. Dynamika vývoje lesní vegetace na Českomoravské vrchovině z pohledu palynologie [Dynamics of forest vegetation in the Bohemian-Moravian Uplands from a palynological point of view]. Zprávy České botanické společnosti, Materiály 24: 45–58. Bureš, P. 1990. Vybrané regionální chorotypy a jejich uplatnění ve lóře Žďárských vrchů [Selected regional chorotypes and their representation in the flora of the Žďár Hills]. In: Rouš, J. (ed.) Mezinárodní symposium IUCN Ochrana a ekologický rozvoj kulturních krajin, Svratka. 34 Plate 1c Plants of the Žákova hora National Nature Reserve in the Žďár Hills: (a) Rubus idaeus, (b) Calamagrostis arundinacea, (c) Carex pilulifera, (d) Daphne mezereum, (e) Fagus sylvatica, (f) Impatiens noli-tangere, (g) Galeobdolon montanum, (h) Fraxinus excelsior, (i) Abies alba, (j) Sorbus aucuparia, (k) Maianthemum bifolium, (l) Mercurialis perennis. 35 Bureš, P. & Řepka, R. 1991. Rozšíření vybraných ohrožených druhů cévnatých rostlin v CHKO Žďárské vrchy II. Rod Carex L. – regionálně fytogeograická studie [Distribution of selected endangered species in the Žďárské vrchy Protected Landscape Area II. Genus Carex L. – a regional phytogeographical study]. Vlastivědný sborník Vysočiny, Oddíl věd přírodních 10: 75–164. Bureš, P. & Smejkal, M. 1990. Červený seznam cévnatých rostlin CHKO Žďárské vrchy [The red list of the vascular plants of the Žďárské vrchy Protected Landscape Area]. In: Rouš, J. (ed.) Mezinárodní symposium IUCN Ochrana a ekologický rozvoj kulturních krajin, Svratka. Bureš, P. & Ženíšková, H. 1996. Mezní recentní výskyty Chrysosplenium oppositifolium L. a Lathyrus linifolius (Reichard) Bässler na Českomoravské vysočině [Recent limits of distribution of Chrysosplenium oppositifolium and Lathyrus linifolius in the Bohemian-Moravian Highlands]. Přírodovědný sborník Západomoravského muzea v Třebíči 20: 11–15. Bureš, P., Judová, M., Machová, L. & Nejedlá, Š. 2000. Minulost a současnost fytogeograficky významných druhů západní části CHKO Žďárské vrchy [Past and present of the phytogeographically important species in the western part of the Žďárské vrchy Hills]. In: Hrouda, V. (ed.) Žďárské vrchy v čase a prostoru, sborník konferenčních příspěvků, p. 112–114. Sphagnum – ekologická společnost & Správa CHKO Žďárské vrchy, Žďár nad Sázavou. Businský, R. 2009. Borovice blatka v novém pojetí [A new concept in bog pine]. Zprávy České botanické společnosti 44: 35–43. Čech, L., Šumpich, J. & Zabloudil, V. (eds.) 2002. Chráněná území ČR, 7. Jihlavsko [Protected areas of the Czech Republic, 7. The Jihlava region]. Agentura ochrany přírody a krajiny ČR & EkoCentrum Brno, Praha. Klika, J. & Šmarda, J. 1944. Rostlinně-sociologický příspěvek k poznání rašelinišť a luk na Žďársku a Novoměstsku [Phytosociological contribution to the knowledge of mires and meadows in the districts of Žďár nad Sázavou and Nové Město na Moravě]. Věstník Královské české společnosti nauk, Třída mathematicko-přírodovědecká 1944 (7): 1–60. Kotrba, V. 1976. Česká barokní gotika [Czech Baroque Gothic]. Academia, Praha. Kučera, J., Bradáčová, J., Holá, E., Kubešová, S., Manukjanová, A., Mikulášková, E., Štechová, T., Tkáčiková, J. & Vicherová, E. 2013. Results of the bryoloristic courses of the Department of Botany, University of South Bohemia, in 2012 and 2013. Časopis Slezského zemského muzea, Série A, 62: 173–184. Neuhäusl, R. 1975. Hochmoore am Teich Velké Dářko. Academia, Praha. Novotný, I. & Kubešová, S. 2003. Mechy Hamatocaulis vernicosus, Meesia triquetra a Paludella squarrosa na nové lokalitě u rybníka Konvent [New locality of the mosses Hamatocaulis vernicosus, Meesia triquetra and Paludella squarrosa at the Konvent pond]. Vlastivědný sborník Vysočiny, Oddíl věd přírodních 16: 95–102. Růžička, I. 1999. Floristický materiál z území CHKO Žďárské vrchy [The loristic material from the Žďárské vrchy Protected Landscape Area]. Vlastivědný sborník Vysočiny, Oddíl věd přírodních 14: 63–93. Rybníček, K. 1964. Die Braunmoorgesellschaften der Böhmisch-mährischen Höhe (Tschechoslowakei) und die Problematik ihrer Klassiikation. Preslia 36: 403–415. Rybníček, K. 1966. Glacial relics in the bryolora of the highlands Českomoravská vrchovina (Bohemian-Moravian Highlands); their habitat and cenotaxonomic value. Folia Geobotanica et Phytotaxonomica 1: 101–119. Rybníčková, E. & Rybníček, K. 1988. Holocene palaeovegetation and palaeoenvironment of the Kameničská kotlina basin (Czechoslovakia). Folia Geobotanica et Phytotaxonomica 23: 285–301. Rychnovská, M. (ed.) 1993. Structure and functioning of seminatural meadows. Academia, Praha. Smejkal, M. 1958. Historie botanického výzkumu a bibliograie botanické literatury Žďárských vrchů [History of botanical research and bibliography of botanical literature of the Žďár Hills]. Vlastivědný sborník Vysočiny, Oddíl věd přírodních 2: 13–32. Vrška, T., Hort, L., Adam, D., Odehnalová, P. & Horal, D. 2002. Dynamika vývoje pralesovitých rezervací v České republice I, Českomoravská vrchovina – Polom, Žákova hora [Developmental dynamics of virgin forest reserves in the Czech Republic I, Českomoravská vrchovina Upland – Polom, Žákova hora]. Academia, Praha. 36 2 Podyjí National Park 2 Milan Chytrý & Vít Grulich Introduction Podyjí National Park is situated in south-western Moravia between the towns of Znojmo and Vranov nad Dyjí along the Czech-Austrian border. The Austrian Thayatal National Park is adjacent on the other side of the national border. The National Park is located on the south-eastern edge of the Bohemian-Moravian Highlands (Českomoravská vrchovina). The most remarkable feature of the park’s landscape is the 60–230 m deep, V-shaped valley of the Dyje River (Thaya in German). The slopes of the valley are steep, with abundant rock outcrops, and dissected by numerous ravines. The valley is surrounded by a gently undulating landscape that is typical of the Bohemian-Moravian Highlands. The highest point of the National Park is the hill Býčí hora (536 m) in its western part; the lowest point (208 m) is the level of the Dyje River on the eastern edge of the National Park. The forested valley of the Dyje River with deeply incised meanders is the core area of the Podyjí National Park. Photo Z. Lososová. Geology, geomorphology and soils The area is built of the Proterozoic crystalline rocks of the Bohemian Massif. Granitoids (granite and granodiorite) predominate in the eastern part of the National Park south-west of the town of Znojmo where they are locally overlaid by soft Miocene deposits. Gneiss is the main bedrock type in the western part of the National Park, between the towns of Vranov nad Dyjí and Hardegg. Acidic mica schist is the most common bedrock in the central part, though outcrops of more base-rich bedrock (amphibolite, marble) are also encountered in this area. Quaternary eolian deposits (loess) are found mainly in the eastern part of the area (Batík 1992). The Dyje River Valley is characterized by numerous meanders deeply incised in the ancient crystallinic bedrock. These meanders are of Tertiary origin, when they initially developed in a lat 37 landscape. Vertical erosion intensiied and the meanders became deeply incised due to the upward movement of the Bohemian Massif during the Alpine Orogeny (Ivan & Kirchner 1994). The predominant soil type is cambisol. Luvisols are found on crystalline plateaus and gentle slopes with a thick layer of weathering products of ancient rocks or young deposits. Leptosols occur around outcrops of crystalline siliceous bedrock (ranker) or crystalline limestone (rendzina). Gleysols are found in shallow wet depressions on the plateaus, and loamy-sandy luvisols on the alluvial terraces of the valley bottom. Chernozems are developed on ine-grained Tertiary and Quaternary deposits in the eastern part of the area. Massif. For this reason the Podyjí Protected Landscape Area (PLA) was established in this area in 1978. Although conservation and research activities were restricted in the 1980s due to the large overlap of the PLA with the Iron Curtain zone, some research results obtained in the 1980s could be used as arguments for transforming the PLA into a National Park. This happened in 1991 when the Podyjí National Park was established on an area of 63 km2 including the Dyje Valley and the adjacent landscape. A buffer zone is formed of an additional 29 km2. This is the smallest of the four Czech Republic’s National Parks. The National Park became bilateral on 1 January 2000 with the establishment of the Thayatal National Park (13 km2) in the adjacent area in Austria. Climate History of botanical research The climate in the eastern part of the National Park is dry and warm, typical of the southern Moravian lowlands. The mean annual temperature in Znojmo is about 9 °C and the annual precipitation sum is lower than 500 mm. Moving to the north-west, the climate becomes increasingly cooler and wetter, with mean annual temperature about 8 °C and annual precipitation of 500–550 mm. The complex topography of the river valley generates remarkable mesoclimatic patterns. Whereas the gently undulating landscape above the valley, at least in the central and north-western part of the area, has some oceanic climatic features with smaller differences between minimum and maximum temperatures, the climate of the river valley is more continental. The upper parts of the south-facing slopes may warm up considerably during the daytime, though they cool to temperatures lower than elsewhere in the valley on clear nights (Tichý 1998, 1999b). There are two types of temperature inversion in the valley. Inversion due to topographical shading mainly affects the lower parts and foots of north-facing slopes. It is most intense during the daytime and limits temperature maxima. This type of inversion supports the occurrence of montane plants. The second type of inversion is caused by the cold-air drainage that occurs from time to time on clear and calm nights and creates a temperature difference of up to 3 °C between the warmer upper slopes and the cooler valley bottom. This inversion may cause frost injury to sensitive plants, particularly in spring. It is possible that some species of oceanic distribution and even Fagus sylvatica may be outcompeted from the valley due to frost injury (Chytrý & Tichý 1998). The lora of the area was studied in detail by Adolf Oborny, a secondary school teacher from Znojmo, in 1870–1920. Since then, hardly any species new to the region have been found except for a few species in taxonomically intricate groups. The comprehensive and critical Flora des Znaimer Kreises (Flora of the Znojmo Province; Oborny 1879) enables a comparison with the current situation. Another local lora, also of high quality, was published by Himmelbaur & Stumme (1923). It refers to the state of the lora during WWI, when the Viennese botanist Wolfgang Himmelbaur performed military service in Znojmo. Several reports on the lora of this area were published by Anton Fröhlich, Jindřich Suza, Jan Šmarda and other botanists in the 1920s–1930s. In 1951 the territory was closed to the public as a state border area. In the early 1950s, primary-school teacher and amateur botanist Vratislav Drlík prepared a manuscript of the lora of the Znojmo district which was not published during his lifetime and remained unknown to botanists for several decades. After the discovery of the manuscript in the family archive half a century later, it was published as an important source of historical information on the lora of the area before the landscape changes of the second half of the 20th century (Drlík et al. 2005). No systematic botanical research was performed in this area from that time until the fall of the Iron Curtain in 1989. Masaryk University conducted a comprehensive botanical survey on both the Czech and Austrian sides of the national border in the early 1990s in association with the establishment of the National Park in 1991. This project, led by Professor Jiří Vicherek, resulted in an inventory of plant communities and a vegetation map (Chytrý & Vicherek 1995, 2003; Tichý 1999a), a loristic survey (Grulich & Chytrý 1993; Grulich 1996) culminating in the publication of a local distribution atlas of vascular lora (Grulich 1997), surveys of macromycetes, lichens and bryophytes (Antonín et al. 2000), and a series of journal articles. Other studies were devoted to vegetation of wet grasslands (Balátová-Tuláčková 1993) and aquatic vegetation (Rydlo 1995). Research into the local lora continues following the major survey from the 1990s (Bravencová et al. 2007). Landscape history and nature conservation The Podyjí National Park area was already settled by humans in the Neolithic. The main settlements have always been in the eastern part of the area, with Hradiště near Znojmo being the most important centre with extensive fortiication (Podborský & Vildomec 1972). In contrast, fossil snail records suggest that the central and western part of the National Park was predominantly forested in the Holocene climatic optimum, corresponding to the Neolithic (Ložek & Vašátko 1997). In the period of consolidation of the Czech state in the 10th–14th centuries, the area was on its southern edge and a chain of castles, some of which were in the Dyje Valley, was built here to guard the state border. Most of the villages currently existing in the wider area were mentioned in written sources as early as the 12th or 13th century. Watermills were built in the deep river valley and some forests on river terraces were converted into hay meadows. Some south-facing slopes in the valley were used to plant vineyards. The right side of the Dyje Valley in the eastern part of the National Park was deforested, though forest cover was preserved in more western parts of the valley (Vrška 1998; Táborská 1999). Two artiicial lakes were built on the Dyje River: the Vranov reservoir (1934) just above the present National Park and the Znojmo reservoir (1967) in the eastern part of the park, causing the disappearance of valuable valley sections. The expulsion of the German-speaking people after WWII led to the complete depopulation of most of the villages in this area. In 1951, the Dyje Valley became part of the Iron Curtain, a prohibited zone established by the Czechoslovak Communist regime to control the state border with democratic Western Europe. Watermills and other buildings in this area were demolished during this period. The closure of the area for four decades (until the political changes of 1989) led to the restoration of natural succession processes over a large area. Forest returned to many of the formerly deforested valley slopes and terraces, although in many places this regrowth was dominated by the introduced North American tree Robinia pseudoacacia. This speciic historical development has meant that the Dyje Valley has remained unspoilt by the construction of roads, railways, weekend cottages, forest logging and plantation forestry between the towns of Vranov nad Dyjí and Znojmo, in contrast to other deep river valleys of the Bohemian 38 Vegetation The Podyjí National Park is situated in the transitional area between the Pannonian and Hercynian (Central European) phytogeographical provinces. The Pannonicum corresponds to the continental forest-steppe biome, and the Hercynicum to the broad-leaved deciduous forest biome. The boundary between these regions generally follows the geological dividing line between the Bohemian Massif (the north-western and central part of the National Park, with higher altitudes, lower temperatures, higher precipitation, ancient siliceous bedrock and a landscape mosaic of forest tracts and treeless areas) and the outer depressions of the Western Carpathians and the Eastern Alps (the south-eastern part of the National Park, with lower altitudes, a warmer and drier climate, Tertiary and Quaternary deposits, and a landscape largely deforested since prehistoric times; Chytrý et al. 1999). The predominant vegetation type of the National Park is broad-leaved deciduous forest. Submontane beech forests (associations Galio odorati-Fagetum sylvaticae and Mercuriali perennis-Fagetum sylvaticae, alliance Fagion sylvaticae) are the main types of potential natural vegetation in the western (Hercynian) part, near the towns of Vranov nad Dyjí and Hardegg. They are found in the gently undulating landscape outside the river valley at altitudes above 450 m. Hercynian oak-hornbeam forests (association Galio sylvatici-Carpinetum betuli, alliance Carpinion betuli) are predominant in the central part of the National Park and in the river valleys. Moving to the east towards the Pannonian Province, oak-hornbeam forests are replaced by acidophilous oak forests (associations Luzulo luzuloidisQuercetum petraeae and Viscario vulgaris-Quercetum petraeae, alliance Quercion roboris) and, on the south-eastern slope of the Bohemian Massif, by thermophilous oak forests (association Sorbo 39 2 torminalis-Quercetum, alliance Quercion petraeae). A mosaic of thermophilous oak forests (association Quercetum pubescenti-roboris, alliance Aceri tatarici-Quercion) and Pannonian oak-hornbeam forests (association Primulo veris-Carpinetum betuli, alliance Carpinion betuli) is assumed to be the potential natural vegetation in the outer depressions of the Western Carpathians, which are adjacent to the Bohemian Massif in the east; however, this area has been largely deforested since the Neolithic. The distribution of natural vegetation types is clearly related to landforms in the deep valley of the Dyje River (Chytrý & Vicherek 1995; Tichý 1999a; Zelený & Chytrý 2007). The narrow discontinuous loodplain is covered by riverine alder forests (association Stellario nemorum-Alnetum glutinosae, alliance Alnion incanae). Steep lower slopes support ravine forests (association Aceri-Tilietum, alliance Tilio platyphylli-Acerion), while more gentle lower and middle slopes are covered by oak-hornbeam forests (association Galio sylvatici-Carpinetum betuli, alliance Carpinion betuli). South-facing upper slopes are covered by thermophilous oak forests (the associations Sorbo torminalis-Quercetum and Genisto pilosae-Quercetum petraeae, both of the alliance Quercion petraeae), whereas the north-facing slopes support acidophilous oak forests (the associations Luzulo luzuloidis-Quercetum petraeae, Viscario vulgaris-Quercetum petraeae and Vaccinio vitis-idaeae-Quercetum roboris, all of the alliance Quercion roboris). Small patches of Pinus sylvestris forests (association Hieracio pallidi-Pinetum sylvestris, alliance Dicrano-Pinion sylvestris) are found on larger rock outcrops and cliffs tops. The river valley includes patches of primary treeless habitats on cliffs, rock faces and talus slopes. These are covered by scrub (alliances Prunion fruticosae and Berberidion vulgaris) or dry grasslands (alliances Festucion valesiacae and Alysso-Festucion pallentis) on south-facing slopes. North-facing treeless patches are dominated by rocky grasslands of Calamagrostis arundinacea on siliceous bedrock and, in a few places also by Sesleria caerulea grassland (alliance Diantho lumnitzeri-Seslerion) on marble outcrops (Chytrý & Vicherek 2003). Talus slopes are covered with cryptogamic vegetation and, near the forest edges, with species-poor communities of mosses and ferns. There are rich bryophyte communities, particularly on open north-facing talus slopes where several species of boreal distribution are found (Kubešová 2003a; Kubešová & Chytrý 2005). Secondary treeless vegetation is found mainly in the border area of the National Park and in the adjacent landscape (Chytrý & Vicherek 2003). Meadows of the alliances Arrhenatherion elatioris and Calthion palustris are the predominant types of secondary grasslands in the western and central part. Arrhenatherion meadows (associations Pastinaco sativae-Arrhenatheretum elatioris and Ranunculo bulbosi-Arrhenatheretum elatioris) are also found on the deforested terraces of the Dyje River and in its loodplain. The river is fringed by riverine reeds with Phalaris arundinacea and Carex buekii (associations Rorippo-Phalaridetum arundinaceae and Caricetum buekii, alliance Phalaridion arundinaceae). The largely deforested south-eastern slope of the Bohemian Massif in the eastern part of the National Park is well known for its extensive dry heathland with thermophilous and continental species (association Euphorbio cyparissiae-Callunetum vulgaris, alliance Euphorbio cyparissiae-Callunion vulgaris) and acidophilous dry grasslands (association Potentillo heptaphyllae-Festucetum rupicolae, alliance Koelerio-Phleion phleoidis). The area of the outer depression of the Western Carpathians is mainly dominated by arable land and vineyards, and the most remarkable type of semi-natural vegetation there is the Convolvulo arvensis-Elytrigion repentis ruderal grassland on road verges on loess. Park, e.g. Aster amellus, Inula ensifolia and Polygala major. A group of species phytogeographically related to the limestone fringes of the Alps is found on the marble outcrops near Hardegg, e.g. Buphthalmum salicifolium (the only native locality in the Czech Republic), Bupleurum longifolium (now in Austria only), Euphorbia angulata, Laserpitium latifolium (in Austria only), Polygala amara and Sesleria caerulea. This marble area also harbours some orchids such as Cypripedium calceolus, Orchis militaris and O. purpurea. Some thermophilous species are conined to the rock outcrops and forest edges in the Dyje Valley, including Aconitum anthora, Aurinia saxatilis and Bupleurum afine. Species of acidic rock outcrops are found in the river valley and in the area of the south-eastern edge of the Bohemian Massif; this group includes Gagea bohemica, Genista pilosa, Scleranthus perennis, Sedum relexum and Veronica dillenii. Montane species such as Aconitum variegatum, Aruncus dioicus, Lunaria rediviva, Polystichum aculeatum, Rosa pendulina and Taxus baccata are found in the shaded parts of the river valley. Montane species of another group, including Atropa bella-donna, Equisetum sylvaticum, Hordelymus europaeus, Petasites albus, Prenanthes purpurea and Vicia sylvatica, occur on the plateaus dominated by beech forest in the western part of the National Park. The deforested plateaus in the central and western part of the National Park contain some wet meadows and patches of wet alder forest with submontane species such as Bistorta oficinalis, Carex appropinquata, C. elongata, C. umbrosa, Salix rosmarinifolia, Scorzonera humilis, Tephroseris crispa and Trollius altissimus. Excursion sites The four excursion sites described below feature the major habitats of the Podyjí National Park, including various types of forests in the deep river valley both on acidic bedrock and marble and on dry heathlands with continental species in the eastern part of the park. Flora During the survey of the lora of the Czech-Austrian bilateral Podyjí/Thayatal National Park and adjacent areas in the 1990s, 1290 species of vascular plants were recorded, including 9% neophytes, in an area of approximately 127 km2 (Grulich 1997). The deforested area of the southern Moravian lowlands, which is adjacent to the eastern border of the National Park, contains thermophilous Pannonian and continental species of steppe, ruderal habitats on loess and inland saline grasslands. The group of species that are found only in this area includes Alcea biennis, Astragalus onobrychis, Atriplex oblongifolia, Bassia prostrata (in Austria only), Carex hordeistichos, Cytisus procumbens, Iris pumila, Peucedanum alsaticum, Ranunculus illyricus, Salvia austriaca, Scabiosa canescens, Sclerochloa dura, Scorzonera cana and Seseli hippomarathrum. Some thermophilous species occur in this warm and dry eastern area, though they are also found in the river valley in the central and western part of the National Park, e.g. Armeria elongata, Carex supina, Rosa marginata, R. spinosissima, Salvia pratensis and Scabiosa ochroleuca. Another group of thermophilous species conined to areas with base-rich soils is found both in the eastern lowland area and on the marble bedrock around the town of Hardegg in the central-western part of the National 40 Podyjí National Park and the Thayatal National Park in the adjacent area of Austria, indicated by a green dashed line, with excursion sites. 41 2 (2a) Ledové sluje ridge Ledové sluje (Eisleiten in German, meaning Ice Holes or Ice Caves) is a system of pseudokarst caves situated in the Dyje Valley between the towns of Vranov nad Dyjí and Hardegg. These caves have long been famous for containing ice until late summer, and their lora was also studied very early (Niessl 1868). In a broader sense, Ledové sluje is a local name for the whole ridge where these caves occur. The ridge of Ledové sluje is located above the left bank of the Dyje River between the lat hills of Větrník (510 m) and Býčí hora (514 m). The river lows in deeply entrenched meanders between these two hills at an altitude of ca. 300 m. The ridge is formed of Proterozoic orthogneiss. There are several slope failures on the steep valley slopes which have given rise to about twenty crevice-type caves. The longest cave system is more than 400 m long (Gruna & Reiter 1996). There is a talus slope on the NW-facing slopes of the ridge formed of large gneiss blocks originating from rock falls from the cliffs above. The Ledové sluje ridge is remarkable for its large diversity of habitats, including south- and north-facing slopes, rock outcrops, steep slopes, rock debris and deep soils on the lower slopes and the Dyje terraces. This is relected both in the species-rich lora and the large number of vegetation types recognized in an area of less than 0.5 km2 (Gruna & Reiter 1996). topographic situations on south-facing slopes acidophilous oak forests are replaced by thermophilous oak forests (association Sorbo torminalis-Quercetum, alliance Quercion petraeae). Their canopy is also dominated by Quercus petraea, but they contain a number of shrubs (e.g. Cornus mas, Ligustrum vulgare and Rosa canina agg.) and a species-rich herb layer. This is mostly dominated by Festuca ovina accompanied by Anthericum ramosum, Bupleurum falcatum, Euphorbia cyparissias, Hylotelephium maximum, Poa nemoralis, Polygonatum odoratum, Teucrium chamaedrys, Trifolium alpestre, Vincetoxicum hirundinaria and other species. Broad-leaved ravine forests (association Aceri-Tilietum, alliance Tilio platyphylli-Acerion) are found on steep lower slopes with an accumulation of rock debris. They have a species-rich tree layer, including Acer platanoides, A. pseudoplatanus, Carpinus betulus, Tilia cordata and T. platyphyllos, and a shrub layer with Corylus avellana, Euonymus verrucosus, Lonicera xylosteum and Ribes uva-crispa. There is a species-poor herb layer with nutrient-demanding and shade-tolerant forest species such as Dryopteris ilix-mas, Galeobdolon montanum, Geranium robertianum and Urtica dioica. The moss layer is luxuriant, with most common species including Dicranum scoparium, Hypnum cupressiforme and Polytrichum formosum. Small patches of natural pine forests (association Hieracio pallidi-Pinetum sylvestris, alliance Dicrano-Pinion sylvestris) are found on the tops and faces of gneiss outcrops. In addition to Pinus sylvestris, they also contain some individuals of Quercus petraea and Betula pendula. Their species-poor herb layer is dominated by Festuca ovina and also contains Avenella lexuosa, Genista pilosa and Polypodium vulgare. The moss layer contains Dicranum scoparium, Hypnum cupressiforme, Polytrichum piliferum and a number of lichens including Parmelia saxatilis, Xanthoparmelia conspersa, X. pulla and X. stenophylla. Gneiss outcrops and talus slopes on the Ledové sluje ridge are covered by ravine forest with Tilia cordata, T. platyphyllos, Acer pseudoplatanus, A. platanoides and Carpinus betulus. Photo M. Chytrý. Vegetation Most of the Ledové sluje area is forested. Mesic habitats with deep cambisols on the middle and lower slopes are occupied by oak-hornbeam forests with Carpinus betulus and Quercus petraea (association Galio sylvatici-Carpinetum betuli, alliance Carpinion betuli) and species of mesic broad-leaved forests in the herb layer, e.g. Campanula persicifolia, Cyclamen purpurascens, Dactylis polygama, Galium odoratum, G. sylvaticum, Hepatica nobilis, Poa nemoralis and Stellaria holostea. Shallower cambisols (up to 40 cm deep) on the upper north-facing slopes support acidophilous oak forests dominated by Quercus petraea (association Luzulo luzuloidis-Quercetum petraeae, alliance Quercion roboris). These open-canopy forests have a species-poor herb layer with calcifuge species such as Avenella lexuosa, Luzula luzuloides, Festuca ovina and Vaccinium myrtillus. Their rich moss layer contains Dicranum scoparium, Hypnum cupressiforme, Polytrichum formosum, P. juniperinum and other species. In similar 42 The town of Vranov nad Dyjí and the Ledové sluje ridge in the Dyje Valley in the western part of the Podyjí National Park. Natural treeless vegetation is found on the open talus slopes and rock faces. The talus slopes have a rich lora of lichens and bryophytes. The commonest macrolichen is Cladonia rangiferina and the commonest bryophytes include Antitrichia curtipendula, Dicranum scoparium, Hypnum cupressiforme and Polytrichum formosum. Large areas of the talus slopes contain only cryptogamic vegetation with abundant epilithic microlichens. The vascular lora in this habitat is species-poor, including Dryopteris ilix-mas, Festuca ovina, Poa nemoralis and Polypodium vulgare. Well-insolated rock faces harbour Aurinia saxatilis, Festuca ovina and Polypodium vulgare. In contrast, shaded rocks are covered with moss polsters, mainly Hypnum cupressiforme, and contain some ferns growing in crevices, most frequently Polypodium vulgare (Kubešová 2003a, 2003b; Kubešová & Chytrý 2005). 43 2 Flora Detailed inventories of the Ledové sluje area performed in the early 1990s recorded 163 species of lichens, 28 species of liverworts, 95 species of mosses and 502 species of vascular plants (Gruna & Reiter 1996). The lichen Endocarpon psorodeum was found here as the irst record in the Czech Republic. Several species of lichens and bryophytes occurring on talus slopes in Ledové sluje are more typical of high-altitude areas, but they occur here in places inluenced by cold air lowing out of the ice caves. These include the lichens Cladonia squamosa, Fuscidea cyathoides, Peltigera aphtosa, Pertusaria corallina, Rhizocarpon geographicum and Umbilicaria polyphylla, the liverworts Anastreptophyllum minutum, Barbilophozia hatcheri, Calypogeia muelleriana, Lophoziopsis longidens, Porella cordaeana, Syzygiella autumnalis and Tritomaria quinquedentata, and the moss Polytrichastrum alpinum. The vascular lora is dominated by Central European and temperate Eurasian species, although sub-Mediterranean species are also relatively common, represented by, for example, Allium lavum, Cornus mas and Pseudoturritis turrita. The occurrence of Actaea europaea, Carex rhizina and Rubus saxatilis, species typical of southern Siberian hemiboreal forests which are rather rare in Central Europe, is particularly remarkable. Ledové sluje is an isolated locality for some thermophilous species which are more common in the dry lowlands of southern Moravia east of the town of Znojmo, but largely missing in the Bohemian Massif. In this area, they are conined to sunny slopes and rock outcrops in the river valleys. This group of species includes both sub-Mediterranean and temperate continental species such as Allium lavum, Buglossoides purpurocaerulea, Dictamnus albus, Iris variegata (westernmost locality in Moravia) and Melica picta. Aconitum anthora, a species belonging to a group of closely-related taxa with temperate continental distribution, is found on sunny forest edges on the summit of the Ledové sluje ridge. In Moravia, this species is conined to the river valleys of the Bohemian Massif. Carex cespitosa and Veronica maritima, species of wet continental meadows, are found in a small wetland on the river terrace west of the Ledové sluje ridge. Appendix 2a Selected species of vascular plants in the Ledové sluje area. Abies alba Acer campestre Acer platanoides Acer pseudoplatanus Aconitum anthora Actaea spicata Adoxa moschatellina Aegopodium podagraria Agrostis capillaris Agrostis gigantea (neo) Agrostis stolonifera Achillea collina Achillea styriaca Actaea europaea Ajuga genevensis Ajuga reptans Alliaria petiolata Allium lavum Allium oleraceum Allium senescens subsp. montanum Alnus glutinosa Alopecurus pratensis Anemone nemorosa Anemone ranunculoides Angelica sylvestris Anchusa oficinalis Anthericum ramosum Anthoxanthum odoratum Anthriscus sylvestris Arabidopsis arenosa 44 Arctium lappa Arctium minus Arctium tomentosum Arenaria serpyllifolia Arrhenatherum elatius Asarum europaeum Asplenium septentrionale Asplenium trichomanes Astragalus glycyphyllos Astrantia major Athyrium ilix-femina Atropa bella-donna Aurinia saxatilis Avenella lexuosa Avenula pubescens Ballota nigra Batrachium luitans Berteroa incana Betonica oficinalis Betula pendula Brachypodium pinnatum Brachypodium sylvaticum Briza media Bromus benekenii Bromus hordeaceus Buglossoides purpurocaerulea Bupleurum falcatum Calamagrostis arundinacea Calamagrostis epigejos Calluna vulgaris Caltha palustris Calystegia sepium Campanula glomerata Campanula patula Campanula persicifolia Campanula rapunculoides Campanula rotundifolia Campanula trachelium Cardamine amara Cardamine impatiens Carduus crispus Carex acuta Carex acutiformis Carex brizoides Carex buekii Carex cespitosa Carex digitata Carex hartmanii Carex hirta Carex leporina Carex michelii Carex muricata Carex pallescens Carex pilosa Carex remota Carex rhizina Carex spicata Carex sylvatica Carpinus betulus Centaurea jacea Centaurea triumfetti Centaurium erythraea Cerastium arvense Cerastium glutinosum Cerastium holosteoides Chaerophyllum aromaticum Chaerophyllum temulum Chelidonium majus Chenopodium album Chrysosplenium alternifolium Circaea lutetiana Cirsium arvense Cirsium canum Cirsium oleraceum Cirsium palustre Cirsium vulgare Clinopodium vulgare Convallaria majalis Conyza canadensis (neo) Cornus mas Cornus sanguinea Corydalis intermedia Corydalis solida Corylus avellana Cota tinctoria Cotoneaster integerrimus Crataegus laevigata Crataegus monogyna Crepis biennis Crepis paludosa Cruciata laevipes Cyclamen purpurascens Cystopteris fragilis Cytisus nigricans Dactylis glomerata Dactylis polygama Dactylorhiza majalis Daphne mezereum Dentaria bulbifera Dentaria enneaphyllos Deschampsia cespitosa Dianthus carthusianorum Dianthus deltoides Digitalis grandilora Dryopteris carthusiana Dryopteris dilatata Dryopteris ilix-mas Echium vulgare Elymus caninus Elymus repens Epilobium adenocaulon (neo) Epilobium angustifolium Epilobium montanum Equisetum arvense Equisetum palustre Equisetum pratense Erigeron annuus (neo) Eryngium campestre Euonymus europaeus Euonymus verrucosus Eupatorium cannabinum Euphorbia cyparissias Euphorbia dulcis Euphorbia epithymoides Euphorbia esula Fagus sylvatica Falcaria vulgaris Fallopia convolvulus Fallopia dumetorum Festuca gigantea Festuca ovina Festuca pallens Festuca pratensis Festuca rubra Ficaria verna subsp. verna Filago arvensis Filipendula ulmaria Filipendula vulgaris Fourraea alpina Fragaria moschata Fragaria vesca Fraxinus excelsior Fumaria schleicheri Gagea lutea Gagea minima Galanthus nivalis Galeobdolon montanum Galeopsis pubescens Galium album Galium aparine Galium glaucum Galium odoratum Galium sylvaticum Galium uliginosum Galium valdepilosum Galium verum Genista germanica Genista pilosa Genista tinctoria Geranium columbinum Geranium divaricatum Geranium pratense Geranium pusillum Geranium robertianum Geranium sanguineum Geum urbanum Glechoma hederacea Glechoma hirsuta Glyceria maxima Gnaphalium sylvaticum Gymnocarpium dryopteris Hedera helix Helianthemum grandilorum subsp. obscurum Hepatica nobilis Heracleum sphondylium Herniaria glabra Hesperis sylvestris Hieracium laevigatum Hieracium lachenalii Hieracium murorum Hieracium sabaudum Holcus lanatus Humulus lupulus Hylotelephium maximum Hypericum hirsutum Hypericum montanum Hypericum perforatum Hypochaeris radicata Impatiens noli-tangere Impatiens parvilora (neo) Inula conyzae Iris variegata Isopyrum thalictroides Jasione montana Juncus bufonius Juncus conglomeratus Juncus effusus Juncus tenuis (neo) Juniperus communis Knautia arvensis Lactuca quercina Lactuca serriola Lamium album Lamium maculatum Lamium purpureum Lapsana communis Larix decidua (planted) Lathraea squamaria Lathyrus niger Lathyrus pratensis Lathyrus vernus Lemna minor Leontodon hispidus Leucanthemum ircutianum Libanotis pyrenaica Ligustrum vulgare Lilium martagon Linaria genistifolia Lonicera xylosteum Lotus corniculatus Luzula campestris Luzula divulgata Luzula luzuloides Lychnis los-cuculi Lysimachia nummularia Lysimachia vulgaris Maianthemum bifolium Medicago falcata Melampyrum nemorosum Melampyrum pratense Melica nutans Melica picta Melica unilora Mentha longifolia Mercurialis perennis Milium effusum Moehringia trinervia Molinia caerulea agg. Mycelis muralis Myosotis arvensis Myosotis palustris 2 45 Myosotis ramosissima Myosotis stricta Myosotis sylvatica Myosoton aquaticum Neottia nidus-avis Noccaea caerulescens Omphalodes scorpioides Origanum vulgare Oxalis acetosella Paris quadrifolia Phalaris arundinacea Phleum phleoides Phleum pratense Phragmites australis Phyteuma spicatum Picea abies Pilosella oficinarum Pimpinella major Pimpinella saxifraga Pinus sylvestris Plantago lanceolata Plantago major Poa angustifolia Poa annua Poa bulbosa Poa nemoralis Poa palustris Poa pratensis Poa trivialis Polygonatum multilorum Polygonatum odoratum Polygonum aviculare agg. Polypodium vulgare Populus tremula Potentilla argentea Potentilla erecta Potentilla incana Potentilla reptans Prenanthes purpurea Primula elatior Primula veris Prunella vulgaris Prunus mahaleb Prunus spinosa Pseudoturritis turrita Pulmonaria oficinalis agg. Pyrus communis Quercus petraea Ranunculus acris Ranunculus repens Reynoutria japonica (neo) Rhamnus cathartica Ribes alpinum Ribes uva-crispa Rosa canina Rosa pendulina Rubus caesius Rubus fruticosus agg. Rubus idaeus Rubus saxatilis 46 Rumex acetosa Rumex acetosella Rumex aquaticus Rumex conglomeratus Rumex crispus Rumex obtusifolius Salix alba Salix caprea Salix cinerea Salix euxina (= S. fragilis) Salix purpurea Salix rosmarinifolia Salix triandra Salvia glutinosa Salvia pratensis Sambucus nigra Sambucus racemosa Sanguisorba minor Sanguisorba oficinalis Sanicula europaea Saxifraga granulata Scirpus sylvaticus Scleranthus perennis Scorzoneroides autumnalis Scrophularia nodosa Securigera varia Sedum acre Sedum relexum Sedum sexangulare Senecio germanicus Senecio viscosus Seseli osseum Silene dioica Silene latifolia subsp. alba Silene nutans Silene vulgaris Solidago gigantea (neo) Solidago virgaurea Sonchus arvensis Sonchus oleraceus Sorbus aria Sorbus aucuparia Sorbus torminalis Spergularia rubra Stachys recta Stachys sylvatica Staphylea pinnata Stellaria graminea Stellaria holostea Stellaria media Stellaria nemorum Symphytum oficinale Symphytum tuberosum Tanacetum corymbosum Tanacetum vulgare Taraxacum sect. Erythrosperma Taraxacum sect. Taraxacum Tephroseris crispa Teucrium chamaedrys Thesium linophyllon Thymus pulegioides Tilia cordata Tilia platyphyllos Torilis japonica Tragopogon orientalis Trifolium alpestre Trifolium arvense Trifolium medium Trifolium pratense Trifolium repens Turritis glabra Ulmus glabra Urtica dioica Vaccinium myrtillus Valeriana excelsa subsp. sambucifolia Verbascum chaixii subsp. austriacum Verbascum nigrum Veronica anagallis-aquatica Veronica arvensis Veronica chamaedrys Veronica dillenii Veronica maritima Veronica oficinalis Veronica sublobata Veronica vindobonensis Viburnum opulus Vicia cracca Vicia sepium Vicia tenuifolia Vincetoxicum hirundinaria Viola arvensis Viola mirabilis Viola reichenbachiana Viscaria vulgaris Viscum album subsp. abietis Viscum album subsp. austriacum 2 Plate 2a Plants of the Ledové sluje ridge in the Podyjí National Park: (a) Actaea europaea, (b) Hieracium murorum, (c) Hieracium lachenalii, (d) Melampyrum pratense, (e) Vaccinium myrtillus, (f) Carex buekii, (g) Acer pseudoplatanus, (h) Stellaria holostea, (i) Aurinia saxatilis, (j) Quercus petraea, (k) Tilia platyphyllos, (l) Ulmus glabra. 47 (2b) Dyje Valley near Hardegg The section of the Dyje Valley near the Austrian town of Hardegg is remarkable for the occurrence of crystalline limestone (marble) outcrops in an area otherwise dominated by acidic orthogneiss. Amphibolite also occurs here in places. The patches of bedrock with contrasting chemistry strongly affect the local distribution pattern of plant species and vegetation types. The topographic situation of the Dyje Valley can be seen from Hardegg Viewpoint (Hardeggská vyhlídka) on a cliff top above the Dyje Valley. Acidophilous lora and vegetation occurs around this viewpoint, whereas well-developed limestone lora and vegetation occurs on the valley slope called Hardeggská stráň ca. 500–700 m SE–SSE from the viewpoint. Cypripedium calceolus grows together with Corallorhiza triida, Daphne mezereum, Euphorbia angulata and Hierochloë australis in a stand of an oak-hornbeam forest on a marble outcrop. The south-facing slopes with outcrops of amphibolite and amphibolitic gneiss support thermophilous oak forests of the association Sorbo torminalis-Quercetum (alliance Quercion petraeae) with the acidophilous species Agrostis vinealis, Avenella lexuosa and Festuca ovina in the herb layer. Acidophilous dry grasslands of the association Festuco pallentis-Aurinietum saxatilis (alliance Alysso-Festucion pallentis) are conined to the gneiss outcrops. Gagea bohemica and Veronica dillenii occur here on cliff tops and shallow soils next to rock outcrops. Acidophilous oak forests are replaced on marble by basiphilous oak forests, represented here by the associations Euphorbio-Quercetum and Lithospermo purpurocaerulei-Quercetum pubescentis (alliance Quercion pubescenti-petraeae); Quercus pubescens is, however, absent from this part of the Dyje Valley due to its isolated position far from the species’s continuous distribution in the Pannonian part of southern Moravia. In open places, forest-edge communities of the alliance Geranion sanguinei are found with Buphthalmum salicifolium, Dictamnus albus, Geranium sanguineum, Inula hirta and Peucedanum cervaria along with dry grasslands of the alliance Festucion valesiacae, including Carex humilis, Festuca valesiaca, Inula ensifolia, Orchis militaris, Polygala major and Stipa pennata. Grasslands dominated by Sesleria caerulea, accompanied by Aster amellus and Hypochaeris maculata (alliance Diantho lumnitzeri-Seslerion), occur rarely on west-facing slopes. Pioneer communities of the association Cerastietum (alliance Alysso alyssoidis-Sedion) with spring therophytes such as Arabis auriculata, Saxifraga tridactylites and Veronica praecox, are restricted to marble outcrops. White-lowering populations of Batrachium luitans (alliance Batrachion luitantis) are remarkable in the Dyje River in summer. The cliffs above the left bank of the Dyje River opposite the Austrian town of Hardegg are formed predominantly of gneiss, though there are also marble outcrops. Photo M. Chytrý. From Hardegg Viewpoint located on the Czech side of the state border, there is a romantic view of the small town of Hardegg with its castle built on the cliff above the conluence of the Dyje River and its tributary stream called Fugnitz. It was built at the turn of the 12th century as one of the fortresses that protected the Austrian border. A parallel chain of fortresses was built on the Czech (Moravian) side of the border. The castle lost its original purpose in the 17th century and was turned into hunting lodge. After major restoration at the end of 19th century, it became a public museum dedicated to Emperor Maximilian I of Mexico, brother of Emperor Franz Josef I of Austria. This area is extremely rich in species. More than 600 vascular plant species per 1‘ × 0.6‘ grid square (ca. 1.2 km2) were recorded during the detailed grid mapping of the lora in the 1990s (Grulich 1997). This number is striking, particularly when we consider the slight human inluence in the area. Arable ields and ruderal habitats are almost absent, and even in the past no settlements other than the small town of Hardegg have existed here. The plateau above the valley is covered by oak-hornbeam forests of the associations Galio sylvatici-Carpinetum betuli and Carici pilosae-Carpinetum betuli (alliance Carpinion betuli), the latter on more base-rich soils. The dominant tree species is Carpinus betulus, with Quercus petraea and Tilia cordata in places. The frequent species of the herb layer include Carex pilosa, Cyclamen purpurascens, Dactylis polygama, Dentaria bulbifera, Hepatica nobilis, Pulmonaria obscura and Stellaria holostea. Abies alba is remarkable here not only for its presence but also for its natural regeneration. 48 The open woodland with Quercus robur on former pasture on the south-facing limestone slope of Hardeggská stráň harbours many calcicolous dry-grassland species. Photo M. Chytrý. The species composition of the forests in this part of the valley is near natural. Planted individuals of Scots pine (Pinus sylvestris), Norwegian spruce (Picea abies) and European larch (Larix decidua) are to be gradually replaced by autochthonous tree species according to the Management Plan for the National Park. The river terraces on the bottom of the Dyje Valley used to be farmed. They were covered mainly with the Arrhenatherion elatioris meadows, though also with some arable ields which have been regrassed since the mid-1990s. The meadows will be preserved here as a valuable component of the cultural landscape. 49 2 2 The Dyje Valley near the Austrian town of Hardegg and the Czech village of Čížov in the western-central part of the Podyjí National Park. Appendix 2b Selected species of vascular plants in the Dyje Valley near Hardegg. Abies alba Acer campestre Aconitum anthora Adoxa moschatellina Agrostis vinealis Achillea nobilis Achillea pannonica Ajuga genevensis Allium lavum Allium senescens subsp. montanum Alnus glutinosa Alyssum alyssoides Anemone ranunculoides Anemone sylvestris Anthericum ramosum Arabidopsis arenosa Artemisia campestris Asarum europaeum Asparagus oficinalis Asperula cynanchica Asplenium ruta-muraria Asplenium septentrionale 50 Aster amellus Aurinia saxatilis Avenella lexuosa Batrachium luitans Berberis vulgaris Brachypodium pinnatum Bromus benekenii Buphthalmum salicifolium Bupleurum falcatum Calamagrostis arundinacea Campanula persicifolia Carex brizoides Carex buekii Carex lacca Carex humilis Carex michelii Carex montana Carex pilosa Carex supina Carpinus betulus Centaurea scabiosa Centaurea stoebe Centaurea triumfetti Cerastium glutinosum Cerastium semidecandrum Chamaecytisus ratisbonensis Clematis recta Convallaria majalis Corallorhiza triida Cornus mas Corydalis solida Cota tinctoria Cotoneaster integerrimus Crepis praemorsa Cyclamen purpurascens Cypripedium calceolus Dactylis polygama Daphne mezereum Dentaria bulbifera Dictamnus albus Echium vulgare Eryngium campestre Euonymus europaeus Euonymus verrucosus Euphorbia angulata Euphorbia cyparissias Plate 2b Plants of the Dyje Valley near Hardegg in the Podyjí National Park: (a) Cyclamen purpurascens, (b) Salvia glutinosa, (c) Verbascum chaixii subsp. austriacum, (d) Carex humilis, (e) Quercus robur, (f) Ligustrum vulgare, (g) Aster amellus, (h) Phalaris arundinacea, (i) Tanacetum corymbosum, (j) Batrachium luitans, (k) Carex pilosa, (l) Cornus mas. 51 Euphorbia dulcis Euphorbia epithymoides Fagus sylvatica Festuca ovina Festuca pallens Festuca valesiaca Fourraea alpina Gagea bohemica Gagea minima Galanthus nivalis Galatella linosyris Galeopsis speciosa Galium glaucum Galium odoratum Galium sylvaticum Galium valdepilosum Genista germanica Genista pilosa Gentiana cruciata Geranium phaeum Geranium sanguineum Glechoma hirsuta Helianthemum grandilorum subsp. obscurum Hepatica nobilis Hesperis sylvestris Hieracium umbellatum Hierochloë australis Hypericum montanum Hypochaeris maculata Inula conyzae Inula ensifolia Inula hirta Inula ×hybrida (= I. ensifolia × I. germanica) Inula oculus-christi Inula salicina Iris variegata Isopyrum thalictroides Juniperus communis Knautia drymeia Lactuca quercina Lactuca viminea Lappula squarrosa Lathyrus vernus Libanotis pyrenaica Ligustrum vulgare Lilium martagon Linaria genistifolia Lonicera xylosteum Loranthus europaeus Luzula divulgata Luzula luzuloides Maianthemum bifolium Medicago falcata Melampyrum nemorosum Melica ciliata Melica picta Melica unilora Melittis melissophyllum Mercurialis perennis Microthlaspi perfoliatum Milium effusum Minuartia rubra Neottia nidus-avis Noccaea caerulescens Omphalodes scorpioides Orchis militaris Orchis purpurea Origanum vulgare Orobanche lutea Phalaris arundinacea Phleum phleoides Phyteuma spicatum Pilosella echioides Pinus sylvestris Poa bulbosa Poa nemoralis Polygala major Polygonatum multilorum Polygonatum odoratum Potentilla incana Potentilla recta Primula elatior Primula veris Prunus fruticosa Prunus mahaleb Pulsatilla grandis Pulsatilla pratensis subsp. bohemica Quercus petraea Quercus robur Ranunculus bulbosus Rumex acetosella Rumex aquaticus Salix euxina (= S. fragilis) Salvia glutinosa Salvia pratensis Sanicula europaea Saxifraga tridactylites Scabiosa ochroleuca Scleranthus perennis Scrophularia umbrosa Sedum album Sedum relexum Senecio germanicus Seseli osseum Sesleria caerulea Silene nutans Sisymbrium strictissimum (neo) Sorbus aria Sorbus torminalis Stachys recta Stellaria holostea Stellaria nemorum Stipa capillata Stipa dasyphylla Stipa pennata Stipa pulcherrima Symphytum tuberosum Tanacetum corymbosum Taxus baccata Teucrium chamaedrys Thesium linophyllon Thymus praecox Tilia cordata Tilia platyphyllos Trifolium alpestre Trifolium montanum Ulmus glabra Ulmus laevis Vaccinium myrtillus Verbascum chaixii subsp. austriacum Verbascum nigrum Veronica dillenii Veronica praecox Veronica prostrata Veronica spicata Veronica teucrium Veronica vindobonensis Viburnum lantana Vicia sylvatica Vicia tenuifolia Vincetoxicum hirundinaria Viola mirabilis Viola tricolor subsp. saxatilis Viscaria vulgaris Viscum album subsp. austriacum (2c) Šobes meander Šobes is a promontory in the Dyje Valley surrounded by a large river meander on all sides except for a narrow isthmus in the north-west. It is particularly famous with the public for the vineyard on its SW-facing slope which is one of the oldest in Moravia. Local wines, mainly Welschriesling, Riesling, Pinot Blanc and Pinot Gris, are considered among the best Moravian wines. Šobes was repeatedly settled by people since the Neolithic due to its well-protected location. 52 2 Open thermophilous woodland with Quercus petraea and an admixture of Q. pubescens on the granitic isthmus of the Šobes meander. Photo J. Roleček. The bedrock of Šobes is granite (Batík 1992). The altitude of the Dyje River in this section is about 240 m and the top of Šobes stands at 330 m, resulting in steep slopes with rock outcrops on both sides of the isthmus. All the main types of forest vegetation typical of the granitic part of the Dyje Valley can be seen here because of contrasting slope aspects and variable steepness in a small area (Chytrý & Vicherek 1995). The upper slopes of the Šobes meander and the adjacent parts of the Dyje Valley, as well as the gently undulating landscape above the valley, are covered by oak forests of Quercus petraea. Some individuals of Q. pubescens can also be found here, although the site lies outside the continuous distribution of this species in southern Moravia. Of particular interest are the very open woodlands of short oaks on the upper rocky edges of the south-facing valley slopes with the dwarf shrub Genista pilosa, the grasses Avenella lexuosa and Festuca ovina and a well-developed layer of mosses and lichens (association Genisto pilosae-Quercetum petraeae, alliance Quercion petraeae). They provide a habitat for the European green lizard (Lacerta viridis) and Aesculapian snake (Zamenis longissimus) which can be frequently seen here. A slightly less dry type of thermophilous oak forest (association Sorbo torminalis-Quercetum, alliance Quercion petraeae) occurs on less eroded south-facing slopes, and species-poor acidophilous oak forest (the associations Luzulo luzuloidis-Quercetum petraeae and Viscario vulgaris-Quercetum petraeae of the alliance Quercion roboris) occurs on the upper parts of steep north-facing slopes. The forests in this region were coppiced until the mid-20th century which can still be seen in the multi-stemmed growth of many oak individuals. The dominance of Quercus petraea in this area is partly the result of this historical legacy. Coppicing was abandoned in the 1950s and the copppices in easily accessible areas were transformed into high forest, while those on steep valley slopes were left to spontaneous development (Janík et al. 2007). A detailed forestry survey of the former oak coppices left to spontaneous development for more than 50 years at the Lipina site (about 1 km NW of Šobes) indicated that although the tree layer is currently dominated by Quercus petraea (with less than 3% of other trees, mainly Tilia cordata and Acer campestre), natural regeneration in canopy openings is dominated by Carpinus betulus and Acer campestre, indicating a succession towards a forest with a denser and less uniform tree layer (Janík et al. 2007). Such a successional development may have a negative impact on the light-demanding species in the herb layer of these forests. 53 The lower slopes of the Dyje Valley near Šobes are covered by oak-hornbeam forests with Quercus petraea and Carpinus betulus with mesophilous forest species in the herb layer (association Galio sylvatici-Carpinetum betuli, alliance Carpinion betuli). Ravine forests with Acer campestre, A. platanoides, A. pseudoplatanus, Carpinus betulus, Tilia cordata and T. platyphyllos (association Aceri-Tilietum, alliance Tilio platyphylli-Acerion) appear where the lower and middle slopes are steeper with rock outcrops or accumulation of rock debris. The loamy-sandy terraces of the Dyje River below the slip-off slopes of the meander harbour patches of Alnus glutinosa riparian forests (association Stellario nemorum-Alnetum glutinosae, alliance Alnion incanae), which is locally replaced by successional woodlands of Salix euxina in disturbed places. There were several watermills on the Dyje River below Šobes until WWII (the site is called Devět Mlýnů in Czech or Neunmühlen in German, both meaning Nine Mills). After the area was enclosed within the prohibited Iron Curtain zone after WWII, the mills were demolished to prevent them from becoming a refuge for people that might enter the prohibited zone illegally. The remnants of millraces and building foundations are visible to this day and several weirs on the river are still functioning. There were hay meadows on the upper river terraces near the watermills, though these were abandoned after the area was closed. The National Park authorities restored management of a mesic meadow (alliance Arrhenatherion elatioris) on the river terrace below the Šobes vineyard. The Šobes meander in the Dyje Valley and the Havraníky heathlands in the eastern part of the Podyjí National Park. Appendix 2c Selected species of vascular plants in the Šobes meander and adjacent parts of the Dyje Valley. Acer campestre Acer negundo (neo) Acer platanoides Acer pseudoplatanus Achillea collina Achillea pannonica Achillea setacea Acinos arvensis Aconitum anthora Actaea spicata Aegopodium podagraria Aethusa cynapium 54 Agrimonia eupatoria Agrostis capillaris Agrostis vinealis Ajuga genevensis Ajuga reptans Alisma plantago-aquatica Alliaria petiolata Allium lavum Allium oleraceum Allium senescens subsp. montanum Alnus glutinosa Alopecurus pratensis Alyssum montanum Anemone nemorosa Anemone ranunculoides Angelica sylvestris Antennaria dioica Anthericum ramosum Anthoxanthum odoratum Anthriscus cerefolium Anthriscus sylvestris Arabidopsis arenosa Arabidopsis thaliana Arctium lappa Arctium tomentosum Arenaria serpyllifolia Aristolochia clematitis Armeria elongata subsp. elongata Arrhenatherum elatius Artemisia absinthium Artemisia campestris Artemisia vulgaris Asarum europaeum Asparagus oficinalis Asperula cynanchica Asplenium septentrionale Asplenium trichomanes Astragalus glycyphyllos Astrantia major Athyrium ilix-femina Aurinia saxatilis Avenella lexuosa Avenula pubescens Ballota nigra Batrachium luitans Betonica oficinalis Betula pendula Biscutella laevigata subsp. varia Brachypodium pinnatum Brachypodium sylvaticum Bromus erectus Bromus hordeaceus Bromus inermis Bromus sterilis Bromus tectorum Bryonia alba Buglossoides purpurocaerulea Bupleurum falcatum Calamagrostis arundinacea Calamagrostis epigejos Calluna vulgaris Calystegia sepium Campanula glomerata Campanula moravica Campanula patula Campanula persicifolia Campanula rapunculoides Campanula trachelium Capsella bursa-pastoris Cardamine amara Cardamine impatiens Carduus acanthoides Carduus crispus Carex brizoides Carex buekii Carex caryophyllea Carex digitata Carex hirta Carex humilis Carex montana Carex pallescens Carex pilosa Carex praecox Carex spicata Carex supina Carlina acaulis Carlina vulgaris Carpinus betulus Centaurea jacea Centaurea scabiosa Centaurea stoebe Centaurea triumfetti Centaurium erythraea Cerastium arvense Cerastium glutinosum Cerastium holosteoides Cerinthe minor Chaerophyllum aromaticum Chaerophyllum temulum Chamaecytisus ratisbonensis Chelidonium majus Chenopodium album Chondrilla juncea Cichorium intybus Circaea lutetiana Cirsium arvense Cirsium oleraceum Cirsium palustre Cirsium vulgare Clinopodium vulgare Colchicum autumnale Convallaria majalis Convolvulus arvensis Conyza canadensis (neo) Cornus mas Cornus sanguinea Corydalis cava Corydalis intermedia Corydalis solida Corylus avellana Cota tinctoria Cotoneaster integerrimus Crataegus laevigata Crataegus monogyna Crepis biennis Cruciata laevipes Cruciata pedemontana Cyclamen purpurascens Cytisus nigricans Cytisus procumbens Cytisus scoparius Dactylis glomerata Dactylis polygama Danthonia decumbens Daucus carota Dentaria bulbifera Descurainia sophia Deschampsia cespitosa Dianthus carthusianorum agg. Dianthus deltoides Dictamnus albus Digitalis grandilora Dryopteris carthusiana Dryopteris ilix-mas Echinochloa crus-galli Echinops sphaerocephalus Echium vulgare Elodea canadensis (neo) Elymus caninus Elymus hispidus Elymus repens Epilobium adenocaulon (neo) Epilobium angustifolium Epilobium hirsutum Epilobium montanum Equisetum arvense Equisetum palustre Erigeron annuus (neo) Erodium cicutarium Eryngium campestre Euonymus europaeus Euonymus verrucosus Euphorbia cyparissias Euphorbia dulcis Euphorbia esula Euphorbia peplus Fagus sylvatica Falcaria vulgaris Fallopia convolvulus Fallopia dumetorum Festuca gigantea Festuca ovina Festuca pallens Festuca pratensis Festuca rubra Festuca rupicola Festuca valesiaca Ficaria verna subsp. verna Filipendula ulmaria Filipendula vulgaris Fragaria moschata Fragaria vesca Fragaria viridis Frangula alnus Fraxinus excelsior Gagea bohemica Gagea lutea Gagea minima Gagea pratensis Gagea villosa Galanthus nivalis Galatella linosyris Galeobdolon montanum Galeopsis pubescens Galeopsis speciosa Galeopsis tetrahit Galinsoga parvilora (neo) Galium aparine Galium glaucum Galium sylvaticum Galium valdepilosum Galium verum Genista pilosa Genista tinctoria Geranium phaeum Geranium pratense 2 55 Geranium pusillum Geranium robertianum Geranium sanguineum Geum urbanum Glechoma hederacea Glyceria maxima Glyceria notata Gnaphalium sylvaticum Gnaphalium uliginosum Hackelia delexa Hedera helix Helianthemum grandilorum subsp. obscurum Helictochloa pratensis Helichrysum arenarium Hepatica nobilis Heracleum sphondylium Hesperis sylvestris Hesperis tristis Hieracium lachenalii Hieracium laevigatum Hieracium murorum Hieracium sabaudum Hieracium umbellatum Holcus lanatus Humulus lupulus Hylotelephium maximum Hypericum hirsutum Hypericum montanum Hypericum perforatum Hypochaeris radicata Impatiens noli-tangere Impatiens parvilora (neo) Inula britannica Inula conyzae Inula oculus-christi Inula salicina Iris pseudacorus Iris variegata Isopyrum thalictroides Jasione montana Jovibarba globifera Juncus articulatus Juncus tenuis (neo) Juniperus communis Knautia arvensis Knautia drymeia Koeleria macrantha Lactuca quercina Lactuca serriola Lamium album Lamium amplexicaule Lamium maculatum Lamium purpureum Lapsana communis Larix decidua (planted) Lathraea squamaria Lathyrus pratensis Lathyrus vernus Lavatera thuringiaca Leontodon hispidus 56 Lepidium draba Leucanthemum vulgare agg. Libanotis pyrenaica Ligustrum vulgare Lilium martagon Linaria genistifolia Lolium perenne Lonicera xylosteum Loranthus europaeus Lotus corniculatus Luzula campestris Luzula divulgata Luzula luzuloides Lycopus europaeus Lychnis los-cuculi Lysimachia vulgaris Lythrum salicaria Malus sylvestris Malva alcea Malva moschata Malva neglecta Medicago falcata Medicago lupulina Melampyrum arvense Melampyrum pratense Melica ciliata Melica nutans Melica transsilvanica Melica unilora Melilotus oficinalis Mentha arvensis Mentha longifolia Mercurialis ovata Microthlaspi perfoliatum Moehringia trinervia Muscari comosum Mycelis muralis Myosotis arvensis Myosotis palustris Myosotis ramosissima Myosotis sparsilora Myosotis stricta Myosotis sylvatica Myosoton aquaticum Noccaea caerulescens Odontites luteus Odontites vernus subsp. serotinus Omphalodes scorpioides Origanum vulgare Ornithogalum kochii Oxalis acetosella Oxalis stricta (neo) Pastinaca sativa Petasites hybridus Petrorhagia prolifera Peucedanum cervaria Peucedanum oreoselinum Phalaris arundinacea Phleum phleoides Phleum pratense Phlomis tuberosa Phyteuma spicatum Picea abies Picris hieracioides Pilosella echioides Pilosella oficinarum Pimpinella major Pimpinella saxifraga Pinus sylvestris Plantago lanceolata Plantago major Plantago media Platanthera bifolia Poa annua Poa bulbosa Poa nemoralis Poa palustris Poa pratensis agg. Poa trivialis Polygonatum multilorum Polygonatum odoratum Polygonum aviculare agg. Polypodium vulgare Populus tremula Potentilla alba Potentilla argentea Potentilla incana Potentilla recta Potentilla reptans Primula veris Prunella vulgaris Prunus avium Prunus fruticosa Prunus mahaleb Prunus spinosa Pseudoturritis turrita Pulmonaria oficinalis agg. Pulsatilla grandis Quercus petraea Quercus pubescens Ranunculus acris Ranunculus bulbosus Ranunculus lanuginosus Ranunculus repens Rhamnus cathartica Rhinanthus minor Ribes uva-crispa Robinia pseudoacacia (neo) Rosa canina Rosa dumalis Rosa gallica Rosa marginata Rosa spinosissima Rubus caesius Rubus fruticosus agg. Rubus idaeus Rumex acetosa Rumex acetosella Rumex aquaticus Rumex conglomeratus Rumex crispus Rumex obtusifolius 2 Plate 2c Plants of the Šobes meander in the Podyjí National Park: (a) Symphytum tuberosum, (b) Silene nutans, (c) Festuca ovina, (d) Viscaria vulgaris, (e) Carpinus betulus, (f) Carex humilis, (g) Aristolochia clematitis, (h) Linaria genistifolia, (i) Vincetoxicum hirundinaria, (j) Allium lavum, (k) Loranthus europaeus, (l) Hylotelephium maximum. 57 Rumex thyrsilorus (neo) Salix caprea Salix euxina (= S. fragilis) Salix viminalis Salvia nemorosa Salvia pratensis Sambucus nigra Sanguisorba minor Sanguisorba oficinalis Saponaria oficinalis Saxifraga bulbifera Saxifraga granulata Scabiosa canescens Scabiosa ochroleuca Scirpus sylvaticus Scleranthus perennis Scrophularia nodosa Securigera varia Sedum acre Sedum album Sedum relexum Sedum sexangulare Selinum carvifolia Senecio germanicus Senecio jacobaea Seseli annuum Seseli osseum Silene dioica Silene latifolia subsp. alba Silene nutans Silene otites Silene vulgaris Sisymbrium strictissimum (neo) Solidago gigantea (neo) Solidago virgaurea Sorbus danubialis Sorbus aucuparia Sorbus torminalis Spergularia rubra Stachys recta Stachys sylvatica Staphylea pinnata Stellaria graminea Stellaria holostea Stellaria media Stellaria nemorum Stipa pennata Symphytum oficinale Symphytum tuberosum Tanacetum corymbosum Tanacetum vulgare Taraxacum sect. Erythrosperma Taraxacum sect. Taraxacum Teucrium chamaedrys Thesium linophyllon Thymus praecox Thymus pulegioides Tilia cordata Tilia platyphyllos Tordylium maximum Torilis japonica Tragopogon orientalis Trifolium alpestre Trifolium arvense Trifolium campestre Trifolium montanum Trifolium pratense Trifolium repens Trisetum lavescens Turritis glabra Ulmus glabra Urtica dioica Vaccinium myrtillus Valeriana oficinalis Valeriana stolonifera subsp. angustifolia Valerianella locusta Verbascum chaixii subsp. austriacum Verbascum lychnitis Veronica arvensis Veronica dillenii Veronica chamaedrys agg. Veronica oficinalis Veronica persica (neo) Veronica polita Veronica prostrata Veronica serpyllifolia Veronica spicata Veronica sublobata Veronica triphyllos Veronica verna Viburnum lantana Vicia angustifolia Vicia cracca Vicia sepium Vicia tenuifolia Vincetoxicum hirundinaria Viola arvensis Viola hirta Viola mirabilis Viola odorata Viola tricolor subsp. saxatilis Viscaria vulgaris Viscum album subsp. austriacum (2d) Havraníky-Znojmo heathlands The gentle slopes of the south-eastern edge of the Bohemian Massif in the eastern part of the Podyjí National Park are formed of granitoids (granite and granodiorite) which are evident as slightly elevated, rather lat outcrops. In places granitoids are covered by Tertiary deposits or loess. Towards the east, sedimentary cover increasingly dominates the landscape and granitoids occur only as small islands. The largest areas of heathland are found west to south-west of the village of Havraníky, west of the village of Popice and on the extensive lat top of the hill Kraví hora between the village of Konice and the town of Znojmo. Heathland is an Atlantic vegetation type that becomes increasingly rare in the more continental climate of the dry areas of Central Europe. The Havraníky-Znojmo heathlands, located on the edge of the continental forest-steppe biome, are peculiar for the mixture of typical species of acidophilous sub-Atlantic heathlands and species of continental dry grasslands. The main types of semi-natural vegetation in this area are thermophilous acidophilous grasslands with Agrostis vinealis, Carex humilis, Festuca ovina, Helictochloa pratensis, Potentilla incana and Veronica spicata (association Potentillo heptaphyllae-Festucetum rupicolae, alliance Koelerio-Phleion phleoidis) and dry heathlands with the same species but dominated by Calluna vulgaris (association Euphorbio cyparissiae-Callunetum vulgaris, alliance Euphorbio cyparissiae-Callunion vulgaris). There are also small patches of pioneer communities with vernal therophytes of the association Festuco-Veronicetum dillenii (alliance Arabidopsion thalianae) on shallow soils next to rock outcrops (Ambrozek & Chytrý 1990; Chytrý et al. 1997; Chytrý & Vicherek 2003). The natural vegetation of the area would be a mosaic of thermophilous oak forests with Quercus petraea, locally also Q. pubescens, and oak-hornbeam forests with Carpinus betulus and Q. petraea 58 (Chytrý & Vicherek 1995). The area has, however, probably been deforested since the Neolithic and shallow soils on the granitic bedrock were used as oligotrophic pastures for livestock. There was extensive sheep farming in the 18th and 19th centuries, though most pastures had already been abandoned by the end of the 19th century. Secondary succession of woody vegetation is rather slow on shallow granitic soils in the local dry climate, for which reason an extensive area of former pastures has been preserved as open land to this day. The preservation of grasslands and heathlands throughout the 20th century was supported by occasional grazing, accidental ires and the use of some parts of the area as military training grounds. A large part of the heathland area has, however, been overgrown by forest (Táborská 1999). Dry Calluna vulgaris heathland with continental dry-grassland species on shallow soil over granite near the village of Havraníky. Photo M. Chytrý. The expansion of the competitively strong grasses Arrhenatherum elatius and Calamagrostis epigejos, which began in the mid 1990s, is a serious threat to the heathland biodiversity. The spread of these grasses is probably caused by nitrogen accumulation due to long-term abandonment combined with increased atmospheric deposition (Fiala et al. 2004; Holub et al. 2012). Management experiments in the Calluna vulgaris heathlands that began in 1992 are testing whether some of the traditional management practices used in Western European heathlands (burning, sod-cutting with vegetation and topsoil removal, and cutting of the above-ground biomass) are applicable to the dry, continental and species-rich heathlands in the Podyjí National Park (Sedláková & Chytrý 1999; Chytrý et al. 2001). Burning promotes regeneration of Calluna vulgaris, both from seed (particularly after strong ire that exposes bare mineral soil) and from vegetative regrowth. Heathland recovery after sod-cutting depends on whether Calluna seed germination occurs in the plot. With germination, the community develops towards heathland; without germination it changes into dry grassland. Cutting the aboveground biomass leads to a striking increase in grass cover, followed by a slow recovery of Calluna. All these management practices, particularly those involving more pronounced disturbance, lead to an increase in native species richness after about three years, while no alien species spread in this nutrient-poor ecosystem. The National Park staff have been trying to stop the expansion of tall native grasses and associated diversity decline by sheep grazing, mowing and litter removal since the early 1990s (Vild & Stejskal 2013), though so far the results have been unsatisfactory. 59 2 2 The Dyje Valley near the town of Znojmo and the hill Kraví hora. Appendix 2d Selected species of vascular plants in the dry heathlands near the villages of Popice and Havraníky and on the hilltop of Kraví hora near Znojmo. Achillea collina Achillea setacea Agrimonia eupatoria Agrostis vinealis Allium lavum Anthriscus cerefolium Arabidopsis thaliana Aristolochia clematitis Armeria elongata subsp. elongata Arrhenatherum elatius Artemisia campestris Asparagus oficinalis Asperula cynanchica Avenella lexuosa Berteroa incana Biscutella laevigata subsp. varia Bromus tectorum Calluna vulgaris Carex humilis Carex supina Carlina vulgaris Centaurea stoebe Cerastium glutinosum Chamaecytisus ratisbonensis Chondrilla juncea Conium maculatum 60 Cotoneaster integerrimus Cytisus procumbens Cytisus scoparius Danthonia decumbens Dianthus carthusianorum agg. Dianthus deltoides Echium vulgare Elymus hispidus Erodium cicutarium Euphorbia cyparissias Euphorbia virgata Festuca ovina Festuca pallens Festuca pulchra Festuca valesiaca Ficaria calthifolia Filago arvensis Filago minima Filipendula vulgaris Fragaria viridis Frangula alnus Gagea bohemica Gagea pusilla Gagea villosa Galatella linosyris Galium valdepilosum Genista pilosa Genista sagittalis (neo) Helictochloa pratensis Helichrysum arenarium Hieracium umbellatum Hypochaeris maculata Hypochaeris radicata Inula britannica Iris pumila Jasione montana Jovibarba globifera Koeleria macrantha Lepidium draba Linaria genistifolia Luzula campestris Melampyrum arvense Melica transsilvanica Mercurialis annua Microthlaspi perfoliatum Myosotis ramosissima Myosotis stricta Nardus stricta Odontites luteus Odontites vernus subsp. serotinus Onopordum acanthium Petrorhagia prolifera Plate 2d Plant of the Havraníky-Znojmo heathlands: (a) Calluna vulgaris, (b) Helictochloa pratensis, (c) Helichrysum arenarium, (d) Biscutella laevigata subsp. varia, (e) Odontites luteus, (f) Verbascum phoeniceum, (g) Jasione montana, (h) Silene otites, (i) Potentilla incana, (j) Genista pilosa, (k) Veronica spicata, (l) Armeria elongata subsp. elongata. 61 Phleum phleoides Picris hieracioides Pilosella echioides Plantago media Poa bulbosa Polygonatum odoratum Potentilla incana Prunus fruticosa Pulsatilla grandis Ranunculus bulbosus Rhinanthus minor Rosa gallica Rosa marginata Rosa rubiginosa Rosa spinosissima Rumex acetosella Salvia nemorosa Salvia pratensis Sanguisorba minor Saxifraga bulbifera Saxifraga granulata Scabiosa canescens Scabiosa ochroleuca Scleranthus perennis Scleranthus polycarpos Scorzonera cana Sedum acre Sedum relexum Sedum sexangulare Senecio jacobaea Seseli annuum Seseli hippomarathrum Seseli osseum Silene otites Sisymbrium altissimum (neo) Stachys recta Stipa capillata Stipa pennata Taraxacum sect. Erythrosperma Teucrium chamaedrys Thymus praecox Trifolium alpestre Trifolium arvense Trifolium campestre Trifolium montanum Trifolium retusum Valerianella locusta Verbascum lychnitis Verbascum phoeniceum Veronica dillenii Veronica prostrata Veronica spicata Veronica triphyllos Veronica verna Veronica vindobonensis Vicia pannonica subsp. striata Vincetoxicum hirundinaria Viola canina Viscaria vulgaris Spring view of a heathland near Havraníky with yellow lowers of Genista pilosa. Photo M. Chytrý. References Ambrozek, L. & Chytrý, M. 1990. Die Vegetation der Zwergstrauchheiden im xerothermen Bereich am Südostrand des Böhmischen Massivs. Acta Musei Moraviae, Scientiae Naturales 75: 169–184. Antonín, V., Gruna, B., Hradílek, Z., Vágner, A. & Vězda, A. 2000. Houby, lišejníky a mechorosty Národního parku Podyjí. Pilze, Flechten und Moose des Nationalparks Thayatal. Masarykova univerzita, Brno. 62 Balátová-Tuláčková, E. 1993. Feuchtwiesen des Nationalparkes „Podyjí“ und der angrenzenden Gebiete. Verhandlungen der Zoologisch-Botanischen Gesellschaft in Österreich 130: 33–73. Batík, P. 1992. Geologická mapa Národního parku Podyjí [Geological map of the Podyjí National Park]. Český geologický ústav, Praha. Bravencová, L., Grulich, V., Musil, Z., Reiter, A., Reiterová, L. & Táborská, J. 2007. Významné nálezy cévnatých rostlin na území Národního parku Podyjí od roku 1995 [Important inds of vascular plants in the Podyjí National Park since 1995]. Thayensia 7: 85–119. Chytrý, M. & Tichý, L. 1998. Phenological mapping in a topographically complex landscape by combining ield survey with an irradiation model. Applied Vegetation Science 1: 225–232. Chytrý, M. & Vicherek, J. 1995. Lesní vegetace Národního parku Podyjí/Thayatal. Die Waldvegetation des Nationalparks Podyjí/Thayatal. Academia, Praha. Chytrý, M. & Vicherek, J. 2003. Travinná, keříčková a křovinná vegetace Národního parku Podyjí/ Thayatal [Grassland, heathland and scrub vegetation of the Podyjí/Thayatal National Park]. Thayensia 5: 11–84. Chytrý, M., Mucina, L., Vicherek, J., Pokorny-Strudl, M., Strudl, M., Koó, A.J. & Maglocký, Š. 1997. Die Planzengesellschaften der westpannonischen Zwergstrauchheiden und azidophilen Trockenrasen. Dissertationes Botanicae 277: 1–108. Chytrý, M., Grulich, V., Tichý, L. & Kouřil, M. 1999. Phytogeographical boundary between the Pannonicum and Hercynicum: a multivariate analysis in the landscape of the Podyjí/Thayatal National Park, Czech Republic/Austria. Preslia 71: 1–19. Chytrý, M., Sedláková, I. & Tichý, L. 2001. Species richness and species turnover in a successional heathland. Applied Vegetation Science 4: 89–96. Drlík, V., Grulich, V. & Reiter, A. 2005. Květena Znojemska 1950–1954 [Flora of the Znojmo district, 1950–1954]. Thayensia, Suppl. 2005/I: 7–292. Fiala, K., Záhora, J., Tůma, I. & Holub, P. 2004. Importance of plant matter accumulation, nitrogen uptake and utilization in expansion of tall grasses (Calamagrostis epigejos and Arrhenatherum elatius) into an acidophilous dry grassland. Ekológia (Bratislava) 23: 225–240. Grulich, V. 1996. Ohrožené druhy rostlin v Národním parku Podyjí [Threatened plant species in the Podyjí National Park]. Příroda (Praha) 6: 39–59. Grulich, V. 1997. Atlas rozšíření cévnatých rostlin Národního parku Podyjí. Verbreitungsatlas der Gefäßplanzen im Nationalpark Podyjí/Thayatal. Masarykova univerzita, Brno. Grulich, V. & Chytrý, M. 1993. Botanische Untersuchungen im Nationalpark Podyjí (Thayatal) und im grenznahen Österreich. Verhandlungen der Zoologisch-Botanischen Gesellschaft in Österreich 130: 1–31. Gruna, B. & Reiter, A. 1996. Výzkum lokality Ledové sluje u Vranova nad Dyjí (NP Podyjí) [Investigation of the locality ‘Ledové sluje’ [Ice caves] near Vranov nad Dyjí (Podyjí National Park)]. Příroda (Praha) 3: 1–163. Himmelbaur, W. & Stumme, E. 1923. Die Vegetationsverhältnisse von Retz und Znaim. Abhandlungen der Zoologisch-Botanischen Gesellschaft in Wien 14(2): 1–146. Holub, P., Tůma, I., Záhora, J. & Fiala, K. 2012. Different nutrient use strategies of expansive grasses Calamagrostis epigejos and Arrhenatherum elatius. Biologia 67: 673–680. Ivan, A. & Kirchner, K. 1994. Geomorphology of the Podyjí National Park in the southeastern part of the Bohemian Massif. Moravian Geographical Reports 2: 2–25. Janík, D., Vrška, T., Šamonil, P., Unar, P., Adam, D., Hort, L. & Král, K. 2007. Struktura a ekologie doubrav Národního parku Podyjí na příkladu lokality Lipina [Structure and ecology of oak woods in the Podyjí National Park as exempliied by the Lipina locality]. Thayensia 7: 175–206. Kubešová, S. 2003a. Bryolora in block ields in south-western Moravian river valleys. Acta Musei Moraviae, Scientiae Biologicae 88: 81–94. Kubešová, S. 2003b. Mechorosty skal na jihozápadní Moravě [Bryophytes of rocks in south-western Moravia]. Časopis Slezského zemského muzea, Vědy přírodní, Série A, 52: 273–280. Kubešová, S. & Chytrý, M. 2005. Diversity of bryophytes on treeless cliffs and talus slopes in a forested central European landscape. Journal of Bryology 27: 35–46. Ložek, V. & Vašátko, J. 1997. Měkkýši Národního parku Podyjí [Molluscs of the Podyjí National Park]. Zlatý kůň Publishers, Praha. 63 2 Niessl, G. 1868. Über die Flora der Eisleithen bei Frain. Verhandlungen des Naturforschenden Vereines in Brünn 6: 62–68. Oborny, A. 1879. Die Flora des Znaimer Kreises. Verhandlungen des Naturforschenden Vereines in Brünn 17: 105–304. Podborský, V. & Vildomec, V. 1972. Pravěk Znojemska [Prehistory of the Znojmo district]. Musejní spolek v Brně & Jihomoravské muzeum ve Znojmě, Brno. Rydlo, J. 1995. Vodní makrofyta v Národním parku Podyjí [Aquatic macrophytes in the Podyjí National Park]. Muzeum a současnost, Řada přírodovědná 9: 129–148. Sedláková, I. & Chytrý, M. 1999. Regeneration patterns in a Central European dry heathland: effects of burning, sod-cutting and cutting. Plant Ecology 143: 77–87. Táborská, J. 1999. Historický vývoj krajiny východní části Národního parku Podyjí v různých časových horizontech 19. a 20. století [Historical development of the landscape in the eastern part of the Podyjí National Park during the 19th and 20th centuries]. Thayensia 2: 61–73. Tichý, L. 1998. Dlohodobá teplotní měření na lokalitě Sloní hřbet (NP Podyjí) ve vztahu ke struktuře a fenologickým projevům vegetačního krytu [Long-term temperature measurements at the locality of Sloní hřbet, Podyjí National Park, in relation to the structure and phenological development of vegetation]. Thayensia 1: 67–81. Tichý, L. 1999a. Predictive modeling of the potential natural vegetation pattern in the Podyjí National Park, Czech Republic. Folia Geobotanica 34: 243–252. Tichý, L. 1999b. Teplotní poměry a vegetace na lokalitě Sloní hřbet v Národním parku Podyjí [Temperature and vegetation pattern at the Sloní hřbet Ridge, Podyjí National Park]. Preslia 70 (1998): 289–301. Vild, O. & Stejskal, R. 2013. Vliv experimentální pastvy na lesní podrost v Národním parku Podyjí [The impact of experimental grazing on the woodland understory in the Podyjí National Park]. Thayensia 10: 27–38. Vrška, T. 1998. Historický vývoj lesů na území NP Podyjí a v bližším okolí do roku 1948 [Historical development of forests in the Podyjí NP and its close surroundings until the year 1948]. Thayensia 1: 101–124. Zelený, D. & Chytrý, M. 2007. Environmental control of vegetation pattern in deep river valleys of the Bohemian Massif. Preslia 79: 205–222. 3 Mohelno Serpentinite Steppe 3 Pavel Daněk Introduction The Mohelno Serpentinite Steppe (Mohelenská hadcová step) is situated in south-western Moravia near the small town of Mohelno, about 30 km west of Brno, in the low-altitudinal marginal area of the Bohemian-Moravian Highlands. The steppe occupies the south-facing slopes of the Jihlava River Valley which dissects a gently undulating landscape. The upper part of the south-facing slopes of the Mohelno Serpentinite Steppe with a dry grassland of Stipa dasyphylla in the foreground and open Pinus sylvestris woodland in the background. Photo P. Daněk. Geology, soils and climate The area is built of metamorphic rocks (mainly granulite, gneiss and amphibolite) which are locally overlaid by loess. An important feature of this region is the occurrence of serpentinite. This ultrabasic metamorphic rock can also be found in other parts of the Bohemian Massif (e.g. the Slavkovský les Mountains in western Bohemia, the Bohemian Forest foothills in south-western Bohemia and other parts of the Bohemian-Moravian Highlands), though in south-western Moravia, and particularly near Mohelno, the serpentinite effect on vegetation is magniied by the location of its outcrops in a deep river valley. While the gentle slopes allow an accumulation of a soil layer deep enough to suppress the effects of the serpentinite bedrock on vegetation to some extent, the steep slopes of the Jihlava River Valley are being permanently eroded, for which reason the serpentinite bedrock has a stronger inluence on the associated lora and fauna. Serpentinite is an ultrabasic rock characterized by a high magnesium content combined with a relatively low calcium content. Serpentinite soils are usually deicient in nutrients (nitrogen, phosphorus and potassium) and contain large amounts of heavy metals (cobalt, nickel and chromium). In addition to the chemical properties of serpentinite, its physical characteristics are also important. 64 65 The dark colour and low thermal conductivity of the rock lead to its strong heating during the summer when surface temperatures can reach 50 °C, exceeding the air temperature by more than 20 °C (Hrudička 1937). Although some of these properties are also characteristic of other rock types, their unique combination on serpentinites constitutes stress conditions under which only some species can survive. In contrast to the sunny south-facing serpentinite slopes with shallow leptosols which host mainly steppic vegetation and pine forests, the opposite north-facing slopes are mostly formed of granulite and are covered by broad-leaved deciduous forests on cambisols. The climate is relatively warm and dry with mean annual temperatures slightly above 8 °C and the annual precipitation sum of approximately 550 mm. History of botanical research and nature conservation The local botanist Carl Roemer found Mohelno’s most famous plant species, the fern Notholaena marantae, in 1858. In the early 20th century, the lora of the Mohelno serpentinites was studied by Josef Podpěra who drafted the irst proposal for the establishment of a nature reserve in 1914. In the 1920s, his work was continued by Jindřich Suza who studied the relationship between bedrock and vegetation and gave a detailed description of local plant communities (Suza 1928). In 1933, a nature reserve was inally established on an area of 50 ha to prevent the steppe from being destroyed by stone mining. Intensive research continued in the reserve, resulting in a series of seven edited volumes published between 1934 and 1948 presenting knowledge in several ields (geology, soil science, climatology, botany and zoology; Veselý 2002). The nature reserve was re-established in 1952. Its previously ambiguous borders were newly delineated and the steppe was no longer allowed to be used as pasture. Sheep and goat grazing had been a traditional form of management and its abandonment led to successional changes of steppic vegetation towards pine forests. While only 13% of the reserve’s area was covered by forests in 1950, this proportion had increased to 62% by the late 1980s (Čechová et al. 1997). Following expert discussion, a decision was taken to cut much of the overabundant pine as well as some alien tree species (Robinia pseudoacacia and Pinus banksiana). The main phase of the reduction of tree stands took about ten years and was followed by the restoration of sheep and goat grazing in 1997. This traditional form of management has been practiced ever since (Čech 2005). Construction of the nearby Dukovany Nuclear Power Station and associated Dalešice and Mohelno dams had a signiicant impact on the local landscape and led to looding of a 30-km-long section of the Jihlava Valley in 1978. The Mohelno dam, which serves as a reservoir of process water for the nuclear power plant, borders the western part of the Mohelno Serpentinite Steppe. The large amount of water contained in the reservoir affects the mesoclimate of the valley by lowering daily temperature amplitudes and increasing air humidity (Quitt 1996) which might affect vegetation, particularly in the lower parts of the slopes. Intensive research into the steppe and its surroundings resulted in several botanical studies in the 1990s. Chytrý & Vicherek (1996) described the natural and semi-natural vegetation of the Oslava, Jihlava and Rokytná River Valleys including the unique plant communities of the Mohelno Serpentinite Steppe and other serpentinite outcrops in the Jihlava Valley. Unar (1996) produced a lora inventory of the Mohelno Steppe and Koblížek et al. (1998) characterized the lora of selected localities in the region. The area of the reserve was extended to approximately 110 ha in 2012. Vegetation and lora The Mohelno Serpentinite Steppe with a meander of the Jihlava River in the 1920s and in 2014. The forest has expanded considerably due to the abandonment of grazing. Photo archive of the Department of Botany and Zoology, Masaryk University, and J. Chytrý. 66 There are several phytogeographically distinct species growing on the steppe. The aforementioned Notholaena marantae, a southern European fern, reaches its northern distribution limit here at an isolated site. Stipa dasyphylla is a continental Eurasian grass also known from some other southern Moravian localities, but all these occurrences are isolated from the species’ continuous distribution range. Scorzonera austriaca, a species from the Asteraceae family, reaches its north-western distribution limit here. The upper part of the steppe and the adjacent plateau are covered by dry grasslands (alliance Festucion valesiacae) dominated mainly by narrow-leaved tussocky fescues (Festuca rupicola, F. valesiaca) and feather grasses (Stipa capillata, S. dasyphylla, S. pulcherrima) accompanied by other drought-adapted species (Carex humilis, Dorycnium germanicum, Dianthus carthusianorum agg., 67 3 Seseli hippomarathrum, Thymus praecox and Veronica spicata). The plateau between the river valley and the town of Mohelno is grazed by sheep. Patches of speciic grassland vegetation type dominated by Festuca pulchra with the occurrence of the serpentinite specialist Armeria elongata subsp. serpentini can be found here. Plants tend to grow much smaller than usual in this part of the steppe, and much attention has been paid to this phenomenon in the past. Rudolf Dvořák described 279 of these ‘nanisms’ in 170 plant species and attributed them to the low availability of nutrients and water on serpentinite soils (Dvořák 1935). However, since the abandonment of pasture these ecomorphoses have largely disappeared and it is currently believed that they were mainly caused by grazing (Kolář & Vít 2008). The lower slopes are steep with numerous gullies and serpentinite outcrops. In this part of the reserve, the vegetation of dry grasslands changes to rocky steppes (alliance Alysso-Festucion pallentis) with dominant Festuca pallens and an admixture of other plants capable of growing on shallow stony soils (Allium lavum, Alyssum montanum, Euphorbia seguieriana, Linaria genistifolia, Melica ciliata, Pilosella echioides and Seseli osseum). In late summer, this vegetation is dominated in places by the grass Bothriochloa ischaemum. The serpentinite rock outcrops are a habitat of Notholaena marantae which grows together with another fern, the serpentinite specialist Asplenium cuneifolium (Vicherek 1970). Along with other species conined to rock crevices (A. ruta-muraria, A. trichomanes, Sedum album) they form the association Notholaeno marantae-Sempervivetum hirti (alliance Asplenion cuneifolii) which can only be found here and on a few serpentinite sites in Austria. Scattered individuals of Scots pine (Pinus sylvestris) are common all over the steppe, while some shrubs (Berberis vulgaris, Prunus mahaleb) form patches of dense scrub. The eastern part of the reserve is covered by forests. Most of them consist of Pinus sylvestris which expanded here after the abandonment of pasture, so the herb layer composition is similar to that of the steppe, though usually less diverse. The potential natural vegetation here is supposed to be a deciduous oak forest dominated by Quercus petraea with pine restricted mainly to rock outcrops. These oak forests on serpentinite can still be found elsewhere in the Jihlava Valley and were described as an endemic association Asplenio cuneifolii-Quercetum petraeae (Chytrý & Horák 1997), a speciic type related to the broad association Sorbo torminalis-Quercetum (alliance Quercion petraeae). In some places with deeper soils (mostly close to the valley bottom), stands with an admixture or dominance of broad-leaved species (Acer campestre, Carpinus betulus, Quercus petraea, Tilia cordata) occur and these forests can be classiied as oak-hornbeam forests (association Galio sylvatici-Carpinetum betuli, alliance Carpinion betuli) if their understorey contains mesophilous forest species (e.g. Actaea spicata, Asarum europaeum, Campanula persicifolia, Galium odoratum, Hepatica nobilis, Pulmonaria oficinalis agg.). On the valley loor, close to the river, remnants of loodplain forests of the association Stellario nemorum-Alnetum glutinosae (alliance Alnion incanae) can be found. These forests are rich in vernal species that lower before tree-leaf lushing (e.g. Adoxa moschatellina, Corydalis solida, Ficaria verna and Gagea lutea). The riverbanks are lined with discontinuous vegetation dominated by the grass Phalaris arundinacea accompanied by other hygrophilous species such as Carex buekii and Scrophularia umbrosa (alliance Phalaridion arundinaceae). 3 The Mohelno Serpentinite Steppe in the Jihlava River Valley south of the town of Mohelno. Kozének Nature Reserve Located about 4 km east of the town of Mohelno, the Kozének Nature Reserve provides ecological contrasts to the serpentinite steppe. Its gentle slopes on granulite and gneiss are occupied mainly by dry acidophilous grasslands of the alliance Koelerio-Phleion phleoidis. This vegetation is dominated by grasses (e.g. Festuca ovina, F. rupicola, Helictochloa pratensis and Phleum phleoides) and hosts several endangered species (e.g. Orchis morio, Pulsatilla grandis and Saxifraga bulbifera). In some places thermophilous species are less abundant and the grasslands have different dominants (e.g. Briza media, Carex pallescens, Danthonia decumbens and Nardus stricta) characteristic of the nutrient-poor acidophilous Nardus grasslands of the alliance Violion caninae. These grasslands were historically used as pasture, similarly to the Mohelno Steppe, evidence of which is provided by scattered old individuals of shrubby juniper (Juniperus communis). The outer parts of the reserve are covered by hay meadows of the alliance Arrhenatherion elatioris dominated by grasses (Agrostis capillaris, Anthoxanthum odoratum, Arrhenatherum elatius, Festuca rubra) and including several mesophilous herb species (e.g. Centaurea jacea, Ranunculus acris and Rhinanthus minor). 68 Acidophilous dry grassland in the Kozének Nature Reserve. Photo D. Zelený. 69 Appendix 3 Selected species of vascular plants of the Mohelno Serpentinite Steppe. Species of dry grasslands and rock outcrops Achillea collina Acinos arvensis Agrimonia eupatoria Agrostis capillaris Agrostis vinealis Ajuga genevensis Allium lavum Alyssum alyssoides Alyssum montanum Anchusa oficinalis Antennaria dioica Anthericum ramosum Anthoxanthum odoratum Anthyllis vulneraria Arabidopsis thaliana Arabis hirsuta Arenaria serpyllifolia agg. Armeria elongata subsp. serpentini Arrhenatherum elatius Artemisia campestris Artemisia vulgaris Asperula cynanchica Asplenium cuneifolium Asplenium ruta-muraria Asplenium trichomanes Aster amellus Astragalus glycyphyllos Atriplex patula Ballota nigra Berberis vulgaris Berteroa incana Biscutella laevigata subsp. varia Bothriochloa ischaemum Brachypodium pinnatum Briza media Bromus erectus Bromus hordeaceus Bromus japonicus Bupleurum falcatum Calamagrostis epigejos Calluna vulgaris Campanula patula Campanula rotundifolia agg. Capsella bursa-pastoris Carduus acanthoides Carduus nutans Carex caryophyllea Carex humilis Carex michelii Carex muricata Carex praecox Carlina acaulis Carlina vulgaris Carum carvi Caucalis platycarpos Centaurea jacea 70 Centaurea scabiosa Centaurea stoebe Centaurea triumfetti Cerastium arvense Cerastium holosteoides Cerastium pumilum Chamaecytisus ratisbonensis Chenopodium album Chondrilla juncea Cichorium intybus Cirsium arvense Cirsium vulgare Clinopodium vulgare Convolvulus arvensis Conyza canadensis (neo) Cotoneaster integerrimus Cuscuta epithymum Cynodon dactylon Cynoglossum oficinale Cystopteris fragilis Cytisus nigricans Dactylis glomerata Danthonia decumbens Descurainia sophia Dianthus carthusianorum agg. Dorycnium germanicum Echium vulgare Elymus hispidus Erigeron acris Erophila verna Eryngium campestre Euphorbia cyparissias Euphorbia epithymoides Euphorbia seguieriana Falcaria vulgaris Festuca ovina Festuca pallens Festuca pulchra Festuca rubra Festuca rupicola Festuca valesiaca Filago arvensis Filipendula vulgaris Fragaria viridis Frangula alnus Gagea bohemica Gagea lutea Galatella linosyris Galeopsis angustifolia Galium album Galium verum Genista pilosa Genista tinctoria Geranium pusillum Hackelia delexa Helianthemum grandilorum subsp. obscurum Helictochloa pratensis Herniaria glabra Hieracium schmidtii Holosteum umbellatum Hylotelephium maximum Hypericum perforatum Inula conyzae Juniperus communis Knautia arvensis Koeleria macrantha Koeleria pyramidata Lactuca serriola Leontodon hispidus Lepidium campestre Leucanthemum vulgare Ligustrum vulgare Linaria genistifolia Lotus corniculatus Luzula campestris Medicago falcata Melica ciliata Melica transsilvanica Melilotus oficinalis Muscari comosum Myosotis arvensis Myosotis ramosissima Myosotis stricta Noccaea caerulescens Nonea pulla Notholaena marantae Odontites vernus subsp. serotinus Oenothera moravica (neo) Opuntia phaeacantha (neo) Orchis morio Origanum vulgare Orobanche alba Orobanche coerulescens Phelipanche arenaria Phelipanche purpurea Phleum phleoides Picris hieracioides Pilosella echioides Pilosella oficinarum Pimpinella saxifraga Pinus sylvestris Plantago lanceolata Plantago media Poa bulbosa Polypodium vulgare Potentilla argentea Potentilla heptaphylla Potentilla incana Prunella grandilora Prunus fruticosa Prunus mahaleb Prunus spinosa Quercus petraea Quercus robur Ranunculus acris Ranunculus bulbosus Robinia pseudoacacia (neo) 3 Plate 3 Plants of the Mohelno Serpentinite Steppe: (a) Pinus sylvestris, (b) Seseli hippomarathrum, (c) Notholaena marantae, (d) Euphorbia seguieriana, (e) Berberis vulgaris, (f) Senecio erucifolius, (g) Scabiosa canescens, (h) Stipa capillata, (i) Asplenium cuneifolium, (j) Prunus mahaleb, (k) Bothriochloa ischaemum, (l) Thymus praecox. 71 Rosa canina Rumex acetosella Salvia pratensis Sanguisorba minor Saxifraga bulbifera Scabiosa canescens Scabiosa ochroleuca Scleranthus annuus Scorzonera austriaca Securigera varia Sedum acre Sedum album Sedum sexangulare Senecio erucifolius Senecio jacobaea Senecio viscosus Seseli hippomarathrum Seseli osseum Silene otites Silene vulgaris Sorbus aucuparia Stachys recta Stipa capillata Stipa dasyphylla Stipa pennata Stipa pulcherrima Stipa tirsa Taraxacum sect. Erythrosperma Taraxacum sect. Taraxacum Teucrium chamaedrys Thymus praecox Tragopogon orientalis Trifolium alpestre Trifolium arvense Trifolium campestre Trifolium dubium Trifolium repens Verbascum chaixii subsp. austriacum Verbascum lychnitis Verbascum phoeniceum Verbascum thapsus Veronica arvensis Veronica prostrata Veronica vindobonensis Veronica spicata Vicia tenuifolia Vincetoxicum hirundinaria Viola rupestris Viscaria vulgaris Forest species Abies alba Acer campestre Acer platanoides Acer pseudoplatanus Actaea spicata Adoxa moschatellina Aegopodium podagraria Ajuga reptans 72 Alliaria petiolata Anemone nemorosa Angelica sylvestris Anthriscus sylvestris Asarum europaeum Asplenium cuneifolium Astrantia major Athyrium ilix-femina Avenella lexuosa Betula pendula Brachypodium pinnatum Brachypodium sylvaticum Bupleurum falcatum Calamagrostis arundinacea Campanula persicifolia Campanula rapunculoides Campanula rotundifolia agg. Campanula trachelium Cardamine impatiens Carex digitata Carex humilis Carex muricata agg. Carpinus betulus Cephalanthera damasonium Chaerophyllum temulum Chelidonium majus Convallaria majalis Cornus mas Cornus sanguinea Corydalis solida Corylus avellana Crataegus spp. Cyclamen purpurascens Cytisus nigricans Dactylis polygama Dryopteris carthusiana Dryopteris ilix-mas Elymus caninus Epilobium montanum Epipactis helleborine Euonymus europaeus Euonymus verrucosus Euphorbia dulcis Festuca gigantea Festuca ovina Ficaria verna subsp. verna Fragaria moschata Fragaria vesca Fraxinus excelsior Galeobdolon montanum Galium odoratum Galium sylvaticum Genista pilosa Genista tinctoria Geranium robertianum Geum urbanum Hepatica nobilis Hieracium laevigatum Hieracium murorum Hieracium sabaudum Hypericum montanum Hypericum perforatum Impatiens noli-tangere Impatiens parvilora (neo) Knautia drymeia Lactuca viminea Ligustrum vulgare Lilium martagon Lonicera xylosteum Luzula divulgata Luzula luzuloides Melampyrum pratense Melica nutans Melica unilora Mercurialis perennis Moehringia trinervia Monotropa hypophegea Mycelis muralis Myosotis sylvatica Neottia nidus-avis Noccaea montana Omphalodes scorpioides Oxalis acetosella Phyteuma spicatum Picea abies Pilosella oficinarum Pinus sylvestris Poa angustifolia Poa nemoralis Polygonatum multilorum Polygonatum odoratum Polypodium vulgare Populus tremula Primula veris Prunus avium Pulmonaria obscura Pulmonaria oficinalis Quercus petraea Quercus robur Rhamnus cathartica Rosa canina Rubus fruticosus agg. Sambucus nigra Scrophularia nodosa Senecio ovatus Sesleria caerulea Silene nutans Solidago virgaurea Sorbus aucuparia Stachys sylvatica Stellaria holostea Symphytum tuberosum Tanacetum corymbosum Tilia cordata Tilia platyphyllos Trifolium alpestre Ulmus glabra Urtica dioica Vaccinium myrtillus Veronica chamaedrys Veronica oficinalis Vicia pisiformis Vincetoxicum hirundinaria Viola collina Viola odorata Viola reichenbachiana Viola riviniana Viscaria vulgaris Viscum album subsp. austriacum Dry grassland with Carex humilis and Dorycnium germanicum in the canopy openings of a pine woodland in the Mohelno Serpentinite Steppe. Photo P. Daněk. References Čech, L. 2005. Ochranářská péče o NPR Mohelenská hadcová step v uplynulých 20 letech [Conservation management in the Mohelenská hadcová step National Nature Reserve over the past 20 years]. In: Aktuální otázky ochrany a výzkumu NPR Mohelenská hadcová step – II, pp. 22–23. MZLU v Brně, Brno. Čechová, J., Jelínková, J. & Unar, J. 1997. Vývoj vegetace Národní přírodní rezervace Mohelenská hadcová step v závislosti na řízení ochrany území a na prováděných bioregulačních zásazích [Vegetation development in the Mohelenská hadcová step National Nature Reserve depending on the conservation management of the area and the bioregulation measures]. Přírodovědný sborník Západomoravského muzea v Třebíči 27: 1–51. Chytrý, M. & Horák, J. 1997. Plant communities of the thermophilous oak forests in Moravia. Preslia 68 (1996): 193–240. Chytrý, M. & Vicherek, J. 1996. Přirozená a polopřirozená vegetace údolí řek Oslavy, Jihlavy a Rokytné [Natural and semi-natural vegetation of the Oslava, Jihlava and Rokytná River Valleys]. Přírodovědný sborník Západomoravského muzea v Třebíči 22: 1–125. Dvořák, R. 1935. Nanismy (trpasličí formy rostlinné) [Nanisms (dwarf plant forms)]. Mohelno 5a: 1–152. Hrudička, B. 1937. Klimatograie jihozápadní Moravy se zřetelem k poměrům refugia mohelenského [Climatography of south-western Moravia with reference to the Mohelno refugium]. Mohelno 1a: 5–48. Koblížek, J., Sutorý, K., Řepka, R., Unar, J. & Ondráčková, S. 1998. Floristická charakteristika vybraných lokalit širšího okolí energetické soustavy Dukovany-Dalešice [Floristic characterization of selected localities in a broader surroundings of the power system Dukovany-Dalešice]. Přírodovědný sborník Západomoravského muzea v Třebíči 37: 1–99. 73 3 Kolář, F. & Vít, P. 2008. Endemické rostliny českých hadců 1. Zvláštnosti hadcových ostrovů [Endemic plants of the Czech serpentinites 1. Peculiarities of the serpentinite islands]. Živa 56: 14–17. Quitt, E. 1996. Změny mikroklimatu a topoklimatu způsobené výstavbou vodních nádrží Dalešice a Mohelno [Changes in microclimate and topoclimate caused by the construction of the Dalešice and Mohelno water reservoirs]. Přírodovědný sborník Západomoravského muzea v Třebíči 21: 1–26. Suza, J. 1928. Geobotanický průvodce serpentinovou oblastí u Mohelna na jihozápadní Moravě (ČSR) [Geobotanical guide through the serpentinite area near Mohelno in south-western Moravia (Czechoslovakia)]. Rozpravy České akademie věd a umění, Třída II (Mathematicko-přírodovědecká) 37 (31): 1–116. Unar, J. 1996. Přehled druhové skladby dřevinné a bylinné vegetace NPR Mohelenská hadcová step [Overview of the species composition of woody and herbaceous vegetation in the Mohelenská hadcová step National Nature Reserve]. Přírodovědný sborník Západomoravského muzea v Třebíči 23: 1–44. Veselý, P. 2002. Mohelenská hadcová step – historie vzniku rezervace a jejího výzkumu [Mohelno Serpentinite Steppe – the history of the reserve establishment and its research]. Brno. Vicherek, J. 1970. Ein Beitrag zur Syntaxonomie der Felsspalten- und Rissenplanzengesellschaften auf Serpentin in Mitteleuropa. Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis 11(3): 83–89. 4 Krumlov-Rokytná Conglomerates 4 Pavel Novák Introduction The Krumlov-Rokytná Conglomerates (Krumlovsko-rokytenské slepence) National Nature Reserve was established in 2005 to protect the dry grasslands, rock outcrops and forests of the Rokytná River Valley north-east of the town of Moravský Krumlov, about 30 km SW of Brno. The reserve is comprised of two parts which in total cover an area of 87 ha at altitudes between 220 and 340 m. It is situated on the north-western edge of the Pannonian Province in southern Moravia and contains various vegetation types with many rare (especially thermophilous) plant species. The southern part of the reserve surrounds a meander with the historical town of Moravský Krumlov with its picturesque sixteenth-century Renaissance castle, remains of the old town fortiication, several churches and the remarkable Baroque pilgrimage Chapel of St. Florian from 1697 situated on the upper edge of the reserve. Summer view of dry grassland with blooming Allium senescens subsp. montanum. This vegetation is frequently developed on the red Carboniferous-Permian conglomerate on the steep sunny slopes of the Rokytná Valley above the historical town of Moravský Krumlov. Photo P. Novák. Geology, soils and climate The site includes a deep river valley with steep rocky slopes, numerous rock outcrops and small screes. The prevailing bedrock type is the Carboniferous-Permian red conglomerate containing mostly acidic gravel clasts within a matrix of a ine-grained calcareous sediment which has supported the development of mixed acidophilous and basiphilous lora and vegetation. Quaternary alluvial and colluvial sediments occur along the Rokytná River meandering along the valley bottom. Cambisols are the 74 75 predominant soil type on slopes, while leptosols occur around rock outcrops and luvisols on the valley bottom. The mean annual temperature is 8–9 °C and annual precipitation sum is about 550 mm. Vegetation Deciduous forests dominate the landscape in the Rokytná Valley. Thermophilous and basiphilous oak forests with Quercus petraea and Q. pubescens occur on steep sunny slopes, containing thermophilous shrubs and small trees such as Acer campestre, Cornus mas, Ligustrum vulgare, Prunus spinosa and Sorbus torminalis. Their herb layer is characterized by thermophilous basiphilous species including Buglossoides purpurocaerulea, Carex michelii, Dictamnus albus and Teucrium chamaedrys. On base-rich soils these forests are classiied in the association Euphorbio-Quercetum (alliance Quercion pubescenti-petraeae) and in places with decalciied soils in the associations Sorbo torminalis-Quercetum and rarely also Genisto pilosae-Quercetum petraeae (alliance Quercion petraeae; Chytrý & Horák 1997). Acidophilous oak forests with Quercus petraea (alliance Quercion roboris) characterized by a species-poor herb layer with prevailing acidophytes and a well-developed moss layer can be found in isolated patches with acidic soils. Ravine forests of the association Aceri-Tilietum (alliance Tilio platyphylli-Acerion) with a herb layer of nutrient-demanding forest species such as Galeobdolon montanum and Mercurialis perennis occur on shaded slopes with stone accumulation. Shaded rock outcrops support small patches of basiphilous lime forests dominated by Tilia cordata and T. platyphyllos, which harbour several light-demanding relict species such as Aconitum anthora, Saxifraga paniculata and Sesleria caerulea (association Seslerio albicantis-Tilietum cordatae, alliance Tilio platyphylli-Acerion). Finally, oak-hornbeam forests of the association Galio sylvatici-Carpinetum betuli (alliance Carpinion betuli) are well developed on mesic cambisols. These forests are the most widespread vegetation type in the reserve. Their tree layer is dominated by Carpinus betulus and Quercus petraea, with an admixture of other trees such as Acer campestre and Tilia cordata. The herb layer contains mesophilous forest herbs such as Galium sylvaticum, Hepatica nobilis and Symphytum tuberosum (Neuhäusl & Neuhäuslová 1968). Ash-alder riparian forests, mostly dominated by Alnus glutinosa, have developed along the Rokytná River (association Stellario nemorum-Alnetum glutinosae, alliance Alnion incanae). Natural non-forest vegetation occurs on isolated conglomerate outcrops and in their surroundings. Grasslands of Sesleria caerulea have developed mainly on north-facing outcrops (association Saxifrago paniculatae-Seslerietum caeruleae, alliance Diantho lumnitzeri-Seslerion). They contain several light-demanding arcto-alpine, alpine and montane species including, for example, Arabidopsis petraea and Saxifraga paniculata in addition to Sesleria caerulea. They grow together with species of dry grasslands such as Asperula cynanchica, Bupleurum falcatum and Thymus praecox. Patches of low-shrub vegetation dominated by Cotoneaster integerrimus (association Junipero communis-Cotoneasteretum integerrimi, alliance Berberidion vulgaris) have developed in similar habitats. Sparse vegetation with ferns (particularly Asplenium trichomanes and Polypodium vulgare) and bryophytes often grows on shaded rock outcrops. Vegetation of species-rich dry grasslands with Carex humilis, Festuca valesiaca and Stipa spp. has developed on sunny slopes (alliances Alysso-Festucion pallentis and Festucion valesiacae). Eroded rock terraces with very shallow soil are habitats of sparse short-growing herbaceous vegetation with spring ephemerals (e.g. Erophila verna and Saxifraga tridactylites), succulents (e.g. Sedum album and S. sexangulare) and mosses (e.g. Racomitrium canescens, Rhytidium rugosum, Thuidium abietinum, Tortella inclinata and Tortula ruralis). Herbaceous forest-fringe vegetation with Geranium sanguineum (alliance Geranion sanguinei) and low scrub with Prunus fruticosa and Rosa spinosissima (association Prunetum fruticosae, alliance Prunion fruticosae) is found in ecotones between rock-outcrop grasslands and tall scrub or thermophilous oak forests (Vězda 1950; Chytrý & Vicherek 1996). Flora The lora of the reserve comprises about 550 taxa of vascular plants. The most abundant population of the neoendemic species Dianthus moravicus (D. sect. Plumaria) in its entire geographic range is of particular importance. This pink-lowering species occurs at only seven localities, all in deep valleys of the Dyje, Jihlava, Rokytná and Želetavka Rivers in south-western Moravia (Kovanda 1982). The lora of the reserve also contains some sub-Mediterranean species which reach their northern distribution limit here, such as Cleistogenes serotina, Fumana procumbens, Medicago monspeliaca and M. pros76 trata. Similarly to other areas with base-rich rock outcrops in southern Moravia, subcontinental and sub-Mediterranean elements are mixed in the lora of the reserve. The former group includes Carex supina, Festuca valesiaca and Stipa capillata; the latter group is represented by, for example, Dictamnus albus and the above-mentioned species at their northern distribution limit. The lora of the whole of south-western Moravia is characterized by several species with wider distribution in the Eastern Alps (Suza 1944). This group is represented in the reserve by, for example, Cyclamen purpurascens and Fourraea alpina. The former is a geophyte of mesic forests lowering in late summer. In the spring, the reserve is characterized by the blooming of rich populations of dry grassland species such as Gagea bohemica, Iris pumila, Pulsatilla grandis and P. pratensis. The vernal aspect of oak-hornbeam, scree and alluvial forests is also well developed with numerous ephemeroids such as Anemone nemorosa, A. ranunculoides, Corydalis solida, Isopyrum thalictroides, Omphalodes scorpioides and Scilla bifolia. Flowering populations of Dianthus moravicus, Genista pilosa and Ranunculus illyricus are characteristic of the dry grasslands and rock outcrops in late spring. Numerous species bloom in the summer, including Allium lavum, A. senescens subsp. montanum, Artemisia campestris, Fumana procumbens, Medicago prostrata and Seseli osseum. The lora of the reserve includes almost all species of the genus oak (Quercus) that occur naturally in the Czech Republic, including the thermophilous sub-Mediterranean species Quercus cerris and Q. pubescens (Vězda 1950; Chytrý & Vicherek 1996). The Rokytná Valley near the town of Moravský Krumlov and the village of Rokytná and the western part of Krumlov Wood. Appendix 4 Selected species of vascular plants of the Krumlov-Rokytná Conglomerates. Acer campestre Acer platanoides Acinos arvensis Aconitum anthora Aegopodium podagraria Agrostis capillaris Agrostis vinealis Achillea millefolium agg. Alliaria petiolata Allium lavum Allium senescens subsp. montanum Alyssum montanum Anthericum ramosum Anthriscus sylvestris Arabidopsis petraea Arabidopsis thaliana Arrhenatherum elatius Artemisia campestris Asperula cynanchica Asperula tinctoria Asplenium septentrionale Asplenium trichomanes Betula pendula Bothriochloa ischaemum Brachypodium pinnatum Brachypodium sylvaticum Bromus sterilis Buglossoides purpurocaerulea Bupleurum falcatum 77 4 4 Outcrops of Carboniferous-Permian conglomerate in the Rokytná Valley near Moravský Krumlov with Iris pumila and the Baroque chapel of St. Florian in the background. Photo J. Roleček. Calamagrostis epigejos Campanula bononiensis Campanula moravica Campanula persicifolia Campanula rapunculoides Carex caryophyllea Carex digitata Carex humilis Carex michelii Carex muricata agg. Carex praecox Carex supina Carpinus betulus Centaurea stoebe Cirsium arvense Cleistogenes serotina Convolvulus arvensis Conyza canadensis (neo) Cornus mas Cornus sanguinea Corylus avellana Cotoneaster integerrimus Crataegus monogyna Cyclamen purpurascens Cynoglossum oficinale Cytisus procumbens Dactylis glomerata Dactylis polygama Dictamnus albus Digitalis grandilora 78 Dorycnium germanicum Echium vulgare Elymus hispidus Erophila verna Eryngium campestre Euonymus verrucosus Euphorbia cyparissias Euphorbia epithymoides Falcaria vulgaris Festuca ovina Festuca pallens Festuca rupicola Festuca valesiaca Fourraea alpina Fragaria vesca Fragaria viridis Fraxinus excelsior Fumana procumbens Gagea bohemica Galeobdolon montanum Galium album Galium glaucum Galium valdepilosum Galium verum Genista pilosa Geranium robertianum Geranium sanguineum Geum urbanum Helictochloa pratensis Hieracium murorum Hieracium sabaudum Hypericum perforatum Impatiens glandulifera (neo) Impatiens parvilora (neo) Inula hirta Inula oculus-christi Iris pumila Isopyrum thalictroides Jovibarba globifera Koeleria macrantha Lathyrus niger Ligustrum vulgare Linaria genistifolia Loranthus europaeus Luzula luzuloides Medicago falcata Medicago monspeliaca Medicago prostrata Melampyrum pratense Melica ciliata Melica transsilvanica Minuartia setacea Muscari comosum Myosotis stenophylla Myosotis sylvatica Omphalodes scorpioides Origanum vulgare Phleum phleoides Picris hieracioides Pilosella oficinarum Plate 4 Plants of the Krumlov-Rokytná Conglomerates: (a) Gagea bohemica, (b) Dianthus moravicus, (c) Inula hirta, (d) Scleranthus perennis, (e) Fumana procumbens, (f) Dorycnium germanicum, (g) Scorzonera austriaca, (h) Saxifraga paniculata, (i) Asplenium trichomanes, (j) Jovibarba globifera, (k) Medicago prostrata, (l) Pulsatilla pratensis subsp. bohemica. 79 Pimpinella saxifraga Plantago lanceolata Plantago media Poa angustifolia Poa annua Poa bulbosa Poa nemoralis Polycnemum majus Polygonatum odoratum Polypodium vulgare Potentilla incana Primula veris Prunus avium Prunus fruticosa Prunus mahaleb Prunus spinosa Pulmonaria mollis Pulmonaria oficinalis Pulsatilla grandis Pulsatilla pratensis subsp. bohemica Quercus cerris Quercus petraea Quercus pubescens Quercus robur Ranunculus acris Ranunculus bulbosus Ranunculus illyricus Rhamnus cathartica Robinia pseudoacacia (neo) Rosa canina agg. Rosa spinosissima Salvia nemorosa Salvia pratensis Saxifraga paniculata Saxifraga tridactylites Scabiosa canescens Scabiosa ochroleuca Scilla bifolia Scleranthus perennis Scorzonera austriaca Scrophularia nodosa Securigera varia Sedum acre Sedum album Sedum relexum Sedum sexangulare Seseli hippomarathrum Seseli osseum Sesleria caerulea Setaria viridis Solidago virgaurea Sorbus aria agg. Sorbus torminalis Stachys recta Staphylea pinnata Stipa capillata Stipa dasyphylla Stipa pennata Stipa pulcherrima Stipa tirsa Tanacetum corymbosum Tephroseris integrifolia Teucrium chamaedrys Thymus pannonicus Thymus praecox Tilia cordata Tilia platyphyllos Torilis japonica Trifolium alpestre Trifolium arvense Urtica dioica Verbascum chaixii subsp. austriacum Verbascum phoeniceum Veronica oficinalis Veronica teucrium Veronica vindobonensis Vicia cracca Vicia pisiformis Vincetoxicum hirundinaria Viola hirta Viola mirabilis Viola odorata Viola riviniana Viscaria vulgaris 5 Krumlov Wood 5 Pavel Novák Introduction Krumlov Wood (Krumlovský les) is a large forested area situated between Moravský Krumlov, Vedrovice, Moravské Bránice and Ivančice on an elevated plateau between the Rokytná and Jihlava Rivers, about 25 km SW of Brno. It covers an area of about 30 km2 at altitudes of 250–415 m. Acidic granitoids predominate in this area, though they are covered by loess deposits in some places at the margins of the wood. The climate of the region is relatively dry and warm with a mean annual temperature of 8–9 °C and annual precipitation sum of about 550 mm. Most of the area of the wood is covered by species-poor acidophilous oak forests on the granitoid bedrock, while thermophilous basiphilous oak forests and oak-hornbeam forests occur on loess. A large part of Krumlov Wood is fenced and serves as a game preserve for red deer. The lora of the wood is relatively rich in species, particularly in the loess-covered areas. The occurrence of thermophilous elements such as Drymocallis rupestris, Inula ensifolia, Mercurialis ovata and Rosa spinosissima and species of intermittently wet meadows and light forests such as Cnidium dubium, Dianthus superbus and Euphorbia angulata is important. The northernmost locality of the acidophilous perialpine species Carex fritschii is found in the wood. References Chytrý, M. & Horák, J. 1997. Plant communities of the thermophilous oak forests in Moravia. Preslia 68 (1996): 193–240. Chytrý, M. & Vicherek, J. 1996. Přirozená a polopřirozená vegetace údolí řek Oslavy, Jihlavy a Rokytné [Natural and semi-natural vegetation of the Oslava, Jihlava and Rokytná River Valleys]. Přírodovědný sborník Západomoravského muzea v Třebíči 22: 1–125. Kovanda, M. 1982. Dianthus gratianopolitanus: variability, differentiation and relationships. Preslia 54: 223–242. Neuhäusl, R. & Neuhäuslová, Z. 1968. Mesophile Waldgesellschaften in Südmähren. Rozpravy Československé akademie věd, Řada matematických a přírodních věd 78(11): 1–84. Suza, J. 1944. Co je Praebohemikum (orientační črta geobotanická) [What is it the Praebohemikum (a geobotanical outline)]. Příroda (Praha) 36: 147–155. Vězda, A. 1950. Vegetace na rokytenském slepenci v oblasti řeky Rokytné [Vegetation on the Rokytná conglomerate in the Rokytná area]. Vlastivědný věstník moravský 5: 74–87. Extensive oak forest near the north-western margin of Krumlov Wood with a herb layer dominated by Convallaria majalis and Poa nemoralis. Photo P. Novák. In the past the wood served as a source of irewood and, in part, as a wood-pasture, and was mostly managed as a coppice-with-standards. In the 20th century, the coppices were mostly converted into high forests resulting in increased shading of the herb layer and decline of light-demanding species. An experiment was established here in 1999 with the aim of converting high forest back into coppice-with-standards with the use of thinning management (Utinek 2004). As a result, light-demanding oligotrophic species increased in the herb layer of the thinned experimental plots (Vild et al. 2013). 80 81 Excursion site 5 There is a suitable excursion site outside the game preserve in Krumlov Wood in its north-western part about 2 km from the town of Moravský Krumlov, near Moravský Krumlov railway station. In this part of the wood, loess deposits cover the Permo-Carboniferous conglomerates and granitoids of the Brno Massif which occur at the surface in only small patches. A small patch of the Devonian limestone is also found here. The prevailing soil type is cambisol. Mesophilous forests dominate this area. There are two forest types on loess. The irst type is slightly acidophilous oak forest dominated by Quercus petraea occurring in locally drier habitats (alliance Carpinion betuli). Its herb layer consists of mesophilous forest herbs (e.g. Stellaria holostea and Viola riviniana), species of thermophilous oak forests (Carex michelii, Chamaecytisus ratisbonensis and Lathyrus niger) and species of acidophilous oak forests (e.g. Festuca ovina and Luzula luzuloides). The second type is mesophilous oak forest with Quercus petraea of the association Melico pictaeQuercetum roboris (= Potentillo albae-Quercetum auct., alliance Quercion petraeae). The occurrence of species of Molinia meadows (e.g. Dianthus superbus, Galium boreale and Serratula tinctoria) is characteristic of its herb layer. Species-poor acidophilous oak forest (association Luzulo luzuloidisQuercetum petraeae, alliance Quercion roboris) is common on shallow soils on granitoid bedrock. Its herb layer is usually sparse, containing common forest acidophytes (e.g. Hieracium spp., Luzula luzuloides and Veronica oficinalis), and the moss layer is well developed. Species-rich oak-hornbeam forest (association Galio sylvatici-Carpinetum betuli, alliance Carpinion betuli) has developed on a small limestone outcrop. It contains several basiphilous and thermophilous elements such as Clematis recta, Crepis praemorsa and Viola mirabilis. Slopes on the Permo-Carboniferous conglomerate are covered by thermophilous oak forests of the association Sorbo torminalis-Quercetum (alliance Quercion petraeae) and rarely also Euphorbio-Quercetum (alliance Quercion pubescenti-petraeae; Novák 2013). The Rokytná Valley near the town of Moravský Krumlov and the village of Rokytná and the western part of Krumlov Wood. The lora of this part of Krumlov Wood is relatively rich in species due to its heterogeneous geological substrate. The late vernal and summer aspect of the slightly acidophilous oak forest and the oak forest with species of Molinia meadows is remarkably diverse. The occurrence of rare lightdemanding species of open forests, such as Antennaria dioica, Clematis recta, Crepis praemorsa, Dianthus superbus, Hierochloë australis and Pulmonaria mollis, is of great importance for nature 82 Plate 5 Plants of Krumlov Wood: (a) Dianthus superbus, (b) Neottia nidus-avis, (c) Fragaria moschata, (d) Pulmonaria mollis, (e) Clematis recta, (f) Lathyrus niger, (g) Antennaria dioica, (h) Carex digitata, (i) Campanula persicifolia, (j) Convallaria majalis, (k) Anemone nemorosa, (l) Serratula tinctoria. 83 conservation. The epiphytic hemiparasite Loranthus europaeus is almost omnipresent on oaks in the whole of Krumlov Wood (Novák 2013). Appendix 5 Selected species of vascular plants on the excursion site in Krumlov Wood. Acer campestre Acer platanoides Aegopodium podagraria Agrostis capillaris Agrostis stolonifera Achillea millefolium agg. Ajuga reptans Alliaria petiolata Anemone nemorosa Antennaria dioica Anthriscus sylvestris Artemisia vulgaris Asarum europaeum Astragalus glycyphyllos Betonica oficinalis Betula pendula Brachypodium sylvaticum Bromus sterilis Calamagrostis arundinacea Calamagrostis epigejos Campanula persicifolia Campanula rapunculoides Cardamine impatiens Carex caryophyllea Carex digitata Carex michelii Carex montana Carex muricata agg. Carex pilosa Carpinus betulus Cephalanthera damasonium Chaerophyllum temulum Chamaecytisus ratisbonensis Chelidonium majus Clematis recta Clinopodium vulgare Conyza canadensis (neo) Cornus sanguinea Corylus avellana Convallaria majalis Crepis praemorsa Dactylis polygama Dentaria bulbifera Deschampsia cespitosa Dianthus superbus Euonymus europaeus Euphorbia angulata Euphorbia dulcis Fallopia convolvulus Festuca heterophylla Festuca ovina Fragaria moschata Fragaria vesca Frangula alnus Fraxinus excelsior Galeopsis tetrahit agg. Galium album Galium aparine Galium boreale Galium odoratum Galium sylvaticum Genista germanica Genista tinctoria Geranium robertianum Hepatica nobilis Heracleum sphondylium Hieracium lachenalii Hieracium maculatum Hieracium murorum Hieracium sabaudum Hierochloë australis Hylotelephium maximum Hypericum perforatum Impatiens parvilora (neo) Juncus tenuis (neo) Lapsana communis Lathyrus niger Lathyrus vernus Ligustrum vulgare Lonicera xylosteum Loranthus europaeus Luzula luzuloides Lysimachia nummularia Maianthemum bifolium Melampyrum nemorosum Melampyrum pratense Melica nutans Melittis melissophyllum Moehringia trinervia Mycelis muralis Myosotis sylvatica Neottia nidus-avis Pilosella oficinarum Pinus sylvestris Plantago major Poa annua Poa nemoralis Polygonatum multilorum Polygonatum odoratum Prunella vulgaris Prunus avium Prunus spinosa Pulmonaria mollis Pulmonaria oficinalis Quercus petraea Quercus robur Ranunculus lanuginosus Rhamnus cathartica Robinia pseudoacacia (neo) Rosa canina agg. Rubus fruticosus agg. Rubus idaeus Rumex acetosella Scrophularia nodosa Selinum carvifolia Serratula tinctoria Silene nutans Sorbus torminalis Stachys sylvatica Stellaria holostea Symphytum tuberosum Tanacetum corymbosum Tilia cordata Torilis japonica Urtica dioica Veronica chamaedrys Vicia cracca Vicia pisiformis Vicia sepium Vincetoxicum hirundinaria Viola canina Viola mirabilis Viola riviniana Viscaria vulgaris References Novák, P. 2013. Lesní vegetace Krumlovského lesa a okolí [Woodland vegetation of Krumlovský les Forest and its neighbourhood]. MSc. thesis, Masaryk University, Brno. Utinek, D. 2004. Conversion of coppices to a coppice-with-standards in Urban Forest of Moravský Krumlov. Journal of Forest Science 50: 38–46. Vild, O., Roleček, J., Hédl, R., Kopecký, M. & Utinek, D. 2013. Experimental restoration of coppicewith-standards: Response of understorey vegetation from the conservation perspective. Forest Ecology and Management 310: 234–241. 84 6 Moravian Karst 6 Lubomír Tichý Introduction The Moravian Karst (Moravský kras) to the north of Brno is a narrow limestone strip about 25 km long extending over an area of about 92 km2, consisting of a few plateaus separated by deep valleys. The altitude ranges from 220 m in the south to 610 m in the north. There are more than 1100 caves, mostly in the central and northern part of the karst area. Five caves are open to the public, four situated in the northern part and one (Výpustek) in the Josefov Valley in the central part of the Moravian Karst. Geology and geomorphology The Moravian Karst is formed mostly of Middle to Upper Devonian limestone with a maximum thickness estimated at 1000 m, covering the Proterozoic granodiorite of the Brno Massif. In the east, the limestone is covered by lysch facies of the Lower Carboniferous age. The Moravian Karst is characterized by extensive underground drainage systems with many sinkholes, caves, springs, limestone pavements and other karstic landforms (Musil 1993). The famous Macocha abyss in the northern part of the karst is the deepest gorge of the light-hole type in Central Europe. The northern part of the Moravian Karst is drained by the Punkva River which lows in part through underground channels and along the bottom of the Macocha abyss. The famous Punkva Caves, which are open to the public through an entrance in the valley of Pustý žleb, are an extension of the longest cave system in the Czech Republic, the Amateur Cave, whose corridors of contiguous caves are over 35 km long. A visit to the Punkva Caves includes a walk on foot followed by a boat ride along the underground section of the Punkva River. Climate The climate of the southern part of the Moravian Karst near Brno is warmer and drier, with a mean annual temperature of 8–9 °C, mean January temperature of –2 to –3 °C, mean July temperature of 18–19 °C and an annual precipitation sum of 500–550 mm. The northern part is cooler and wetter with a mean annual temperature of 6–7 °C, mean January temperature of –3 to –4 °C, mean July temperature of 16–17 °C and an annual precipitation sum of 600–650 mm. Speciic mesoclimatic conditions are found in deep valleys (Suchý žleb, Pustý žleb, Josefov Valley and Říčka Valley) where topographic shading generates daytime temperature inversions. Unique temperature characteristics are found in Macocha where the difference between the top and bottom of the abyss is about 10 °C in the warm period of the year (Litschmann et al. 2012). History of botanical research An overview of historical studies from the Moravian Karst was provided in a bibliography by Vaněčková & Grüll (1967). The irst comprehensive analysis of the lora and vegetation of the area was published by the excellent taxonomist, bryologist and plant geographer Josef Podpěra (Podpěra 1928). He summarized the previous loristic research in this area, described a number of localities of thermophilous lora, and noted the occurrence of montane species in the northern part of the Moravian Karst. Later on the vegetation of the Moravian Karst was described in a broader context by Jan Šmarda (Šmarda 1967; Šmarda & Šmarda 1968). Dry grasslands were studied in detail by Unar (1975) and Unar & Grüll (1984), wet meadows by Balátová-Tuláčková et al. (1987) and forests by Michalcová (2009). The Czechoslovak Botanical Society organized a Summer School of Field Botany in the Moravian Karst in 1980 which involved more than 100 participants. The plant records obtained during this event were summarized by Vaněčková et al. (1997). 85 Vegetation and lora The great natural diversity of the Moravian Karst is due to its varied relief, geology, and climatic conditions, ancient human activities and its location on the boundary between areas of Hercynian and Pannonian lora. The Moravian Karst is a potentially woodland area. The vegetation is naturally open only at a few sites on rock outcrops and talus slopes. Thermophilous lora, represented primarily by species of dry grasslands and thermophilous oak forests, occurs mainly in the southern part of the karst, on the Hercynian-Pannonian biogeographical boundary, and on the south-facing slopes of the deep valleys in the middle and northern part of the karst area. The varied landscape supports a high diversity of natural and semi-natural vegetation, from dry grasslands on south-facing rock outcrops to submontane ravine, scree and alder forests at the valley bottoms. The potential natural vegetation of the southern part of the karstic area consists of thermophilous oak forests on steep south-facing slopes (association Euphorbio-Quercetum, alliance Quercion pubescenti-petraeae) and oak-hornbeam forests (associations Galio sylvatici-Carpinetum betuli, Carici pilosae-Carpinetum betuli and Primulo veris-Carpinetum betuli of the alliance Carpinion betuli) on plateaus and gentle slopes. In the valleys of the central and northern part of the karst area (Josefov Valley, Suchý žleb and Pustý žleb), upper parts of north-facing slopes are also covered by mesotrophic beech forests (associations Galio odorati-Fagetum sylvaticae, Mercuriali perennis-Fagetum sylvaticae and Carici pilosae-Fagetum sylvaticae of the alliance Fagion sylvaticae). Species-rich beech forests of the association Cephalanthero damasonii-Fagetum sylvaticae (alliance Sorbo-Fagion sylvaticae) with several orchid species (e.g. Cephalanthera damasonium, C. rubra, Corallorhiza triida, Cypripedium calceolus and Epipactis helleborine) can be found on the upper edges of the valley slopes. The area occupied by thermophilous forests on the steep south-facing slopes continually decreases toward the northern part of the Moravian Karst, where the adjacent plateaus are generally situated at higher altitudes. The deep valleys of the Moravian Karst are characterized by the inversion of vegetation belts (Šmarda 1967). The bottoms of dry karstic valleys and their lower slopes are covered by ravine forests (alliance Tilio platyphylli-Acerion) with some montane species, while the bottoms of river valleys support alder forests (association Stellario nemorum-Alnetum glutinosae, alliance Alnion incanae). In contrast, south-facing upper slopes are covered by thermophilous oak forests (association Euphorbio-Quercetum, alliance Quercion pubescenti-petraeae) with patches of dry grasslands (alliances Alysso-Festucion pallentis and Festucion valesiacae) and thermophilous herbaceous vegetation of forest edges (alliance Geranion sanguinei). The north-facing upper slopes with rock outcrops are locally covered by patches of lime forest (association Seslerio albicantis-Tilietum cordatae, alliance Tilio platyphylli-Acerion) with relict occurrences of some montane to subalpine species such as Sesleria caerulea and Saxifraga paniculata. The limestone bedrock with numerous caves and underground streams results in a rare occurrence of wetlands in the karst area. An interesting phenomenon in caves open to the public is the formation of bryophyte and algal communities around cave lights (Kubešová 2001). Nature conservation The Moravský kras Protected Landscape Area was established in 1956 as the second PLA in the Czech Republic. There are 17 Nature Reserves and Nature Monuments, of which six are in the national category. The core zone of strict protection covers 17 % of the area. However, valuable management-dependent grasslands at some sites have been abandoned and subsequently become overgrown by tall forbs and scrub. Active management of some protected areas began in the late 1990s. Sheep grazing was restored in large grassland areas around the villages of Lažánky and Sloup in the northern part of the karst. Encroaching shrubs were cut on other sites (Balcarka, Velký Hornek and Lysá hora) and the grasslands on Hády Hill at the southernmost edge of the Moravian Karst began to be mown regularly. However, the increasing spread of invasive plants, nutrient accumulation, forest management supporting mainly coniferous or mixed plantations, and the absence of management on many sites are all the reasons why many endangered species occur in small and, in some cases, declining populations. Frequency of thermophilous vascular plant species in the Moravian Karst (grid cells of approx. 1.2 × 1.1 km2) compiled from both historical and recent data (Nejezchlebová 2007). Hatched area indicates the Protected Landscape Area Moravský kras. 86 87 6 Mining and the reclamation of limestone quarries (6a) Hády Hill There are three active limestone mining sites and several abandoned quarries in the Moravian Karst. The largest quarries are near the village of Mokrá (active; about 50 ha) and at Hády Hill (abandoned; about 20 ha), both in the southern part of the karst area. These quarries are unique from the biodiversity point of view due to large areas of bare limestone bedrock which is a rare habitat in the Moravian landscape. In most cases, the edges of these quarries directly border species-rich communities of deciduous forests and dry grasslands which provide propagules for the colonization of these habitats. Large areas on the quarry loor are waterlogged, providing a habitat for aquatic and wetland biota. In the future, previously mined areas may become interesting places with high species diversity. The Hády quarry is a good example of such environmental potential, as almost twenty years after mining activities came to an end it is a valuable area designated as a Site of Community Importance within the Natura 2000 network with several nature reserves in the immediate surroundings. Introduction 6 Hády Hill (423 m a.s.l.) is a landmark on the north-eastern edge of the city of Brno. This limestone headland of the Moravian Karst harbours diverse habitats on south-facing slopes, the abandoned quarry, the summit plateau and the adjacent deeply-cut valley of the Svitava River. It is located right on the most important biogeographical border of Moravia between the areas of Hercynian and Pannonian lora. This habitat diversity is relected in the great diversity of its lora and vegetation types (Tichý 2000; Tichý & Štefka 2000). The abandoned limestone quarries on the southern slope of Hády Hill are managed by Land Trust Hády, an NGO aiming at the ecological restoration of this area. Below the quarry, dry grasslands and shrublands develop on former arable ields. Photo L. Tichý. Vegetation The Moravian Karst with excursion sites and the boundary of the Moravský kras Protected Landscape Area (green dashed line). 88 The prevailing forest vegetation type on the summit plateau of Hády Hill is oak-hornbeam forest of the association Galio sylvatici-Carpinetum betuli (alliance Carpinion betuli) with mesophilous species such as Asarum europaeum, Campanula rapunculoides, Convallaria majalis, Dactylis polygama, Galium odoratum, G. sylvaticum, Polygonatum multilorum, Pulmonaria obscura, Melica unilora and Poa nemoralis. The south-facing slopes and west-facing rocky edges of the Hády plateau are covered by patches of a more thermophilous (Pannonian) type of oak-hornbeam forest (association Primulo veris-Carpinetum, alliance Carpinion betuli) and thermophilous oak forest (association Euphorbio-Quercetum, alliance Quercion pubescenti-petraeae) with Quercus pubescens, Sorbus torminalis, Cornus mas, Crataegus spp., Ligustrum vulgare and Rosa spp. in the tree and shrub layers, and Brachypodium pinnatum, Buglossoides purpurocaerulea, Carex michelii, Centaurea triumfetti, Dactylis polygama, Dictamnus albus, Inula hirta, Stachys recta, Viola hirta and Teucrium chamaedrys in the herb layer. Patches of the Carpathian type of the oak-hornbeam forests with Carex pilosa (association Carici pilosae-Carpinetum, alliance Carpinion betuli), on the western limit of its distribution here, can be found in places. The southern edge of the Hády plateau and a large part of the steep south-facing slopes are partly covered with a mosaic of shrub vegetation (alliances Berberidion vulgaris and Prunion fruticosae) and dry grasslands of the association Polygalo majoris-Brachypodietum pinnati (alliance Cirsio-Brachypodion pinnati). Some parts of the west-facing slopes with screes are covered by ravine forests (association Aceri-Tilietum, alliance Tilio platyphylli-Acerion) with Galeobdolon montanum, Geranium 89 robertianum, Lathyrus vernus and Mercurialis perennis. The granodiorite bedrock of the lower parts of the Svitava Valley results in the occurrence of acidophilous oak forests with Festuca ovina, Genista tinctoria and Luzula luzuloides (association Luzulo luzuloidis-Quercetum petraeae, alliance Quercion roboris). Flora A total of almost 500 species of vascular plants have been recorded on Hády Hill in an area of about 1 km2. Thermophilous species occur in steppe remnants on the south-facing slope. They are represented by, for example, Anthericum ramosum, Aster amellus, Astragalus danicus, Centaurea triumfetti, Galatella linosyris, Orobanche alba, Peucedanum alsaticum, Polygala major, Pulsatilla grandis, Salvia nemorosa, Stipa pennata, S. pulcherrima and Thymus pannonicus. Some species including Campanula sibirica, Cytisus procumbens, Echium maculatum and Inula ensifolia reach their north-western distribution limit in southern Moravia. Mesophilous species of broad-leaved deciduous forests are represented by Anemone nemorosa, Carex pilosa, Daphne mezereum, Euphorbia amygdaloides, Hepatica nobilis and Lilium martagon. The west-facing rocky limestone edge of the Hády plateau hosts some other phytogeographically important species such as Inula hirta and Scrophularia vernalis. the Hády quarry came to an end in 1998. Since then, the site has been gradually reclaimed. Remnants of the steppe vegetation have fortunately been preserved in nearby areas and many nationally endangered species have dispersed spontaneously to the quarry. The application of soft reclamation techniques such as mulching and the sowing of regional seed mixtures collected from adjacent grasslands has helped to restore dry grasslands on the quarry terraces (Tichý 2012). Land Trust Hády This professional non-government organization is a private owner and important stakeholder in the area. It manages more than 50 ha of the southern slope of Hády Hill including three nature reserves and the entire abandoned quarry. The main aim of this non-governmental organization is nature protection, scientiic research and environmental education. It has proposed and implemented environmentally friendly reclamation of the quarry and established several educational walks with information panels. It regularly manages grasslands by mowing and grazing and organizes applied research. In 2011, it established an eco-centre with a few alpacas and sheep (Lamacentrum Hády) to promote the relationship between people and nature. Appendix 6a Selected species of vascular plants on Hády Hill. Hády Hill on the north-eastern edge of the city of Brno and the southern edge of the Moravian Karst. Human impact The former agricultural landscape of the southern slope of Hády, with small arable ields, gardens, thickets and pastures, began changing its appearance due to spontaneous succession at the beginning of the 20th century. However, the most intensive changes have occurred within the last ifty years. A large limestone quarry was opened on the site of the former steppe pastures. Two new housing estates with more than 40,000 inhabitants have been built in close proximity to Hády Hill which has become a recreational area for this growing population. Mining for lime and cement production in 90 Acinos arvensis Agrimonia eupatoria Agrostis stolonifera Achillea millefolium agg. Ailanthus altissima (neo) Ajuga genevensis Ajuga chamaepitys Ajuga reptans Allium lavum Allium oleraceum Allium senescens subsp. montanum Alyssum alyssoides Anagallis arvensis Anemone nemorosa Anemone sylvestris Anthericum ramosum Anthriscus sylvestris Anthyllis vulneraria Arabidopsis thaliana Arabis sagittata Arenaria serpyllifolia agg. Arrhenatherum elatius Artemisia campestris Artemisia pontica Artemisia vulgaris Asarum europaeum Asparagus oficinalis Asperula cynanchica Aster amellus Astragalus glycyphyllos Astragalus onobrychis Atriplex oblongifolia Atriplex sagittata Avenula pubescens Berberis vulgaris Berteroa incana Betonica oficinalis Bothriochloa ischaemum Brachypodium pinnatum Brachypodium sylvaticum Bromus erectus Bromus hordeaceus Bromus sterilis Bromus tectorum Buglossoides purpurocaerulea Bunias orientalis (neo) Bupleurum falcatum Calamagrostis epigejos Campanula glomerata Campanula moravica Campanula rapunculoides Campanula sibirica Campanula trachelium Cardamine impatiens Carex digitata Carex hirta Carex humilis Carex michelii Carex muricata agg. Carex pilosa Carex praecox Carex sylvatica Carlina biebersteinii subsp. brevibracteata Centaurea jacea subsp. angustifolia Centaurea scabiosa Centaurea stoebe Centaurea triumfetti Centaurium pulchellum Cerastium brachypetalum Cerastium glutinosum Chaerophyllum temulum Chamaecytisus ratisbonensis Chondrilla juncea Cichorium intybus Cirsium pannonicum Clematis recta Clinopodium vulgare Consolida regalis Convallaria majalis Cornus mas Cornus sanguinea Cota austriaca Cotoneaster integerrimus Crataegus laevigata Crataegus monogyna Crepis praemorsa Crepis foetida subsp. rhoeadifolia Cuscuta epithymum Cynoglossum oficinale Cytisus nigricans Cytisus procumbens Dactylorhiza incarnata Datura stramonium (neo) Descurainia sophia Deschampsia cespitosa Dianthus pontederae Dictamnus albus Dorycnium germanicum Echium maculatum Echium vulgare Elymus hispidus Elymus repens Epilobium dodonaei Epipactis palustris Equisetum ×meridionale (E. ramosissimum × E. variegata) Equisetum ×moorei (E. hyemale × E. ramosissimum) Equisetum palustre Equisetum ramosissimum Erophila verna Eryngium campestre Erysimum durum Euonymus verrucosus Euphorbia cyparissias Euphorbia epithymoides Euphorbia esula Euphorbia exigua Euphorbia helioscopia Euphrasia stricta 91 6 Falcaria vulgaris Fallopia convolvulus Festuca rubra Festuca rupicola Festuca valesiaca Fragaria moschata Fragaria vesca Fragaria viridis Fumaria oficinalis Galatella linosyris Galeobdolon montanum Galium album Galium glaucum Galium odoratum Galium sylvaticum Galium valdepilosum Galium verum Genista germanica Genista tinctoria Gentianopsis ciliata Geranium pratense Geranium robertianum Geranium sanguineum Glechoma hederacea Helianthemum grandilorum subsp. obscurum Helictochloa pratensis Hepatica nobilis Hieracium lachenalii Hieracium maculatum Hieracium murorum Hieracium racemosum Hieracium sabaudum Holosteum umbellatum Hylotelephium maximum Hypericum hirsutum Hypericum perforatum Impatiens parvilora (neo) Inula conyzae Inula ensifolia Inula hirta Iris variegata Isatis tinctoria Juncus articulatus Juncus inlexus Knautia kitaibelii Koeleria macrantha Lactuca serriola Lactuca viminea Lathyrus hirsutus (neo) Lathyrus latifolius Lathyrus niger Lathyrus sylvestris Lathyrus vernus Leontodon hispidus Lepidium campestre Ligustrum vulgare Linaria genistifolia Linaria vulgaris Linum austriacum 92 Linum tenuifolium Lonicera xylosteum Loranthus europaeus Lycopsis arvensis Maianthemum bifolium Medicago falcata Medicago lupulina Medicago minima Melampyrum arvense Melampyrum nemorosum Melica ciliata Melica nutans Melica transsilvanica Melica unilora Melilotus albus Melilotus oficinalis Melittis melissophyllum Microrrhinum minus Myosotis ramosissima Myosotis sylvatica Neottia nidus-avis Onobrychis arenaria Orchis purpurea Origanum vulgare Ornithogalum kochii Orobanche caryophyllacea Orobanche kochii Orobanche picridis Papaver dubium agg. Papaver rhoeas Peucedanum alsaticum Peucedanum cervaria Phelipanche purpurea Phleum phleoides Phleum pratense Phragmites australis Picris hieracioides Pilosella bauhini Pilosella leucopsilon Pilosella oficinarum Pimpinella major Pimpinella saxifraga Plantago media Poa angustifolia Poa annua Poa compressa Poa nemoralis Polycnemum majus Polygala comosa Polygala major Polygonatum multilorum Polygonatum odoratum Portulaca oleracea Potentilla argentea Potentilla heptaphylla Potentilla incana Potentilla recta Potentilla reptans Potentilla verna Primula veris Prunella grandilora Prunella laciniata Prunella vulgaris Prunus fruticosa Prunus mahaleb Prunus spinosa Puccinellia distans Pulmonaria mollis Pulmonaria oficinalis Pulsatilla grandis Pyrus pyraster Quercus cerris Quercus petraea Quercus pubescens Quercus robur Ranunculus bulbosus Ranunculus polyanthemos Ranunculus repens Reseda lutea Rhamnus cathartica Rosa canina Rosa dumalis Rosa gallica Rosa micrantha Rosa rubiginosa Rosa spinosissima Salvia nemorosa Salvia pratensis Sanguisorba minor Scabiosa ochroleuca Scrophularia nodosa Securigera varia Sedum acre Sedum album Sedum sexangulare Senecio jacobaea Seseli osseum Sherardia arvensis Silene latifolia subsp. alba Silene nutans Silene otites Silene vulgaris Solidago virgaurea Sorbus aria agg. Sorbus aucuparia Sorbus domestica Sorbus torminalis Stachys annua Stachys palustris Stachys recta Stellaria holostea Stipa capillata Stipa pennata Stipa pulcherrima Symphytum oficinale Tanacetum corymbosum Teucrium chamaedrys Thesium dollineri Thesium linophyllon Thymus pannonicus 6 Plate 6a Plants of Hády Hill near Brno: (a) Rosa spinosissima, (b) Linum tenuifolium, (c) Inula ensifolia, (d) Anemone sylvestris, (e) Anthyllis vulneraria, (f) Echium maculatum, (g) Prunella grandilora, (h) Rosa micrantha, (i) Buglossoides purpurocaerulea, (j) Quercus pubescens, (k) Iris variegata, (l) Dictamnus albus. 93 Thymus praecox Tragopogon dubius Trifolium alpestre Turritis glabra Ulmus minor Valerianella locusta Verbascum chaixii subsp. austriacum Verbascum lychnitis Veronica prostrata Veronica spicata Veronica sublobata Veronica teucrium Veronica vindobonensis Vicia angustifolia Vicia dumetorum Vicia sylvatica Vicia tenuifolia Vincetoxicum hirundinaria Viola collina Viola hirta Viola mirabilis Viola reichenbachiana grasslands and thermophilous forest-fringe vegetation (alliances Festucion valesiacae and Geranion sanguinei) can be found on some steep south-facing slopes and at the top of some limestone outcrops. Steep north-facing rocky slopes support patches of species-rich rock-outcrop lime forests (association Seslerio albicantis-Tilietum cordatae, alliance Tilio platyphylli-Acerion) and grasslands with Sesleria caerulea (association Saxifrago paniculatae-Seslerietum caeruleae, alliance Diantho lumnitzeri-Seslerion). (6b) Říčka Valley Introduction The picturesque valley of the small stream known as Říčka crosses the southern part of the Moravian Karst. The altitudinal difference between the valley bottom and the adjacent plateaus is more than 200 m. Steep limestone slopes, mostly facing to the south or north, support the occurrence of contrasting vegetation types in a small area. Most of the area is covered by abandoned coppice forests which are between 80 and 120 years old. There are also several caves, of which Ochoz Cave (Ochozská jeskyně) is the longest. It was open to the public until 1990. Pekárna Cave is known as an important archaeological site, a famous shelter for Palaeolithic people. A large part of the valley is protected in nature reserves. The Říčka Valley south of the village Ochoz u Brna in the southern part of the Moravian Karst. Flora Many thermophilous species in the Říčka Valley occur here on their regional distribution limit, e.g. Cytisus procumbens, Inula oculus-christi, Iris graminea, I. variegata and Pulsatilla grandis. Other important thermophilous species include Dictamnus albus, Euphorbia salicifolia, Galatella linosyris, Inula ensifolia, Prunus fruticosa and Rosa spinosissima. The bottom of the valley is permanently shaded, for which reason it is relatively cold and provides habitats to submontane species such as Aconitum lycoctonum, Geranium phaeum, Lunaria rediviva and Primula elatior. Sesleria caerulea grasslands on north-facing rock outcrops contain Berberis vulgaris, Cotoneaster integerrimus and Saxifraga paniculata. Semi-natural forest vegetation is species-rich, with several species of orchids including Cephalanthera damasonium, C. rubra, Corallorhiza triida, Epipactis helleborine and Listera ovata. The Pekárna Cave in the Říčka Valley is an important palaeontological and archaeological site. Photo M. Chytrý. Vegetation The vegetation is a mosaic of thermophilous oak forests (association Euphorbio-Quercetum, alliance Quercion pubescenti-petraeae) on steep upper parts of south-facing slopes, oak-hornbeam forests (association Carici pilosae-Carpinetum, alliance Carpinion betuli) on more gentle slopes, ravine forests (associations Aceri-Tilietum and Arunco dioici-Aceretum pseudoplatani, alliance Tilio platyphylli-Acerion) on the lower parts of steep slopes and alluvial alder forests (association Stellario nemorum-Alnetum glutinosae, alliance Alnion incanae) on the valley bottom and alluvial terraces. Small patches of dry 94 Appendix 6b Selected species of vascular plants in the Říčka Valley. Acinos arvensis Aconitum lycoctonum Actaea spicata Adonis vernalis Adoxa moschatellina Ajuga genevensis Ajuga reptans Allium lavum Allium oleraceum Allium senescens subsp. montanum Alopecurus pratensis Alyssum alyssoides Anemone nemorosa Anthericum ramosum Anthriscus sylvestris Arenaria serpyllifolia agg. Arrhenatherum elatius Arum cylindraceum Asarum europaeum Asperula cynanchica Asplenium trichomanes Aster amellus Astragalus glycyphyllos Astrantia major Avenula pubescens Berberis vulgaris 95 6 Betonica oficinalis Bothriochloa ischaemum Brachypodium sylvaticum Bromus benekenii Bromus erectus Buglossoides purpurocaerulea Bupleurum falcatum Caltha palustris Campanula glomerata Campanula moravica Campanula persicifolia Campanula rapunculoides Campanula trachelium Cardamine amara Cardamine pratensis Carex caryophyllea Carex digitata Carex michelii Carex montana Carex muricata agg. Carex pilosa Carex praecox Carex sylvatica Centaurea scabiosa Centaurea stoebe Cephalanthera damasonium Cerastium brachypetalum Cerinthe minor Chamaecytisus ratisbonensis Cichorium intybus Circaea ×intermedia (C. alpina × C. lutetiana) Cirsium oleraceum Clematis recta Clinopodium vulgare Colchicum autumnale Convallaria majalis Cornus mas Cornus sanguinea Crepis paludosa Cuscuta epithymum Daphne mezereum Dentaria bulbifera Dianthus carthusianorum Dictamnus albus Dryopteris ilix-mas Echium vulgare Elymus caninus Elymus hispidus Equisetum hyemale Eryngium campestre Euonymus europaeus Euonymus verrucosus Euphorbia amygdaloides Euphorbia cyparissias Euphorbia epithymoides Falcaria vulgaris Festuca arundinacea Festuca gigantea Festuca heterophylla Festuca rupicola 96 Festuca valesiaca Filipendula ulmaria Fourraea alpina Fragaria moschata Gagea lutea Gagea villosa Galanthus nivalis Galatella linosyris Galeobdolon montanum Galeopsis pubescens Galium album Galium odoratum Galium pumilum Galium sylvaticum Genista tinctoria Geranium palustre Geranium phaeum Geranium pratense Geranium robertianum Geranium sanguineum Glechoma hederacea Glechoma hirsuta Helianthemum grandilorum subsp. obscurum Helictochloa pratensis Hepatica nobilis Hieracium lachenalii Hieracium murorum Hieracium sabaudum Hordelymus europaeus Hylotelephium maximum Hypericum hirsutum Hypericum montanum Hypericum perforatum Inula ensifolia Inula hirta Inula oculus-christi Iris pumila Iris variegata Isopyrum thalictroides Juglans regia Knautia arvensis Knautia drymeia Koeleria macrantha Lactuca quercina Lamium maculatum Lathraea squamaria Lathyrus niger Lathyrus vernus Ligustrum vulgare Lilium martagon Listera ovata Lonicera xylosteum Lunaria rediviva Lythrum salicaria Maianthemum bifolium Melampyrum cristatum Melampyrum nemorosum Melica ciliata Melica nutans Melica picta Melica transsilvanica Melica unilora Melittis melissophyllum Mercurialis perennis Milium effusum Muscari comosum Mycelis muralis Neottia nidus-avis Origanum vulgare Paris quadrifolia Peucedanum cervaria Phleum phleoides Phyteuma spicatum Pilosella cymosa Pilosella oficinarum Pimpinella major Pimpinella saxifraga Plantago media Platanthera bifolia Poa angustifolia Poa nemoralis Poa palustris Poa trivialis Polycnemum majus Polygonatum multilorum Polygonatum odoratum Potentilla incana Potentilla verna Primula elatior Primula veris Prunus spinosa Pulmonaria mollis Pulmonaria obscura Pulsatilla grandis Pyrus pyraster Quercus petraea Quercus pubescens Ranunculus auricomus agg. Ranunculus bulbosus Ranunculus lanuginosus Ranunculus polyanthemos Rhamnus cathartica Rosa spinosissima Salvia nemorosa Salvia pratensis Salvia verticillata Sanguisorba minor Sanguisorba oficinalis Sanicula europaea Scabiosa ochroleuca Scirpus sylvaticus Scrophularia nodosa Scrophularia umbrosa Securigera varia Sedum album Senecio jacobaea Seseli osseum Silene vulgaris Sorbus aria agg. Sorbus torminalis Stachys palustris 6 Plate 6b Plants of the Říčka Valley in the Moravian Karst: (a) Allium ursinum, (b) Melica transsilvanica, (c) Euonymus verrucosus, (d) Platanthera bifolia, (e) Cornus mas, (f) Dentaria bulbifera, (g) Staphylea pinnata, (h) Astrantia major, (i) Sanicula europaea, (j) Galanthus nivalis, (k) Lilium martagon, (l) Aconitum lycoctonum. 97 Stachys recta Stachys sylvatica Staphylea pinnata Stellaria holostea Symphytum tuberosum Tanacetum corymbosum Teucrium chamaedrys Thalictrum minus Thymus pannonicus Thymus praecox Trifolium alpestre Trifolium medium Ulmus glabra Valerianella carinata Valerianella locusta Verbascum chaixii subsp. austriacum Veronica chamaedrys Veronica prostrata Veronica spicata Veronica teucrium Veronica vindobonensis Vicia lathyroides Vicia tetrasperma Vincetoxicum hirundinaria Viola hirta Viola mirabilis Viola reichenbachiana Viola riviniana Viscum album 6 (6c) Josefov Valley Introduction The Josefov Valley (Josefovské údolí) crosses the central part of the Moravian Karst. The name of this valley was derived from the small settlement Josefov located in its central part. The whole valley is easily accessible by the road from Adamov to Křtiny. Therefore, the vegetation on the valley bottom is not so well preserved as in the Říčka Valley, though the valley slopes are mainly covered by natural or semi-natural vegetation. The Josefov Valley was formed by the stream Křtinský potok, which lows partly underground. Vegetation The valley slopes are covered by oak-hornbeam forests (abandoned coppice forests of the association Galio sylvatici-Carpinetum betuli, alliance Carpinion betuli), beech forests (alliance Fagion sylvaticae), ravine forests (alliance Tilio platyphylli-Acerion) and patches of grasslands. The most important patches of dry grasslands, forest-fringe vegetation and shrublands are developed on the south-facing slope called Slovenská stráň in the central part of the valley and its immediate surroundings. The valley is characterized by the inversion of vertical vegetation belts, with more montane types occurring at lower elevations and lowland types at higher elevations. The Josefov Valley in the central part of the Moravian Karst is covered by thermophilous oak forests on south-facing slopes and beech forests on north-facing slopes. Photo L. Tichý. Flora The deep limestone valley of the stream Křtinský potok with steep slopes and rock outcrops provides diverse conditions for many elements of karstic lora. The lora of the warmest slopes with patches of rocky steppe and open oak forests is related to the forest-steppe area south of Brno, though some species typical of the southern part of the Moravian Karst are missing here. Thermophilous species found in the Josefov Valley include Allium senescens subsp. montanum, Anthericum ramosum, Arabis auriculata, Carex humilis, Centaurea stoebe, Cornus mas, Euonymus verrucosus, Euphorbia epithymoides, Fourraea alpina, Lactuca viminea, Stipa pennata and Teucrium chamaedrys. In contrast, the valley bottom hosts a number of montane species including Aconitum lycoctonum, Aruncus dioicus, Circaea alpina, Polygonatum verticillatum, Prenanthes purpurea, Ribes alpinum and Rosa pendulina. The mesic forests contain, for example, Cephalanthera damasonium, Daphne mezereum, Dentaria bulbifera, D. enneaphyllos, Euphorbia amygdaloides, Hieracium lachenalii, H. murorum, Lonicera xylosteum, Melittis mellisophyllum, Neottia nidus-avis, Platanthera bifolia, P. chlorantha and Polygonatum multilorum. Rocks are overgrown by mosses and ferns, including the locally rare species Asplenium viride, Polypodium interjectum and Woodsia ilvensis. Caves Josefov Valley between the towns of Adamov and Křtiny in the central part of the Moravian Karst. 98 Býčí skála (Bull Rock), the largest cave in the Josefov Valley, is a famous archaeological site. The cave is not open to the public. Beginning in 1867, a part of the cave was explored by the amateur archaeologist Jindřich Wankel who found a bronze statuette of a bull here and in 1871–1873 excavated a large accumulation of artefacts thought to be a ritual burial with human offerings from the Hallstatt culture (older Iron Age, 5th century BC). The site contained animal and material offerings, crops, textiles, ceramic and metal vessels, jewellery, glass and amber beads (Přichystal & Náplava 1995). There are several smaller caves in the Josefov Valley including Evina jeskyně, Kostelík and Jáchymka. Výpustek is the only cave open to the public. This cave was signiicantly altered by phosphate extraction in the early 20th century, during which skeletons of cave bears were found in the cave sediments. 99 The Czechoslovak Army established an explosives storage in the cave in the 1930s and Nazis established an underground factory here during WWII. An underground fallout shelter and a secret command post were created in the cave by the Czechoslovak Army in the 1960s. Historical military infrastructure is currently on display to tourists. 6 Františka Iron Mill Iron ore was mined in the Josefov Valley already in the Hallstatt period (750–400 years BC). From the Middle Ages to the 19th century, beech forests were gradually cut and ired in piles covered with moistened clay (kilns) to produce charcoal necessary for increasing iron production. The Františka Iron Mill with its high charcoal furnace operated between the mid-18th century and the second half of the 19th century. It is now a fully restored industrial monument. It can be found in the central part of the Josefov Valley near the town of Adamov. The former Kameňák pattern-shop and residential building contain an exhibition of the Technical Museum in Brno devoted to metallurgy. Melting in replica furnaces takes place every year (Souchopová et al. 2002). Pilgrimage church in Křtiny Křtiny is a small town in the central part of the Moravian Karst and a starting point for trips to the Josefov Valley. It is an old Marian site dominated by a Baroque pilgrimage complex with the Church of the Holy Name of Mary designed by the Czech architect of Italian descent Jan Blažej Santini Aichel in the 18th century. Býčí skála Cave in the Josefov Valley in the central part of the Moravian Karst with patches of thermophilous vegetation on the limestone cliffs above the main entrance. Photo L. Tichý. 100 Plate 6c Plants of the Josefov Valley in the Moravian Karst: (a) Anthericum ramosum, (b) Daphne mezereum, (c) Circaea alpina, (d) Prenanthes purpurea, (e) Polygonatum verticillatum, (f) Isopyrum thalictroides, (g) Galium odoratum, (h) Ribes alpinum, (i) Polypodium interjectum, (j) Stipa pennata, (k) Adoxa moschatellina, (l) Aruncus dioicus. 101 Appendix 6c Selected species of vascular plants in the Josefov Valley (according to Jamborová 1980). Acinos arvensis Aconitum lycoctonum Actaea spicata Adoxa moschatellina Ajuga genevensis Ajuga reptans Allium senescens subsp. montanum Allium ursinum Alyssum alyssoides Anemone nemorosa Anemone ranunculoides Anthericum ramosum Arabis auriculata Arenaria serpyllifolia Aruncus dioicus Asarum europaeum Asperula cynanchica Asplenium ruta-muraria Asplenium trichomanes Asplenium viride Astragalus glycyphyllos Astrantia major Athyrium ilix-femina Berberis vulgaris Brachypodium pinnatum Brachypodium sylvaticum Buglossoides purpurocaerulea Bupleurum falcatum Caltha palustris Campanula persicifolia Campanula rapunculoides Campanula trachelium Carex digitata Carex humilis Carex pilosa Carex sylvatica Centaurea scabiosa Centaurea stoebe Cephalanthera damasonium Cephalanthera longifolia Cephalanthera rubra Chaerophyllum aromaticum Circaea alpina Circaea lutetiana Clinopodium vulgare Convallaria majalis Corallorhiza triida Cornus mas Corylus avellana Cotoneaster integerrimus Cruciata laevipes Cynoglossum oficinale Cystopteris fragilis 102 Cytisus nigricans Daphne mezereum Dentaria bulbifera Dentaria enneaphyllos Digitalis grandilora Dryopteris ilix-mas Echium vulgare Eryngium campestre Euonymus verrucosus Euphorbia amygdaloides Euphorbia cyparissias Euphorbia epithymoides Festuca ovina Festuca pallens Festuca rupicola Festuca valesiaca Fourraea alpina Galium album Galium odoratum Galium sylvaticum Genista tinctoria Geranium palustre Geranium robertianum Geranium sanguineum Helianthemum grandilorum subsp. obscurum Hieracium lachenalii Hieracium sabaudum Hylotelephium maximum Hypericum hirsutum Hypericum maculatum Hypericum montanum Hypericum perforatum Hypericum tetrapterum Isopyrum thalictroides Jasione montana Juniperus communis Knautia arvensis Lactuca viminea Lathyrus niger Lathyrus pratensis Lilium martagon Linaria genistifolia Lonicera xylosteum Lunaria rediviva Maianthemum bifolium Melampyrum nemorosum Melampyrum pratense Melica transsilvanica Melittis melissophyllum Mycelis muralis Neottia nidus-avis Nonea pulla Pilosella oficinarum Pimpinella major Pimpinella saxifraga Pinus sylvestris Platanthera bifolia Platanthera chlorantha Poa nemoralis Polygonatum multilorum Polygonatum odoratum Polygonatum verticillatum Polypodium interjectum Polypodium vulgare Potentilla incana Potentilla argentea Potentilla verna Prenanthes purpurea Primula elatior Primula veris Rhamnus cathartica Ribes alpinum Salvia nemorosa Salvia pratensis Sanguisorba minor Saxifraga paniculata Scabiosa ochroleuca Scrophularia nodosa Securigera varia Sedum album Seseli osseum Sesleria caerulea Silene nutans Silene vulgaris Solidago virgaurea Sorbus aria agg. Sorbus torminalis Stachys palustris Stachys recta Stachys sylvatica Stipa pennata Symphytum oficinale Symphytum tuberosum Tanacetum corymbosum Teucrium chamaedrys Thalictrum aquilegiifolium Thymus glabrescens Trifolium alpestre Verbascum chaixii subsp. austriacum Verbascum lychnitis Verbascum nigrum Veronica chamaedrys Veronica teucrium Vicia sylvatica Vincetoxicum hirundinaria Viola hirta (6d) Macocha abyss and the nearby karst valleys 6 Introduction The Macocha abyss and the nearby valleys Pustý žleb (meaning Desolate Gully) and Suchý žleb (meaning Dry Gully) is the most frequently visited part of the Moravian Karst attracting about 300,000 visitors annually. The view of the abyss from one of two platforms is extremely spectacular. The depth of the abyss from the upper viewing platform to the surface of the small lake at the bottom of Macocha is 138 m. The estimated depth of the lake is about 50 m. The mean daily temperature difference between the top and bottom of the abyss in warm periods is more than 9 °C (Litschmann et al. 2012) which signiicantly increases the environmental heterogeneity. Many other karstic features can be seen here in addition to the abyss and the caves. The streams Bílá voda and Sloupský potok enter the Amateur Cave (Amatérská jeskyně, 34 km long) and Punkva Caves (Punkevní jeskyně) and form the underground Punkva River downstream of their conluence. Long sections of the valley bottoms are dry in both valleys. The Macocha abyss in the northern part of the Moravian Karst. Photo Z. Lososová Vegetation An inversion of altitudinal vegetation belts can be seen in the Suchý žleb and Pustý žleb gorges. Beech and ravine forests (alliances Fagion sylvaticae and Tilio platyphylli-Acerion) prevail on the bottoms, while oak-hornbeam forests (alliance Carpinion betuli) occupy the upper part of the valleys. Small patches of dry grasslands of the alliance Festucion valesiacae occur on the steep south-facing slope near the ruin of Blansek Castle and on the opposite slopes of Pustý žleb. There is also a patch of thermophilous oak forest (association Euphorbio-Quercetum, alliance Quercion pubescenti-petraeae) near the Blansek Castle. 103 Flora The lora of the valleys of Pustý žleb and Suchý žleb represents a mixture of montane species (e.g. Actaea europaea, Lunaria rediviva, Petasites albus and Primula elatior), dealpine species (e.g. Saxifraga paniculata and Sesleria caerulea), regionally rare ferns typical of shaded limestone outcrops (e.g. Asplenium scolopendrium, A. viride and Polypodium interjectum) and thermophilous species (Pyrus pyraster, Stipa pennata, Teucrium chamaedrys, Trifolium alpestre, Verbascum chaixii subsp. austriacum, Veronica teucrium and Vincetoxicum hirundinaria). The lora of the Macocha abyss is also relatively diverse: 247 taxa of vascular plants have been recorded here (Sutorý 2009). Cortusa matthioli growing on cliffs and talus slopes near the bottom is the most remarkable plant species. It occurs in the limestone areas of the Alps and the Carpathians and its isolated occurrence in Macocha represents its single locality in the Czech Republic. Appendix 6d Selected species of vascular plants of the Macocha abyss and the valleys of Suchý žleb and Pustý žleb (according to Zachoval 1986). Dry grasslands on a limestone slope near Vilémovice in the northern part of the Moravian Karst. Photo M. Chytrý. The area around the Macocha abyss with the deep karst valleys of Pustý žleb and Suchý žleb in the northern part of the Moravian Karst. 104 Acinos arvensis Aconitum lycoctonum Actaea spicata Agrimonia eupatoria Agrostis stolonifera Ajuga genevensis Ajuga reptans Alliaria petiolata Allium senescens subsp. montanum Allium oleraceum Alyssum alyssoides Anemone nemorosa Anemone ranunculoides Anemone sylvestris Angelica sylvestris Anthericum ramosum Aquilegia vulgaris Arabis hirsuta Arenaria serpyllifolia Asarum europaeum Asperula cynanchica Asperula tinctoria Asplenium scolopendrium Asplenium trichomanes Asplenium viride Astrantia major Biscutella laevigata subsp. varia Brachypodium pinnatum Brachypodium sylvaticum Bromus benekenii Bromus erectus Buglossoides purpurocaerulea Bupleurum falcatum Campanula persicifolia Campanula rapunculoides Campanula rotundifolia agg. Campanula trachelium Cardamine amara Carex caryophyllea Carex digitata Carex humilis Carex montana Carex pilosa Carex sylvatica Carlina acaulis Centaurea scabiosa Centaurea stoebe Cephalanthera damasonium Cirsium eriophorum Clinopodium vulgare Convallaria majalis Cornus mas Cornus sanguinea Cotoneaster integerrimus Cruciata verna Cuscuta epithymum Cyclamen purpurascens Cypripedium calceolus Cytisus nigricans Daphne mezereum Dentaria bulbifera Digitalis grandilora Dryopteris carthusiana Dryopteris ilix-mas Echium vulgare Epipactis atrorubens Epipactis helleborine Euonymus verrucosus Euphorbia cyparissias Euphorbia epithymoides Festuca altissima Festuca gigantea Festuca pallens Filipendula ulmaria Galeobdolon montanum Galium odoratum Galium pumilum Galium sylvaticum Genista tinctoria Geranium phaeum Geranium robertianum Geranium sanguineum Helianthemum grandilorum subsp. obscurum Hordelymus europaeus Hylotelephium maximum Inula conyzae Inula salicina Jovibarba globifera Lathyrus vernus Libanotis pyrenaica Lilium martagon Lunaria rediviva Maianthemum bifolium Melampyrum nemorosum Melica ciliata Melica transsilvanica Mercurialis perennis Moneses unilora Mycelis muralis Neottia nidus-avis Origanum vulgare Paris quadrifolia Phleum phleoides Picea abies Pilosella bauhini Pimpinella major Pimpinella saxifraga Platanthera bifolia Platanthera chlorantha Polygala vulgaris Polygonatum multilorum Polygonatum odoratum Polypodium interjectum Polystichum aculeatum Potentilla incana Primula elatior Primula veris Prunus fruticosa Ranunculus bulbosus Rhamnus cathartica Ribes alpinum Rosa pendulina Salvia pratensis Salvia verticillata Sanguisorba minor Sanicula europaea Saxifraga paniculata Scabiosa ochroleuca Securigera varia Sedum album 105 6 Seseli annuum Seseli hippomarathrum Seseli osseum Sesleria caerulea Sorbus aria agg. Sorbus torminalis Stachys germanica Stachys palustris Stachys recta Stipa pennata Tanacetum corymbosum Teucrium chamaedrys Thymus praecox Tragopogon dubius Tragopogon orientalis Trifolium alpestre Trifolium montanum Verbascum chaixii subsp. austriacum Verbascum lychnitis Veronica chamaedrys Veronica teucrium Vincetoxicum hirundinaria Viola hirta Viola reichenbachiana Viola riviniana 6 Ravine forest in the karst valley Pustý žleb in the northern part of the Moravian Karst. Photo M. Chytrý. References Balátová-Tuláčková, E., Venanzoni, R. & Vaněčková, L. 1987. Wiesen- und Hochstauden-Gesellschaften im Landschaftsschutzgebiet Moravský kras. Tuexenia 7: 215–232. Jamborová, A. 1980. Nástin loristických poměrů Josefovského údolí a využití ve vyučování biologie 3. a 4. ročníku gymnázií [An outline of the lora of the Josefov Valley and its application for teaching biology in the 3rd and 4th year of the grammar school]. Thesis, Masaryk University, Brno. Kubešová, S. 2001. Bryophyte lora at lamps in public caves in the Moravian Karst (Czech Republic). Acta Musei Moraviae, Scientiae Biologicae 86: 195–202. Litschmann, T., Rožnovský, J., Středa, T., Středová, H. & Hebelka, J. 2012. Temperature and humidity conditions of Macocha Abyss. Contributions to Geology and Geodesy 42: 227–242. Michalcová, D. 2009. Diverzita lesní vegetace Moravského krasu a přilehlého území [Diversity of forest vegetation of the Moravian Karst and adjacent areas]. MSc. thesis, Masaryk University, Brno. Musil, R. (ed.) 1993. Moravský kras, labyrinty poznání [Moravian Karst, labyrinths of knowledge]. Jaromír Bližňák GEO program, Adamov. 106 Plate 6d Plants of the Macocha abyss and the nearby valleys in the Moravian Karst: (a) Cirsium eriophorum, (b) Actaea spicata, (c) Cardamine amara, (d) Hordelymus europaeus, (e) Cypripedium calceolus, (f) Cyclamen purpurascens, (g) Aquilegia vulgaris, (h) Polystichum aculeatum, (i) Rosa pendulina, (j) Paris quadrifolia, (k) Saxifraga paniculata, (l) Primula elatior. 107 Nejezchlebová, M. 2007. Výskyt vybraných teplomilných druhů cévnatých rostlin v Moravském krasu [Occurrence of selected species of vascular plants in the Moravian Karst]. MSc. thesis, Masaryk University, Brno. Podpěra, J. 1928. Die Vegetationsverhältnisse im Gebiete des Mährischen Karstes im Vergleiche mit der nächsten Umgebung: ein Beitrag zur Planzengeographie Mährens. Moravská musejní společnost, Brno. Přichystal, A. & Náplava, M. 1995. Záhada Býčí skály aneb jeskyně plná otazníků [The mystery of Býčí skála, a cave full of questions]. Amaprint, Třebíč. Souchopová, V., Merta, J., Truhlář, J., Balák, I. & Štefka, L. 2002. Cesta železa Moravským krasem [The way of iron through the Moravian Karst]. Spolek pro rozvoj venkova Moravský kras, Habrůvka, Jedovnice, Křtiny & Rudice. Sutorý, K. 2009. Cévnaté rostliny propasti Macocha po 150 letech výzkumu [Vascular plants of the Macocha abyss after 150 years of research]. Příroda (Praha) 28: 225–245. Šmarda, J. 1967. Vegetační poměry Moravského krasu (příspěvek k řešení bioindikace krasového reliéfu) [Vegetation of the Moravian Karst (A contribution to the bioindication of karst terrain)]. Československá ochrana prírody 3: 139–188 & 5: 141–163. Šmarda, J. & Šmarda, J. Jr. 1968. Charakteristika význačných lokalit v Moravském krasu [Characterization of important localities in the Moravian Karst]. Československá ochrana prírody 7: 111–137. Tichý, L. 2000. Současný stav vápencové stepi na jižních svazích Hádů u Brna [Recent stage of limestone steppe on southern slopes of Hády hill near Brno (Moravia, Czech Republic)]. Zprávy České botanické společnosti 35: 99–104. Tichý, L. 2012. Restoration of dry grassland vegetation in the abandoned Hády limestone quarry near Brno. In: Jongepierová, I., Pešout, P., Jongepier, J.W. & Prach, K. (eds.) Ecological restoration in the Czech Republic, pp. 102–103. Nature Conservation Agency of the Czech Republic, Praha. Tichý, L. & Štefka, L. 2000. Hády u Brna [Hády near Brno]. Rezekvítek – sdružení pro ekologickou výchovu a ochranu přírody, Brno. Unar, J. 1975. Xerothermní a subxerothermní vegetace Moravského krasu [Xerothermic and sub-xerothermic vegetation of the Moravian Karst]. Research report, Institute of Botany, Průhonice. Unar, J. & Grüll, F. 1984. Teucrio chamaedrys-Festucetum rupicolae, eine neue Assoziation aus dem Gebiet des Mährischen Karstes. Folia Geobotanica et Phytotaxonomica 19: 139–155. Vaněčková, L. & Grüll, F. 1967. Botanická literatura chráněné krajinné oblasti Moravský kras. Zprávy o vědecké činnosti Geograického ústavu ČSAV Brno 8: 1–118. Vaněčková, L. et al. 1997. Rostliny Moravského krasu a okolí [Plants of the Moravian Karst and adjacent areas]. Reprocentrum, Blansko. Zachoval, F. 1986. Floristické poměry ve státní přírodní rezervaci Moravský kras-střed [Flora of the State Nature Reserve Moravský kras-střed]. Thesis, Masaryk University, Brno. 7 Pouzdřany Steppe and Kolby Wood 7 Jan Roleček Introduction The Pouzdřany Steppe and Kolby Wood are parts of the National Nature Reserve Pouzdřanská step-Kolby. The reserve is situated in southern Moravia above the village of Pouzdřany, about 25 km south of Brno and 6 km west of the town of Hustopeče. The Pouzdřany Steppe and Kolby Wood represent one of the best-preserved remnants of subcontinental forest-steppe in the Czech Republic. Despite its limited area (47 ha), the reserve harbours much of the species richness of Pannonian forest-steppe lora and fauna that have retreated from many sites in the region in recent centuries. The surrounding hilly landscape belongs to the southernmost edge of the Central Moravian Carpathians. There is a spectacular view from the hilltop of the Pouzdřany Steppe of the Pavlov Hills across the lower Dyje area, partly looded by the Nové Mlýny reservoirs built in the 1970s–1980s. The fringes of the Bohemian-Moravian Highlands enclose the view to the west, while the lowlands of the Pannonian Basin stretch to the south-east. The bedrock is mostly formed of Palaeogene calcareous claystones and sandstones of the Carpathian lysch, partly covered by Pleistocene loess. The mean annual temperature in the area is about 9 °C and annual precipitation sum about 550 mm. Panoramic view of the Pouzdřany Steppe with a mosaic of dry grasslands and shrublands and Kolby Wood on the plateau and shady slopes. The white dots in the background are individuals of Crambe tataria in bloom established on ex-arable land. The strips of shrubs indicate the former agricultural use of some of the grasslands. Photo J. Roleček. Vegetation and lora of the Pouzdřany Steppe The origin and long-term dynamics of forest-steppe vegetation in the region has been insuficiently studied. The climate of the region supports forest vegetation on non-extreme sites. However, the richness of steppe species and occurrence of some rare species with disjunct distributions, together with some recent palaeoecological evidence (Kuneš et al. 2015), support the hypothesis of Holocene continuity of forest-steppe vegetation in southern Moravia. We do not know much about the factors responsible for the long-term persistence of forest-steppe in this region, though certain dynamic factors including ancient human activity, herbivore grazing and ires probably played a role. Recent successional changes of dry grasslands in the absence of management also conirm the dependence of southern Moravian forest-steppe ecosystems on regular disturbance. Active conservation measures are required in nature reserves to maintain their diversity. Some of the most valuable grassland patches in 108 109 the Pouzdřany Steppe are mown, and trees and shrubs have been removed in recent years. A population of the European rabbit (Oryctolagus cuniculus) has been introduced to provide essential disturbance. Parts of the steppe also burn irregularly due to accidental ires. Many slopes in the Pouzdřany Steppe area were terraced for vineyards, orchards or arable ields in the past. Some of them were used to plant Glycyrrhiza glabra to produce liquorice from its sweet root. There was also a large ield on the lat hilltop of the Pouzdřany Steppe. Most of the agricultural land around the steppe was abandoned in the second half of the 20th century and left to spontaneous succession. A space-for-time substitution study has shown that, within a few years, the ex-arable land around the steppe developed into perennial dry grassland in which weedy species continuously decreased, valuable steppe species increased, and total species richness also increased (Sojneková & Chytrý 2015). 7 Pouzdřany Steppe and Kolby Wood near the village of Pouzdřany. of view. This putative glacial relict has a few localities across Pannonia: three in Moravia and others in eastern Austria and in the sandy area of Deliblatska peščara in north-eastern Serbia (Ehrendorfer 1964; Danihelka & Marhold 2003; see also locality 12 Špidláky Nature Reserve). Vegetation and lora of Kolby Wood Stipa pulcherrima dominates the dry grasslands on the south-facing slopes of the Pouzdřany Steppe. Photo M. Chytrý. The current vegetation of the reserve is composed of dry grasslands (alliances Festucion valesiacae and Cirsio-Brachypodion pinnati) with scattered shrubs and solitary trees and a mesic forest (alliance Carpinion betuli). The species-rich dry grasslands on sunny slopes (association Koelerio macranthae-Stipetum joannis, alliance Festucion valesiacae) are dominated by feather grasses (mostly Stipa pennata and S. pulcherrima), narrow-leaved fescues (Festuca valesiaca and F. rupicola), Koeleria macrantha and Carex humilis. Many drought-tolerant herbs and dwarf shrubs are admixed, e.g. Campanula sibirica, Cytisus procumbens, Galium glaucum, Potentilla incana, Teucrium chamaedrys and Thymus pannonicus. In disturbed places on deeper soils (abandoned ields, tourist paths and the surroundings of rabbit colonies), vegetation of the association Astragalo exscapi-Crambetum tatariae (alliance Festucion valesiacae) has developed that is rich in rare competitively-poor steppe species such as Astragalus exscapus, Crambe tataria, Glaucium corniculatum and Jurinea mollis. In more mesic sites, broad-leaved dry grasslands (association Polygalo majoris-Brachypodietum pinnati, alliance Cirsio-Brachypodion pinnati) with less drought-tolerant species (Adonis vernalis, Centaurea scabiosa, Geranium sanguineum, Orchis militaris, Peucedanum cervaria and Viola hirta) occur. Scattered shrubs and solitary trees include Crataegus monogyna, Prunus fruticosa, P. spinosa, Quercus pubescens and Ulmus minor (Podpěra 1928; Vicherek & Unar 1971; Ambrozek 1989). The occurrence of a small population of the Pannonian endemic Artemisia pancicii is the most valuable from the loristic point 110 Kolby Wood on the plateau and north-facing slopes provides a ine example of Central European mesic oak-hornbeam forest (association Primulo veris-Carpinetum betuli, alliance Carpinion betuli). The closed canopy is dominated by Quercus petraea, Acer campestre and Carpinus betulus, with Ligustrum vulgare, Euonymus verrucosus and Crataegus laevigata in the shrub layer. The species-rich herb layer is characteristic with a colourful spring aspect with Anemone nemorosa, A. ranunculoides, Corydalis cava, C. solida, Isopyrum thalictroides and Viola mirabilis. Later in the year, Convallaria majalis, Dactylis polygama, Galium odoratum, Melica unilora, Poa nemoralis and other nemoral species become dominant. On sunny forest edges, forest-steppe species are more abundant, including Quercus pubescens and a herb layer with Brachypodium pinnatum, Buglossoides purpurocaerulea, Carex michelii, Dictamnus albus, Euphorbia epithymoides, Geranium sanguineum, Iris variegata, Peucedanum cervaria and Polygonatum odoratum (Podpěra 1928). Appendix 7 Selected species of vascular plants of the Pouzdřany Steppe and Kolby Wood. Pouzdřany Steppe Acer campestre Acinos arvensis Adonis lammea Adonis vernalis Agrimonia eupatoria Agrostis capillaris Achillea collina Achillea pannonica Ajuga chamaepitys Ajuga genevensis Alliaria petiolata Allium oleraceum Allium rotundum Allium scorodoprasum Alyssum alyssoides Anemone sylvestris Anthericum ramosum Anthoxanthum odoratum Anthriscus sylvestris Anthyllis vulneraria Arabidopsis thaliana Arenaria serpyllifolia agg. Aristolochia clematitis Arrhenatherum elatius Artemisia absinthium Artemisia pancicii Artemisia pontica Asparagus oficinalis Asperula cynanchica Aster amellus Astragalus austriacus Astragalus glycyphyllos Astragalus exscapus Astragalus onobrychis Avenula pubescens 111 Betonica oficinalis Betula pendula Bothriochloa ischaemum Brachypodium pinnatum Briza media Bromus erectus Bromus inermis Bromus japonicus Buglossoides incrassata subsp. splitgerberi Buglossoides purpurocaerulea Bupleurum falcatum Bupleurum rotundifolium Calamagrostis epigejos Camelina microcarpa Campanula bononiensis Campanula glomerata Campanula persicifolia Campanula sibirica Campanula rapunculoides Carex caryophyllea Carex humilis Carex michelii Carex montana Carex muricata agg. Carex praecox Carex supina Carlina biebersteinii subsp. brevibracteata Caucalis platycarpos Centaurea jacea Centaurea scabiosa Centaurea stoebe Centaurea triumfetti Cerastium arvense Cerinthe minor Chaerophyllum bulbosum Chaerophyllum temulum Chamaecytisus ratisbonensis Chamaecytisus austriacus Chondrilla juncea Clematis recta Clematis vitalba Clinopodium vulgare Conringia orientalis Cornus mas Cornus sanguinea Corylus avellana Crambe tataria Crataegus monogyna Crataegus laevigata Crepis praemorsa Crepis foetida subsp. rhoeadifolia Cruciata verna Cynoglossum oficinale Cytisus nigricans Cytisus procumbens Dactylis glomerata Daucus carota Dianthus pontederae 112 Dictamnus albus Diplotaxis muralis Dorycnium germanicum Echium vulgare Elymus caninus Elymus hispidus Elymus repens Erigeron acris Erodium cicutarium Erophila verna agg. Eryngium campestre Erysimum diffusum Erysimum odoratum Erysimum repandum Euonymus europaeus Euphorbia cyparissias Euphorbia epithymoides Euphorbia exigua Euphorbia falcata Euphorbia virgata Falcaria vulgaris Festuca pulchra Festuca rupicola Festuca valesiaca Ficaria verna subsp. verna Filipendula vulgaris Fragaria viridis Fumaria schleicheri Fumaria vaillantii Galatella linosyris Galium aparine Galium album Galium glaucum Galium tricornutum Galium verum Genista tinctoria Geranium robertianum Geranium sanguineum Geum urbanum Glaucium corniculatum Glycyrrhiza glabra Helianthemum grandilorum subsp. obscurum Helichrysum arenarium Helictochloa pratensis Heracleum sphondylium Hieracium umbellatum Holosteum umbellatum Humulus lupulus Hylotelephium maximum Hypericum perforatum Inula ensifolia Inula germanica Inula hirta Inula oculus-christi Inula salicina Inula ×stricta (I. ensifolia × I. salicina) Iris pumila Iris variegata Jurinea mollis Knautia arvensis Koeleria macrantha Lactuca quercina Lactuca serriola Lamium album Lappula squarrosa Lathyrus pannonicus subsp. collinus Lathyrus tuberosus Lavatera thuringiaca Lepidium draba Ligustrum vulgare Lilium martagon Linaria vulgaris Linaria genistifolia Linum lavum Linum hirsutum Linum tenuifolium Lithospermum oficinale Lotus corniculatus Lycium barbarum (neo) Lycopsis arvensis Medicago falcata Melampyrum arvense Melampyrum cristatum Melica ciliata Melica transsilvanica Microthlaspi perfoliatum Muscari comosum Muscari neglectum Muscari tenuilorum Nigella arvensis Nonea pulla Odontites luteus Odontites vernus subsp. serotinus Ononis spinosa Orchis militaris Origanum vulgare Ornithogalum kochii Orobanche alsatica Orobanche caryophyllacea Oxytropis pilosa Papaver maculosum Peucedanum alsaticum Peucedanum cervaria Phelipanche arenaria Phelipanche purpurea Phleum phleoides Phlomis tuberosa Picris hieracioides Pilosella auriculoides Pilosella bauhini Pilosella densilora Pilosella kalksburgensis Pilosella oficinarum Pilosella rothiana Pimpinella saxifraga Plantago lanceolata Plantago media 7 Plate 7 Plants of the Pouzdřany Steppe and Kolby Wood: (a) Thymus pannonicus, (b) Astragalus austriacus, (c) Campanula bononiensis, (d) Melampyrum cristatum, (e) Stipa pulcherrima, (f) Inula germanica, (g) Asarum europaeum, (h) Corydalis cava, (i) Carex digitata, (j) Acer campestre, (k) Tilia cordata, (l) Anemone ranunculoides. 113 Solitary individuals of Quercus pubescens on the upper slopes of the Pouzdřany Steppe. Photo M. Chytrý. Poa angustifolia Poa bulbosa Poa nemoralis Polycnemum arvense Polygala major Polygonatum odoratum Populus tremula Potentilla alba Potentilla incana Potentilla patula Potentilla recta Primula veris Prunus fruticosa Prunus spinosa Pulmonaria mollis Pulsatilla grandis Pyrus pyraster Pulsatilla pratensis subsp. bohemica Quercus petraea Quercus pubescens Quercus robur Ranunculus auricomus agg. Ranunculus polyanthemos Rapistrum perenne Reseda lutea Reseda luteola Rosa canina Rosa dumalis Rosa gallica Rosa spinosissima 114 Salsola tragus Salvia nemorosa Salvia pratensis Salvia verticillata Sambucus nigra Sanguisorba minor Saponaria oficinalis Scabiosa ochroleuca Sclerochloa dura Scorzonera austriaca Scorzonera cana Scorzonera hispanica Scorzonera purpurea Securigera varia Sedum acre Senecio jacobaea Serratula tinctoria Seseli hippomarathrum Seseli osseum Seseli pallasii Sherardia arvensis Silene nutans Silene otites Silene vulgaris Sisymbrium loeselii (neo) Stachys annua Stachys recta Stipa capillata Stipa pennata Stipa pulcherrima Tanacetum corymbosum Teucrium chamaedrys Thalictrum minus Thesium dollineri Thesium linophyllon Thymus glabrescens Thymus pannonicus Tragopogon dubius Tragopogon orientalis Trifolium alpestre Trifolium medium Trifolium montanum Trifolium rubens Trinia glauca Ulmus minor Valeriana stolonifera subsp. angustifolia Verbascum chaixii subsp. austriacum Veronica praecox Veronica prostrata Veronica spicata Veronica teucrium Veronica vindobonensis Vicia cracca Vicia tenuifolia Vincetoxicum hirundinaria Viola ambigua Viola hirta Viola suavis (neo) Viola tricolor subsp. saxatilis Kolby Wood Acer campestre Acer pseudoplatanus Adonis vernalis Achillea collina Ajuga genevensis Alliaria petiolata Allium oleraceum Allium ursinum Anemone nemorosa Anemone ranunculoides Anemone sylvestris Anthericum ramosum Anthriscus sylvestris Asarum europaeum Astragalus glycyphyllos Betula pendula Brachypodium pinnatum Brachypodium sylvaticum Bromus benekenii Bromus japonicus Buglossoides purpurocaerulea Calamagrostis arundinacea Campanula persicifolia Campanula rapunculoides Campanula trachelium Cardamine impatiens Carex digitata Carex michelii Carex montana Carex muricata agg. Carpinus betulus Centaurea triumfetti Chaerophyllum bulbosum Chaerophyllum temulum Clematis recta Clematis vitalba Clinopodium vulgare Convallaria majalis Cornus mas Cornus sanguinea Corydalis cava Corydalis pumila Corylus avellana Crataegus monogyna Crataegus laevigata Cruciata verna Dactylis polygama Dictamnus albus Elymus caninus Euonymus europaeus Euonymus verrucosus Euphorbia cyparissias Euphorbia epithymoides Festuca heterophylla Ficaria verna subsp. verna Filipendula vulgaris Fragaria vesca Fragaria moschata Fraxinus excelsior Galanthus nivalis Galium aparine Galium odoratum Galium sylvaticum Genista tinctoria Geranium robertianum Geranium sanguineum Geum urbanum Hesperis sylvestris Hieracium lachenalii Hieracium laevigatum Hieracium murorum Hieracium sabaudum Hypericum hirsutum Hypericum perforatum Inula salicina Iris graminea Iris variegata Isopyrum thalictroides Lactuca quercina Lamium album Lathyrus niger Lathyrus vernus Ligustrum vulgare Lilium martagon Lonicera caprifolium (neo) Malus sylvestris Melampyrum pratense Melampyrum cristatum Melampyrum nemorosum Melica nutans Melica unilora Melittis melissophyllum Milium effusum Moehringia trinervia Neottia nidus-avis Nigella arvensis Nonea pulla Odontites vernus subsp. serotinus Omphalodes scorpioides Peucedanum cervaria Phyteuma spicatum Poa nemoralis Polygonatum multilorum Polygonatum odoratum Populus tremula Primula veris Prunus spinosa Pulmonaria mollis Pulmonaria oficinalis agg. Pyrus pyraster Quercus cerris Quercus petraea Quercus pubescens Quercus robur Ranunculus auricomus agg. Rosa canina Rosa dumalis Salix caprea Sambucus nigra Silene nutans Solidago virgaurea Sorbus domestica Sorbus torminalis Staphylea pinnata Stellaria holostea Symphytum tuberosum Tanacetum corymbosum Teucrium chamaedrys Tilia cordata Tilia platyphyllos Ulmus glabra Ulmus laevis Ulmus minor Valeriana stolonifera subsp. angustifolia Veronica vindobonensis Viburnum lantana Viburnum opulus Vicia dumetorum Vicia pisiformis Vicia sylvatica Vinca minor Vincetoxicum hirundinaria Viola hirta Viola mirabilis Viola reichenbachiana Viola riviniana 7 References Ambrozek, L. 1989. Vybrané komplexy xerotermní vegetace na jižní Moravě [Selected complexes of xerothermic vegetation in southern Moravia]. Thesis, Charles University, Praha. Danihelka, J. & Marhold, K. 2003. Validation of the name Artemisia pancicii (Asteraceae). Willdenowia 33: 251–254. Ehrendorfer, F. 1964. Notizen zur Cytotaxonomie und Evolution der Gattung Artemisia. Österreichische botanische Zeitschrift 111: 84–142. 115 Kuneš, P., Svobodová-Svitavská, H., Kolář, J., Hajnalová, M., Abraham, V., Macek, M., Tkáč P. & Szabó, P. 2015. The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quaternary Science Reviews 116: 15–27. Podpěra, J. 1928. Steppe und Waldsteppe des Hutberges oberhalb Pouzdřany (Pausram). Preslia 7: 153–167. Sojneková, M. & Chytrý, M. 2015. From arable land to species-rich semi-natural grasslands: Succession in abandoned ields in a dry region of central Europe. Ecological Engineering 77: 373–381. Vicherek, J. & Unar, J. 1971. Fytocenologická charakteristika stepní vegetace jižní Moravy [Phytosociological characteristics of steppe vegetation in southern Moravia]. Research report, Botanický ústav AV ČR, Průhonice. 8 Pavlov Hills 8 Jiří Danihelka, Vít Grulich & Milan Chytrý Introduction The Pavlov Hills (Pavlovské vrchy, also known as Pálava in Czech, Pollauer Berge in German) are a range of limestone hills in southern Moravia situated between the Dyje River (Thaya in German) and the Czech-Austrian border near the town of Mikulov. They are located about 30–40 km south of the southern margin of the city of Brno. The area is 11 km long and 2–3 km wide. The altitudinal difference between the Nové Mlýny reservoir near the village of Dolní Věstonice (170 m) and the top of Děvín Hill (549 m) is almost 380 m. The Pavlov Hills from the Pouzdřany Steppe. The Roman soldiers from the military camps on the foothills of the Pavlov Hills called these hills Mons Veneris, because the silhouette of the hills reminded them of the lying goddess Venus. Photo M. Chytrý. The northernmost hilltop with the ruins of the 14th century castle Děvičky (also called Dívčí hrady in Czech or Maidenstein in German) stands out above the village of Pavlov. The next hill to the south is the highest of the hills, Děvín (549 m), which is separated from the hill Obora (483 m) in the southwest by the narrow gorge called Soutěska. The hill Růžový vrch, with another castle ruin on the top, and the hill Stolová hora (459 m), with a prominent plateau, form the central part of the range. The hills Turold (385 m) and Svatý kopeček (363 m), the latter with a Baroque chapel on its top, surround the town of Mikulov from the north and the east, respectively. The southernmost hill Šibeničník (238 m) is situated south of the town near the border with Austria. The hills Schweinbarther Berg, Höhlenstein and Falkensteiner Berge in the adjacent part of Lower Austria belong to the same range. The Pavlov Hills are included in the Pálava Protected Landscape Area (PLA), which was established in 1976. The area became a UNESCO Biosphere Reserve ten years later. Individual limestone hills and other valuable sites within the PLA are protected as National Nature Reserves (NNR), Nature Reserves (NR) and Nature Monuments (NM). There are two NNRs (Děvín-Kotel-Soutěska and Tabulová), three NRs (Turold, Svatý kopeček and Šibeničník) und four NMs (Kočičí skála, Růžový kopec, Anenský vrch and Lom Janičův vrch). Both NNRs, NR Turold and NR Svatý kopeček are also Sites of Community Importance within the Natura 2000 network. 116 117 Geology and soils Climate The landscape of the Pavlov Hills is strongly modulated, with outcrops and cliffs of pure, hard and white limestone of Upper Jurassic origin called Ernstbrunn limestone. Sedimentation of Ernstbrunn limestone was preceded by sedimentation of grey calcareous claystone and clay limestone called Klentnice layers. The Pavlov Hills are situated at the margin of the lysch zone of the Eastern Alps and Western Carpathians. The lysch beds consist of strongly folded Lower Tertiary claystone, sandstone and conglomerate. Large blocks of Jurassic and Lower Cretaceous rocks were torn from their Jurassic ground (now situated up to 2 km below the surface) during the periods of orogenetic activity in the Tertiary and re-deposited over the younger lysch beds (Čtyroký 1990; Čtyroký et al. 1995). In the Lower Badenian period (Upper Tertiary), the Pavlov Hills were surrounded by a warm sea. Pieces of Jurassic rock present in the littoral gravel from that period indicate that limestone may have already been denuded at that time. A strong subsidence formed the Vienna Basin 15 million years ago. During the following 9 million years, layers of maritime and lacustrine sediments up to 3 km thick were deposited on its bottom. Loess and debris, also comprising re-deposited Tertiary clay and fossil soils, were deposited on the footslopes of the Pavlov Hills during the Quaternary. A complete sequence of loess sedimentation from the last two glacials and two interglacials, with buried chernozem horizons, can be observed in abandoned clay pits near the village of Dolní Věstonice (Fuchs et al. 2013). The prevailing soil types are calcareous leptosols (rendzinas), chernozems and luvisols. Rendzinas were formed over hard Ernstbrunn limestone; they are shallow and dry, of neutral to moderately alkaline reaction. They are covered mainly with dry grasslands and open thermophilous oak forests. Chernozems are found on loess deposits on the foothills of the Pavlov Hills. Luvisols occur on moderately inclined hillsides covered with Mesozoic and Tertiary calcareous clays, slope deposits or decalciied loess. These soils are deep and have a more balanced water supply; they are mostly covered with forest. The climate of the Pavlov Hills is subcontinental. The mean annual temperatures in this part of southern Moravia are 9 –10 °C. The mean temperature in the growing season (April–September) is 15 –16 °C. The warmest and coldest months are July and January with mean temperatures of 19 –20 °C and –1 to –2 °C, respectively. All these values fall by about 1 °C at higher altitudes on the ridge of the Pavlov Hills. The area around the Pavlov Hills is one of the driest in the Czech Republic due to its location in the lee of the Bohemian-Moravian Highlands. The annual precipitation sums are 500–550 mm, of which 300–325 mm falls in the growing season. The temporal variation in precipitation is considerable and long periods of drought are common. Such a climate supports the development of forest-steppe vegetation. The Pavlov Hills north of the town of Mikulov and the Dyje loodplain near Lednice with excursion sites. The green dashed line indicates the Pálava Protected Landscape Area. 118 History of botanical research The Pavlov Hills have attracted naturalists and botanists since the early times of botanical research. The earliest plant records date back to the 1820s when the German botanist Christian F. Hochstetter explored the lora of Moravia during his stay in Brno, where he served as a Lutheran minister and school director (Hrabětová-Uhrová 1970; Danihelka 2008). He visited the area at least once, as is documented by herbarium specimens found in some European herbaria, including PRC, BRNM and STU. He also published an account of interesting plants from the area (Hochstetter 1825). His plant records, supplemented by additional inds by his contemporaries, were later included in the irst lora of Moravia (Rohrer & Mayer 1835). In the second half of the 19th century, the Pavlov Hills were frequently visited by botanists from Brno, particularly A. Makowsky, J. Wiesner, F. Haslinger and I. Czižek, all members of the Natural History Society in Brno (Naturforschender Verein in Brünn). Alexander Makowsky and Adolf Oborny summarized their inds in the local loras of the Brno province (Makowsky 1863) and Znojmo province (Oborny 1879). These two booklets and the two-volume Flora of Moravia by Oborny (1886) provide reliable information on the lora of the area in the past. In the early 20th century, Josef Podpěra discovered a population of Helictotrichon desertorum, a continental relict species, on Šibeničník Hill south of the town of Mikulov (Podpěra 1912). As the irst Professor of Botany at the newly established Masaryk University, he repeatedly visited the area during the 1920s and produced a combined description of its lora and vegetation (Podpěra 1928). At the same time, followers of the emerging Braun-Blanquet approach (Zlatník 1928; Klika 1931) described some plant associations and alliances of the attractive dry limestone grasslands of the Pavlov Hills. In parallel, the lora of Mikulov and its vicinity was documented by Anton Fröhlich, a secondary school teacher in Mikulov whose botanical activities continued until the mid 1960s. A brief lora of the Mikulov district, based on earlier records and his own observations, was compiled by Vratislav Šuk (Šuk 1956) who worked as a pharmacist in Mikulov for a couple of years in the early 1950s. In the 1950s, Jaroslav Horák surveyed the vegetation of the Pavlov Hills and adjacent Milovice Wood using the classiication system of forest site types developed by Alois Zlatník (Horák 1969). His vegetation plots are well documented and recorded on the map, and may therefore be considered permanent plots. Repeated survey of his plots made it possible to assess the changes of forest vegetation in this area over the last half century (Müllerová et al. 2015). Research into the Pavlov Hills lora was resumed in the early 1980s, when Vít Grulich was appointed botanist of the District Museum in Mikulov. His research activities are documented by numerous specimens in the museum’s herbarium (MMI), now including about 50,000 sheets. In 1992–2004, Jiří Danihelka worked as botanist for the administrative authority of the Pálava Protected Landscape Area. He initiated a grid mapping of vascular plants of the Pavlov Hills and the Lower Dyje loodplain. This survey from 1992–2004 yielded about 140,000 records (Danihelka 2003; Danihelka & Šumberová 2004). More recent surveys of the dry grassland vegetation of the Pavlov were been published by Šmarda (1975), Toman (1976) and Unar (2004). Landscape history The Pavlov Hills and their surroundings are world-famous for a series of Upper Palaeolithic archaeological sites on their foothills, most notably between the villages of Dolní Věstonice and Pavlov (Trinkaus & Svoboda 2006). These sites have provided a rich source of prehistoric artefacts (especially art) from the settlements of mammoth hunters from the Gravettian period (ca. 29–22 cal. ka BP). The artefacts 119 8 include carved representations of animals, humans and enigmatic engravings, a igure of a young man carved in mammoth ivory that may represent the irst example of portraiture (i.e. representation of an actual person), the earliest examples of ceramic (burned clay) igurines, including the famous Venus of Dolní Věstonice. One of the burials revealed a female skeleton placed beneath a pair of mammoth scapulae, which is believed to be the irst proof of a female shaman. In the 1980s, Czech palaeoecologists Eliška Rybníčková and Kamil Rybníček (Rybníčková & Rybníček 1991, 2014) analyzed pollen from a peat sediment from the nearby village of Bulhary, dated to the Gravettian period. In addition to indicators of steppe (Artemisia, Chenopodiaceae, Ephedra and Plantago cf. media) and tundra (Betula nana) they found surprisingly abundant tree pollen, including drought- and cold-adapted species such as Pinus cembra, P. sylvestris, Larix and Betula pendula, and also moisture-demanding species such as Picea, Alnus and rarely also some broad-leaved deciduous trees. This was one of the irst pieces of evidence of the full-glacial forests in eastern-central Europe, which was later conirmed by new data from the Carpathians and their foothills (Willis & van Andel 2004). Based on the analogy with contemporary landscapes of continental southern Siberia, we can imagine the landscape of the Gravettian mammoth hunters as a forest-steppe with steppic grasslands on the loess plains and southern slopes, Picea-Alnus woodland in the river loodplains, Pinus cembra-P. sylvestris-Larix-Betula woodland on north-facing slopes and patches of Betula nana tundra in colder and wetter places. This interpretation is supported by the fossil mollusc faunas found in the Quaternary sediments on the foothills of the Pavlov Hills (Vašátko & Ložek 1973). In view of the lack of peat deposits in the dry lowland area of southern Moravia, the Holocene history of the Pavlov Hills can be reconstructed mainly on the basis of malacozoological evidence (Vašátko & Ložek 1973). This indicates that loess sedimentation was followed by the spread of some warm-demanding continental species in the Late Glacial. The area was covered by forest-steppe in the early Holocene. There was an increase in precipitation at the beginning of the Atlanticum (8 cal. ka BP), which supported the spreading of mesic forests. However, Neolithic farmers colonized the area at approximately 7.5 cal. ka BP and began large-scale deforestation. The area has been permanently settled by humans ever since, with a remarkable peak in the Bronze Age when settlements were also built on the hilltops. Although patches of mesic deciduous forest were always present on the hills, particularly on the north-facing slope of Děvín Hill, several species of molluscs and plants typical of such forests are missing here, most probably because they failed to immigrate through the surrounding deforested landscape. The steppes in the Pavlov Hills are primary in the sense that they represent a direct continuation of the Pleistocene continental steppes. At the same time, they are secondary in many places as they spread to the areas deforested by humans since the Neolithic. Vegetation The Pavlov Hills are situated in the Pannonian phytogeographical province, which reaches its north-western limit in Lower Austria and southern Moravia. This region represents the westernmost extremity of the continuous zone of the Euro-Siberian forest-steppe, which extends through the Danube Valley and the Pannonian (Carpathian) Basin up to the southern fringes of the Western Carpathians, the eastern fringes of the Eastern Alps and the south-eastern edge of the Bohemian Massif. The following description of vegetation mainly concerns Děvín Hill (National Nature Reserve Děvín-Kotel-Soutěska), the highest and largest of the Pavlov Hills, which harbours most of the natural and semi-natural vegetation types found in the area. Forests The natural vegetation of the lower hillsides of the Pavlov Hills is Pannonian oak-hornbeam forest (association Primulo veris-Carpinetum betuli, alliance Carpinion betuli). The main tree species are Quercus petraea and Carpinus betulus, accompanied by Acer campestre, Tilia cordata and T. platyphyllos. The shrub layer is well developed and rich in species, including Cornus mas, Euonymus verrucosus, Ligustrum vulgare and Staphylea pinnata. The herb layer includes Campanula persicifolia, C. rapunculoides, Festuca heterophylla, Melittis melissophyllum, Primula veris and Viola mirabilis. Moving upwards, on sites with soils still deep and moist enough to support a more or less closed canopy, oak-hornbeam forests are replaced by thermophilous oak forests of the association Euphorbio-Quercetum (alliance Quercion pubescenti-petraeae). The dominant trees are the Central European Quercus petraea and the sub-Mediterranean Q. pubescens. The shrub layer is usually luxuriant, consisting 120 of thermophilous shrubs such as Cornus mas, Ligustrum vulgare and Viburnum lantana. The herb layer contains the thermophilous species Buglossoides purpurocaerulea, Tanacetum corymbosum and Teucrium chamaedrys, along with nutrient-demanding species of mesic forests, such as Alliaria petiolata and Geum urbanum. The steep upper slopes with limestone outcrops support open stands of thermophilous oak forests classiied as the association Lithospermo purpurocaerulei-Quercetum pubescentis (alliance Quercion pubescenti-petraeae). Their tree and shrub layers can hardly be separated, as Quercus pubescens trees are usually low and bushy, while shrubs, again mainly Cornus mas, Ligustrum vulgare and Viburnum lantana, are numerous and grow vigorously. Many species of thermophilous herbaceous forest fringes are present in the herb layer, such as Dictamnus albus, Geranium sanguineum and Vincetoxicum hirundinaria, as well as dry grassland species such as Aster amellus, Carex humilis, Festuca rupicola, Inula ensifolia and Stachys recta. On a iner scale, the shrub association Violo hirtae-Cornetum maris (alliance Berberidion vulgaris) and herbaceous forest-fringe communities of the alliance Geranion sanguinei can be distinguished here, along with various types of dry grasslands. Two associations of broad-leaved ravine forest (alliance Tilio platyphylli-Acerion) occur on the north-facing slopes of Děvín Hill. The irst, Aceri-Tilietum, is more widespread and includes stands with Tilia platyphyllos, Carpinus betulus and Acer pseudoplatanus. It is conined to sites with well-developed, moderately humid soils. The shrub layer is scarce due to the closed canopy and high densities of moulon. The herb layer contains Alliaria petiolata, Asarum europaeum, Campanula trachelium, Lathyrus vernus and Pulmonaria oficinalis; in early summer, it is dominated by the tall herb Aconitum lycoctonum. Upwards, at the foot and ledges of limestone cliffs, this type of ravine forest is replaced by patches of Seslerio albicantis-Tilietum cordatae. This relict community, with Tilia platyphyllos as the dominant tree here, harbours several species of Sesleria grasslands such as Anthericum ramosum, Bupleurum falcatum, Erysimum odoratum, Hylotelephium maximum, Sesleria caerulea and Vincetoxicum hirundinaria. Grasslands The dry grasslands of the Pavlov Hills have always attracted botanists, and formal phytosociological descriptions of their most important types were performed by Zlatník (1928) and, most notably, by Klika (1931). In phytosociological terms, they belong to the class of Euro-Siberian steppes Festuco-Brometea. The stands of the association Festuco valesiacae-Stipetum capillatae (alliance Festucion valesiacae) represent a type of continental steppe. They are associated with very dry places with moderately developed soil. In addition to the name-giving species, they also contain Bothriochloa ischaemum, Centaurea stoebe, Festuca rupicola and Stipa pulcherrima. The association Poo badensis-Festucetum pallentis (alliance Bromo pannonici-Festucion pallentis) is related to the sub-Mediterranean grasslands of southern Europe and the limestone and dolomite grasslands of the fringes of the Alps and Carpathians, although it also contains several species of the continental steppe. It occupies more extreme habitats with shallow soils of limestone outcrops. Several species of succulent Crassulaceae, such as Jovibarba globifera, Sedum acre and S. album, are conined to these places, along with Allium lavum, Campanula sibirica, Festuca pallens, Iris pumila, Poa badensis and Teucrium montanum. Short-living spring therophytes, such as Arabis auriculata, Cerastium pumilum, Erophila spathulata and Holosteum umbellatum, are typical of both types of dry grassland. The north- and west-facing rocky slopes support Sesleria caerulea grasslands (association Minuartio setaceae-Seslerietum caeruleae, alliance Diantho lumnitzeri-Seslerion). These are related to the Sesleria grasslands that occur on limestone outcrops of the montane and subalpine belt of the Alps and the Carpathians. These grasslands are believed to have occupied lowland mesic sites on base-rich soils in the Pleistocene full-glacial periods, but retreated due to the spread of other vegetation types in the Holocene. They are currently restricted to high-altitudinal limestone areas in the Alps and Carpathians and to a few lowland sites such as the Pavlov Hills. They harbour several relict species with subalpine afinities, e.g. Arenaria grandilora, Biscutella laevigata subsp. varia, Dianthus lumnitzeri, Saxifraga paniculata and Tephroseris integrifolia. The dry grassland types described above are natural in many places, but have also developed at other sites due to deforestation and grazing. Some grassland types of secondary origin in the Pavlov Hills are of great interest in biodiversity conservation. For example, deep soils on loess and other soft sediments in the foothills support semi-dry grasslands with Bromus erectus and Brachypodium pinnatum (association Polygalo majoris-Brachypodietum pinnati, alliance Cirsio-Brachypodion pinnati). Some of 121 8 these grasslands developed on abandoned ields and became rich in species over a few decades to attain a high conservation value (Sojneková & Chytrý 2015). Other examples of remarkable plant communities in the Pavlov Hills include xeric shrub communities (alliances Berberidion vulgaris and Prunion fruticosae), weed communities of calcareous soils (alliance Caucalidion) and communities of fallow land (alliance Dauco carotae-Melilotion). Flora The lora of the Pavlov Hills is extremely remarkable due to the geographic location of the area on the north-western edge of the Pannonian Basin. Steppe and rock habitats harbour two major plant groups with contrasting distribution ranges: (1) ‘eastern’ species, i.e. those with Pannonian, Pontic-Pannonian or Continental distribution ranges, and (2) ‘southern’ species, i.e. mainly those with sub-Mediterranean distribution ranges, some of them broadly distributed on the limestone fringes of the Alps and the Carpathians. Several species of the former group reach their western distribution limit in southern Moravia, while those of the latter group grow here near their northern distribution limit. Eastern continental species are represented by, for example, Adonis vernalis, Astragalus austriacus, Carex stenophylla, Helictotrichon desertorum, Peucedanum alsaticum, Phlomis tuberosa, Stipa pennata, Thalictrum foetidum and Viola ambigua; they may be considered relicts of the late Pleistocene and early Holocene continental steppe. Cytisus procumbens, Iris pumila, Jurinea mollis, Linum hirsutum and Medicago prostrata are Pontic-Pannonian or Pannonian species. The group of southern species with sub-Mediterranean distribution includes Buglossoides purpurocaerulea, Ficaria calthifolia, Fumana procumbens, Globularia bisnagarica, Linum tenuifolium, Minuartia rubra, M. setacea, Orlaya grandilora, Parietaria oficinalis, Quercus pubescens, Salvia aethiopis, Stipa pulcherrima, Teucrium montanum, Trinia glauca and Viola kitaibeliana, the latter known in the Czech Republic only from the castle ruin Děvičky on Děvín Hill. Stipa eriocaulis, which in the Czech Republic grows only on the hill Svatý kopeček above the town of Mikulov, also belongs to this group. Central European taxa are represented by Viola tricolor subsp. saxatilis and species of broad-leaved deciduous forests such as Aconitum lycoctonum, Corydalis pumila and Hepatica nobilis. Dianthus lumnitzeri, protected under the EU Habitats Directive, is endemic to the western part of the Pannonian Basin. It occurs in southern Moravia (only in the Pavlov Hills), Lower Austria, south-western Slovakia and northern Hungary. The rocks of Děvín Hill harbour Arenaria grandilora at the northernmost point of its distribution range. (the transition from coppicing to high forest) and game pressure, and probably also by atmospheric nitrogen deposition. As a result, the forests have become darker, moister and richer in nutrients. The nature conservation authorities currently aim to restore coppicing in some forest stands on Děvín Hill. After seven decades with almost no management, this would be another major change. The purpose of this move is conservation of vanishing plant and animal species and conservation of forest habitats protected under national and EU legislation. The management plan proposed for the period 2009–2019 by the Pálava Protected Landscape Area has been approved, though its implementation is encounting legislative and practical dificulties. (8a) Děvín Hill Děvín Hill (Maidenberg in German; 549 m) is a part of the National Nature Reserve Děvín-Kotel-Soutěska, situated in the northernmost part of the Pavlov Hills between the villages of Pavlov, Dolní Věstonice, Horní Věstonice, Perná and Klentnice. Besides Děvín Hill in the north-east the reserve includes also the hill Obora (also called Kotel or Kotelná; 483 m), separated by the deep gorge called Soutěska. The ruins of the medieval castle Děvičky (Maidenstein) can be found on the northernmost hilltop of Děvín. The hills are built mainly of hard and white Ernstbrunn limestone, forming spectacular cliffs above the Soutěska gorge, on the north-western slopes of Děvín and on the western slope of the hill Obora. The nature reserve, established in 1946, is 381 ha in size. A basic description of its vegetation can be found above in the characteristics of the Pavlov Hills as a whole. The lora of the reserve consists of more than 640 species. The human impact on the ecosystems of Děvín Hill has an extremely long history. There were human settlements on the hills in the Upper Palaeolithic Gravettian Period. A fortiied settlement was established on the north-east of the hilltop in the Upper Bronze Age. The castle Děvičky, built in the late-Romanesque and early-Gothic style, was irst mentioned in written documents in the early 13th century. Another castle, known as Neuhaus or Domus nova, was established in the northern part of the hill Obora in the 14th century. Small limestone quarries existed in several places. Forest management The earliest historical documents on forest management date back to the late 14th century (Hédl & Szabó 2009; Müllerová et al. 2014). At that time, the forests on Děvín Hill were managed as coppice with a rotation time of just seven years, producing mainly irewood and, along with the coppiced Milovice Wood, generating more than one quarter of all the income of the Liechtenstein Mikulov estate. Apparently, no standard trees were present. The coppice cycle increased to 11–12 years in the 17th century, and by that time the management system also included standard trees in some compartments. At that time, the right to underwood was leased to peasants for a ixed yearly sum, while the estate owners retained the right to standard trees in all forests. Consequently, the number of standard trees gradually increased. Modern forestry methods were introduced at the beginning of the 19th century starting with a detailed survey of standard trees; there were found to be more than 52,000 of them. In the 19th century and the irst half of the 20th century, the coppicing cycle increased to 30–40 years. The last documented coppicing on Děvín Hill was in 1935–1938 (Altman et al. 2013). Coppicing was completely abandoned after WWII which resulted in a forest age structure completely different from that of the previous seven centuries. A game preserve for fallow deer (Dama dama) was established on Děvín Hill in 1885. Later on, a few dozen bezoar goat (Capra aegagrus) and moulon (Ovis musimon) were kept there. The game preserve was closed in 1996, although a herd of moulon, consisting of several dozen animals, can still be found there. Repeated sampling of vegetation plots recorded by J. Horák in the 1950s revealed a substantial decrease in vegetation diversity by 2002–2003 (Hédl & Szabó 2009; Kopecký et al. 2013; Müllerová et al. 2014). Species richness per plot and per site declined and vegetation became more homogeneous. Light-demanding thermophilous species in particular, formerly fairly abundant in forest vegetation, have vanished or become extremely rare. This may be explained by changes in forest management 122 The sunny slopes of Děvín Hill are covered by a mosaic of steppic grasslands, dry oak woodlands and mesic forests in side valleys. Photo Z. Lososová. 123 8 8 Former coppice of Tilia platyphyllos on the north-facing slope of Děvín Hill. Photo M. Chytrý. Děvín Hill in the northern part of the Pavlov Hills. 124 Plate 8a Plants of Děvín Hill in the Pavlov Hills: (a) Dianthus lumnitzeri, (b) Poa badensis, (c) Linaria genistifolia, (d) Stachys recta, (e) Alyssum montanum, (f) Papaver conine, (g) Iris pumila, (h) Astragalus onobrychis, (i) Arenaria grandilora, (j) Corydalis pumila, (k) Inula oculus-christi, (l) Vicia tenuifolia. 125 (8b) Tabulová National Nature Reserve 8 This National Nature Reserve includes the hill Růžový vrch (ca 436 m), with a castle ruin on its top, and the hill Stolová hora (also Tabulová, Tafelberg in German, both meaning ‘table mountain’; 459 m). They are situated in the middle part of the Pavlov Hills above the western edge of the village of Klentnice. The remarkable lat top of the hill Stolová hora has been interpreted as a landform shaped by Pliocene denudation processes. Picturesque limestone cliffs are found on the western and eastern slopes of both hills. Tabulová National Nature Reserve in the central part of the Pavlov Hills Dry grasslands, the most widespread vegetation formation on both hills, are represented by four types. Small patches of the association Poo badensis-Festucetum pallentis (alliance Bromo pannonici-Festucion pallentis) have developed mainly on the west- and east-facing slopes. The same slopes also harbour Sesleria caerulea grasslands of the association Minuartio setaceae-Seslerietum caeruleae (alliance Diantho lumnitzeri-Seslerion), containing Dianthus lumnitzeri and Pulsatilla grandis, both protected under the EU Habitats Directive. The south-facing slope of the hill Stolová hora is covered by dry grassland of the alliance Festucion valesiacae with Carex humilis and Galatella linosyris as local dominants. Species-rich semi-dry grasslands with Bromus erectus and Brachypodium pinnatum of the association Polygalo majoris-Brachypodietum pinnati (alliance Cirsio-Brachypodion pinnati) have developed on the lower slopes. Large patches of abandoned pastures are covered by scrub of the alliance Berberidion vulgaris with Crataegus monogyna, Prunus mahaleb and P. spinosa. Forests are mostly secondary, with Fraxinus excelsior, Quercus robur and non-native Pinus nigra. In some places, their species composition is similar to that of Pannonian oak-hornbeam forests of the association Primulo veris-Carpinetum betuli (alliance Carpinion betuli) or broad-leaved ravine forests of the association Aceri-Tilietum (alliance Tilio platyphylli-Acerion). Thermophilous oak forests of the association Euphorbio-Quercetum (alliance Quercion pubescenti-petraeae) have been preserved only at the southern foot of the hill Stolová hora. 126 Růžový vrch with ruins of the castle Sirotčí hrádek in the 1920s and 2014. Photo archive of the Department of Botany and Zoology, Masaryk University, and J. Chytrý. The lora is similar to that of the National Nature Reserve Děvín-Kotel-Soutěska. There is a small population of Salvia aethiopis, considered the only native occurrence of this species in the Czech Republic, above the southern slope of Stolová hora. Stolová hora was already deforested in the Bronze Age when a fortiied settlement was built on its lat summit. The castle on the cliffs of the hill Růžový vrch was built in the 13th century and destroyed by the Swedish army in 1645. Several small limestone quarries existed here in the past. Both hills were used as pastures by the inhabitants of the nearby villages until the 1950s. The area has been protected since 1951. 127 Dry grasslands, the most widespread vegetation formation on both hills, are represented by four types. Small patches of the association Poo badensis-Festucetum pallentis (alliance Bromo pannonici-Festucion pallentis) have developed mainly on the west- and east-facing slopes. The same slopes also harbour Sesleria caerulea grasslands of the association Minuartio setaceae-Seslerietum caeruleae (alliance Diantho lumnitzeri-Seslerion), containing Dianthus lumnitzeri and Pulsatilla grandis, both protected under the EU Habitats Directive. The south-facing slope of the hill Stolová hora is covered by dry grassland of the alliance Festucion valesiacae with Carex humilis and Galatella linosyris as local dominants. Species-rich semi-dry grasslands with Bromus erectus and Brachypodium pinnatum of the association Polygalo majoris-Brachypodietum pinnati (alliance Cirsio-Brachypodion pinnati) have developed on the lower slopes. Large patches of abandoned pastures are covered by scrub of the alliance Berberidion vulgaris with Crataegus monogyna, Prunus mahaleb and P. spinosa. Forests are mostly secondary, with Fraxinus excelsior, Quercus robur and non-native Pinus nigra. In some places, their species composition is similar to that of Pannonian oak-hornbeam forests of the association Primulo veris-Carpinetum betuli (alliance Carpinion betuli) or broad-leaved ravine forests of the association Aceri-Tilietum (alliance Tilio platyphylli-Acerion). Thermophilous oak forests of the association Euphorbio-Quercetum (alliance Quercion pubescenti-petraeae) have been preserved only at the southern foot of the hill Stolová hora. The lora is similar to that of the National Nature Reserve Děvín-Kotel-Soutěska. There is a small population of Salvia aethiopis, considered the only native occurrence of this species in the Czech Republic, above the southern slope of Stolová hora. Stolová hora was already deforested in the Bronze Age when a fortiied settlement was built on its lat summit. The castle on the cliffs of the hill Růžový vrch was built in the 13th century and destroyed by the Swedish army in 1645. Several small limestone quarries existed here in the past. Both hills were used as pastures by the inhabitants of the nearby villages until the 1950s. The area has been protected since 1951. 8 (8c) Svatý kopeček Nature Reserve The hill Svatý kopeček (Heiliger Berg in German, both names meaning Holy Hill; 363 m) lanks the town of Mikulov from the east. It is elongated roughly from the north-east to the south-west and formed of white and hard Jurassic limestone. Its north-western part was destroyed by the quarrying of limestone from 1816 to the early 1970s. Fragments of rock-outcrop vegetation with Aurinia saxatilis and Thalictrum foetidum are developed on the north-western slopes of the hill. The steep west-facing slope above the town of Mikulov is covered by Sesleria caerulea grasslands of the association Minuartio setaceae-Seslerietum caeruleae (alliance Diantho lumnitzeri-Seslerion) harbouring a small population of Pulsatilla grandis. The south- and south-east-facing slopes of Svatý kopeček support a patchy mosaic of dry grasslands of the associations Poo badensis-Festucetum pallentis (alliance Bromo pannonici-Festucion pallentis) and Koelerio macranthae-Stipetum joannis (alliance Festucion valesiacae), the latter containing large stands of Stipa eriocaulis and S. pulcherrima. In mid-April, stands of lowering Iris pumila may be observed along the tourist trail, followed by I. arenaria two weeks later. Crataegus monogyna and Prunus mahaleb are dominant species of dense shrubberies on the south-east-facing slope. The forests on the hill are mainly secondary, with Acer platanoides, Fraxinus excelsior and Quercus robur as dominant species. Non-native Pinus nigra was also planted here at the turn of the 19th century or somewhat later, as was Syringa vulgaris, introduced here by the local Scenic Improvement Society (Verschönerungsverein) and now encroaching on large patches on the west-facing slope. Ailanthus altissima and Robinia pseudoacacia are additional invasive alien trees, both spreading mainly on the east-facing slope. The thermophilous oak forests of the association Euphorbio-Quercetum (alliance Quercion pubescenti-petraeae) have survived only as a small stand in the north-eastern part of the reserve. The lora of the reserve includes about 407 species and hybrids of vascular plants, recorded here in 1992–2004. Svatý kopeček is one of the most species-rich sites for the genera Orobanche (s.l.) and Viola in the Czech Republic, supporting seven species of the former, and eleven species and ive hybrids of the latter. The most remarkable species of these genera are Orobanche artemisiae-campestris, Phelipanche arenaria and Viola ambigua. The proportion of alien species is large due to the proximity of the town of Mikulov and strong human inluence. 128 Plate 8b Plants of the Tabulová National Nature Reserve in the Pavlov Hills: (a) Arum cylindraceum, (b) Allium senescens subsp. montanum, (c) Vicia villosa subsp. villosa, (d) Globularia bisnagarica, (e) Orlaya grandilora, (f) Melica ciliata, (g) Rapistrum perenne, (h) Bromus japonicus, (i) Viola tricolor subsp. saxatilis, (j) Salvia aethiopis, (k) Cytisus procumbens, (l) Ranunculus illyricus. 129 8 The hill Svatý kopeček above the town of Mikulov with the Baroque Chapel of St. Sebastian and Stations of the Cross. Its west-facing slope with limestone outcrops is covered by Sesleria caerulea grasslands. Photo M. Chytrý. The town of Mikulov in the southern part of the Pavlov Hills with the hill Svatý kopeček above its eastern edge. 130 Plate 8c Plants of the Svatý kopeček Nature Reserve in the Pavlov Hills: (a) Phelipanche arenaria, (b) Orobanche artemisiae-campestris, (c) Biscutella laevigata subsp. varia, (d) Iris arenaria, (e) Asplenium ruta-muraria, (f) Campanula sibirica, (g) Viola suavis, (h) Thalictrum foetidum, (i) Cotoneaster integerrimus, (j) Centaurea scabiosa, (k) Prunus mahaleb, (l) Fumana procumbens. 131 The ifteen Stations of the Cross along the path to the hilltop were established in 1626–1723. The white Baroque pilgrimage Chapel of St. Sebastian and the neighbouring campanile on the lat top were built in the 17th century. By constructing these buildings the Catholic Church was attempting to support the Counter-Reformation and supress the old pagan belief that the hill summit was a meeting place of witches, as documented by the original German name of the hill Tanzberg (Hill of Dances). The top of Svatý kopeček provides an excellent view of the historical town of Mikulov, dominated by the chateau built by Cardinal Franz von Dietrichstein, Bishop of Olomouc and Governor of Moravia, in the 17th century on the foundations of the original Gothic castle. Since 1946, Svatý kopeček has been protected as a nature reserve. Appendix 8 Selected species of vascular plants of the Pavlov Hills recorded on the Děvín Hill, in the Tabulová National Nature Reserve and in the Svatý kopeček Nature Reserve by J. Danihelka in 1992–2007. See also Danihelka & Řepka (1995) and Danihelka & Grulich (1996). Acer campestre Acer negundo (neo) Acer platanoides Acer pseudoplatanus Achillea collina Achillea pannonica Acinos arvensis Aconitum lycoctonum Adonis aestivalis Adonis vernalis Adoxa moschatellina Aegopodium podagraria Aesculus hippocastanum (neo) Aethusa cynapium Agrimonia eupatoria Agrostis gigantea (neo) Ailanthus altissima (neo) Ajuga chamaepitys Ajuga genevensis Ajuga reptans Alliaria petiolata Allium angulosum Allium lavum Allium oleraceum Allium rotundum Allium scorodoprasum Allium senescens subsp. montanum Alopecurus pratensis Alyssum alyssoides Alyssum montanum Androsace elongata Anemone nemorosa Anemone ranunculoides Anemone sylvestris Anthericum ramosum Anthriscus caucalis Anthriscus cerefolium Anthriscus sylvestris Anthyllis vulneraria Arabidopsis thaliana Arabis auriculata Arabis hirsuta Arabis sagittata Arctium lappa Arctium minus 132 Arctium tomentosum Arenaria grandilora Arenaria serpyllifolia agg. Arrhenatherum elatius Artemisia absinthium Artemisia campestris Artemisia pontica Artemisia vulgaris Arum cylindraceum Asarum europaeum Asparagus oficinalis Asperula cynanchica Asplenium ruta-muraria Asplenium trichomanes Aster amellus Astragalus austriacus Astragalus cicer Astragalus glycyphyllos Astragalus onobrychis Atriplex oblongifolia Atriplex patula Atriplex sagittata Aurinia saxatilis Avenula pubescens Ballota nigra Barbarea stricta Barbarea vulgaris Berberis vulgaris Berteroa incana Betonica oficinalis Betula pendula Biscutella laevigata subsp. varia Bothriochloa ischaemum Botrychium lunaria Brachypodium pinnatum Brachypodium sylvaticum Briza media Bromus benekenii Bromus erectus Bromus hordeaceus Bromus inermis Bromus japonicus Bromus sterilis Bromus tectorum Bryonia alba Buglossoides incrassata subsp. splitgerberi Buglossoides purpurocaerulea Bunias orientalis (neo) Bupleurum falcatum Calamagrostis epigejos Camelina microcarpa Campanula bononiensis Campanula glomerata Campanula persicifolia Campanula rapunculoides Campanula sibirica Campanula trachelium Capsella bursa-pastoris Cardamine impatiens Carduus acanthoides Carduus crispus Carduus nutans Carex caryophyllea Carex digitata Carex humilis Carex michelii Carex montana Carex muricata Carex pilosa Carex praecox Carex spicata Carex stenophylla Carex supina Carex sylvatica Carex tomentosa Carlina acaulis Carlina biebersteinii subsp. brevibracteata Carpinus betulus Carum carvi Caucalis platycarpos Centaurea jacea subsp. angustifolia Centaurea scabiosa Centaurea stoebe Centaurea triumfetti Cephalanthera damasonium Cephalanthera rubra Cerastium arvense Cerastium brachypetalum Cerastium glutinosum Cerastium holosteoides Cerastium pumilum Cerastium semidecandrum Cerastium tenoreanum Cerastium tomentosum (neo) Cerinthe minor Chaerophyllum bulbosum Chaerophyllum temulum Chamaecytisus austriacus Chamaecytisus ratisbonensis Chamaecytisus virescens Chelidonium majus Chenopodium album Chenopodium hybridum Chondrilla juncea Cichorium intybus Cirsium arvense Cirsium canum Cirsium vulgare Clematis recta Clematis vitalba Clinopodium vulgare Colchicum autumnale Conium maculatum Consolida regalis Convallaria majalis Convolvulus arvensis Cornus mas Cornus sanguinea Corydalis cava Corydalis intermedia Corydalis pumila Corylus avellana Cota austriaca Cotoneaster integerrimus Crataegus ×fallacina Crataegus laevigata Crataegus ×media Crataegus monogyna Crepis biennis Crepis foetida subsp. rhoeadifolia Crepis praemorsa Cuscuta epithymum Cuscuta europaea Cymbalaria muralis Cynoglossum oficinale Cytisus nigricans Cytisus procumbens Dactylis glomerata Dactylis polygama Datura stramonium (neo) Daucus carota Dentaria bulbifera Dentaria enneaphyllos Descurainia sophia Dianthus lumnitzeri Dianthus pontederae Dictamnus albus Digitalis grandilora Diplotaxis tenuifolia Dipsacus laciniatus Dorycnium germanicum Dryopteris ilix-mas Echinops sphaerocephalus Echium vulgare Elymus caninus Elymus hispidus Elymus repens Epilobium montanum Epipactis helleborine Epipactis microphylla Equisetum arvense Erigeron acris Erigeron annuus (neo) Erigeron muralis Erigeron podolicus Erodium cicutarium Erophila spathulata Eryngium campestre Erysimum cheiranthoides Erysimum diffusum Erysimum durum Erysimum odoratum Euonymus europaeus Euonymus verrucosus Eupatorium cannabinum Euphorbia amygdaloides Euphorbia cyparissias Euphorbia epithymoides Euphorbia helioscopia Euphorbia virgata Euphrasia stricta Falcaria vulgaris Fallopia convolvulus Fallopia dumetorum Festuca arundinacea Festuca gigantea Festuca heterophylla Festuca pallens Festuca pratensis Festuca pulchra Festuca rubra Festuca rupicola Festuca valesiaca Ficaria calthifolia Ficaria verna subsp. verna Filipendula vulgaris Fragaria moschata Fragaria vesca Fragaria viridis Fraxinus excelsior Fumana procumbens Fumaria schleicheri Fumaria vaillantii Gagea lutea Gagea minima Gagea pratensis Gagea pusilla Gagea transversalis Gagea villosa Galanthus nivalis Galatella linosyris Galeobdolon montanum Galeopsis angustifolia Galeopsis pubescens Galinsoga parvilora (neo) Galium album subsp. album Galium album subsp. pycnotrichum Galium aparine Galium austriacum Galium boreale Galium glaucum Galium odoratum Galium spurium Galium sylvaticum Galium verum Genista tinctoria Gentiana cruciata Geranium columbinum Geranium divaricatum Geranium pratense Geranium pusillum Geranium pyrenaicum (neo) Geranium robertianum Geranium sanguineum Geum urbanum Glechoma hederacea Glechoma hirsuta Globularia bisnagarica Hedera helix Helianthemum grandilorum subsp. obscurum Helictochloa pratensis subsp. hirtifolia Hepatica nobilis Heracleum sphondylium Hesperis sylvestris Hesperis tristis Hieracium biidum Hieracium lachenalii Hieracium murorum Hieracium racemosum Hieracium sabaudum Hieracium umbellatum Holosteum umbellatum Hordelymus europaeus Hordeum murinum Humulus lupulus Hylotelephium maximum Hyoscyamus niger Hypericum hirsutum Hypericum montanum Hypericum perforatum Impatiens parvilora (neo) Inula britannica Inula conyzae Inula ensifolia Inula hirta 8 133 Inula oculus-christi Inula salicina Inula ×stricta (I. ensifolia × I. salicina) Iris arenaria Iris graminea Iris pumila Iris variegata Isatis tinctoria Isopyrum thalictroides Jovibarba globifera Juglans nigra (neo) Juglans regia Jurinea mollis Knautia arvensis Knautia ×posoniensis Koeleria macrantha Laburnum anagyroides (neo) Lactuca quercina Lactuca serriola Lactuca viminea Lamium album Lamium amplexicaule Lamium maculatum Lamium purpureum Lappula squarrosa Lapsana communis Larix decidua (planted) Lathraea squamaria Lathyrus hirsutus (neo) Lathyrus latifolius Lathyrus niger Lathyrus pratensis Lathyrus tuberosus Lathyrus vernus Lavatera thuringiaca Leontodon hispidus Leonurus cardiaca Leonurus marrubiastrum Lepidium campestre Lepidium draba Leucanthemum vulgare Libanotis pyrenaica Ligustrum vulgare Lilium martagon Limodorum abortivum Linaria genistifolia Linaria vulgaris Linum catharticum Linum hirsutum Linum tenuifolium Lithospermum oficinale Lolium perenne Lonicera caprifolium (neo) Lonicera xylosteum Loranthus europaeus Lotus borbasii Lotus corniculatus Lotus maritimus Lycium barbarum (neo) 134 Lycopus europaeus Lysimachia nummularia Mahonia aquifolium (neo) Malus domestica Malus sylvestris Malva alcea Malva sylvestris Medicago falcata Medicago lupulina Medicago minima Medicago prostrata Medicago sativa (neo) Melampyrum arvense Melampyrum cristatum Melampyrum nemorosum Melampyrum pratense Melica altissima (neo) Melica ciliata Melica nutans Melica picta Melica transsilvanica Melica unilora Melilotus albus Melilotus oficinalis Melittis melissophyllum Mentha longifolia Mercurialis annua Mercurialis perennis Microthlaspi perfoliatum Milium effusum Minuartia rubra Minuartia setacea Moehringia trinervia Muscari comosum Muscari neglectum Muscari tenuilorum Mycelis muralis Myosotis arvensis Myosotis ramosissima Myosotis stricta Myosoton aquaticum Neottia nidus-avis Nepeta cataria Nepeta nuda Nigella arvensis Nonea pulla Odontites luteus Odontites vernus subsp. serotinus Omphalodes scorpioides Onobrychis arenaria Ononis spinosa Onopordum acanthium Orchis militaris Orchis purpurea Origanum vulgare Orlaya grandilora Ornithogalum kochii Orobanche alba subsp. alba Orobanche alba subsp. major Orobanche alsatica Orobanche artemisiae-campestris Orobanche caryophyllacea Orobanche kochii Orobanche lutea Orobanche picridis Oxytropis pilosa Papaver conine Papaver maculosum Papaver rhoeas Parietaria oficinalis Parthenocissus inserta (neo) Pastinaca sativa Petrorhagia prolifera Peucedanum alsaticum Peucedanum cervaria Phalaris arundinacea Phelipanche arenaria Phelipanche purpurea Phleum phleoides Phleum pratense Phlomis tuberosa Picris hieracioides Pilosella bauhini Pilosella brachiata Pilosella cymosa Pilosella densilora Pilosella oficinarum Pilosella pilosellina Pilosella rothiana Pimpinella major Pimpinella saxifraga Pinus nigra (neo) Pinus sylvestris Plantago lanceolata Plantago major Plantago media Plantago uliginosa Poa angustifolia Poa annua Poa badensis Poa bulbosa Poa compressa Poa nemoralis Poa pratensis Poa trivialis Polygala major Polygonatum multilorum Polygonatum odoratum Polygonum aviculare agg. Polypodium vulgare Populus alba Populus tremula Potentilla anserina Potentilla argentea Potentilla heptaphylla Potentilla incana Potentilla inclinata Potentilla recta Potentilla reptans Primula veris Prunella grandilora Prunella vulgaris Prunus avium Prunus cerasifera Prunus domestica Prunus ×eminens Prunus fruticosa Prunus mahaleb Prunus spinosa Pseudoturritis turrita Pulmonaria oficinalis Pulsatilla grandis Pyrus communis Pyrus pyraster Quercus cerris Quercus petraea Quercus pubescens Quercus robur Ranunculus auricomus agg. Ranunculus bulbosus Ranunculus illyricus Ranunculus polyanthemos Ranunculus repens Raphanus raphanistrum Rapistrum perenne Reseda lutea Reseda luteola Rhamnus cathartica Rhinanthus major Ribes uva-crispa Robinia pseudoacacia (neo) Rosa agrestis Rosa canina Rosa dumalis Rosa gallica Rosa rubiginosa Rosa spinosissima Rubus caesius Rumex acetosa Rumex crispus Rumex obtusifolius Rumex patientia Rumex thyrsilorus (neo) Salix alba Salix caprea Salvia aethiopis Salvia nemorosa Salvia pratensis Salvia verticillata Sambucus ebulus Sambucus nigra Sanguisorba minor Saponaria oficinalis Saxifraga paniculata Saxifraga tridactylites Scabiosa canescens Scabiosa ochroleuca Scorzonera austriaca Scorzonera cana Scorzonera hispanica Scrophularia nodosa Securigera varia Sedum acre Sedum album Sedum spurium (neo) Senecio jacobaea Senecio viscosus Senecio vulgaris Serratula tinctoria Seseli annuum Seseli hippomarathrum Seseli osseum Sesleria caerulea Setaria pumila Setaria viridis Sherardia arvensis Silene latifolia subsp. alba Silene nutans Silene otites Silene vulgaris Sinapis arvensis Sisymbrium orientale Sisymbrium strictissimum (neo) Solanum nigrum Solidago canadensis (neo) Solidago gigantea (neo) Solidago virgaurea Sonchus asper Sonchus oleraceus Sorbus danubialis Sorbus domestica Sorbus torminalis Stachys annua Stachys germanica Stachys palustris Stachys recta Stachys sylvatica Staphylea pinnata Stipa capillata Stipa eriocaulis Stipa pennata Stipa pulcherrima Symphyotrichum lanceolatum (neo) Symphytum oficinale Syringa vulgaris (neo) Tanacetum corymbosum Tanacetum vulgare Taraxacum erythrospermum Taraxacum parnassicum Taraxacum sect. Taraxacum Taraxacum serotinum Taxus baccata Tephroseris integrifolia Teucrium chamaedrys Teucrium montanum Thalictrum lavum Thalictrum foetidum Thalictrum minus Thesium dollineri Thesium linophyllon Thymelaea passerina Thymus glabrescens Thymus pannonicus Thymus praecox Tilia cordata Tilia platyphyllos Torilis arvensis Torilis japonica Tragopogon dubius Tragopogon orientalis Trifolium alpestre Trifolium arvense Trifolium campestre Trifolium dubium Trifolium medium Trifolium montanum Trifolium pratense Trifolium repens Trifolium rubens Trisetum lavescens Turritis glabra Tussilago farfara Ulmus glabra Ulmus laevis Ulmus minor Urtica dioica Valeriana stolonifera subsp. angustifolia Valerianella carinata Valerianella locusta Verbascum chaixii subsp. austriacum Verbascum lychnitis Verbascum phlomoides Verbascum phoeniceum Veronica arvensis Veronica chamaedrys Veronica hederifolia Veronica orchidea Veronica persica (neo) Veronica polita Veronica praecox Veronica prostrata Veronica spicata Veronica sublobata Veronica teucrium Veronica triloba Veronica verna Veronica vindobonensis Viburnum lantana Viburnum opulus Vicia angustifolia Vicia cracca Vicia dumetorum Vicia hirsuta Vicia pannonica subsp. striata Vicia pisiformis Vicia sepium Vicia tenuifolia 8 135 Vicia tetrasperma Vicia villosa subsp. villosa Vinca minor Vincetoxicum hirundinaria Viola ambigua Viola arvensis Viola collina Viola hirta Viola kitaibeliana Viola mirabilis Viola odorata Viola reichenbachiana Viola riviniana Viola rupestris Viola suavis (neo) Viola tricolor subsp. saxatilis Viscum album The hilly landscape with chernozem soils on the foot of the Pavlov Hills is an important wine-growing area of the Czech Republic. Photo M. Chytrý. References Altman, J., Hédl, R., Szabó, P., Mazůrek, P., Riedl, V., Müllerová, J., Kopecký, M. & Doležal, J. 2013. Tree-rings mirror management legacy: dramatic response of standard oaks to past coppicing in Central Europe. PLOS ONE 8: e55770. Čtyroký, P. (ed.) 1995. Vysvětlivky k základní geologické mapě ČSSR 1 : 25 000 [Explanatory text to the geological map of Czechoslovakia. Scale 1 : 25 000]. Ústřední ústav geologický, Praha. Čtyroký, P., Havlíček, P., Stráník, Z. & Pálenský, P. 1995. Geologická a přírodovědná mapa CHKO a BR Pálava. Geologische und naturwissenschaftliche Karte des Landschaftsschutzgebietes (CHKO) und des Biosphärenreservats (BR) Pálava. 1 : 25 000. Český geologický ústav, Praha. Danihelka, J. 2003. Květena cévnatých rostlin biosférické rezervace Pálava a Podluží [Flora of vascular plants of the Pálava and Podluží Biosphere Reserve]. In: Danihelka, J. (ed.) Pálava na prahu třetího tisíciletí [The Pálava Protected Landscape Area on the threshold of the third millenium], pp. 37–45. Správa chráněné krajinné oblasti Pálava, Mikulov. Danihelka, J. 2008. Hvězdnice sivá (Aster canus), Christian Ferdinand Hochstetter a dva málo známé prameny ke květeně Moravy [Aster canus, Christian Ferdinand Hochstetter and two less known sources of information about the lora of Moravia]. Zprávy České botanické společnosti 43: 1–16. Danihelka, J. & Grulich, V. (ed.) 1996. Výsledky loristického kursu v Břeclavi (1995) [Results of the Summer School of Field Botany in Břeclav (1995)]. Zprávy České botanické společnosti, Příloha 1996/1: 1–86. 136 Danihelka, J. & Řepka, R. 1995. Melica altissima v Mikulově [Melica altissima in Mikulov]. Zprávy České botanické společnosti 30: 107–110. Danihelka, J. & Šumberová, K. 2004. O rozšíření některých cévnatých rostlin na nejjižnější Moravě II. [On the distribution of some vascular plants in southernmost Moravia II]. Příroda (Praha) 21: 117–192. Fuchs, M., Kreutzer, S., Rousseau, D.D., Antoine, P., Hatté, C., Lagroix, F., Moine, O., Gauthier, C., Svoboda, J. & Lisá, L. 2013. The loess sequence of Dolní Věstonice, Czech Republic: A new OSLbased chronology of the Last Climatic Cycle. Boreas 42: 664–677. Hédl, R. & Szabó, P. 2009. Děvínské lesy od středověku do současnosti [Děvín forests from the Middle Ages to the present]. Živa 57: 103–106. Hochstetter G. [recte C.] F. 1825. Uebersicht des Merkwürdigsten aus Mährens Flora. Flora 8: 512– 525 & 529–537. Hrabětová-Uhrová, A. 1970. Christian Ferdinand Hochstetters botanische Arbeit in Mähren. Jahrbuch für Geschichte der oberdeutschen Reichsstädte 16: 168–171. Horák, J. 1969. Waldtypen der Pavlovské kopce (Pollauer Berge). Přírodovědné práce ústavů Československé akademie věd v Brně 3(7): 1–40. Klika, J. 1931. Studien über die xerotherme Vegetation Mitteleuropas I. Die Pollauer Berge im südlichen Mähren. Beihefte zum Botanischen Centralblatt, Abteilung B, 47: 343–398. Kopecký, M., Hédl, R. & Szabó, P. 2013. Non-random extinctions dominate plant community changes in abandoned coppices. Journal of Applied Ecology 50: 79–87. Makowsky, A. 1863. Die Flora des Brünner Kreises. Verhandlungen des Naturforschenden Vereines in Brünn 1 (1862): 45–210. Müllerová, J., Szabó, P. & Hédl, R. 2014. The rise and fall of traditional forest management in southern Moravia: A history of the past 700 years. Forest Ecology and Management 331: 104–115. Müllerová, J., Szabó, P. & Hédl, R. 2015. Coppice abandonment and its implications for species diversity in forest vegetation. Forest Ecology and Management 343: 88–100. Oborny, A. 1879. Die Flora des Znaimer Kreises. Verhandlungen des Naturforschenden Vereines in Brünn 17 (1878): 105–304. Oborny, A. 1886. Flora von Mähren und österr. Schlesien. Brünn. Podpěra, J. 1912. Über das Vorkommen des Avenastrum desertorum (Less.) Podp. in Mähren. Österreichische botanische Zeitschrift 62: 249–252. Podpěra, J. 1928. Die Vegetationsverhältnisse im Gebiete der Pollauer Berge. Ein Beitrag zur Planzengeographie Mährens. Acta Botanica Bohemica 6–7: 77–132. Rohrer, R. & Mayer, A. 1835. Vorarbeiten zu einer Flora des Mährischen Gouvernements. R. Rohrer, Brünn. Rybníčková, E. & Rybníček, K. 1991. The environment of the Pavlovian – palaeoecological results from Bulhary, South Moravia. In: Kovar-Eder, J. (ed.) Palaeovegetational development in Europe and regions relevant to its palaeoloristic evolution, pp. 73–79, Museum of Natural History, Vienna. Rybníčková, E. & Rybníček, K. 2014. Palaeovegetation in the Pavlovské vrchy hills region (South Moravia, Czech Republic) around 25,000 BP: the Bulhary core. Vegetation History and Archaeobotany 23: 719–728. Sojneková, M. & Chytrý, M. 2015. From arable land to species-rich semi-natural grasslands: Succession in abandoned ields in a dry region of central Europe. Ecological Engineering 77: 373–381. Šmarda, J. 1975. Rostlinná společenstva skalnaté lesostepi Pavlovských kopců na Moravě (ČSSR) [Plant communities of the rocky forest-steppe in the Pavlov Hills in Moravia]. Československá ochrana prírody 14 (1974): 5–58. Šuk, V. 1956. Květena Mikulovska [Flora of the Mikulov district]. In: Hosák, L., Valoušek, B. & Šuk, V. (eds.) Mikulovsko [Mikulov District], pp. 97–139. Mikulov. Toman, M. 1976. Materiál k fytocenologii společenstev třídy Festuco-Brometea na Pavlovských kopcích (jižní Morava) [Materials on phytosociology of the communities of the Festuco-Brometea class in the Pavlov Hills (southern Moravia)]. Zborník Pedagickej fakulty v Prešove Univerzity P. J. Šafárika v Košiciach, Prírodné vedy 1 (1975): 127–134. Trinkaus, E. & Svoboda, J. 2006. Early modern human evolution in Central Europe. The people of Dolní Věstonice and Pavlov. Oxford University Press, Oxford. 137 8 Unar, J. 2004. Xerotermní vegetace Pavlovských vrchů [Xero-thermophilous vegetation of the Pavlov Hills]. Sborník Přírodovědného klubu v Uherském Hradišti, Supplementum 11: 1–140. Vašátko, J. & Ložek, V. 1973. Der holozäne Bodenkomplex von Pavlov und seine Bedeutung für die Landschaftsgeschichte des südmährischen Tschernosemgebiets. Zprávy Geograického ústavu ČSAV 10(7): 1–10. Willis, K.J. & van Andel, T.H. 2004. Trees or not trees? The environments of central and eastern Europe during the last glaciation. Quaternary Science Reviews 23: 2369–2387. Zlatník, A. 1928. Études écologiques et sociologiques sur le Sesleria coerulea et le Seslerion calcarie en Tchécoslovaquie. Rozpravy Královské české společnosti nauk, Třída mathematicko-přírodovědecká, Nová řada 8(1): 1–116. 9 Milovická stráň Nature Reserve 9 Jiří Danihelka Introduction The site is located near the southern edge of the village of Milovice about 40 km south of Brno and 6 km NE of the town of Mikulov. It is one of 14 small-scale protected areas (nature reserves and nature monuments) in the Pálava Protected Landscape Area. This nature reserve was established in 1994 and takes in an area of over 88 ha of mainly forests and, to a lesser extent, dry grasslands (Čtyroký et al. 2007). It is part of the Site of Community Importance Milovický les, established to protect mainly Pannonian oak-hornbeam and oak forests. The reserve is situated on the plateau and north- and west-facing slopes of the hill Špičák (297 m) in the gently undulating landscape of Milovice Wood. The bedrock of Milovice Wood consists mainly of Lower Tertiary lysch sandstone with insertions of conglomerates containing calcareous cement. They are covered by loess on the plateaus, while deposits from surface runoff are found in the valleys (Čtyroký et al. 1995). Cambisols and luvisols developed on loess under forest stands, alternating with chernozems under steppic grasslands. Leptosols are found in a couple of places around lysch outcrops on steep west-facing slopes. Canopy openings in a Quercus pubescens thermophilous woodland with Dictamnus albus on the upper slope of Milovická stráň. Photo M. Chytrý. The climate is very similar to that of the Pavlov Hills, being subcontinental, summer-warm and dry. The mean annual temperature is 9–10 °C and the mean temperature in the growing season (April–September) is 15–16 °C. The warmest and coldest months are July and January with mean temperatures of 19–20 °C and –1 to –2 °C, respectively. The annual precipitation sums are 500–550 mm, of which 300–325 mm falls in the growing season. Monthly precipitation varies considerably and long periods of drought are common. 138 139 The dominant forest community, covering large parts of the plateau, is subcontinental oak forest of the association Quercetum pubescenti-roboris (alliance Aceri tatarici-Quercion). Similar forests of the same alliance are typical of the eastern-central and eastern European forest-steppe biome, being more common in Hungary and further to the east. Their tree layer at Milovická stráň is formed mainly of Quercus petraea and Q. pubescens, accompanied by Ligustrum vulgare and Acer campestre in the shrub layer. The herb layer is poorer in species than in the association Euphorbio-Quercetum, usually being dominated by Melica unilora, Convallaria majalis, Poa nemoralis or Brachypodium pinnatum. These species are accompanied by mesophilous species shared with oak-hornbeam forests, including Asarum europaeum, Campanula rapunculoides, Dactylis polygama, Galium odoratum, G. sylvaticum, Polygonatum multilorum and Pulmonaria oficinalis. Pannonian oak-hornbeam forests with Carpinus betulus and Quercus petraea (association Primulo veris-Carpinetum betuli, alliance Carpinion betuli) occupy the valley bottoms and the north-facing slopes adjacent to the village. Steppic grasslands with Stipa pulcherrima on slopes of Milovická stráň affected by landslide. Photo M. Chytrý. Mammoth bones and remnants of a prehistoric settlement were discovered on the opposite side of the valley west of the road Milovice – Mikulov in the 1980s. Numerous fossil mollusc shells found in a Neolithic pit made it possible to draw some conclusions about the mid-Holocene climate and vegetation (Ložek 1999): the adjacent forests consisted of mesophilous trees, such as Fraxinus excelsior, Tilia sp. and Ulmus sp., and their malacofauna was richer in species than it is today. Vegetation The steep west-facing slopes of Milovická stráň are covered by dry grasslands of the alliance Festucion valesiacae. These are replaced by broad-leaved semi-dry grasslands of the alliance Cirsio-Brachypodion pinnati on lower parts of the slopes and by forest-fringe vegetation of the association Geranio sanguinei-Dictamnetum albi (alliance Geranion sanguinei) along forest margins and in small canopy openings. Large forest openings on steep west-facing slopes support vegetation dominated by Stipa pulcherrima (alliance Festucion valesiacae). Given the topographic situation, i.e. a steep, west-facing slope and shallow erosion-prone soils, most of the treeless patches at Milovická stráň may be considered natural. The inluence of the mesoclimate is reinforced by grazing ungulates that concentrate in sun-exposed places, particularly in winter and early spring. The slopes have probably been grazed by livestock since the Neolithic, which also helped keep open even slightly more mesic habitats that would otherwise have been overgrown by forest. Three types of forest vegetation may be found in the reserve. The perialpidic thermophilous oak forests of the association Euphorbio-Quercetum (alliance Quercion pubescenti-petraeae) form small patches on exposed ridges and in a narrow strip along the plateau margin above its west-facing slopes. The dominant tree is Quercus pubescens, while the shrub layer consists chiely of Cornus mas and Ligustrum vulgare. The herb layer is very rich in species and supports thermophilous graminoids such as Brachypodium pinnatum, Carex humilis and C. michelii, as well as dicots such as Aster amellus, Buglossoides purpurocaerulea, Dictamnus albus, Inula hirta, Stachys recta, Teucrium chamaedrys and Viola hirta. 140 The Milovická stráň Nature Reserve near the village of Milovice and the Křivé jezero National Nature Reserve in the Dyje loodplain. Flora The vascular lora of the nature reserve comprises more than 420 species and subspecies and is generally similar to that of the Pavlov Hills, although some differences may be identiied. For example, Pulsatilla grandis, usually growing above hard bedrock and more or less abundant in the Pavlov Hills, is replaced here by P. pratensis subsp. bohemica, which is absent from the Pavlov Hills. Lathyrus pannonicus subsp. collinus, found in one of the forest gaps, also does not occur in the Pavlov Hills. Interestingly, Allium sphaerocephalon and Melica ciliata, usually growing on shallow soils around rock outcrops, are both found in the reserve’s dry grasslands on deeper soils. The remarkable and striking plants here include species typical of dry grasslands and open thermophilous oak forests, such as Adonis vernalis (locally very abundant), Aster amellus, Astragalus onobrychis, Campanula sibirica, Carex humilis, Dictamnus albus, Iris graminea, I. pumila, I. variegata, Jurinea mollis, Melittis melissophyllum, Orchis militaris, O. purpurea, Stipa pulcherrima (locally very abundant) and Viola ambigua. In 1995, Orobanche teucrii was found in the reserve’s largest steppic patch south of the western edge of the village of Milovice (Danihelka & Grulich 1996). This was the irst ever record of this 141 9 sub-Mediterranean species in the Czech lora and it has not been found anywhere else in the country since. This Milovice site is situated at the northern distribution limit of the species. The reserve is also one of the few sites of the myco-heterotrophic achlorophyllous orchid Limodorum abortivum in the Czech Republic and probably holds its largest population in the country (140 lowering specimens were observed in May 2007). 9 Forest management Being a part of the Mikulov estate, the forests of Milovice Wood were managed in the same manner as those of the Pavlov Hills (see above). Coppicing is documented from the late 14th century (Müllerová et al. 2014). The rotation time has increased from about 7 years in the Middle Ages to 11–12 years in the 17th century and 30–40 years in the 19th and early 20th century when coppice with standards prevailed in most of the forest compartments. Coppicing was replaced by a high-forest management system after WWII. The state forest enterprise established two game preserves in Milovice Wood in the 1960s, one for fallow deer (Dama dama) and moulon (Ovis musimon), the other for red deer (Cervus elaphus) and fallow deer. The area covered by the present nature reserve was not part of the game preserves, as it included military facilities and an ammunition store house, and was therefore spared from strong grazing pressure by ungulates and ruderalization. Two studies based on repeated surveys of vegetation plots established by the forester Jaroslav Horák in the 1950s (Chytrý & Danihelka 1993; Hédl et al. 2010) have demonstrated a decrease in the diversity of plant species, a decline of species once typical of open coppiced woods and the spread of alien species. The causes are complex and include both changes in management and the inluence of grazing ungulates. Appendix 9 Selected species of vascular plants of the Milovická stráň Nature Reserve based mainly on the ield records by J. Danihelka from 1992–2006. See also Šuk (1956), Danihelka et al. (1995) and Danihelka & Grulich (1996). Acer campestre Acer platanoides Acinos arvensis Adonis vernalis Agrimonia eupatoria Agrostis gigantea (neo) Achillea collina Achillea pannonica Ailanthus altissima (neo) Ajuga genevensis Alliaria petiolata Allium lavum Allium oleraceum Allium rotundum Allium scorodoprasum Allium sphaerocephalon Alyssum alyssoides Anemone ranunculoides Anthericum ramosum Arabis auriculata Arabis hirsuta agg. Arctium minus Arctium nemorosum Arctium tomentosum Arenaria serpyllifolia agg. Artemisia absinthium Artemisia campestris Artemisia pontica Artemisia vulgaris Asarum europaeum Asperula tinctoria Aster amellus 142 Astragalus cicer Astragalus glycyphyllos Astragalus onobrychis Avenula pubescens Ballota nigra Barbarea vulgaris Betonica oficinalis Bothriochloa ischaemum Brachypodium pinnatum Brachypodium sylvaticum Briza media Bromus benekenii Bromus inermis Buglossoides purpurocaerulea Bupleurum falcatum Calamagrostis arundinacea Calamagrostis epigejos Campanula glomerata Campanula persicifolia Campanula rapunculoides Campanula sibirica Campanula trachelium Cardamine impatiens Carex humilis Carex michelii Carex montana Carex spicata Carlina biebersteinii subsp. brevibracteata Carpinus betulus Centaurea jacea subsp. angustifolia Centaurea stoebe Cerastium pumilum Cirsium arvense Chaerophyllum temulum Chamaecytisus ratisbonensis Chamaecytisus virescens Clematis recta Clematis vitalba Clinopodium vulgare Convallaria majalis Cornus mas Cornus sanguinea Corydalis cava Corydalis pumila Corylus avellana Crataegus monogyna Cuscuta epithymum Cytisus procumbens Dactylis glomerata Dactylis polygama Dianthus armeria Dictamnus albus Dorycnium germanicum Echinops sphaerocephalus Elymus caninus Elymus hispidus Elymus repens Eryngium campestre Euonymus europaeus Euonymus verrucosus Euphorbia cyparissias Euphorbia epithymoides Plate 9 Plants of the Milovická stráň Nature Reserve: (a) Scorzonera hispanica, (b) Campanula sibirica, (c) Galatella linosyris, (d) Limodorum abortivum, (e) Iris graminea, (f) Dictamnus albus, (g) Melittis melissophyllum, (h) Quercus pubescens, (i) Adonis vernalis, (j) Aster amellus, (k) Jurinea mollis, (l) Trifolium rubens. 143 Falcaria vulgaris Fallopia dumetorum Festuca heterophylla Festuca rupicola Festuca valesiaca Ficaria verna subsp. verna Filipendula vulgaris Fragaria moschata Fragaria viridis Fraxinus angustifolia subsp. danubialis Fraxinus excelsior Gagea lutea Galatella linosyris Galium album subsp. pycnotrichum Galium aparine Galium glaucum Galium odoratum Galium sylvaticum Galium verum Genista tinctoria Geranium sanguineum Geum urbanum Glechoma hederacea Helianthemum grandilorum subsp. obscurum Helictochloa pratensis subsp. hirtifolia Heracleum sphondylium Hesperis sylvestris Hieracium lachenalii Hieracium maculatum Hieracium murorum Hieracium sabaudum Hylotelephium maximum Hypericum hirsutum Hypericum montanum Hypericum perforatum Impatiens parvilora (neo) Inula conyzae Inula ensifolia Inula hirta Inula oculus-christi Inula salicina Inula ×stricta (I. ensifolia × I. salicina) Iris graminea Iris pumila Iris variegata Isopyrum thalictroides Jurinea mollis Koeleria macrantha Lactuca quercina Lamium maculatum Lamium purpureum Lapsana communis Lathyrus niger Lathyrus pannonicus subsp. collinus 144 Lathyrus vernus Lavatera thuringiaca Leontodon hispidus Leonurus cardiaca Leonurus marrubiastrum Lepidium campestre Leucanthemum vulgare Ligustrum vulgare Lilium martagon Limodorum abortivum Linaria vulgaris Linum tenuifolium Lithospermum oficinale Lonicera caprifolium (neo) Lonicera xylosteum Loranthus europaeus Lotus borbasii Malus sylvestris Medicago falcata Melampyrum cristatum Melampyrum pratense Melica ciliata Melica nutans Melica picta Melica transsilvanica Melica unilora Melilotus oficinalis Melittis melissophyllum Microthlaspi perfoliatum Milium effusum Moehringia trinervia Morus alba (neo) Muscari tenuilorum Nonea pulla Odontites luteus Odontites vernus subsp. serotinus Omphalodes scorpioides Ononis spinosa Orchis militaris Origanum vulgare Orobanche caryophyllacea Orobanche teucrii Peucedanum alsaticum Peucedanum cervaria Phleum phleoides Pilosella cf. densilora Pilosella oficinarum Pimpinella major Pimpinella saxifraga Plantago lanceolata Plantago major Plantago media Poa nemoralis Poa pratensis agg. Polygala comosa Polygonatum multilorum Polygonatum odoratum Potentilla alba Potentilla anserina Potentilla heptaphylla Potentilla incana Potentilla inclinata Primula veris Prunella vulgaris Prunus avium Prunus cerasus Prunus spinosa Pulmonaria oficinalis Pulsatilla pratensis subsp. bohemica Pyrus pyraster Quercus cerris Quercus petraea Quercus pubescens Quercus robur Ranunculus auricomus agg. Ranunculus polyanthemos Reseda lutea Rhamnus cathartica Robinia pseudoacacia (neo) Rosa canina Rosa gallica Rosa rubiginosa Rosa spinosissima Salvia nemorosa Salvia pratensis Sambucus nigra Scabiosa canescens Scabiosa ochroleuca Scorzonera austriaca Scorzonera cana Scorzonera hispanica Scrophularia nodosa Securigera varia Senecio jacobaea Serratula tinctoria Seseli annuum Seseli hippomarathrum Seseli pallasii Silene latifolia subsp. alba Silene nutans Silene vulgaris Solidago virgaurea Sorbus domestica Sorbus torminalis Stachys germanica Stachys recta Stellaria graminea Stellaria holostea Stipa capillata Stipa pennata Stipa pulcherrima Symphyotrichum lanceolatum (neo) Tanacetum corymbosum Taraxacum sect. Erythrosperma Taraxacum sect. Taraxacum Teucrium chamaedrys Thalictrum minus Thesium linophyllon 9 Continental oak forest with Quercus pubescens in the Milovická stráň Nature Reserve. Photo M. Chytrý. Thymus pannonicus Thymus praecox Tilia cordata Tilia platyphyllos Torilis japonica Tragopogon orientalis Trifolium alpestre Trifolium arvense Trifolium aureum Trifolium campestre Trifolium montanum Trifolium pratense Trifolium rubens Turritis glabra Ulmus minor Urtica dioica Valeriana stolonifera subsp. angustifolia Verbascum chaixii subsp. austriacum Verbascum phlomoides Verbascum phoeniceum Veronica arvensis Veronica oficinalis Veronica praecox Veronica prostrata Veronica spicata Veronica sublobata Veronica teucrium Veronica vindobonensis Viburnum lantana Vicia cracca Vicia dumetorum Vicia pisiformis Vicia sepium Vicia tenuifolia Vicia tetrasperma Vincetoxicum hirundinaria Viola ambigua Viola hirta Viola mirabilis Viola reichenbachiana Viola rupestris References Chytrý, M. & Danihelka, J. 1993. Long-term changes in the ield layer of oak and oak-hornbeam forests under the impact of deer and moulon. Folia Geobotanica et Phytotaxonomica 28: 225–245. Čtyroký, P., Havlíček, P., Stráník, Z. & Pálenský, P. 1995. Geologická a přírodovědná mapa CHKO a BR Pálava. Geologische und naturwissenschaftliche Karte des Landschaftsschutzgebietes (CHKO) und des Biosphärenreservats (BR) Pálava. 1 : 25 000. Český geologický ústav, Praha. Čtyroký, P., Danihelka, J., Chytil, J., Chytilová, D., Kmet, J., Kroupa, O., Ložek, V., Plánka, L. & Petruš, J. 2007. Pálava. In: Mackovčin, P., Jatiová, M., Demek, J., Slavík, P. et al. (eds.) Chráněná území ČR 9. Brněnsko, pp. 725–780. Agentura ochrany přírody a krajiny ČR a EkoCentrum, Brno. 145 Danihelka, J. & Grulich, V. (ed.) 1996. Výsledky loristického kursu v Břeclavi (1995) [Results of the Summer School of Field Botany in Břeclav (1995)]. Zprávy České botanické společnosti, Příloha 1996/1: 1–86. Danihelka, J., Grulich, V., Šumberová, K., Řepka, R., Husák, Š. & Čáp, J. 1995. O rozšíření některých cévnatých rostlin na nejjižnější Moravě [On the distribution of some vascular plants in southernmost Moravia]. Zprávy České botanické společnosti, Příloha 1995/1: 29–102. Hédl, R., Kopecký, M. & Komárek, J. 2010. Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Diversity and Distributions 16: 267–276. Ložek, V. 1999. Změny biocenóz Milovické pahorkatiny podle výpovědi měkkýšů [Changes in the biocoenoses of the Milovická pahorkatina Hills based on fossil molluscs]. Regiom 1998: 4–9. Šuk, V. 1956. Květena Mikulovska [Flora of the Mikulov District]. In: Hosák, L., Valoušek, B. & Šuk, V., Mikulovsko [Mikulov District], pp. 97–139. Mikulov. 10 Dyje loodplain near Lednice (Lednice-Valtice Cultural Landscape) 10 Jiří Danihelka Introduction The town of Lednice, about 45 km SSE of Brno, is situated above the loodplain of the Dyje River approximately half way between the Nové Mlýny reservoirs to the north-west and the northern edge of the town of Břeclav to the south-east. Geomorphology, soils and hydrology The altitude of the Dyje loodplain is about 163 m in the north below the dam of the Nové Mlýny reservoirs and drops gradually to 158 m on the northern edge of Břeclav. It is formed of Quaternary luvial deposits including loam, sand and gravel. Former river beds and river arms are illed with fen accumulations and organic muddy deposits (gyttja). The loodplain surface is generally lat, although some small elevations, mostly remnants of old sand dunes, are found throughout the area. Gleyic luvisols are the prevailing soil type, being replaced by arenosols or cambisols on sandy elevations. Until a cascade of three shallow artiicial lakes was built on the Dyje River upstream of the village of Nové Mlýny in the 1970s–1980s, the whole loodplain used to be regularly inundated in spring from snow melting in the highlands, though loods also occurred throughout the year after heavy rains. Climate The climate in the area is warm and dry. A Czech Hydrometeorological Institute climate station is situated in the town of Lednice. The mean annual temperature here for the period 1961–1990 was 9.2 °C. The lowest and highest temperatures usually occur in January (the mean January temperature is –1.9 °C) and July (the mean July temperature is 19.1 °C), respectively. The annual precipitation sum in the same period was 480 mm, of which 306 mm fell during the growing season from April to September. The distribution of rainfall over the growing season is rather unbalanced, and periods of drought occur. Vegetation The natural vegetation of the Dyje loodplain is hardwood Pannonian loodplain forest of the association Fraxino pannonicae-Ulmetum (alliance Alnion incanae). It is replaced in slightly elevated places by Pannonian oak-hornbeam forests of the association Primulo veris-Carpinetum betuli (alliance Carpinion betuli). Softwood loodplain forests of Salix alba and Populus alba (association Salicetum albae, alliance Salicion albae) are conined to wetter places in and around old river arms or immediately lanking the active river channel. In many places, natural forests have been removed and replaced by loodplain meadows, mostly of the alliance Deschampsion cespitosae. Patches of various types of wetland vegetation, mainly tall-sedge beds, are also common in the loodplain. Although there is no comprehensive vegetation survey study of the Dyje loodplain section described in this chapter, detailed inventories of vegetation type have been done for the adjacent area upstream (now looded by the Nové Mlýny reservoirs; Vicherek 1962) and the adjacent area downstream near the conluence of the Dyje and Morava Rivers (Vicherek et al. 2000; see the excursion site 11 Dyje-Morava loodplain near Lanžhot). The Lednice-Valtice Cultural Landscape – a UNESCO World Heritage Site A large part of the Dyje loodplain and the adjacent gently undulating landscape between the towns of Lednice (in German Eisgrub), Břeclav (Lundenburg) and Valtice (Feldsberg), all centres of former Liechtenstein estates in South Moravia and Lower Austria, is now included in the Lednice-Valtice Cultural Landscape, a UNESCO World Heritage Site since 1996. The transformation of the estates into a designed landscape began during the 17th century when Karl I of Liechtenstein was given the 146 147 title of duke and made Valtice Chateau his main residence and the smaller Lednice Chateau, situated about 7 km north-east, his summer residence. The Duke’s residential town was gradually connected by avenues and paths with other parts of the estates, ‘providing vistas and rides, imposing order on nature in the manner of the Renaissance artists and architects’ (UNESCO 2015). The English concept of the designed landscape park was introduced in the early 19th century under Duke Johann Josef I. The large-scale landscaping project, supervised by the estate manager Bernhard Petri, included raising the terrain level of the Lednice park and digging a new channel for the Dyje River. At the same time, the surroundings of the three smaller Lednice ishponds were turned into an English-style park. Manors, chapels and other structures were built on higher spots in the landscape, on the crossroads of major routes and in other remarkable places, surrounded in most cases by small English-style parks. These landscaping activities, bringing together natural landscape elements with pieces of architecture and stretching over an area of more than 200 km2, together with the architecture of the Baroque Valtice Chateau and neo-Gothic Lednice Chateau, formed one of the largest artiicial landscapes in Europe (UNESCO 2015). A comprehensive description of this World Heritage Site is provided by Zatloukal et al. (2012). The three sites described below are situated within the Site of Community Importance Niva Dyje of the Natura 2000 network. The altitude of the loodplain is about 163 m with a few elevations rising about 2 m above the main level. The reserve is surrounded by the Dyje River in the west and its artiicial side arm, actually a former millrace, in the east. In contrast to the rest of its lower section, this part of the river has not yet been fully canalized. An old dead river arm, now partly illed in by organic muddy deposits, is found in the central part of the reserve, and a few smaller permanent and temporary pools are scattered throughout the reserve. The most remarkable feature of this nature reserve are remnants of alluvial meadows, once typical of the Dyje loodplain, which were mown for hay two or three times a year. Pollarded willows, planted in a regular pattern across these meadows, provided local peasants irewood of poor quality. The resulting picturesque landscape became emblematic of the southern Moravian loodplains. This type of management was, however, discontinued after WWII, partly because of the expulsion of the German-speaking population from local villages, partly because it became unproitable. Most of the stands were abandoned and later destroyed by the construction of the Nové Mlýny reservoirs. The reserve is the irst site in the Czech Republic where money donated by the WWF has been used for nature management. This support was used to make artiicial ditches in the reserve in 1976 to prevent drying out of the area following river regulation. These ditches were cleaned and improved two decades later. This may have stopped the process of drying out, but the resulting situation is different from the previous looding regime. Some parts of the reserve have become waterlogged since the 1990s due to the activities of spreading Eurasian beaver (Castor iber) which makes conservation management rather dificult in places. Since 1993, the reserve has been part of the Ramsar site Mokřady dolního Podyjí, which is protected under the Ramsar Convention (Hudec et al. 1995). It is also a nesting site for the white-tailed eagle (Haliaeetus albicilla). The Milovická stráň Nature Reserve near the village of Milovice and the Křivé jezero National Nature Reserve in the Dyje loodplain. (10a) Křivé jezero National Nature Reserve Introduction The Křivé jezero National Nature Reserve is situated on the right-bank side of the Dyje loodplain downstream of the village of Nové Mlýny ca. 40 km SSE of Brno. It is not part of the Lednice-Valtice Cultural Landscape UNESCO World Heritage Site, but is protected under national law as a National Nature Reserve (established in 1973) and part of the Pálava Protected Landscape Area. It takes in an area of almost 124 ha. The name Křivé jezero (Curved Lake) refers to the shape of an oxbow lake of the Dyje River. 148 A reed bed with Phalaris arundinacea and loodplain meadow with scattered pollarded willows in the Křivé jezero National Nature Reserve. Photo J. Danihelka. 149 10 Vegetation Hardwood loodplain forests of the association Fraxino pannonicae-Ulmetum (alliance Alnion incanae) are preserved in some places. Their tree layer is composed mainly of Fraxinus angustifolia subsp. danubialis and Quercus robur, accompanied by Populus alba and a few remaining trees of Ulmus laevis. Small stands of the softwood loodplain forests of the association Salicetum albae are found on wetter sites, with Populus alba and Salix alba being the canopy dominants. These two natural forest community types have been replaced in many places by plantations of Populus ×canadensis (a hybrid of the native P. nigra and the North American P. deltoides), although native trees have been used more often in plantations recently. Continental loodplain meadows of the association Cnidio dubii-Deschampsietum cespitosae (alliance Deschampsion cespitosae) used to be widespread in the reserve. However, most of them were abandoned in the 1980s and early 1990s and changed, under the canopy of overgrown willow pollards, into a mosaic of nitrophilous herbaceous vegetation and tall-sedge communities. They are now well preserved only in the largest meadow in the southern part of the reserve. There have been some efforts by the nature conservation authorities to restore the appropriate management. Tall-sedge communities of the associations Caricetum ripariae and Caricetum gracilis and reed beds of the association Phalaridetum arundinaceae (all belonging to the alliance Magno-Caricion gracilis) are found in shallow depressions, around pools and in wetter unmanaged parts of the meadows and forest openings. Small stands of the association Caricetum distichae (alliance Magno-Caricion gracilis), with the dominant Carex disticha, accompanied by C. acuta and C. riparia, may be observed in the largest meadow tract next to the main entrance to the reserve. Submerged vegetation of the alliance Potamion, composed of Ceratophyllum demersum, Potamogeton crispus and Batrachium baudotii, develops in temporary pools in spring and summer. The remaining water bodies are usually covered by carpets of loating lemnoid plants (alliance Lemnion minoris) in the summer. Submerged stands of Ceratophyllum demersum occur in the Křivé jezero oxbow lake. The local population of Nymphaea alba vanished in the early 1990s, and only patches of Persicaria amphibia (association Potamo natantis-Polygonetum natantis, alliance Nymphaeion albae) can be found in the lake. Stands of Glyceria maxima (association Glycerietum maximae, alliance Phragmition australis), also harbouring Butomus umbellatus, occur around temporary pools and in shallow depressions in late spring and summer. Patches of Eleocharis acicularis and nitrophilous vegetation of the alliance Eleocharito palustris-Sagittarion sagittifoliae, the latter including Oenanthe aquatica, Rorippa amphibia and Sagittaria sagittifolia, develop on exposed mud of pool bottoms. In other places, stands of the association Rumici maritimi-Ranunculetum scelerati and stands of Bidens frondosus (alliance Bidention tripartitae) colonize exposed pool bottoms. Reed beds of the association Phragmitetum australis (alliance Phragmition australis) are rare in the reserve and occupy only small areas. Unmanaged river banks are covered by tall nitrophilous vegetation of the alliance Senecionion luviatilis, harbouring noxious invasive species such as the North American Symphyotrichum lanceolatum, also found elsewhere in the reserve’s forests, Helianthus tuberosus and Impatiens glandulifera. Unmanaged places and forests are invaded by the alien Acer negundo and Fraxinus pennsylvanica, originally planted in the reserve by foresters. Flora The lora of the reserve consists of more than 400 species of vascular plants (Danihelka 2004). Those protected under national legislation include Allium angulosum, Euphorbia palustris, Iris sibirica, Lathyrus palustris, Senecio sarracenicus, Scutellaria hastifolia, Teucrium scordium, Thalictrum lavum and Viola stagnina. Some of them have large continental distribution ranges and are concentrated in Central Europe in the loodplains of large lowland rivers. Leucojum aestivum is probably the most remarkable plant species in the reserve. Its largest population in the Czech Republic is found here, as more than 100,000 bulbs were transplanted to the reserve by volunteers in the 1980s from the Dyje loodplain a few kilometres upstream that was later looded by the Nové Mlýny reservoirs. A population of Scilla vindobonensis, a central and south-eastern European diploid species related to S. bifolia, was established in the same manner. Two trees of the pure Populus nigra, a species that is now largely replaced by planted hybrid poplars, are found in the reserve. Cuscuta lupuliformis, a rare parasitic plant of the Czech lora, also occurs here. 150 Like other riparian ecosystems, the reserve is strongly affected by plant invasions. The botanical survey by Danihelka (2004) has shown that archaeophytes and neophytes constitute 17.2% and 8.2% of the vascular lora, respectively, which is much more than the average proportions of 4.1% and 2.0% for these two groups reported by Pyšek et al. (2002) in the Czech nature reserves. In addition to the general effects of loodplain dynamics, the plant invasions in this region are also supported by the abandonment of some grassland areas and by inappropriate forest management that includes soil disturbance by heavy machinery and, until recently, ploughing and other severe methods of soil cultivation. Appendix 10a Selected species of vascular plants of the Křivé jezero National Nature Reserve based on the ield records from 1992–2004 (Danihelka 2004). See Danihelka et al. (1995) and Danihelka & Šumberová (2004) for published records. Acer campestre Acer negundo (neo) Acorus calamus (neo) Aegopodium podagraria Aethusa cynapium subsp. elata Agrostis gigantea (neo) Agrostis stolonifera Achillea collina Achillea pratensis Ajuga genevensis Ajuga reptans Alisma lanceolatum Alisma plantago-aquatica Alliaria petiolata Allium angulosum Allium scorodoprasum Alnus glutinosa Alopecurus aequalis Alopecurus pratensis Althaea oficinalis Amaranthus powellii (neo) Amaranthus retrolexus (neo) Amorpha fruticosa (neo) Anagallis arvensis Anemone nemorosa Anemone ranunculoides Angelica sylvestris Anthriscus sylvestris Arabidopsis thaliana Arctium lappa Arctium minus Arctium tomentosum Aristolochia clematitis Arrhenatherum elatius Artemisia absinthium Artemisia vulgaris Astragalus cicer Astragalus glycyphyllos Atriplex oblongifolia Atriplex patula Atriplex prostrata Atriplex sagittata Ballota nigra Barbarea stricta Batrachium baudotii Batrachium trichophyllum Bidens frondosus (neo) Bidens tripartitus Brachypodium sylvaticum Bromus benekenii Bromus hordeaceus Bromus inermis Bromus japonicus Bromus sterilis Bromus tectorum Butomus umbellatus Calamagrostis epigejos Callitriche cophocarpa Caltha palustris Calystegia sepium Campanula trachelium Capsella bursa-pastoris Cardamine dentata Cardamine impatiens Cardamine matthioli Cardamine pratensis Carduus crispus Carex acuta Carex disticha Carex hirta Carex otrubae Carex praecox Carex riparia Carex spicata Carex sylvatica Carex vesicaria Carex vulpina Carpinus betulus Centaurea jacea Cerastium dubium Cerastium holosteoides Ceratophyllum demersum Chaerophyllum bulbosum Chaerophyllum temulum Chelidonium majus Chenopodium album Chenopodium icifolium Chenopodium hybridum Chenopodium polyspermum Chenopodium rubrum Cichorium intybus Circaea lutetiana Cirsium arvense Cirsium canum Cirsium vulgare Clematis vitalba Cnidium dubium Colchicum autumnale Conium maculatum Consolida regalis Convallaria majalis Convolvulus arvensis Cornus sanguinea Corydalis cava Corylus avellana Crataegus laevigata Crataegus monogyna Crepis biennis Cuscuta europaea Cuscuta lupuliformis Cynosurus cristatus Cyperus fuscus Dactylis glomerata Dactylis polygama Datura stramonium (neo) Daucus carota Descurainia sophia Deschampsia cespitosa Dipsacus fullonum Dipsacus laciniatus Dipsacus pilosus Dryopteris carthusiana Dryopteris ilix-mas Echinochloa crus-galli Eleocharis acicularis Eleocharis palustris Elymus caninus Elymus repens Epilobium adenocaulon (neo) Epilobium hirsutum Epilobium lamyi Epilobium tetragonum Epipactis helleborine Equisetum arvense Erophila verna Erysimum cheiranthoides Euonymus europaeus Euphorbia palustris Fallopia convolvulus Fallopia dumetorum Festuca gigantea Festuca pratensis Festuca rubra Ficaria calthifolia 151 10 Ficaria verna subsp. verna Filipendula ulmaria Frangula alnus Fraxinus angustifolia subsp. danubialis Fraxinus excelsior Fraxinus pennsylvanica (neo) Gagea lutea Galega oficinalis Galeopsis biida Galeopsis pubescens Galinsoga parvilora (neo) Galinsoga quadriradiata (neo) Galium album subsp. album Galium aparine Galium boreale Galium elongatum Galium palustre Galium rivale Galium verum Geranium pratense Geranium pusillum Geranium robertianum Geum urbanum Glechoma hederacea Glyceria luitans Glyceria maxima Gnaphalium uliginosum Helianthus tuberosus (neo) Hesperis sylvestris Humulus lupulus Hypericum hirsutum Hypericum perforatum Impatiens glandulifera (neo) Impatiens parvilora (neo) Inula britannica Iris pseudacorus Iris sibirica Juncus articulatus Juncus bufonius Juncus compressus Juncus effusus Lactuca serriola Lamium album Lamium maculatum Lamium purpureum Lapsana communis Lathyrus palustris Lathyrus pratensis Lavatera thuringiaca Leersia oryzoides Lemna gibba Lemna minor Lemna trisulca Leonurus marrubiastrum Lepidium draba Leucojum aestivum Linaria vulgaris Lolium perenne Lonicera xylosteum Loranthus europaeus 152 Lotus tenuis Lycopus europaeus Lychnis los-cuculi Lysimachia nummularia Lysimachia vulgaris Lythrum salicaria Lythrum virgatum Maianthemum bifolium Malus sylvestris Matricaria discoidea (neo) Matricaria chamomilla Medicago lupulina Melilotus albus Melilotus oficinalis Mentha aquatica Mentha arvensis Mentha ×verticillata Milium effusum Moehringia trinervia Myosotis arvensis Myosotis caespitosa Myosotis palustris Myosotis ramosissima Myosoton aquaticum Nuphar lutea Odontites vernus subsp. serotinus Oenanthe aquatica Oxalis stricta (neo) Papaver rhoeas Paris quadrifolia Pastinaca sativa Persicaria amphibia Persicaria hydropiper Persicaria lapathifolia Persicaria minor Persicaria mitis Phalaris arundinacea Phleum pratense Phragmites australis Picris hieracioides Pimpinella major Plantago lanceolata Plantago major Plantago uliginosa Poa angustifolia Poa annua Poa compressa Poa palustris Poa pratensis Poa trivialis Polygonum aviculare agg. Populus alba Populus ×canadensis (neo) Populus nigra Populus tremula Portulaca oleracea Potamogeton berchtoldii Potamogeton crispus Potentilla anserina Potentilla reptans Potentilla supina Prunella vulgaris Prunus cerasifera Prunus padus Prunus spinosa Pulmonaria oficinalis Quercus robur Ranunculus acris Ranunculus auricomus agg. Ranunculus lammula Ranunculus repens Ranunculus sceleratus Rhamnus cathartica Ribes rubrum (neo) Robinia pseudoacacia (neo) Rorippa amphibia Rorippa palustris Rorippa sylvestris Rosa canina Rubus caesius Rumex acetosa Rumex conglomeratus Rumex crispus Rumex hydrolapathum Rumex maritimus Rumex obtusifolius Rumex patientia Rumex sanguineus Rumex stenophyllus Sagittaria sagittifolia Salix alba Salix caprea Salix cinerea Salix euxina (= S. fragilis) Salix triandra Salix viminalis Sambucus ebulus Sambucus nigra Scilla vindobonensis Scrophularia nodosa Scrophularia umbrosa Scutellaria galericulata Scutellaria hastifolia Securigera varia Sedum album Selinum carvifolia Senecio erraticus Senecio sarracenicus Setaria pumila Setaria viridis Schoenoplectus lacustris Silene baccifera Silene latifolia subsp. alba Sinapis arvensis Sisymbrium oficinale Sium latifolium Solanum dulcamara Solanum nigrum Solidago gigantea (neo) Sonchus arvensis Sonchus asper Sonchus oleraceus 10 Plate 10a Plants of the Křivé jezero National Nature Reserve: (a) Leucojum aestivum, (b) Lathyrus palustris, (c) Carex disticha, (d) Carex riparia, (e) Euphorbia palustris, (f) Glyceria maxima, (g) Ceratophyllum demersum, (h) Salix alba, (i) Alopecurus pratensis, (j) Nuphar lutea, (k) Viola stagnina, (l) Calystegia sepium. 153 Sparganium erectum Spirodela polyrhiza Stachys palustris Stachys sylvatica Stellaria graminea Stellaria media Stellaria nemorum Stellaria palustris Stuckenia pectinata Symphyotrichum lanceolatum (neo) Symphytum oficinale Tanacetum vulgare Taraxacum sect. Taraxacum Teucrium scordium Thalictrum lavum Torilis japonica Trifolium arvense Trifolium campestre Trifolium fragiferum Trifolium hybridum Trifolium pratense Trifolium repens Tussilago farfara Typha angustifolia Typha latifolia Ulmus laevis Ulmus minor Urtica dioica Valeriana oficinalis Verbascum blattaria Verbascum thapsus Veronica anagallis-aquatica Veronica anagalloides Veronica arvensis Veronica catenata Veronica chamaedrys Veronica maritima Veronica scutellata Veronica serpyllifolia Veronica sublobata Viburnum opulus Vicia angustifolia Vicia cracca Vicia hirsuta Vicia sepium Vicia tetrasperma Viola arvensis Viola odorata Viola reichenbachiana Viola stagnina Viola suavis (neo) Viscum album subsp. album Xanthium albinum (neo) 10 (10b) Lednice Chateau Park Introduction The Liechtenstein family acquired the Lednice estate as early as about 1249 and became exclusive holders of the domain in 1371. Lednice Chateau is found at the edge of the river terrace about 10 m above the loodplain on the site of a former Gothic fortress. The latter was replaced in the late 16th century by a Renaissance villa which was converted into a Baroque chateau in the late 17th century and modiied in the style of the early Classicism in the late 18th century and in the Empire style in the early 19th century. A large orangerie was built in 1843–1845. The last reconstruction, led by the Viennese architect Georg Wingelmüller, dates back to 1846–1858, at which time the chateau acquired its present neo-Gothic appearance. The Renaissance villa was already surrounded by a garden situated on the terraces above the Dyje loodplain. At that time, the main riverbed was found about 150 m north of the chateau; it is now preserved as a side river arm referred to as Zámecká Dyje (Chateau Dyje). The garden was gradually developed into a Baroque-style park from the 1630s onwards, at which time the park did not yet include the Dyje loodplain. However, the park was extended towards the loodplain across the river after the chateau’s renovation in the Classicist style, and the main composition axis of the future landscape park was created. The park still observed the principles of Baroque gardens and parks. Several Romantic structures were erected in the park at that time, including an artiicial castle ruin, a Chinese pavilion and a minaret. In 1805–1811, the park was transformed into a landscape park applying the English concept of the designed park. This enormous landscaping project included raising the level of the terrain in the park, establishing an artiicial lake with islands, and digging a new channel for the Dyje River which subsequently formed the northern border of the park. About 36,000 young trees and shrubs were imported from North America and planted in the park and its surroundings. The last major development of the park followed the neo-Gothic rebuild of the chateau in the 1850s (Kříž et al. 1978). Recently, the park harbours 614 woody species and their cultivars (Zatloukal et al. 2012). The following description of the vegetation and lora of the park is concerned only with spontaneous species, and not with cultivated ornamental plants. Detailed descriptions of the park from the architectonical, dendrological and historical point of view are provided by Kříž et al. (1978), Hieke (1985) and Pejchal & Krejčiřík (2010, 2012). Spontaneous vegetation The spontaneous vegetation in the park includes aquatic and wetland vegetation and various types of grasslands. It is similar to the vegetation of other parts of the Dyje loodplain though some of the plant communities developed in the park are not found elsewhere in the surrounding landscape. 154 Lednice Chateau Park with its Romantic minaret is an example of a designed landscape in the Dyje loodplain. Photo Z. Losos. Several types of aquatic plant communities have been recorded in the park. Stands of Lemna minor (association Lemnetum minoris, alliance Lemnion minoris) develop regularly in a small ishpond (Růžový rybník) north-east of the chateau. Submerged monodominant vegetation of Ceratophyllum demersum (association Ceratophylletum demersi) is found in the same ishpond and in the side river arm Zámecká Dyje. A small population of Nuphar lutea (association Nymphaeo albae-Nupharetum luteae, alliance Nymphaeion albae) occurs in the ditch connecting the Zámecká Dyje river arm with the Zámecký ishpond. The wetland vegetation includes reed beds of Phragmites australis (association Phragmitetum australis, alliance Phragmition australis) developed in narrow strips in the littoral zone of the Zámecký ishpond and in other places. Stands of Sparganium erectum (association Glycerio-Sparganietum neglecti, alliance Phragmition australis) are restricted to a small section of the ishpond littoral zone along its western bank. It is found here together with very small patches of Leersia oryzoides marsh grassland (association Leersietum oryzoidis, alliance Glycerio-Sparganion). The association Caricetum gracilis (alliance Magno-Caricion gracilis), dominated by the tall sedge Carex acuta (syn. C. gracilis), occurs in the littoral zone of the Zámecký ishpond and on one of its islands. Small patches of another tallsedge community, dominated by Carex riparia (association Caricetum ripariae, alliance Magno-Caricion gracilis), are found in a large meadow in the north-eastern part of the park. The meadows in the park are particularly interesting. Mesophilous Arrhenatherion elatioris meadows occur on the artiicially raised surface in the western part of the park around the ishpond and on the islands. Their species composition depends on the water supply: patches with mesophilous species such as Arrhenatherum elatius, Campanula patula, Crepis biennis, Galium album and Geranium pratense alternate with patches dominated by drought-tolerant species including Bromus erectus, Festuca rupicola and Pimpinella saxifraga. This drier variant of Arrhenatherum meadows, dominated by Bromus erectus, is widespread on slightly elevated landforms in the eastern part of the park, usually referred to as the Hubertka meadow. These mesophilous meadows are now spreading at the expense of meadow types adapted to looding. 155 Serratula tinctoria and Viola pumila. A patch of dry grassland may be found in the easternmost part of the meadow on the top of a buried acidic sand dune. It harbours Achillea collina, Dianthus pontederae, Festuca pulchra, F. rupicola, Potentilla argentea and Rumex acetosella, as well as some spring ephemerals (association Potentillo heptaphyllae-Festucetum rupicolae, alliance Koelerio-Phleion phleoidis). These meadows and dry grasslands are considered semi-natural replacement vegetation of the Pannonian hardwood forests of the association Fraxino pannonicae-Ulmetum and Pannonian oak-hornbeam forests of the association Primulo veris-Carpinetum betuli, respectively. The meadows of the Lednice Chateau Park are the last remnants of once widespread plant communities of the Dyje loodplain. Most of them were ploughed after the Nové Mlýny reservoirs were built, while small patches were abandoned or destroyed in other ways. The best preserved meadow remnants upstream of the town of Břeclav are those situated in the buffer zones of water supply facilities and in the Lednice Chateau Park. They have been extensively managed for a long time, usually mown twice a year and not fertilized. They may also have been grazed by sheep in the past. Spontaneous lora The survey conducted in 1998 (Danihelka 1998; see also Danihelka & Šumberová 2004) reported 435 species, subspecies and hybrids of spontaneously occurring vascular plants in the Lednice Chateau Park. The chateau park is an important refuge for a number of rare and remarkable plant species. The main reasons for its loristic richness include the large area of natural and semi-natural habitats such as water bodies, wetlands, meadows, dry grasslands and woodlots of exotic and native trees, and the fact that the park has not been affected by intensive agriculture and most parts of it have been permanently and extensively managed for decades or even centuries. In addition to the species listed in the vegetation description the following species are also worth mentioning: Arum cylindraceum (a nemoral species replacing A. maculatum in the eastern part of the Czech Republic), Bidens cernuus (locally rare), Carex melanostachya (a sedge with a large continental distribution range), Cerastium dubium (a rare species with native occurrences only in the south-east of the country), Cruciata verna (native to more eastern and southern areas, accidentally introduced probably with young trees or shrubs a century ago), Cynodon dactylon (typical of trampled sites on sandy soils), Draba nemorosa (a continental species with a large distribution range, in the Czech Republic conined to the very south-east), Euphorbia palustris, Lactuca quercina, Listera ovata (locally rare), Lotus tenuis (indicating slightly saline soils), Lythrum virgatum (typical of continental loodplain meadows), Sagittaria sagittifolia (locally rare), Stellaria holostea (locally very rare), Veronica maritima (a species of continental loodplain meadows with a large distribution range) and Vicia lathyroides (a species of dry grasslands, recently spreading in secondary habitats all over the country). Appendix 10b Selected species of vascular plants of the Lednice Chateau Park based mainly on the ield records from 1998 (Danihelka 1998). For published records see Danihelka & Šumberová (2004). Lednice Chateau Park and the Pavelka Meadow in the Dyje loodplain and the same area before river regulation as shown on a map from the 2nd Military Survey (1836–1852; source: Austrian State Archive, Vienna; digitized by the Geoinformatics Laboratory, University of J.E. Purkyně, Ústí nad Labem). The Hubertka meadow also harbours grassland communities once typical of the large loodplains in the continental climate of southern Moravia, i.e. the association Cnidio dubii-Deschampsietum cespitosae (alliance Deschampsion cespitosae). They contain graminoids such as Alopecurus pratensis, Carex praecox, Festuca pratensis, Poa palustris and Phalaris arundinacea, together with broad-leaved herbs such as Cnidium dubium, Colchicum autumnale, Euphorbia lucida, Galium boreale, Iris sibirica, 156 Acer campestre Acer platanoides Acer pseudoplatanus Achillea collina Acorus calamus (neo) Aegopodium podagraria Aesculus hippocastanum (neo) Agrimonia eupatoria Agrostis capillaris Agrostis stolonifera Ajuga reptans Alisma plantago-aquatica Alliaria petiolata Allium angulosum Allium oleraceum Allium scorodoprasum Allium ursinum Allium vineale Alnus glutinosa Alopecurus pratensis Amaranthus albus (neo) Amaranthus powellii (neo) Amaranthus retrolexus (neo) Anemone nemorosa Anemone ranunculoides Angelica sylvestris Anthoxanthum odoratum Anthriscus sylvestris Arabidopsis thaliana Arabis hirsuta Arctium lappa Arctium tomentosum Arenaria serpyllifolia agg. Arrhenatherum elatius Arum cylindraceum Artemisia vulgaris Asclepias syriaca (neo) Asparagus oficinalis Asperugo procumbens Astragalus glycyphyllos Atriplex patula Atriplex sagittata Avenula pubescens Ballota nigra Barbarea stricta Barbarea vulgaris Bellis perennis Berteroa incana Betonica oficinalis Bidens cernuus Bidens frondosus (neo) Bothriochloa ischaemum Brachypodium pinnatum Brachypodium sylvaticum Bromus benekenii Bromus erectus Bromus hordeaceus Bromus sterilis Bromus tectorum Bryonia alba 157 10 Butomus umbellatus Buxus sempervirens (neo) Calamagrostis epigejos Calystegia sepium Campanula glomerata Campanula patula Campanula rapunculoides Campanula trachelium Capsella bursa-pastoris Cardamine impatiens Cardamine matthioli Cardamine pratensis Carduus crispus Carex acuta Carex acutiformis Carex caryophyllea Carex hirta Carex melanostachya Carex praecox Carex remota Carex riparia Carex spicata Carex sylvatica Carex tomentosa Carex vulpina Carpinus betulus Centaurea jacea Cerastium arvense Cerastium dubium Cerastium glutinosum Cerastium holosteoides Cerastium semidecandrum Ceratophyllum demersum Chaerophyllum temulum Chelidonium majus Chenopodium album Chenopodium hybridum Chenopodium murale Chenopodium polyspermum Chenopodium strictum (neo) Cichorium intybus Circaea lutetiana Cirsium arvense Cirsium canum Cirsium vulgare Clematis vitalba Clinopodium vulgare Cnidium dubium Colchicum autumnale Convallaria majalis Convolvulus arvensis Conyza canadensis (neo) Cornus sanguinea Corydalis cava Corylus avellana Crataegus laevigata Crataegus monogyna Crepis biennis Cruciata laevipes Cruciata verna Cuscuta epithymum 158 Cynodon dactylon Dactylis glomerata Dactylis polygama Datura stramonium (neo) Daucus carota Descurainia sophia Deschampsia cespitosa Dianthus pontederae Digitaria sanguinalis Draba nemorosa Echinochloa crus-galli Eleocharis palustris agg. Elymus caninus Elymus repens Epilobium hirsutum Epilobium tetragonum Equisetum arvense Eragrostis minor Erigeron annuus (neo) Erodium cicutarium Erophila verna Erysimum cheiranthoides Euonymus europaeus Euphorbia cyparissias Euphorbia esula Euphorbia helioscopia Euphorbia lucida Euphorbia palustris Euphorbia peplus Euphorbia virgata Falcaria vulgaris Fallopia dumetorum Festuca arundinacea Festuca brevipila Festuca gigantea Festuca heterophylla Festuca pratensis Festuca pulchra Festuca rubra Festuca rupicola Ficaria calthifolia Ficaria verna subsp. verna Filipendula ulmaria Filipendula vulgaris Fragaria moschata Fragaria vesca Fragaria viridis Frangula alnus Fraxinus angustifolia subsp. danubialis Fraxinus excelsior Fumaria schleicheri Gagea lutea Galeobdolon argentatum (neo) Galeopsis biida Galeopsis pernhofferi Galeopsis pubescens Galinsoga parvilora (neo) Galinsoga quadriradiata (neo) Galium album Galium aparine Galium boreale Galium elongatum Galium palustre Galium verum Geranium pratense Geranium pusillum Geranium pyrenaicum (neo) Geranium robertianum Geum urbanum Glechoma hederacea Hedera helix Helleborus foetidus (neo) Heracleum sphondylium Hieracium lachenalii Hieracium murorum Hieracium sabaudum Holcus lanatus Hordeum murinum Humulus lupulus Hypericum hirsutum Hypericum perforatum Impatiens parvilora (neo) Inula salicina Iris pseudacorus Iris sibirica Juglans nigra (neo) Knautia arvensis Lactuca quercina Lactuca serriola Lamium album Lamium maculatum Lamium purpureum Lapsana communis Lathyrus pratensis Lathyrus tuberosus Lathyrus vernus Leersia oryzoides Lemna minor Leontodon hispidus Leonurus marrubiastrum Lepidium draba Lepidium ruderale Leucanthemum ircutianum Leucanthemum vulgare Ligustrum vulgare Linum catharticum Listera ovata Lolium perenne Lonicera caprifolium (neo) Lonicera xylosteum Loranthus europaeus Lotus corniculatus Lotus tenuis Luzula campestris Luzula luzuloides Lycium barbarum (neo) Lycopus europaeus Lychnis los-cuculi Lysimachia nummularia Lysimachia vulgaris Lythrum salicaria 10 Plate 10b-c Plants of the Lednice Chateau Park and of the Pavelka Meadow: (a) Allium angulosum, (b) Persicaria minor, (c) Lythrum virgatum, (d) Ophioglossum vulgatum, (e) Gratiola oficinalis, (f) Quercus robur, (g) Iris sibirica, (h) Carex melanostachya, (i) Leersia oryzoides, (j) Viola elatior, (k) Viola pumila, (l) Euphorbia lucida. 159 Lythrum virgatum Mahonia aquifolium (neo) Malus sylvestris Malva neglecta Matricaria chamomilla Medicago lupulina Medicago sativa (neo) Mentha arvensis Microthlaspi perfoliatum Milium effusum Moehringia trinervia Muscari neglectum Mycelis muralis Myosotis arvensis Myosotis palustris Myosotis ramosissima Myosotis sparsilora Myosoton aquaticum Neottia nidus-avis Nuphar lutea Odontites vernus subsp. serotinus Ononis spinosa Ornithogalum cf. boucheanum Ornithogalum kochii Oxalis stricta (neo) Parthenocissus quinquefolia (neo) Pastinaca sativa Persicaria amphibia Persicaria hydropiper Persicaria lapathifolia Persicaria maculosa Persicaria mitis Petasites hybridus Phalaris arundinacea Phragmites australis Phytolacca americana (neo) Pilosella caespitosa Pilosella oficinarum Pimpinella major Pimpinella saxifraga Plantago lanceolata Plantago major Plantago media Poa angustifolia Poa annua Poa bulbosa Poa nemoralis Poa palustris Poa trivialis Polygonatum multilorum Polygonum aviculare agg. Populus alba Populus ×canadensis (neo) Populus tremula Portulaca oleracea Potamogeton crispus Potentilla anserina Potentilla argentea Potentilla heptaphylla Potentilla reptans 160 Primula veris Prunella vulgaris Prunus avium Prunus padus Prunus spinosa Pulmonaria oficinalis Pyrus pyraster Quercus cerris Quercus robur Ranunculus acris Ranunculus auricomus agg. Ranunculus bulbosus Ranunculus polyanthemos Ranunculus repens Reynoutria japonica (neo) Rhamnus cathartica Rhinanthus minor Ribes rubrum (neo) Ribes uva-crispa Robinia pseudoacacia (neo) Rorippa amphibia Rosa canina Rubus caesius Rumex acetosa Rumex acetosella Rumex crispus Rumex hydrolapathum Rumex obtusifolius Rumex sanguineus Rumex thyrsilorus (neo) Sagina procumbens Sagittaria sagittifolia Salix alba Salix cinerea Salix euxina (= S. fragilis) Salvia pratensis Sambucus nigra Sanguisorba oficinalis Scabiosa ochroleuca Scorzoneroides autumnalis Scrophularia nodosa Scutellaria galericulata Securigera varia Senecio vulgaris Serratula tinctoria Setaria pumila Setaria verticillata Setaria viridis Silaum silaus Silene baccifera Silene latifolia subsp. alba Silene nutans Silene vulgaris Sinapis arvensis Sisymbrium loeselii (neo) Sisymbrium oficinale Solanum dulcamara Solanum nigrum Sonchus arvensis Sonchus asper Sonchus oleraceus Sorbus torminalis Sparganium erectum Stachys sylvatica Stellaria graminea Stellaria holostea Stellaria nemorum Stellaria palustris Stratiotes aloides Symphyotrichum lanceolatum (neo) Symphytum oficinale Syringa vulgaris (neo) Tanacetum corymbosum Tanacetum vulgare Taraxacum sect. Taraxacum Tilia cordata Tilia platyphyllos Tragopogon orientalis Trifolium campestre Trifolium dubium Trifolium fragiferum Trifolium pratense Trifolium repens Trisetum lavescens Tussilago farfara Typha angustifolia Typha latifolia Ulmus laevis Ulmus minor Urtica dioica Urtica urens Valeriana oficinalis Valerianella locusta Verbena oficinalis Veronica arvensis Veronica chamaedrys Veronica maritima Veronica polita Veronica serpyllifolia Veronica sublobata Veronica vindobonensis Viburnum lantana Viburnum opulus Vicia angustifolia Vicia cracca Vicia dumetorum Vicia hirsuta Vicia lathyroides Vicia sepium Vicia tenuifolia Vicia tetrasperma Vinca minor Viola hirta Viola mirabilis Viola odorata Viola pumila Viola reichenbachiana Viola riviniana Viscum album subsp. album (10c) Pavelka Meadow The Pavelka Meadow (Pavelkova louka) is situated between the northern border of the Lednice Chateau Park and the Dyje River 1.2–1.7 km NE of the chateau chapel. It is one of the few well-preserved meadows upstream of the town of Břeclav. It is regularly mown once or twice a year. The meadow vegetation represents a transition between the continental loodplain meadows of the association Cnidio dubii-Deschampsietum cespitosae (alliance Deschampsion cespitosae) and mesophilous meadows of the alliance Arrhenatherion elatioris. Mesophilous species of the alliance Arrhenatherion elatioris may have spread since the elimination of loodings. Most of the species typical of loodplain meadows are, however, still present, including Cardamine matthioli, Carex melanostachya, C. praecox, Cerastium dubium, Cnidium dubium, Euphorbia lucida, Filipendula vulgaris, Galium boreale, Inula salicina, Ophioglossum vulgatum, Viola elatior, V. pumila and V. stagnina. Appendix 10c Selected species of vascular plants of the Pavelka Meadow near Lednice based on the records from 1997. For published records see Danihelka et al. (1995) and Danihelka & Šumberová (2004). Acer campestre Agrostis stolonifera Achillea pratensis Allium scorodoprasum Alnus glutinosa Alopecurus aequalis Alopecurus pratensis Anthoxanthum odoratum Anthriscus sylvestris Arabis nemorensis Aristolochia clematitis Arrhenatherum elatius Artemisia vulgaris Astragalus glycyphyllos Atriplex patula Betonica oficinalis Bidens frondosus (neo) Brachypodium sylvaticum Bromus sterilis Calystegia sepium Campanula patula Capsella bursa-pastoris Cardamine matthioli Cardamine parvilora Carduus crispus Carex hirta Carex melanostachya Carex praecox Carex riparia Carex spicata Carex vulpina Centaurea jacea subsp. angustifolia Cerastium dubium Cerastium holosteoides Chaerophyllum temulum Chenopodium album Cichorium intybus Cirsium arvense Cirsium canum Cnidium dubium Colchicum autumnale Convolvulus arvensis Conyza canadensis (neo) Cornus sanguinea Dactylis glomerata Deschampsia cespitosa Eleocharis palustris agg. Elymus repens Epilobium tetragonum Equisetum arvense Erigeron annuus (neo) Euphorbia esula Euphorbia lucida Festuca arundinacea Festuca pratensis Festuca rupicola Filipendula ulmaria Filipendula vulgaris Fragaria viridis Frangula alnus Fraxinus angustifolia subsp. danubialis Galium aparine Galium boreale Galium palustre Geum urbanum Glechoma hederacea Glyceria maxima Gnaphalium uliginosum Holcus lanatus Humulus lupulus Inula britannica Inula salicina Iris pseudacorus Lamium purpureum Lapsana communis Lathyrus pratensis Leonurus marrubiastrum Leucanthemum vulgare Linaria vulgaris Linum catharticum Lolium perenne Lotus corniculatus Lotus tenuis Lycopus exaltatus Lychnis los-cuculi Lysimachia nummularia Lysimachia vulgaris Lythrum salicaria Lythrum virgatum Matricaria chamomilla Mentha arvensis Moehringia trinervia Myosotis arvensis Myosotis ramosissima Myosotis sparsilora Myosoton aquaticum Odontites vernus subsp. serotinus Ophioglossum vulgatum Papaver rhoeas Pastinaca sativa Persicaria amphibia Phalaris arundinacea Phleum pratense Pilosella rothiana Pimpinella major Plantago lanceolata Plantago major Plantago uliginosa Poa annua Poa palustris Poa pratensis agg. Poa trivialis Polygonum aviculare agg. Potentilla anserina Potentilla reptans Prunella vulgaris Ranunculus acris Ranunculus auricomus agg. Ranunculus repens Rhamnus cathartica Rorippa austriaca Rosa canina Rubus caesius Rumex acetosa Rumex crispus Rumex sanguineus Salix cinerea Salvia pratensis Sanguisorba oficinalis Scutellaria hastifolia 161 10 Serratula tinctoria Silaum silaus Silene vulgaris Stachys palustris Stellaria graminea Stellaria palustris Symphytum oficinale Tanacetum vulgare Taraxacum sect. Taraxacum Torilis japonica Trifolium campestre Trifolium dubium Trifolium hybridum Trifolium pratense Trifolium repens Trisetum lavescens Ulmus minor Urtica dioica Valeriana oficinalis Valerianella locusta Veronica arvensis Veronica chamaedrys Veronica scutellata Veronica serpyllifolia Vicia angustifolia Vicia cracca Vicia dumetorum Vicia hirsuta Vicia tetrasperma Viola elatior Viola hirta Viola pumila Viola stagnina References Danihelka, J. 1998. Bylinná vegetace zámeckého parku v Lednici. Inventarizační průzkum s náměty pro připravovaný plán péče [Herbaceous vegetation of the Lednice Chateau Park. A survey with proposals for the future management plan]. Survey report, National Monument Institute, Brno. Danihelka, J. 2004. Inventarizační průzkum národní přírodní rezervace Křivé jezero [Survey of the National Nature Reserve Křivé jezero]. Survey report, Pálava Protected Landscape Area Authority, Mikulov. Danihelka, J. & Šumberová, K. 2004. O rozšíření některých cévnatých rostlin na nejjižnější Moravě II [On the distribution of some vascular plants in southernmost Moravia (Czech Republic) II]. Příroda (Praha) 21: 117–192. Danihelka, J., Grulich, V., Šumberová, K., Řepka, R., Husák, Š. & Čáp, J. 1995. O rozšíření některých cévnatých rostlin na nejjižnější Moravě [On the distribution of some vascular plants in southernmost Moravia]. Zprávy České botanické společnosti, Příloha 1995/1: 29–101. Hieke, K. 1985. Moravské zámecké parky a jejich dřeviny [Moravian chateau parks and their woody plants]. Státní zemědělské nakladatelství, Praha. Hudec, K., Husák, Š., Janda, J. & Pellantová, J. 1995. Mokřady České republiky. Přehled vodních a mokřadních lokalit České republiky [Wetlands of the Czech Republic. An overview of the aquatic and wetland localities in the Czech Republic]. Český ramsarský výbor, Třeboň. Kříž, Z., Riedl, D. & Sedlák, J. (eds.) 1978. Významné parky Jihomoravského kraje [Important parks of the South Moravian Region]. Blok, Brno. Pejchal, M. & Krejčiřík, P. 2010. Příspěvek k historii introdukce dřevin v Lednicko-valtickém areálu [Contribution to the history of a woody plant species introduction in the Lednice-Valtice Cultural Landscape]. Acta Pruhoniciana 95: 97–114. Pejchal, M. & Krejčiřík, P. 2012. Příspěvek k historii pěstování domácích dřevin a jejich kultivarů v Lednicko-valtickém areálu [Contribution to the history of cultivation of native woody species and their cultivars in the Lednice-Valtice Cultural Landscape]. Acta Pruhoniciana 100: 99–107. Pyšek, P., Jarošík, V. & Kučera, T. 2002. Patterns of invasion in temperate nature reserves. Biological Conservation 104: 13–24. UNESCO 2015. Lednice-Valtice Cultural Landscape. URL: http://whc.unesco.org/en/list/763/ [accessed on 4 May 2015]. Vicherek, J. 1962. Typy fytocenos aluviální nivy dolního Podyjí se zvláštním zaměřením na společenstva luční [Plant community types of the Lower Dyje loodplain with special focus on meadow communities]. Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis, Biologia 3(5): 1–113. Vicherek, J., Antonín, V., Danihelka, J., Grulich, V., Gruna, B., Hradílek, Z., Řehořek, V., Šumberová, K., Vampola, P. & Vágner, A. 2000. Flóra a vegetace na soutoku Moravy a Dyje [Flora and vegetation in the conluence area of the Morava and Dyje Rivers]. Masarykova univerzita, Brno. Zatloukal, P., Krejčiřík, P. & Zatloukal, O. 2012. Lednicko-valtický areál [The Lednice-Valtice estate]. Foibos Books, Praha. 162 11 Dyje-Morava loodplain near Lanžhot 11 Jiří Danihelka, Vít Grulich & Kateřina Šumberová Introduction The roughly triangular area bordered by the Dyje and Morava Rivers just above their conluence is known as Soutok in Czech (meaning Conluence) or Thaya-March Zwickel in German (Thaya = Dyje, March = Morava). It is situated in the south-eastern tip of the Czech Republic south of the towns of Břeclav and Lanžhot. The Dyje River forms the border between the Czech Republic and Austria, the Morava River the border between the Czech Republic and Slovakia. From the north, the area is bordered by arable land and the road from Lanžhot to the bridge over the Morava River. The loodplain forests and meadows here extend over an area of approximately 50 km2. The area is closed to cars, but it can be visited by bicycle, which is particularly convenient to reach its remote southern parts. Flooded continental meadows in the Dyje-Morava loodplain near Lanžhot. Photo M. Chytrý. Geology, geomorphology, soils, climate and hydrology The broad Dyje-Morava loodplain is situated at an altitude of 148 –153 m. It is formed of Quaternary luvial deposits including loam, sand and gravel. The loodplain is generally lat, and the only topographic features rising above the surrounding landscape are sandy elevations that do not exceed a height of a few meters. These elevations are known as hrúd in the local Czech dialect or Parzen in the dialect of Austrian villages on the opposite bank of the Dyje River. They most likely represent eolian deposits. These deposits cover a more extensive area, but apart from the hrúds they are buried under a thick layer of Holocene alluvial loams, mostly deposited since the Middle Ages following deforestation of the upper parts of the catchment areas. The hrúds are fairly common along the Dyje River, whereas only a few can be found along the Morava River. The reason for this is the presence of different rocks in the catchment areas of the two rivers and their tributaries. The Dyje drains a geologically variable area and its alluvial deposits are far from uniform, containing a high proportion of sand. In contrast, the catchment area of the Morava is mainly in the area of Carpathian lysch and 163 Carboniferous sediments in central and northern Moravia which results in the uniformity of its alluvial deposits. Oxbows and pools in various stages of in-illing are characteristic elements of the loodplain. There are also man-made features here such as canals, ditches and abandoned sand and loam pits illed with water. The soils are relatively uniform. Fluvisols and gleysols prevail in the looded areas and cambisols and arenosols are found on the sandy elevations. The area is situated in the warmest part of the Czech Republic. Its climate is subcontinental, summer-warm and dry. The mean annual temperatures are 9–10 °C. The mean temperature in the growing season (April–September) is 16–17 °C. The warmest and coldest months are July and January with mean temperatures of 19–20 °C and –1 to –2 °C, respectively. The annual precipitation sums are 500–550 mm, of which 300–325 mm falls in the growing season. Monthly precipitation sums vary considerably, and long periods of drought are common. The entire area used to be looded frequently. Floods regularly occurred in spring when snow melted in the Bohemian-Moravian Highlands and the mountains of eastern and northern Moravia. They could, however, also be caused by heavy rains in the catchment area of both rivers at any time of the year. Since the construction of the Nové Mlýny reservoirs on the Dyje River upstream of the town of Břeclav during the 1970s and 1980s and the construction of dikes along both rivers, looding was almost eliminated, and the area is looded only during long-lasting and extremely heavy rain events, such that seen in July 1997. All these interventions in the water regime have also resulted in a considerable drop in the ground water level. Large individuals of Quercus robur in the Dyje-Morava loodplain are remnants of former pasture woodlands. In the current dense forests, the old generation of oak is being replaced by Fraxinus angustifolia, Tilia cordata, Carpinus betulus and Acer campestre. Photo M. Chytrý. Archaeological sites An important Early Medieval archaeological site is situated on the northern edge of the Soutok area, about 3.3 km SSE of Břeclav. Remnants of ramparts, once surrounding a fortiied settlement, are clearly visible in this place, referred to as Pohansko (meaning Pagan’s Place). Numerous archaeological inds, combined with written sources, suggest that the settlement was one of the major centres of Great Moravia, an early medieval state formed by the western Slavic tribes in the 830s. This dukedom 164 encompassed large parts of the present territory of Moravia, Bohemia and Slovakia and a number of adjacent areas in the late 9th century. It collapsed at the turn of the 10th century after being invaded by the Hungarians. The ruling class accepted Christianity from Constantinople based on political consideration. The Byzantine missionaries Saints Cyril and Methodius, who arrived in 863, introduced the Church Slavonic language based on the contemporary South Slavic dialect from the Thessalonica area in northern Greece. Cyril also created the Glagolitic alphabet (Glagolitsa) which was later replaced by the Cyrillic script among the orthodox eastern and southern Slavs. Remnants of two churches and many other structures from the Great Moravian period have been excavated in Pohansko. The foundation of some of these structures can be seen. The Pohansko hunting manor, built in 1812 or somewhat later in the Empire style for the Liechtenstein family, holds an archaeological exhibition. The Pohansko site is now a part of the Lednice-Valtice Cultural Landscape, a UNESCO World Heritage Site. History of botanical research Despite its remarkable lora and vegetation, the Dyje-Morava loodplain south of Břeclav and Lanžhot was largely ignored by 19th-century botanists. The reason for this may have been its remote location and bureaucratic dificulties as the area was used by the Liechtenstein family as a hunting ground. The irst botanist ever to visit this area was probably Franz Petrak, later a mycologist at the Natural History Museum in Vienna, in June 1912. He issued specimens of Iris spuria and Plantago altissima collected on this occasion in his exsiccate collection Flora Bohemiae & Moraviae exsiccata. Both species, whose natural occurrence in the Czech Lands was restricted to this part of the country, have not been seen here for almost a century. The area was soon closed to ordinary citizens after the Communists seized power in Czechoslovakia in 1948, and any botanical research became almost impossible. Some forestry research was, however, performed, which recorded some plant species new to the country’s lora, such as the sub-Mediterranean Fraxinus angustifolia (Samek 1956) and Carex strigosa (Horák & Dvořák 1968). In 1973, Eduard Průša made a detailed forestry survey of the old-growth forest reserves Ranšpurk and Cahnov-Soutok which was published a decade later (Průša 1985). Vít Grulich, then botanist at the Mikulov District Museum, visited the area several times during the 1980s. His visits yielded remarkable plant records, such as the montane species Veronica montana (Grulich 1985). The meadow plots studied in the 1960s as part of the International Biological Programme (IBP; Balátová-Tuláčková 1966, 1968, 1970), now destroyed by ploughing, were situated between the southern edge of the town of Lanžhot and the northern border of the Soutok area; the ecological indings reported here nevertheless remain relevant to the meadows described below. A period of intense botanical research began in 1990 after the collapse of the Communist regime when the area was opened to the public. A grid mapping of the lora was launched in 1992 (Danihelka et al. 1995; Danihelka 2003; Danihelka & Šumberová 2004). The area was also visited by the Summer School of Field Botany organized by the Czech Botanical Society in Břeclav in 1995 (Danihelka & Grulich 1996). A detailed survey of lora and vegetation was led by Professor Jiří Vicherek of Masaryk University in Brno in 1996–1998. Studies were published on the lora and vegetation of wetlands (Šumberová 1999), tall-forb vegetation (Šumberová 1997) and dry grasslands on sandy elevations (Chytrý et al. 1997). The indings of Professor Vicherek’s team were summarized in a botanical monograph of the area (Vicherek et al. 2000). The occurrence of Urtica kioviensis, species missing from the Czech lora at that time, was reported from here by Danihelka & Lepší (2004). The old-growth reserves Ranšpurk and Cahnov-Soutok were re-surveyed by the team of Tomáš Vrška in 1994–1995. A comparison with the data collected by E. Průša in the early 1970s made it possible to evaluate the dynamics of these forests after the implementation of water management measures and under strong grazing pressure from ungulates in a game preserve (Vrška 1997, 1998; Vrška et al. 2006). Complete lists of plant species of all forest compartments were made by researchers based at Mendel University in Brno (Řepka et al. 2015). An almanac focusing on the natural history of the Dyje-Morava loodplain, its economic use, forest management and archaeology was published by Hrib & Kordiovský (2004). The natural history and economic use of the Dyje and Morava loodplain in the adjacent part of Lower Austria are described in the excellent monograph Fließende Grenzen (Kelemen & Oberleitner 1999). 165 11 Vegetation and historical development of the loodplain Forests cover about 4200 ha, i.e. 84% of the area. Hardwood loodplain forest of the association Fraxino pannonicae-Ulmetum (alliance Alnion incanae) is the most widespread. Sandy or loamy elevations in the loodplain, which are looded only rarely and for short periods of time, are covered by oak-hornbeam forests (alliance Carpinion betuli). Softwood loodplain forests of the association Salicetum albae (alliance Salicion albae) are developed only in small patches in wet depressions or immediately lanking the rivers. Aquatic vegetation is a remarkable feature of the southern Moravian loodplains. Communities of the alliances Lemnion minoris, Hydrocharition morsus-ranae, Potamion, Nymphaeion albae and Ranunculion aquatilis are found in still and slow running water. Most water bodies are surrounded by reed vegetation, mainly stands of Glyceria maxima (association Glycerietum maximae, alliance Phragmition australis), and by tall-forb vegetation of the alliance Eleocharito palustris-Sagittarion sagittifoliae. Communities of short amphibious plants develop in places where the water table drops down to expose the water-saturated bottom for a considerable part of the growing season. A community dominated by the perennial Eleocharis acicularis (association Limosello aquaticae-Eleocharitetum acicularis, alliance Eleocharition acicularis) and annual vegetation with Limosella aquatica (association Cyperetum micheliani, alliance Eleocharition ovatae) have been recorded in a few places, the latter mainly in man-made habitats such as the beds of sand pits and channels. Communities of annual and short-lived thermophilous wetland species such as Cerastium dubium, Lythrum hyssopifolia, Mentha pulegium, Pulicaria vulgaris and Veronica anagalloides (alliance Verbenion supinae) are of particular interest. Nitrophilous vegetation of the association Polygono brittingeri-Chenopodietum rubri and stands of Bidens frondosus (both of the alliance Bidention tripartitae) are common on bare wet soils in natural habitats such as pools, oxbows and river banks. Tall-sedge beds of the alliance Magno-Caricion gracilis, river-fringing herbaceous vegetation of the alliance Senecionion luviatilis, and wet to mesic meadows of the alliances Deschampsion cespitosae, Molinion caeruleae and Arrhenatherion elatioris are the most common of the many types of marsh and wetland vegetation. Continental alluvial meadows of the alliance Deschampsion cespitosae are the most widespread, whereas the Molinion and Arrhenatherion meadows have a limited distribution on the lower parts of the sandy elevations (hrúds) and in marginal parts of the loodplain which are only rarely looded (Balátová-Tuláčková 1966, 1968, 1993). Dry grasslands of the association Potentillo heptaphyllae-Festucetum rupicolae (alliance KoelerioPhleion phleoidis) growing on higher sandy elevations are remarkable vegetation of the loodplain (Chytrý et al. 1997). The occurrence of dry-grassland species in the loodplain seems to be partly of a relict nature. Archaeological inds show that the loodplain was not completely lat until the 9th century. Sand dunes and higher river terraces were still preserved at that time and supported drought-adapted vegetation. Palaeobotanical studies (Opravil 1983, 1992, 2000; Opravil in Hrib & Kordiovský 2004: 105–112) also indicate that hardwood loodplain forests prevailed at that time, whereas sand dunes and river terraces were covered by oak-hornbeam forests (Carpinion betuli). No dry grasssland species could, however, have survived in the oak-hornbeam forests. A plausible explanation for the current occurrence of many dry grassland species is that the forest canopy was generally sparser than today, including patches of open thermophilous oak forests and canopy openings in the matrix of hardwood loodplain forests and oak-hornbeam forests. It may also be assumed that there was already some grazing of livestock from settlements situated in today’s loodplain and nearby at that time (Dvořák & Klanicová in Hrib & Kordiovský 2004: 497–513). Large deforested areas must have existed in the loodplain in the Great Moravia period (9th century), which were used to a large extent for the cultivation of cereals and pastoralism (Doláková et al. 2010). Archaeological inds have provided evidence that Cornus mas, Ligustrum vulgare, Prunus fruticosa and P. spinosa grew in the vicinity of the fortiied Pohansko settlement. This is in agreement with the inding of remains of Otis tarda (Opravil 1992), which is a bird conined to the open landscape. It may be assumed that dry grasslands similar to those of today occurred in some places in the area. The water table was relatively stable throughout the year, while loods were rather rare and less intense than they are now. In the 11th and 12th centuries, however, people colonized and deforested the upper parts of the Dyje and Morava catchment areas, mainly in the Bohemian-Moravian Highlands and eastern Moravia, which dramatically altered the hydrological regime of the lowland rivers. Floods became more frequent and even occurred several times a year, and the amount of material transported from the areas upstream increased. The original rugged terrain of the loodplain was illed in with 166 several metres of alluvial loam (Opravil 1983). This enabled softwood and hardwood forest to spread at the expense of oak-hornbeam and thermophilous oak forests. Dry grasslands were preserved only on the tops of the highest hrúds which were only exceptionally or never looded. However, modern forestry considerably reduced the area of softwood forests with Salix alba. Flora The lora of the Dyje-Morava loodplain includes about 873 species with various distribution ranges (Vicherek et al. 2000). The occurrence of species with continental ranges extending to southern Siberia and the occurrence of Pontic-Pannonian species is of particular interest as several species in these groups reach their north-western distribution limits in southern Moravia. The irst group mentioned is represented by Cnidium dubium, Scutellaria hastifolia (both at their western distribution limit), Allium angulosum and Juncus atratus in wet meadows, as well as Astragalus danicus, Phelipanche arenaria, Scorzonera purpurea, Veronica prostrata and Thymus pannonicus in dry places on sandy elevations. The group of Pontic-Pannonian species includes Carex buekii, Leucojum aestivum and Thalictrum lucidum in wetlands, as well as Achillea setacea, Erysimum diffusum, Hierochloë repens, Linaria genistifolia, Ranunculus illyricus and Verbascum phoeniceum in dry places on the sandy elevations, as well as the epiphytic hemiparasite Loranthus europaeus. The sub-Atlantic distribution type is represented by a few species which are, however, rather conspicuous in the vegetation, for example Carex strigosa and Silaum silaus in forests and wet meadows and Armeria elongata, Corynephorus canescens (now probably vanished), Hypochaeris radicata and Jasione montana in dry sandy places. The occurrence of Corydalis pumila, Galanthus nivalis, Galium odoratum, Isopyrum thalictroides, Polygonatum multilorum, Primula veris and Viola mirabilis in the oak-hornbeam forests on sandy elevations is remarkable from the viewpoint of plant geography and vegetation history. Their presence may be considered as relict of the pre-lood period as they are also present in the forests of the hilly landscape adjacent to the Dyje loodplain. Some other species conined to this type of forests, e.g. Allium ursinum, Dentaria bulbifera, Maianthemum bifolium, Senecio ovatus, Symphytum tuberosum and Veronica montana, are absent from or very rare in the adjacent hilly landscape. These species may have been brought to this area by the river from the lysch fringes of the Carpathians where they are quite common. Management of forests and meadows In the Middle Ages, most of the forests were managed as coppice with a short rotation time, probably 7–10 years. Cattle grazing was also common, opening up canopy and creating park-like wood pastures with groups of trees and shrubs and solitary oaks. Though the law issued in the 1750s banned livestock grazing in forests, its application was slow and grazing was common in the area even a century later. However, the Liechtenstein family, which owned most of the forest in the area, managed to stop this practice in 1873 with a court ruling (Vrška 1997). Wood pastures were then afforested, though some more than 200-year-old oaks may still be seen in a few places, including two nature reserves with old-growth forests. After the mid-19th century, most forests were established by planting or sowing which required some degree of soil cultivation. Such forest compartments were leased to local peasants for a few years for the cultivation of maize, potatoes or sugar beet, which protected young trees from competition from tall-growing nitrophilous vegetation. The cultivation of soil using heavy machinery was introduced in the area from the late 1950s onwards. Wet depressions were illed-in with soil and stumps pulled up by bulldozers. The whole clearing was then ploughed. Crushers were introduced in the late 1990s to prepare clearings for planting young trees. Even afterwards, the soil was sometimes cultivated as deep as 40 cm under the surface. This type of management has a negative impact on both lora and fauna, most apparently on the spread of alien herb species (Čížek et al. 2007). The area was used for hunting by the Liechtenstein family, the owners of the estate until 1945. Already then, there was some fence to prevent damage on crops in the arable land adjacent to the area. The game preserve called Soutok with red deer (Cervus elaphus) and fallow deer (Dama dama) was established in the late 1960s. The area was fenced and used as hunting ground for high-ranking Communists and other members of the establishment. Game numbers were enormous in the 1980s and reached a maximum in 1989, though no reliable numbers are available. The game eliminated the 167 11 natural regeneration of forests. The number of animals was considerably reduced after 1989, though the game preserve is still there and the damaging inluence of large herbivores on natural regeneration is still evident. The area also harbours about 800 ha of loodplain meadows. Most of these were part of the Liechtenstein estate, though some were owned and used by peasants from Lanžhot or the villages of Bernhardsthal, Rabensburg and Hohenau in the nearby part of Lower Austria. They were mown for hay in late spring and mown again or grazed in summer by both cattle and sheep. The low-productive grasslands on sandy elevations may have been used merely as pastures. After 1948, the meadows were managed by various cooperative farms and by the state-owned forest enterprise. Some meadows were damaged by ploughing, the application of fertilizers or the sowing of mixtures of forage species, though most recovered under stable management. Livestock decreased markedly after 1989 and so did demand for hay. Since 1996, all the meadows in the area have been managed by the state-owned forest enterprise. While some meadows are well managed, other compartments have been damaged by unsuitable management such as mulching or changes in water regime or completely abandoned and afforested. The whole Soutok area is part of the Site of Community Importance (SCI) Soutok-Podluží within the Natura 2000 network which was established to protect large areas of alluvial forests and alluvial meadows. In spite of this, there are only two nature reserves covering less than 1% of the area. The area has been part of the Lower Morava Biosphere Reserve since 2003, but this does not imply any legal protection under Czech law. Repeated proposals have been made for making the whole area part of a Protected Landscape Area. Unfortunately, this plan has been opposed primarily by the Židlochovice State Forest Enterprise and the current staff of the Lower Morava Biosphere Reserve. The Dyje-Morava loodplain near Lanžhot (southern part). Appendix 11 Selected species of vascular plants in the Dyje-Morava loodplain at Soutok. See Vicherek et al. (2000) for a complete list including example maps illustrating local distribution patterns. The Dyje-Morava loodplain near Lanžhot (northern part). Nature conservation Two National Nature Reserves, Ranšpurk and Cahnov-Soutok, were established in the area in 1949 to protect remnants of old-growth forests. Both names are derived from the names of villages on the right bank of the Dyje River in Lower Austria, the former being the Czech name for Rabensburg, the latter for Hohenau an der March (in Czech Cáhnov, from the medieval z’Hohenouwe). Both reserves protect parts of the hardwood forest taken out of economic use in the early 1930s. There has been no logging in either reserve since that time, though they have been affected by changes in water regime caused by river regulation and ungulate grazing which has eliminated natural regeneration. The Ranšpurk reserve was fenced in 1992, opening the way to massive natural regeneration of most woody species with the exception of Quercus robur (Vrška et al. 2006). Both reserves are important sites to study the natural dynamics of lowland forests. This zero-management regime (with only the elimination of alien woody species) is nevertheless known to reduce biodiversity, for which reason it is desirable to combine it with the reintroduction of coppicing with standards in other places. 168 Achillea setacea Ajuga genevensis Alcea biennis Alisma lanceolatum Alisma plantago-aquatica Allium angulosum Allium ursinum Amaranthus albus (neo) Arabis nemorensis Armeria elongata subsp. elongata Artemisia campestris Asperula cynanchica Avenula pubescens Batrachium aquatile Batrachium baudotii Batrachium circinatum Batrachium trichophyllum Biscutella laevigata subsp. varia Brachypodium pinnatum Brassica nigra (neo) Bromus benekenii Bromus erectus Butomus umbellatus Callitriche cophocarpa Callitriche palustris Callitriche hamulata Caltha palustris Campanula bononiensis Cardamine parvilora Carex acutiformis Carex buekii Carex caryophyllea Carex divulsa Carex fritschii Carex hartmanii Carex melanostachya Carex pallescens Carex praecox Carex stenophylla Carex strigosa Carex supina Carex tomentosa Centaurium pulchellum Cerastium brachypetalum Cerastium dubium Cerastium glutinosum Cerastium lucorum Cerastium semidecandrum Cerastium tenoreanum Ceratophyllum submersum Chamaecytisus ratisbonensis Chenopodium urbicum Cirsium canum Clematis integrifolia Cnidium dubium Corynephorus canescens Cruciata pedemontana Crypsis schoenoides Cuscuta lupuliformis Cyperus fuscus Cyperus michelianus Dianthus pontederae Dipsacus pilosus 169 11 Draba nemorosa Dysphania pumilio (neo) Echinocystis lobata (neo) Eleocharis acicularis Eleocharis palustris Eleocharis uniglumis Epipactis albensis Epipactis helleborine Eryngium campestre Erysimum diffusum Euphorbia lucida Euphorbia palustris Festuca rupicola Festuca valesiaca Filago vulgaris Filipendula ulmaria Fraxinus angustifolia subsp. danubialis Gagea minima Gagea pratensis Gagea pusilla Galium odoratum Galium rivale Gentiana pneumonanthe Geranium sanguineum Glyceria luitans Glyceria maxima Gnaphalium uliginosum Gratiola oficinalis Helictochloa pratensis Hesperis sylvestris Hieracium umbellatum Hierochloë repens Hottonia palustris Hydrocharis morsus-ranae Hypochaeris radicata Inula salicina Iris sibirica Iris spuria (vanished) Iris variegata Isopyrum thalictroides Juncus atratus Juncus bufonius Koeleria macrantha Lathyrus palustris Leucojum aestivum Limosella aquatica Linaria genistifolia Lindernia procumbens Listera ovata Loranthus europaeus Lotus tenuis Luzula campestris Luzula divulgata Maianthemum bifolium Malus sylvestris Melica transsilvanica Mentha pulegium Molinia arundinacea 170 Muscari comosum Myosotis sparsilora Myriophyllum spicatum Najas marina Najas minor Nuphar lutea Oenanthe aquatica Ononis spinosa Ophioglossum vulgatum Orchis morio Ornithogalum boucheanum Papaver maculosum Paris quadrifolia Peplis portula Petrorhagia prolifera Peucedanum cervaria Peucedanum oreoselinum Phelipanche arenaria Pilosella oficinarum Plantago altissima (vanished) Plantago uliginosa Poa bulbosa Populus nigra Potamogeton acutifolius Potamogeton lucens Potamogeton nodosus Potamogeton pusillus Potamogeton trichoides Potentilla argentea Potentilla erecta Potentilla incana Potentilla recta Potentilla supina Primula veris Pulicaria dysenterica Pulicaria vulgaris Pyrus pyraster Quercus robur Ranunculus bulbosus Ranunculus lammula Ranunculus illyricus Ranunculus polyanthemos Rhinanthus minor Rubus bifrons Rubus clusii Rumex acetosella Rumex conglomeratus Rumex hydrolapathum Rumex maritimus Rumex sanguineus Rumex stenophyllus Sagittaria sagittifolia Saxifraga bulbifera Scirpoides holoschoenus Scutellaria galericulata Scutellaria hastifolia Sedum acre Sedum sexangulare Senecio jacobaea Senecio ovatus Senecio sarracenicus Serratula tinctoria Seseli annuum Silaum silaus Silene nutans Silene otites Sparganium emersum Sparganium erectum Stellaria nemorum Stellaria palustris Stipa borysthenica Succisa pratensis Symphyotrichum lanceolatum (neo) Symphytum tuberosum Teucrium chamaedrys Teucrium scordium Thalictrum lavum Thalictrum lucidum Thymus pannonicus Trapa natans Trifolium fragiferum Trifolium medium Trifolium ochroleucon Turritis glabra Urtica kioviensis Utricularia australis Valeriana oficinalis Verbascum blattaria Verbascum chaixii subsp. austriacum Verbascum lychnitis Verbascum phoeniceum Veronica anagallis-aquatica Veronica anagalloides Veronica catenata Veronica maritima Veronica montana Veronica prostrata Veronica scutellata Veronica spicata Veronica vindobonensis Viola canina Viola elatior Viola hirta Viola pumila Viola stagnina Viola tricolor subsp. curtisii Viscaria vulgaris Wolfia arrhiza 11 Plate 11 Plants of the Dyje-Morava loodplain near Lanžhot: (a) Hydrocharis morsus-ranae, (b) Achillea setacea, (c) Gentiana pneumonanthe, (d) Cyperus michelianus, (e) Potamogeton nodosus, (f) Lindernia procumbens, (g) Scutellaria hastifolia, (h) Butomus umbellatus, (i) Caltha palustris, (j–k) Hottonia palustris, (l) Veronica maritima. 171 References Hardwood loodplain forests in the Dyje-Morava loodplain are rich in spring geophytes such as Corydalis cava and Anemone ranunculoides. Photo M. Chytrý. The Pohansko hunting manor is one of the remarkable buildings in the cultural landscape of the Liechtenstein estate. Photo M. Chytrý. 172 Balátová-Tuláčková, E. 1966. Synökologische Charakteristik der südmährischen Überschwemmungswiesen. Rozpravy Československé akademie věd, Řada matematických a přírodních věd 76(1): 1–41. Balátová-Tuláčková, E. 1968. Grundwasserganglinien und Wiesengesellschaften (Vergleichende Studie der Wiesen aus Südmähren und der Südwestslowakei). Přírodovědné práce ústavů Československé akademie věd v Brně 2(2): 1–37. Balátová-Tuláčková, E. 1970. Plant sociological and synecological characteristics of the Lanžhot maedows (South Moravia). In: Dykyjová, D. (ed.) Productivity of terrestrial ecosystems, pp. 39–42, Botanický ústav ČSAV, Průhonice. Balátová-Tuláčková, E. 1993. Das Gentiano pneumonanthis-Molinietum litoralis Ilijanić 1968 in SüdMähren und der Slowakei. Tuexenia 13: 193–201. Chytrý, M., Mucina, L., Vicherek, J., Pokorny-Strudl, M., Strudl, M., Koó, A.J. & Maglocký, Š. 1997. Die Planzengesellschaften der westpannonischen Zwergstrauchheiden und azidophilen Trockenrasen. Dissertationes Botanicae 277: 1–108. Čížek, L., Roleček, J. & Danihelka, J. 2007. Celoplošná příprava půdy v lesích a její důsledky pro biodiverzitu [Mechanical site preparation in the forests and its implications for biodiversity]. Živa 55: 266–268. Danihelka, J. 2003. Květena cévnatých rostlin biosférické rezervace Pálava a Podluží [Flora of vascular plants of the Pálava and Podluží Biosphere Reserve]. In: Danihelka, J. (ed.) Pálava na prahu třetího tisíciletí [The Pálava Protected Landscape Area on the threshold of the third millenium], pp. 37–45. Správa chráněné krajinné oblasti Pálava, Mikulov. Danihelka, J. & Grulich, V. (ed.) 1996. Výsledky loristického kursu v Břeclavi (1995) [Results of the Summer School of Field Botany in Břeclav]. Zprávy České botanické společnosti, Příloha 1996/1: 1–86. Danihelka, J., Grulich, V., Šumberová, K., Řepka, R., Husák, Š. & Čáp, J. 1995. O rozšíření některých cévnatých rostlin na nejjižnější Moravě [On the distribution of some vascular plants in southernmost Moravia]. Zprávy České botanické společnosti, Příloha 1995/1: 29–102. Danihelka, J. & Lepší, M. 2004. Kopřiva lužní, Urtica kioviensis, na soutoku Moravy a Dyje [Urtica kioviensis at the conluence of the Morava and Dyje Rivers]. Zprávy České botanické společnosti 39: 25–35. Danihelka, J. & Šumberová, K. 2004. O rozšíření některých cévnatých rostlin na nejjižnější Moravě II [On the distribution of some vascular plants in southernmost Moravia II]. Příroda (Praha) 21: 117–192. Doláková, N., Roszková, A. & Přichystal, A. 2010. Palynology and natural environment in the Pannonian to Holocene sediments of the Early Medieval centre Pohansko near Břeclav (Czech Republic). Journal of Archaeological Science 37: 2538–2550. Grulich, V. 1985. Poznámky k výskytu rozrazilu horského (Veronica montana L.) na jižní Moravě [Notes on the distribution of Veronica montana in southern Moravia]. Zprávy Československé botanické společnosti 20: 59–60. Horák, J. & Dvořák, J. 1968. Příspěvek k rozšíření a ekologii Carex strigosa na Moravě a Slovensku [A contribution to the study of the distribution and ecology of Carex strigosa in Moravia and Slovakia. Biológia (Bratislava) 23: 541–548. Hrib, M. & Kordiovský, E. (eds.) 2004. Lužní les v Dyjsko-moravské nivě [Floodplain forest in the Morava-Dyje loodplain]. Moravia Press, Břeclav. Kelemen, J. & Oberleitner, I. (eds.) 1999. Fließende Grenzen. Lebensraum March-Thaya-Auen. Umweltbundesamt, Wien. Opravil, E. 1983. Údolní niva v době hradištní (ČSSR – povodí Moravy a Poodří) [Floodplain in the ringwall period (Czechoslovakia – Morava and Odra catchments)]. Studie Archeologického ústavu ČSAV v Brně 11/2: 1–77. Opravil, E. 1992. Rekonstrukce životního prostředí [Environmental reconstruction]. In: Kordiovský, E. (ed.) Vývoj životního prostředí v podmínkách jižní Moravy. XXI. Mikulovské sympozium. 23.–24. října 1991, pp. 249–261. Okresní archiv Břeclav, Mikulov. Opravil, E. 2000. Zur Umwelt des Burgwalls von Mikulčice und zur planzlichen Ernährung seiner Bewohner (mit einem Exkurs zum Burgwall Pohansko bei Břeclav). Studien zum Burgwall von Mikulčice 4: 165–169. Průša, E. 1985. Die böhmischen und mährischen Urwälder. Academia, Praha. 173 11 Řepka, R., Šebesta, J., Maděra P. & Vahalík, P. 2015. Comparison of the loodplain forest loristic composition of two riparian corridors: species richness, alien species and the effect of water regime changes. Biologia (Bratislava) 70: 208–217. Samek, V. 1956. Jasan (Fraxinus oxycarpa) na jižní Moravě [Fraxinus oxycarpa in southern Moravia]. Lesnická práce 35: 469–470. Šumberová, K. 1997. Současný stav vegetace svazu Veronico longifoliae-Lysimachion vulgaris na jižní Moravě [The present state of vegetation of the Veronico longifoliae-Lysimachion alliance in South Moravia]. Zprávy České botanické společnosti, Materiály 15: 177–189. Šumberová, K. 1999. Flóra a vegetace vod a mokřadů v oblasti soutoku Moravy a Dyje [Flora and vegetation of the wetlands at the conluence area of the Morava and Dyje Rivers]. Muzeum a současnost, Řada přírodovědná 13: 33–53. Vicherek, J., Antonín, V., Danihelka, J., Grulich, V., Gruna, B., Hradílek, Z., Řehořek, V., Šumberová, K., Vampola, P. & Vágner, A. 2000. Flóra a vegetace na soutoku Moravy a Dyje [Flora and vegetation at the conluence of the Morava and Dyje Rivers]. Masarykova univerzita v Brně, Brno. Vrška, T. 1997. Prales Cahnov po 21 letech (1973–1994) [Primeval forest Cahnov after 21 years]. Lesnictví-Forestry 43: 155–180. Vrška, T. 1998. Prales Ranšpurk po 21 letech (1973–1994) [Primeval forest Ranšpurk after 21 years]. Lesnictví-Forestry 44: 440–473. Vrška, T., Adam, D., Hort, L., Odehnalová, P., Horal, D. & Král, K. 2006. Dynamika vývoje pralesovitých rezervací v České republice II. Lužní lesy – Cahnov-Soutok, Ranšpurk, Jiřina. Developmental dynamics of virgin forest reserves in the Czech Republic II – Floodplain forests – Cahnov-Soutok, Jiřina, Ranšpurk. Academia, Praha. 12 Špidláky Nature Reserve 12 Pavel Novák & Jan Roleček Introduction The Špidláky Nature Reserve is situated between the villages of Čejč and Čejkovice in southern Moravia about 40 km SE of Brno. It protects remnants of species-rich dry grassland preserved on steep slopes known locally as špidláky and one of the few globally known populations of the Pannonian steppe endemic Artemisia pancicii. The reserve consists of ive grassland areas in the intensively-used agricultural landscape at altitudes of 190–240 m covering a total of 21 ha. Late vernal aspect of semi-dry grasslands of the association Polygalo majoris-Brachypodietum pinnati at the Špidláky Nature Reserve. The blue inlorescences are Salvia pratensis. Photo M. Chytrý. Geology, soils and climate The prevailing bedrock is the Neogene calcareous powder sand of the Vienna Basin deposited over the Palaeogene lysch sediments of the Western Carpathians. Sand is covered by Pleistocene loess in places. The dominating soil type is chernozem, with locally-occurring patches of luvisols and leptosols. The area is part of the Pannonian biogeographical province with a relatively continental climate, and is among the warmest and driest places in the Czech Republic: the mean annual temperature exceeds 9 °C and annual precipitation sum is about 530 mm. History of botanical research The surroundings of Čejč attracted the attention of botanists since the very beginning of the research into the Moravian lora. The earliest report is that by Hochstetter (1825), who explored the area before Čejč Lake (see below) and nearby Kobylí Lake were drained. He noted both the presence of Crambe tataria, Gypsophila paniculata and Potentilla patula in dry grasslands on the slopes, and Carex distans and Scorzonera parvilora in the saline habitats on the lake shores. Further descriptions were provided 174 175 by Bayer (1853) and Wiesner (1854). Bubela (1882), visiting the area 30 years later, found both lakes already drained but the halophilous lora was still present. Vegetation The vegetation includes dry grasslands on steep sunny slopes classiied as the alliance Festucion valesiacae. They are dominated by narrow-leaved tussocky graminoids, e.g. Festuca rupicola, F. valesiaca, Carex humilis and three Stipa species. Herbs include thermophilous drought-tolerant species such as Artemisia campestris, Asperula cynanchica, Astragalus austriacus, Dorycnium germanicum and Iris pumila. Competitively weak steppe species, e.g. Astragalus exscapus, Inula oculus-christi and Taraxacum serotinum, appear in disturbed patches (former rabbit colonies, landslides, ield borders; Danihelka & Grulich 2000). Broad-leaved semi-dry grasslands of the alliance Cirsio-Brachypodion pinnati occur on deeper soils and north-facing slopes. They are mostly dominated by Brachypodium pinnatum and are rich in herbs such as Cirsium pannonicum, Echium maculatum, Polygala major, Prunella grandilora, Thesium linophyllon and Salvia pratensis. Such stands are classiied as the association Polygalo majoris-Brachypodietum pinnati. Small patches with more humid soils are covered by extensively mown meadows of the association Brachypodio pinnati-Molinietum arundinaceae. Their species composition includes herbs of mesic, base-rich, though nutrient-poor sites (e.g. Astragalus danicus, Crepis praemorsa, Filipendula vulgaris, Potentilla alba and Primula veris) and graminoids such as Bromus erectus, Carex montana and Koeleria pyramidata. The community lacks strong dominants and is extremely rich in species. It also contains populations of rare light-demanding species such as Daphne cneorum and Klasea lycopifolia and some orchids such as Gymnadenia conopsea and Orchis ustulata (Vicherek & Unar 1971; Ambrozek 1989). It is close in species composition to the famous extremely species-rich grasslands in the White Carpathian Mountains. Scrub with a species-poor herb layer (alliance Berberidion vulgaris) is common in the reserve. Thermophilous herbaceous fringes (alliance Geranion sanguinei) occur in places, often dominated by Geranium sanguineum or Peucedanum cervaria. Weed communities of the alliance Caucalidion with thermophilous and basiphilous annual species such as Nigella arvensis and Silene noctilora develop along the borderline between dry grasslands and cereal ields in some years. Čejč Lake The Čejč Lake (Čejčské jezero) once existed in the depression between the north-eastern and southwestern parts of the reserve. This was a shallow brackish lake of about 1 km2, one of the largest in the Czech Republic (which is poor in natural lakes) and one of the westernmost steppic lakes in Eurasia. It originated in the Pleistocene and completely vanished after draining around 1860. The Čejč Lake hosted well-developed halophytic vegetation with succulent therophytes such as Salicornia prostrata (association Salicornietum prostratae, alliance Salicornion prostratae) and low-growing annual grasslands with Crypsis aculeata (association Crypsietum aculeatae, alliance Cypero-Spergularion salinae). Many halophilous species (e.g. Crypsis aculeata, Glaux maritima, Plantago maritima and Tripolium pannonicum) survived drainage, but disappeared in the following decades due to cultivation of the area (Vicherek 1973; Grulich 1987). The brackish lake surrounded by slopes with species-rich dry grasslands used to be an excellent piece of archaic forest-steppe landscape. Flora The lora of the reserve consists of about 260 species of vascular plants and its composition is typical of the dry grasslands of the north-western part of the Pannonian phytogeographical province. A small population of the Pannonian endemic Artemisia pancicii is the most valuable in this respect. This species has only three extant populations in the Czech Republic, though a few populations are also known in eastern Austria and northern Serbia (Danihelka 1995; Danihelka & Marhold 2003). It belongs to a group of taxa closely related to Artemisia laciniata. Species from this group are broadly distributed in continental parts of Eurasia but have small isolated populations in the west, sometimes described as local endemics (A. oelandica in southern Sweden, A. insipida in south-eastern France), sometimes considered conspeciic with eastern Eurasian populations (A. armeniaca in eastern Spain). These isolated populations are probably relics of the Pleistocene and early Holocene forest-steppe vegetation (Ehrendorfer 1964). Other characteristic species include drought-tolerant to mesophilous continental elements such as Astragalus exscapus, Carex supina, Echium maculatum, Galium boreale subsp. exoletum, Hypericum elegans, Iris pumila, Klasea lycopifolia, Oxytropis pilosa, Phlomis tuberosa and Viola ambigua, and (sub-continental) sub-Mediterranean elements such as Lotus borbasii and Seseli pallasii. Some of these species reach their north-western distribution limit in southern Moravia. The steppe has various colourful seasonal aspects. The vernal aspect is characterized by Adonis vernalis, Gagea transversalis, Iris pumila and Pulsatilla grandis, the late vernal aspect by Crambe tataria, Euphorbia epithymoides and Salvia pratensis. In summer, several yellow-lowering species of Inula and Eryngium campestre come into bloom. The late summer aspect is distinctive for two Asteraceae species, Aster amellus and Galatella linosyris. 176 The Špidláky Nature Reserve between the villages Čejč (in the north) and Čejkovice (in the south). Appendix 12 Selected species of vascular plants of the Špidláky Nature Reserve. Acinos arvensis Achillea collina Achillea pannonica Adonis vernalis Allium sphaerocephalon Alyssum alyssoides Anthericum ramosum Anthoxanthum odoratum Anthyllis vulneraria Arabidopsis thaliana Arenaria serpyllifolia Arrhenatherum elatius Artemisia campestris Artemisia pancicii Asparagus oficinalis Asperula cynanchica Asperula tinctoria Aster amellus Astragalus austriacus Astragalus danicus Astragalus exscapus Astragalus onobrychis Betonica oficinalis Bothriochloa ischaemum 177 12 Brachypodium pinnatum Briza media Bromus erectus Bromus inermis Bromus japonicus Bupleurum falcatum Campanula glomerata Campanula moravica Campanula sibirica Carduus nutans Carex caryophyllea Carex humilis Carex michelii Carex montana Carex supina Carlina acaulis Carlina vulgaris Centaurea jacea Centaurea scabiosa Centaurea stoebe Cerastium glutinosum Chamaecytisus austriacus Chamaecytisus ratisbonensis Chamaecytisus virescens Cirsium pannonicum Conyza canadensis (neo) Crambe tataria Crepis praemorsa Cynoglossum oficinale Dactylis glomerata Daphne cneorum Daucus carota Dianthus pontederae Dorycnium germanicum Echium maculatum Echium vulgare Elymus hispidus Erodium cicutarium Erophila verna Eryngium campestre Euphorbia cyparissias Euphorbia epithymoides Falcaria vulgaris Festuca rupicola Festuca valesiaca Filipendula vulgaris Fragaria viridis Gagea transversalis Galatella linosyris Galium boreale subsp. exoletum Galium glaucum Galium verum Geranium sanguineum Gymnadenia conopsea Gypsophila paniculata Helictochloa pratensis Hieracium umbellatum 178 Hypericum elegans Hypericum perforatum Inula ensifolia Inula germanica Inula hirta Inula oculus-christi Iris pumila Klasea lycopifolia Knautia arvensis agg. Koeleria macrantha Koeleria pyramidata Lappula squarrosa Lathyrus pannonicus subsp. collinus Leontodon hispidus Lepidium draba Leucanthemum vulgare Lilium martagon Linum catharticum Lotus borbasii Lotus corniculatus Medicago falcata Medicago minima Melica transsilvanica Microthlaspi perfoliatum Muscari comosum Muscari tenuilorum Nigella arvensis Nonea pulla Odontites luteus Onobrychis arenaria Ononis spinosa Onopordum acanthium Orchis ustulata Ornithogalum kochii Ornithogalum umbellatum Orobanche alba Oxytropis pilosa Peucedanum cervaria Phleum phleoides Phlomis tuberosa Phragmites australis Picris hieracioides Pilosella densilora Pilosella rothiana Pimpinella saxifraga Plantago lanceolata Plantago media Poa angustifolia Polygala comosa Polygala major Potentilla alba Potentilla incana Primula veris Prunella grandilora Pulsatilla grandis Ranunculus illyricus Ranunculus polyanthemos Reseda lutea Rhinanthus major Robinia pseudoacacia (neo) Rosa spinosissima Rumex acetosa Salvia nemorosa Salvia pratensis Scabiosa canescens Scabiosa ochroleuca Scorzonera austriaca Scorzonera purpurea Securigera varia Senecio jacobaea Serratula tinctoria Seseli annuum Seseli hippomarathrum Seseli pallasii Silene latifolia subsp. alba Silene nutans Silene otites Silene viscosa Stachys recta Stellaria graminea Stipa capillata Stipa pennata Stipa pulcherrima Tanacetum corymbosum Taraxacum serotinum Tephroseris integrifolia Teucrium chamaedrys Thalictrum minus Thesium linophyllon Thymus pannonicus Tragopogon orientalis Trifolium alpestre Trifolium montanum Trifolium pratense Trinia glauca Verbascum phoeniceum Veronica praecox Veronica prostrata Veronica spicata Veronica triphyllos Veronica verna Veronica vindobonensis Vicia cracca Vicia tenuifolia Vincetoxicum hirundinaria Viola ambigua Viola arvensis Viola hirta Viola rupestris 12 Plate 12 Plants of the Špidláky Nature Reserve: (a) Salvia pratensis, (b) Betonica oficinalis, (c) Festuca valesiaca, (d) Geranium sanguineum, (e) Euphorbia epithymoides, (f) Echium maculatum, (g) Verbascum phoeniceum, (h) Astragalus exscapus, (i) Adonis vernalis, (j) Astragalus onobrychis, (k) Astragalus danicus, (l) Artemisia pancicii. 179 References Ambrozek, L. 1989. Vybrané komplexy xerotermní vegetace na jižní Moravě [Selected complexes of xerothermophilous vegetation in southern Moravia]. Thesis, Charles University, Praha. Bayer, J. 1853. Über die Flora von Tscheitsch in Mähren. Verhandlungen des Zoologisch-Botanischen Vereins in Wien 2 (1852): 20–24. Bubela, J. 1882. Floristisches aus der Umgebung von Čejč in Mähren. Oesterreichische botanische Zeitschrift 32: 117–120. Danihelka, J. 1995. O druhu Artemisia pancicii v České republice a příbuzných taxonech [About Artemisia pancicii and related taxa in the Czech Republic]. Zprávy České botanické společnosti 30: 81–90. Danihelka, J. & Grulich, V. 2000. Pampeliška pozdní (Taraxacum serotinum) v České republice [Taraxacum serotinum in the Czech Republic]. Zprávy České botanické společnosti 34 (1999): 123–134. Danihelka, J. & Marhold, K. 2003. Validation of the name Artemisia pancicii (Asteraceae). Willdenowia 33: 251–254. Ehrendorfer, F. 1964. Notizen zur Cytotaxonomie und Evolution der Gattung Artemisia. Österreichische botanische Zeitschrift 111: 84–142. Grulich, V. 1987. Slanomilné rostliny na jižní Moravě [Halophilous plants in southern Moravia]. Český svaz ochránců přírody, Břeclav. Hochstetter G. [recte C.] F. 1825. Uebersicht des Merkwürdigsten aus Mährens Flora. Flora 8: 512– 525 & 529–537. Vicherek, J. 1973. Die Planzengesellschaften der Halophyten- und Subhalophytenvegetation der Tschechoslowakei. Academia, Praha. Vicherek, J. & Unar, J. 1971. Fytocenologická charakteristika stepní vegetace jižní Moravy [Phytosociological characteristics of steppe vegetation in southern Moravia]. Project report, Institute of Botany, Průhonice. Wiesner J. 1854. Excursion in die Umgebung von Tscheitsch in Mähren. Oesterreichisches botanisches Wochenblatt 4: 329–331. 13 Hodonínská Dúbrava Wood 13 Jan Roleček Introduction Hodonínská Dúbrava (meaning Oakwood near Hodonín) is the south-western part of the largest forest complex in the predominantly treeless lowland area of southern Moravia. The forest is situated north of the town of Hodonín near the Czech-Slovak border. It covers a plain above the loodplain of the Morava River at an altitude of about 175 m. The bedrock determines the habitat diversity of the area: thick layers of Tertiary mineral-rich water-holding sediments are overlain by nutrient-poor acidic Pleistocene eolian sand accumulations of variable thickness. The mean annual temperature is about 9.5 °C and the annual precipitation sum is about 550 mm. The site is protected as a National Nature Monument and Site of Community Importance. Open-canopy old-growth oak forest of the association Carici fritschii-Quercetum roboris in Hodonínská Dúbrava Wood. Signs of former coppicing are visible on trees. Photo J. Roleček. Vegetation and lora In the north-eastern part of the wood (called Bzenecká Dúbrava), there are layers of eolian sand up to 30 m thick that support drought-tolerant psammophytic vegetation, now mostly replaced by Scots pine (Pinus sylvestris) plantations. In contrast, Hodonínská Dúbrava in the south-west has a mildly undulating topography of sandy plains and low dunes with sand layers just a few metres thick. Soil conditions are thereby inluenced by the underlying impermeable base-rich sediments that determine a ine-scale mosaic of dry and wet, base-rich and base-poor sites (Novák & Pelíšek 1943). About 150 ha of old-growth subcontinental oakwood has been preserved on dry and mesic sites. This vegetation type is characterized by open canopy dominated by Quercus robur or (in some places) Betula pendula, 180 181 with an understorey rich in light-demanding herbs and dominated by Brachypodium pinnatum, Carex fritschii, C. michelii, Convallaria majalis, Festuca ovina subsp. guestfalica and Molinia arundinacea. Characteristic species include Asperula tinctoria, Betonica oficinalis, Geranium sanguineum, Iris variegata, Laserpitium prutenicum, Melampyrum cristatum, Potentilla alba, Serratula tinctoria and Valeriana stolonifera subsp. angustifolia. Populations of some species that are highly endangered in the Czech Republic also occur here, including Daphne cneorum, Drymocallis rupestris, Festuca amethystina, Gladiolus palustris and Thalictrum simplex subsp. galioides. This community can be classiied as the association Carici fritschii-Quercetum roboris (alliance Aceri tatarici-Quercion), which is known only from the north-western edge of the Pannonian Basin, but is close in species composition to some oak forests on sandy substrates in Hungary (Šmarda 1961; Chytrý & Horák 1997; Roleček 2004, 2007). It is one of the species-richest forest communities in the Czech Republic and Hodonínská Dúbrava features the best-preserved and largest remnant of this vegetation type in its distribution range. Relatively species-poor acidophilous oak forests of the alliance Quercion roboris occur on base-poor soils; these are enriched by drought-tolerant species such as Agrostis vinealis, Carex ericetorum, Verbascum phoeniceum and Veronica spicata in the driest places. The prevailing vegetation includes, however, species-poor plantations of Quercus robur and Pinus sylvestris and successional closed-canopy stands of Quercus robur mixed with Tilia cordata or the invasive woody species Robinia pseudoacacia and Prunus serotina. Deeper depressions are occupied by marsh vegetation of the alliances Magno-Caricion elatae and Phragmition australis dominated by tall sedges (Carex acutiformis, C. elata) or Phragmites australis or overgrow with hygrophilous scrub of the alliance Salicion cinereae (mostly dominated by Salix aurita) or alder carrs of the alliance Alnion glutinosae (mostly dominated by Alnus glutinosa). Many regionally-rare species of nutrient-poor wetlands occur here including Carex buxbaumii, C. lasiocarpa, Hottonia palustris, Spiraea salicifolia and Utricularia vulgaris. Shallow depressions may have mineralpoor soils and harbour a wet type of acidophilous oak forest (association Holco mollis-Quercetum roboris, alliance Quercion roboris) with a herb layer usually dominated by tall grasses, mostly Molinia arundinacea, in places also Calamagrostis canescens and Deschampsia cespitosa. Environmental history The organic inill of wet depressions has enabled palaeoecological reconstruction of the wood history (Jamrichová et al. 2013). The oak has been present since the mid-Holocene; however, it markedly increased in abundance only in the Middle Ages, probably due to its intentional preference as a species of high economic value. Previously, hazel (Corylus avellana), alder (Alnus glutinosa) and spruce (Picea abies) used to be more abundant. Detailed research into the management history (Šmarda 1961; Szabó 2013; Szabó & Hédl 2013) has shown that the wood also used to be inluenced by other human activities, particularly wood pasture and haymaking. There was also a short period of coppicing between the 18th and 19th centuries whose legacy can be still recognized in the oldest stands (multi-stemmed trees, swollen or curved trunk bases with the remains of coppice stools). These traditional management practices kept the forest open and enabled the colonization and long-term survival of many rare light-demanding species. However, clear-cutting with intensive site preparation began to be practised in the 1950s, including area-wide soil tillage and stump removal by digging and later bulldozing. This practise was abandoned in the 1990s due to poor oak growth on sandy soils impoverished by topsoil removal. Recently, stumps have been retained in clearcuts and oaks (Quercus robur) or pines (Pinus sylvestris) planted in stripes tilled by tractor. This modern industrial management caused the retreat of many endangered species and supported the massive spread of some expansive or invasive herbs and grasses such as Arrhenatherum elatius, Calamagrostis epigejos, Solidago gigantea and Symphyotrichum lanceolatum (Řepka 2009). Hodonínská Dúbrava Wood on the north-western edge of the town of Hodonín. Appendix 13 Selected species of vascular plants in Hodonínská Dúbrava Wood based on the unpublished ield records of R. Řepka. Waterlogged depressions in Hodonínská Dúbrava Wood are illed in with shallow organic sediments which contain a record of the environmental history of this area. Hottonia palustris is lowering in some depressions in spring. Photo J. Roleček. 182 Acer campestre Aegopodium podagraria Agrimonia eupatoria Agrimonia procera Agrostis canina Agrostis capillaris Agrostis vinealis Achillea collina Achillea pannonica Ajuga genevensis Ajuga reptans Alliaria petiolata Allium oleraceum Allium scorodoprasum Allium senescens subsp. montanum Allium vineale Alnus glutinosa Angelica sylvestris Anthericum ramosum Anthoxanthum odoratum Aquilegia vulgaris Arabidopsis thaliana Arabis hirsuta 183 13 Arenaria serpyllifolia Arrhenatherum elatius Artemisia pontica Artemisia vulgaris Asparagus oficinalis Asperula cynanchica Asperula tinctoria Astragalus glycyphyllos Avenula pubescens Betonica oficinalis Betula pendula Betula pubescens Bistorta oficinalis Brachypodium pinnatum Brachypodium sylvaticum Briza media Bromus benekenii Bromus inermis Buglossoides purpurocaerulea Bupleurum falcatum Calamagrostis canescens Calamagrostis epigejos Calluna vulgaris Campanula cervicaria Campanula glomerata Campanula patula Campanula persicifolia Campanula rotundifolia agg. Campanula trachelium Cardamine impatiens Cardamine parvilora Carex acuta Carex acutiformis Carex brizoides Carex buxbaumii Carex caryophyllea Carex cespitosa Carex curvata Carex disticha Carex elata Carex elongata Carex ericetorum Carex lacca Carex fritschii Carex hartmanii Carex hirta Carex humilis Carex lasiocarpa Carex leporina Carex michelii Carex montana Carex muricata Carex nigra Carex otomana Carex pallescens Carex panicea Carex pilosa Carex praecox Carex remota Carex riparia 184 Carex spicata Carex supina Carex sylvatica Carex tomentosa Carex vesicaria Carex vulpina Carlina vulgaris Carpinus betulus Centaurea jacea Centaurea scabiosa Centaurea stoebe Centaurea triumfetti Centaurium erythraea Cerastium arvense Chamaecytisus ratisbonensis Chamaecytisus supinus Circaea lutetiana Cirsium palustre Cirsium vulgare Clematis recta Clinopodium vulgare Cnidium dubium Colchicum autumnale Convallaria majalis Cornus mas Cornus sanguinea Corylus avellana Corynephorus canescens Crataegus spp. Crepis praemorsa Cruciata laevipes Cruciata verna Cytisus nigricans Dactylis glomerata Dactylis polygama Dactylorhiza fuchsii Danthonia decumbens Daphne cneorum Dentaria bulbifera Deschampsia cespitosa Dianthus armeria Dianthus pontederae Dianthus superbus Dictamnus albus Digitalis grandilora Drymocallis rupestris Elymus caninus Elymus hispidus Elymus repens Epipactis helleborine agg. Equisetum arvense Equisetum hyemale Equisetum palustre Eryngium campestre Euonymus europaeus Euphorbia cyparissias Euphorbia esula Euphorbia illirica Festuca amethystina Festuca heterophylla Festuca ovina subsp. guestfalica Festuca pulchra Festuca rubra Festuca rupicola Filipendula ulmaria Filipendula vulgaris Fragaria moschata Fragaria vesca Fragaria viridis Frangula alnus Galeobdolon montanum Galium album Galium aparine Galium boreale Galium odoratum Galium palustre Galium pumilum Galium rivale Galium uliginosum Galium verum Genista germanica Genista tinctoria Geranium sanguineum Gladiolus palustris Glechoma hederacea Glyceria luitans Helictochloa pratensis Herniaria glabra Hieracium diaphanoides Hieracium laevigatum Hieracium lachenalii Hieracium maculatum Hieracium murorum Hieracium sabaudum Hieracium umbellatum Holcus lanatus Holcus mollis Humulus lupulus Hylotelephium maximum Hypericum montanum Hypericum perforatum Impatiens parvilora (neo) Inula britannica Inula hirta Inula salicina Iris graminea Iris pseudacorus Iris sibirica Iris variegata Isolepis setacea Jasione montana Juncus alpinoarticulatus Juncus articulatus Juncus atratus Juncus bufonius Juncus conglomeratus Juncus effusus Juncus tenuis (neo) Knautia arvensis Knautia kitaibelii 13 Plate 13 Plants of Hodonínská Dúbrava Wood: (a) Lithospermum oficinale, (b) Gladiolus palustris, (c) Scorzonera purpurea, (d) Thalictrum simplex subsp. galioides, (e) Scirpoides holoschoenus, (f) Serratula tinctoria, (g) Carex fritschii, (h) Crepis praemorsa, (i) Frangula alnus, (j) Briza media, (k) Melica picta, (l) Dactylorhiza fuchsii. 185 Species-rich herb layer of the Quercus robur forest in Hodonínská Dúbrava Wood with Convallaria majalis, Euphorbia cyparissias, Inula salicina, Lysimachia vulgaris and Potentilla alba. Photo M. Chytrý. Koeleria macrantha Koeleria pyramidata Laserpitium prutenicum Lathyrus niger Leontodon hispidus Leonurus cardiaca Leucanthemum vulgare agg. Ligustrum vulgare Lilium martagon Listera ovata Lithospermum oficinale Lotus corniculatus Luzula campestris Luzula divulgata Luzula multilora Luzula pallescens Lycopus europaeus Lysimachia nummularia Lysimachia vulgaris Lythrum salicaria Maianthemum bifolium 186 Malus sylvestris Melampyrum cristatum Melampyrum nemorosum Melampyrum pratense Melica nutans Melica picta Melica unilora Melittis melissophyllum Moehringia trinervia Molinia arundinacea Molinia caerulea Muscari comosum Nardus stricta Neottia nidus-avis Origanum vulgare Ornithogalum kochii Orobanche kochii Oxalis stricta (neo) Paris quadrifolia Peucedanum cervaria Peucedanum oreoselinum Phleum phleoides Phragmites australis Pilosella cymosa Pilosella echioides Pilosella oficinarum Pilosella onegensis Pilosella rothiana Pimpinella saxifraga Pinus sylvestris Plantago arenaria Plantago lanceolata Plantago major Platanthera bifolia Platanthera chlorantha Poa angustifolia Poa nemoralis Poa palustris Poa trivialis Polygonatum multilorum Polygonatum odoratum Populus alba Populus tremula Potentilla alba Potentilla argentea Potentilla erecta Potentilla heptaphylla Potentilla recta Primula veris Prunella vulgaris Prunus avium Prunus padus Prunus serotina (neo) Prunus spinosa Pulmonaria angustifolia Pulmonaria obscura Pyrola minor Pyrus pyraster Quercus cerris Quercus petraea Quercus robur Quercus rubra (neo) Ranunculus acris Ranunculus auricomus agg. Ranunculus polyanthemos Rhamnus cathartica Robinia pseudoacacia (neo) Rosa canina Rosa gallica Rubus caesius Rubus fruticosus agg. Rubus idaeus Rumex acetosa Rumex acetosella Rumex thyrsilorus (neo) Salix aurita Salvia pratensis Sanguisorba oficinalis Scabiosa canescens Scabiosa ochroleuca Scirpoides holoschoenus Scorzonera humilis Scorzonera purpurea Scrophularia nodosa Scrophularia umbrosa Scutellaria galericulata Securigera varia Sedum sexangulare Selinum carvifolia Senecio jacobaea Serratula tinctoria Silene nutans Silene vulgaris Solidago virgaurea Stachys recta Stellaria graminea Succisa pratensis Symphyotrichum lanceolatum (neo) Tephroseris integrifolia Teucrium chamaedrys Thalictrum lucidum Thalictrum minus Thalictrum simplex subsp. galioides Thesium linophyllon Thymus pannonicus Thymus serpyllum Tilia cordata Tilia platyphyllos Trifolium alpestre Trifolium arvense Trifolium campestre Trifolium medium Trifolium montanum Trifolium pratense Trifolium rubens Trisetum lavescens Turritis glabra Ulmus laevis Urtica dioica Vaccinium myrtillus Valeriana stolonifera subsp. angustifolia Verbascum chaixii subsp. austriacum Verbascum lychnitis Verbascum nigrum Verbascum phoeniceum Veronica chamaedrys Veronica maritima Veronica oficinalis Veronica spicata Veronica vindobonensis Viburnum opulus Vicia angustifolia Vicia cassubica Vicia cracca Vicia pisiformis Vicia sepium Vicia tenuifolia Vincetoxicum hirundinaria Viola canina Viola hirta Viola reichenbachiana Viola riviniana Viola rupestris Viscaria vulgaris 13 References Chytrý, M. & Horák, J. 1997. Plant communities of the thermophilous oak forests in Moravia. Preslia 68 (1996): 193–240. Jamrichová, E., Szabó, P., Hédl, R., Kuneš, P., Bobek, P. & Pelánková, B. 2013. Continuity and change in the vegetation of a Central European oakwood. The Holocene 23: 46–56. Novák, V. & Pelíšek, J. 1943. Stručná charakteristika půd na přesypových pískách v lesní oblasti Dubrava u Hodonína [Brief characteristics of soils on eolian sand in forest region Dubrava near Hodonín]. Lesnická práce 8: 225–235. Roleček, J. 2004. Subkontinentální doubravy asociace Carici fritschii-Quercetum roboris na Záhoří [Subcontinental oak forests of Carici fritschii-Quercetum roboris association in Záhorská nížina lowland (Slovakia)]. Bulletin Slovenskej botanickej spoločnosti 26: 163–176. Roleček, J. 2007. Vegetace subkontinentálních doubrav ve střední a východní Evropě [Vegetation of subcontinental oak forests in Central and Eastern Europe]. Ph.D. thesis, Masaryk University, Brno. Řepka, R. 2009. Druhová diverzita vyšších rostlin versus lesnický management v evropsky významné lokalitě (EVL) Hodonínská Doubrava [Vascular plant species richness versus forestry management in the SCI Hodonínská Doubrava]. Zprávy České botanické společnosti, Materiály 24: 111–120. Szabó, P. 2013. The end of common uses and traditional management in a Central European wood. In: Rotherham, I.D. (ed.) Cultural severance and the environment. The ending of traditional and customary practice on commons and landscapes managed in common, pp. 205–213. Springer, Dordrecht. 187 Szabó, P. & Hédl, R. 2013. Socio-economic demands, ecological conditions and the power of tradition: past woodland management decisions in a Central European landscape. Landscape Research 38: 243–261. Šmarda, F. 1961. Rostlinná společenstva území přesypových písků lesa Doubravy u Hodonína [Plant communities of eolian sand area in Doubrava Wood near Hodonín]. Práce Brněnské základny Československé akademie věd 413: 1–56. 14 White Carpathian Mountains 14 Jan W. Jongepier, Ivana Jongepierová, Milan Chytrý & Vít Grulich Introduction The White Carpathian Mountains (Bílé Karpaty) are a mountain range in the east of southern Moravia, but the south-eastern-most part of the mountains is situated on Slovak territory. Before 1918, the range formed the border between the Austrian and the Hungarian part of Austro-Hungary. Species-rich semi-dry meadow in the White Carpathians with Galium verum and Betonica oficinalis. Photo J. Říhová. Geology, geomorphology and soils The area consists predominantly of lysch deposits from the Eocene period (Lower Tertiary), composed of alternating sandstone and claystone layers. The presence of calcareous deposits illing up the oldest issures is quite common. The sandstone is usually cemented by lime, and only in the central part of the mountain range acidic sandstone cemented by silica is present. Among Quaternary covering deposits, loess and silty loams prevail in relatively large areas. In stream and river valleys alluvial deposits are widely distributed. Loamy to clayey slope deposits are encountered in some parts with rugged terrain. In the vicinity of springs originating from lysch layers particularly rich in lime, calcareous tufa has developed at many sites. The western part of the White Carpathians is made up of hills with gentle, rarely steep slopes and open, shallow valleys. The central part of the mountains consists of one or two parallel main ranges with, namely on the Slovak side, numerous side ranges projecting far from the main range. The central and north-eastern part of the White Carpathians is more mountainous in character. The border range 188 189 is divided into several massifs (e.g. Žalostiná, Javořina and Lopeník). Landslides are a common feature on steep slopes, particularly near springs, apparent by the many uneven slopes. Rock cliffs are present only on Slovak territory. The lowest point of the area is the margin of the Morava River loodplain near the village of Sudoměřice (166 m a.s.l.), the highest is the summit of Mount Velká Javořina (970 m a.s.l.). In the south-western part of the White Carpathians, gleyic chernozems and gleyic phaeozems cover large areas. These soils are heavy and dry out in summer. During periods of drought, deep and broad issures often develop. Gleyic phaeozem is quite often found in depressions. Cambisols and chernozems have developed on loess. Heavy, often gleyic to pellic cambisols, saturated with bases, are found at higher altitudes, whereas unsaturated cambisols occur only rarely. Leptosols (pararendzinas) are found on outcrops of the calcareous lysch bedrock (Kuča et al. 1992; Jongepierová 2008; Konvička et al. 2012). Climate The climate of the south-western part of the White Carpathians is relatively warm and moderately humid. Measured near the town of Strážnice (ca. 180 m a.s.l.), the mean annual temperature is about 9.5 °C, and the annual precipitation amounts to almost 600 mm. The climate in the central and north-eastern parts of the White Carpathians is moderately warm, at higher altitudes cooler, but considerably warmer than at similar altitudes in northern and western Moravia. At the village of Strání (ca. 400 m a.s.l.) the mean annual temperature is about 7.5 °C and the annual precipitation sum is about 800–900 mm. The highest mountain tops have a mean annual temperature of less than 6 °C. Precipitation here is generally higher than in other parts of southern Moravia. The large and deep valleys, running across the main range, affect the air circulation and are the cause of a more humid mesoclimate. Dry winds from the south-east, blowing over the range of the White Carpathians, have also a profound inluence on the climate of the western foothills. Particularly in spring they cause strong wind erosion (Kuča et al. 1992; Jongepierová 2008; Konvička et al. 2012). Landscape history The fact that the White Carpathian Mountains harbour very species-rich grasslands, including a number of rare and disjunctly distributed species, is explained not only by speciic local environmental factors, but also by their long history dating back to the early Holocene. Available phytogeographical, archaeological and palaeoecological data suggest the prehistoric origin of the White Carpathian grasslands (Hájková et al. 2011). Also the high concentration of rare heliophilous species with a disjunct distribution in the south-western part of the area suggests a long-term persistence. Archaeological inds provide evidence for the existence of prehistoric human settlements in this region since the Neolithic. Macrofossil, mollusc and pollen analyses also indicate the existence of a cultural landscape with a mosaic of open grasslands, natural forests and ields in prehistoric times. The irst people must have arrived in the White Carpathians in the Palaeolithic and Mesolithic. In the Neolithic, settling became more extensive. Higher elevations along the main ridge, creating a natural border between Moravia and Hungary (incl. nowadays’ Slovakia), remained untouched until the late 12th century. Since the early 13th century the area has gradually been settled and villages and towns were founded. This development was disturbed by frequent attacks of Hungarians, Cumans, Tartars, Turks and other troops who destroyed complete villages (Kuča et al. 1990; Jongepierová 2008). History of botanical research The irst detailed botanical research in the White Carpathians was carried out in the irst half of the 20th century. The species-rich grasslands of the area impressed Josef Podpěra (Podpěra 1951), the irst Professor of Botany at Masaryk University, Brno. In the irst half of the 20th century, primary school teacher Stanislav Staněk recorded the lora of the area in detail (Staněk et al. 1996) and prepared proposals for nature reserves. The natural values of the meadows, especially plant communities, were documented by Sillinger (1929). After WWII, two Summer Schools of Field Botany of the Czechoslovak Botanical Society were held in the area, conirming and updating the data collected by Staněk (Elsnerová et al. 1984; Grulich 1989). A syntaxonomic review of the White Carpathian grasslands was published by Tlusták (1975). In the 1980s the orchid lora of the area was studied (Tlusták & Jongepierová-Hlobilová 1990). Since 190 1995, Michal Hájek (Hájek 1998; Balátová-Tuláčková & Hájek 1998) and colleagues have been studying spring-fen vegetation. In 1986, the Botanical Section of the Protected Landscape Area Authority started coordinating botanical research (Rydlo 2000; Otýpková 2001) and initiating a range of research projects in the area, e.g. vegetation monitoring (especially the effect of different management practices), re-creation of species-rich meadows, and establishing a plant distribution database. Also, inventories of bryophytes (Pospíšil 1994), lichens and fungi have been carried out (Antonín et al. 2010). The late Leoš Klimeš (Klimeš 1995, 1997, 1999, 2008; Klimeš et al. 2000, 2001, 2013; Jongepierová et al. 1994) studied the effects of grassland management and the phenomenon of extremely high species richness of the White Carpathian grasslands from the late 1980s until 2008). Details of previous research can be found in the book Grasslands of the White Carpathian Mountains (Jongepierová 2008). A signiicant activity was the grid mapping of plants and animals in the Protected Landscape Area during 2003–2006. All newly collected and older data have been entered into a database, currently containing nearly half a million records. This became the basis of a distribution atlas (Jongepier & Pechanec 2006; Otýpková et al. 2011) and an annotated checklist of vascular plants growing in the area (Jongepier & Jongepierová 2006). Vegetation The White Carpathian Mountains are partly situated in the region of thermophilous lora and partly in that of mesophilous lora, including the colline and supracolline vegetation belts. On convex slopes in the lower south-western part of the area, thermophilous oak forests of the association Melico pictae-Quercetum roboris (alliance Quercion petraeae) used to prevail in the natural vegetation cover. In the course of time, most of these forests have been transformed into species-rich semi-dry grasslands with scattered trees and during the past century many of the remaining stands have been converted to mesophilous Carpinion betuli forests. Perialpine thermophilous oak forests of the association Euphorbio-Quercetum (alliance Quercion pubescenti-petraeae) used to occur to a limited extent and only a few fragments have remained. The prevailing forest type at lower to middle altitudes is Carpathian oak-hornbeam forests of the association Carici pilosae-Carpinetum betuli (alliance Carpinion betuli), locally also with European beech (Fagus sylvatica) in the tree layer. Pannonian oak-hornbeam forests of the association Primulo veris-Carpinetum betuli occur as small patches, usually in contact with thermophilous oak forests. Alluvial ash-alder forests of the association Stellario nemorum-Alnetum glutinosae (alliance Alnion incanae) are conined to stream valleys. Occurrence of seepage forests of the association Carici remotae-Fraxinetum excelsioris (alliance Alnion incanae) is limited to small spring areas on slopes. Beech forests (alliance Fagion sylvaticae) represent the potential natural vegetation of the ridge and the NE part of the mountains. The absence of Abies alba from these forests – except for the extreme north – is a remarkable phenomenon. Carici pilosae-Fagetum sylvaticae is the most common association. At higher altitudes it is locally replaced by mesotrophic (Galio odorati-Fagetum sylvaticae) to euthrophic (Mercuriali perennis-Fagetum sylvaticae) associations of beech forests on mineral-rich soils and by acidophilous beech forests (association Luzulo luzuloidis-Fagetum sylvaticae, alliance Luzulo-Fagion sylvaticae) on acidic sandstone. Steep slopes support ravine forests of the alliance Tilio platyphylli-Acerion, mainly belonging to the association Mercuriali perennis-Fraxinetum excelsioris. The White Carpathian grasslands are mostly represented by semi-dry meadows of the association Brachypodio pinnati-Molinietum arundinaceae (transitional between the alliances Bromion erecti and Cirsio-Brachypodion pinnati), well known for their extraordinary species diversity, including most of the rare species with a disjunct distribution. Mesophilous meadow vegetation of the alliance Arrhenatherion elatioris is found at more nutrient-rich sites, often in the close vicinity of villages, on former arable land, and in fertilized Brachypodio-Molinietum stands. Scrub and forest margins may be accompanied by forest fringe vegetation of the alliance Geranion sanguinei or, at higher altitudes, the alliance Trifolion medii. These vegetation types are often dificult to delimit from the neighbouring grasslands, in which a range of forest-fringe herb species often occur. Higher altitudes support Western Carpathian meadows and pastures of the association Anthoxantho odorati-Agrostietum tenuis (alliance Cynosurion cristati). Species-poor stands of the association Lolio perennis-Cynosuretum cristati from the same alliance are found on intensively grazed pastures. Along small rivers and streams, in grassland depressions and in the surroundings of springs, various types of wetland have developed. Most often these are wet Cirsium meadows of the alliance Calthion palustris, represented mainly by the association Cirsietum rivularis but also by several 191 14 associations according to water and nutrient level and disturbance regime. Only locally and patchily, also wet alluvial meadows of the alliance Deschampsion cespitosae (mostly the association Holcetum lanati) occur. At nutrient-poor sites, intermittently wet Molinia meadows of the association Molinietum caeruleae (alliance Molinion caeruleae) can be found, however, rather as transitional types to semidry Brachypodio-Molinietum meadows than in their typical form. Meadow springs, usually including tufa formation, host a very speciic vegetation. Most of these stands, rich in calciphilous wetland specialists, can be classiied as the association Carici lavae-Cratoneuretum ilicini (alliance Caricion davallianae). As for synanthropic vegetation, weed communities on calcareous soils belonging to the Caucalidion alliance are especially noteworthy. On arable and fallow land in warmer parts of the region they locally host many vanishing weed species. Flora The area possesses approximately 1500 vascular plant taxa (species and subspecies) on an area of some 600 km², which can be divided into different phytogeographical elements. A considerable number of species reach the border of their distribution range or have isolated occurrences in the White Carpathians. The undergrowth of beech and oak-hornbeam forests at lower altitudes of the entire Western Carpathians is characterized by Carex pilosa, Euphorbia amygdaloides, Hacquetia epipactis, Salvia glutinosa and Symphytum tuberosum. At the highest altitudes of the mountain massifs of Javořina and Lopeník several montane species, e.g. Aconitum variegatum, Cicerbita alpina, Geranium sylvaticum, Lunaria rediviva and Silene dioica, grow. Contact with the Pannonian phytogeographical province is most pronounced in deforested parts at lower altitudes of the White Carpathians. Here, Buglossoides purpurocaerulea, Cornus mas, Euonymus verrucosus and Viburnum lantana are commonly encountered. The meadows and dry grasslands in the south-western part of the White Carpathians are or were inhabited by numerous xerophilous species, e.g. Astragalus danicus, Echium maculatum, Iris variegata, Klasea lycopifolia, Linum lavum, Polygala major, Stipa tirsa, Veronica orchidea and V. spuria. Some of these species have large continental distribution ranges reaching far to the east up to southern Siberia. Some species, conined to calcareous substrata in higher Central European mountain ranges, have spread into the White Carpathians only via the Váh River Valley in Slovakia; this group includes Carex alba, C. ornithopoda and Hippocrepis comosa. Danthonia alpina and Globularia bisnagarica can be mentioned as examples of sub-Mediterranean species. Laserpitium latifolium, Senecio umbrosus and Stachys alpina are predominantly calciphilous species with distribution ranges surrounding the high Central European mountain systems. Several plant species, such as Allium victorialis, Aposeris foetida, Crocus albilorus, Lathyrus pannonicus subsp. pannonicus, Pedicularis exaltata, Potentilla micrantha, the subendemic Tephroseris longifolia subsp. moravica, and also the now extinct Gentiana acaulis, have remarkable isolated occurrences in the White Carpathians. The White Carpathians host a total of 37 species of orchid. Another three species, Herminium monorchis, Orchis coriophora and Spiranthes spiralis, used to occur here but are now extinct. Gymnadenia conopsea, Orchis mascula, O. militaris and Traunsteinera globosa are rather common in the area. Anacamptis pyramidalis, Gymnadenia densilora, Ophrys holoserica subsp. holubyana and Orchis pallens are rare or absent elsewhere in the Czech Republic. Heavy soils rich in nutrients support subhalophilous plants, such as Carex distans, C. hordeistichos, Lotus maritimus and L. tenuis. Nature conservation For its diverse nature, the White Carpathians have been under protection as a Protected Landscape Area since 1980. The protected area is ca. 750 km² in size and was included in the world network of UNESCO Biosphere Reserves in 1996. In 2000, it was also awarded the European Diploma by the Council of Europe. Within the broader protected area a total of 54 nature reserves with stricter conservation regime have been designated, varying in size from less than 1 ha to 700 ha. The total area of species-rich grassland sites on the territory of the Bílé Karpaty Protected Landscape Area amounts to 4000 ha (40 km²). 192 Unfortunately, not all of the past White Carpathian richness has been preserved. Establishing nature reserves took a long time: some of the proposals took 45 years to be implemented. For instance, large areas of the driest grasslands with Stipa tirsa were devastated during the 1960s and 1970s, so that only a few tussocks of this feather grass have survived. Species richness of the White Carpathian grasslands In a global review of the highest counts of vascular plant species occurring in plots of different sizes (Wilson et al. 2012), ive world records were reported from the Čertoryje meadows in the south-western part of the White Carpathians: 13, 44, 105, 116 and 131 species for plots of 0.004, 0.25, 16, 25 and 49 m², respectively. In 2014, a world record of 43 species at 0.1 m2 was equalled at the same locality (Chytrý, Dřevojan & Fajmon, unpubl. data) and a new world record count of 109 species in a plot of 16 m2 was obtained in the Porážky meadows, also in the south-western White Carpathians (Hájek & Hájková, unpubl. data). Such extremely high local species richness is characteristic of many grassland sites throughout the White Carpathians. Although comparative studies have shown that grasslands in the nearby regions are never so rich, the White Carpathian forests are generally not richer than those in other areas of Central Europe (Merunková et al. 2012; Michalcová et al. 2014). Despite intensive research devoted to the diversity phenomena of these grasslands since the 1990s, the causes of this extremely high species richness are not entirely clear. Several mechanisms seem to be involved, acting in concert. 1. The White Carpathian grasslands have probably existed continuously for millenia, enabling an accumulation of many species at individual sites over time (Hájková et al. 2011). 2. The grassland area in the White Carpathians is large, which reduces the chance of random extinctions of rare species (Michalcová et al. 2014). 3. The grassland species pool in the area is relatively large, but not larger than in adjacent areas, which lack extremely species-rich grasslands. An important factor is probably eficient seed dispersal between different habitats and sites, e.g. the spread of forest species to grasslands. This is supported by a high heterogeneity of land-cover combined with geological uniformity of the area. As soils are rather homogeneous across the White Carpathians, most species can spread across extensive areas and create large populations. The high alpha diversity of grasslands is consequently coupled with a low beta diversity, i.e. different sites are very similar in species composition (Michalcová et al. 2014). 4. Although soil conditions are rather homogeneous on the coarse scale, they are heterogeneous on the ine scale. The area is rich in small landslides, some of them associated with spring fens, which increase environmental heterogeneity and support coexistence of many species due to spatial mass effects. 5. The environmental conditions associated with these grasslands are intermediate, involving no extreme values of factors known to inluence grassland species richness, such as productivity, moisture, nutrient availability and soil pH (Merunková et al. 2012). 6. Long-term continuous low-intensity management, mostly hay-making once a year, creates a disturbance of medium intensity needed to maintain high local species richness (Klimeš et al. 2000, 2013). 7. In addition to management, asymmetric competition and local extinction of competitively weak species is possibly reduced as a result of occasional summer drought events on deep lysch-derived soils, which may be suficient to reduce potential dominant species but insuficient to cause extinction of most grassland species (Klimeš 2008). Grassland management and restoration Although the White Carpathian grasslands are composed of native, naturally occurring grassland species, these habitats have been preserved from forest spread by humans and their existence has always depended on regular mowing or livestock grazing. Particularly in the south-west, hay meadows used to be mown once a year, mainly in July. This was done so late because making hay too early would cause the meadows to dry out, whereas late cutting enabled most plants to lower and produce seed. If spring was dry as well, the meadows were left unmown for regeneration. Dry meadows were neither irrigated nor fertilized, wet meadows were left undrained. The aftermath was harvested only in valleys. 193 14 Common pastures and fallow land were grazed for part of the year. The former were mostly used by local landowners, who usually kept two shepherds to tend the animals. One looked after cattle, the other after pigs, goats and sheep. Grazing started early in spring and lasted until the irst frost. The shepherds drove the animals out every morning and back to the sheds again in the evening. In winter, livestock was kept in, so forage was required. Although young tree twigs were cut and dried for this purpose, hay-making was more widespread in the area. The process of establishing cooperative and state farms during the Communist era (1948–1989) was aimed at large-scale agricultural production, which included measures like ploughing of grasslands, land consolidation, elimination of hedges, trees and shrubs, excessive fertilization, grassland ‘improvement’ (drainage, adding forage plant varieties, etc.), and pasturing with high cattle densities. On the other hand, steep slopes with landslides were gradually encroached by scrub since they became practically inaccessible to modern agricultural machines. Some remote grasslands escaped from intensive agriculture and have been preserved as nature reserves. The socio-economic changes after the Velvet Revolution of 1989 meant a transformation of agricultural production which caused farmers to sell part of their cattle and sheep, and abandon some of the land, threatening both biodiversity and scenery. This trend has been slowed down by subsidy policies. Since 1999, subsidies are provided to support not only production but also landscape conservation and management. Other recent positive changes in the area are the conversion of a considerable area of arable land to grassland and a strong expansion of organic farming. Currently (2011–2016) management of the most valuable sites is inanced from a LIFE+ project. The meadows are managed by landowners, tenants or, where interest in their maintenance is lacking, also by non-governmental organizations and land trusts. Large meadow complexes are mown with tractors. On uneven, sloping meadows the grassland is cut with small mowers or scythes. The biomass is mostly used as fodder, a part is burnt or deposited elsewhere. In the large nature reserves, extensive pasturing on the hay meadows is allowed only exceptionally. Since the mid-1980s also hundreds of hectares of abandoned grassland have been restored. These are particularly found on steep hills, in areas with rough terrain and in remote places, where mowing with regular agricultural equipment is dificult. Such sites are invaded by scrub, mostly Crataegus sp., Prunus spinosa and Rosa sp., and some may eventually turn into woodland. Restoration of these sites includes cutting scrub with chain-saws, removing litter and subsequent burning of biomass at the site, followed by regular mowing in the years after. Botanical monitoring has shown that on dry sites complete restoration takes only a few years. In one case four orchids – Anacamptis pyramidalis, Coeloglossum viride, Ophrys apifera and O. fucilora – were found to appear only three years after the scrub had been eliminated. Sites overgrown by Molinia arundinacea see a much slower return to species-rich meadows (several decades). The burning of biomass has not shown to cause excessive ruderalization. Bonire sites are soon covered by meadow grasses and forbs. Grassland management is an indispensable measure to preserve the species-rich grasslands. However, in a special experiment it was demonstrated that while abandonment causes loss of plant diversity in productive grasslands (dominated by Molinia arundinacea or Calamagrostis epigejos), it does not in less productive, species-rich (Bromus erectus dominated) grasslands, at least not in the short term (Klimeš et al. 2013). In the past years the area of species-rich grasslands has been enlarged not only by restoration of abandoned areas, but also by regrassing of ex-arable land (Jongepierová & Malenovský 2012). Since the 1990s, about 7000 ha of arable land has been turned back into dry or mesic grasslands by sowing commercial grass-legume seed mixtures (the majority) and by spontaneous succession (over 200 ha). Since 1999, arable land has also been sown with a locally prepared regional seed mixture of dry grassland species on a total area of over 500 ha. This mixture is prepared by the Bílé Karpaty Local Chapter of the Czech Union for Nature Conservation (a non-governmental organization based in Veselí nad Moravou) in cooperation with the Bílé Karpaty Protected Landscape Area Authority. Part of the seed, mostly herbs, is cultivated in special seedbeds, whereas grass seed used to be acquired by means of a combine harvester, but since 2007 with a brush-harvester, operating in existing species-rich grasslands. The White Carpathians is the only region in the Czech Republic where a species-rich mixture of regional grasses and herbs has been sown on a large area. Several studies have been conducted to assess processes of grassland re-creation. In 1999, a small-scale experiment was set up on an ex-arable ield in the area to compare different methods of re-establishing species-rich grassland vegetation. After ten years the vegetation in experimental plots 194 was found to gradually converge towards ancient meadow vegetation, although still relatively poor in species (Jongepierová et al. 2007; Mitchley at al. 2012). In 2009–2014 vascular plant succession was monitored in 80 large ields restored with a regional seed mixture, commercial seed mixtures, or by means of spontaneous succession (Prach et al. 2013, 2014). Results showed that the latter two lead to establishment of more mesic vegetation (alliance Arrhenatherion elatioris) whereas dry grassland vegetation (alliance Bromion erecti) developed after sowing regional seed mixtures. Many non-sown grassland species appeared to have colonized the ields thanks to the rich species pool occurring in the vicinity of the re-created grasslands. Excursion sites The most attractive botanical sites – large meadows, including a mosaic of semi-dry and mesic species-rich grasslands and sloping spring fens with solitary oaks – are situated in the south-western part of the White Carpathian Mountains (Jongepier & Jongepierová 2009). They include Kútky (113 ha), Čertoryje (695 ha), Zahrady pod Hájem (162 ha), Machová (243 ha), Jazevčí (352 ha) and Porážky (421 ha) Nature Reserves. However, also the extensive old-growth beech forests in the north-east (on both sides of the Vlára pass) are a habitat of great value. The centre of the area, around the village of Starý Hrozenkov, offers a picturesque patchwork of solitary farmsteads and houses surrounded by orchards, pastures, meadows and forests on rolling hills interwoven with streams. A popular tourist destination is Mount Velká Javořina (970 m), the highest peak in the White Carpathians, with views stretching far into Moravia and Slovakia and the old-growth forest containing beech trees hundreds of years old. Historic sights include the neo-Gothic Nový Světlov Chateau in Bojkovice, the Romanesque castle ruins in Brumov, the open-air museum in Strážnice with examples of traditional village architecture, and the modern architecture of the spa Luhačovice. The White Carpathians are also rich in folklore, expressed in folk architecture and ornaments, dance, music and folk costumes. Particularly in the summer months several folklore festivals take place. The south-western part of the White Carpathian Mountains. The green dashed lines indicate the Protected Landscape Areas Bílé Karpaty (in the Czech Republic, identical with the UNESCO Biosphere Reserve Bílé Karpaty) and Biele Karpaty (in Slovakia). 195 14 (14a) Čertoryje meadows 14 The Čertoryje National Nature Reserve is a complex of species-rich grasslands, comprising three hillsides divided up by two streams, located close to the state border with Slovakia between the towns of Strážnice and Velká nad Veličkou. Its total area (incl. buffer zone) is 6.95 km²; its altitude is 320–584 m. The meadows are dotted with solitary individuals and groups of trees, in particular Quercus robur, Q. petraea, Tilia cordata and Sorbus torminalis, and include several vegetation types, from dry grassland to small springs and fens. Unmown parts develop into oak-hornbeam woodland, on south-facing slopes into oak groves. Many solitary oak trees are attacked by the hemiparasite Loranthus europaeus and suffer from tracheomycosis, a fungal disease. This is the reason why some oak saplings are fenced in to protect them from being mown or browsed by game. From 2000 to 2003 the eastern buffer zone, an area of over 80 ha which had been illegally ploughed in the 1970s and then managed as arable land, was restored (‘regrassed’) with a regional seed mixture. The reserve is annually mown once a year, between May and September, temporarily leaving parts unmown to maintain lowering plants which provide food and shelter to insects. The Čertoryje meadows in the White Carpathians extend over an area of about 7 km2. Scattered trees and shrubs are a characteristic feature of these extensively managed meadows. The semi-dry grasslands at this site hold several world records for the ine-scale species richness of vascular plants. Photo M. Chytrý. Patches of spring fens occur in a matrix of semi-dry meadows in small depressions left after land slides. Like this one in the Čertoryje meadows, they can be clearly recognized by white inlorescences of Eriophorum angustifolium and E. latifolium. Photo I. Jongepierová. The Čertoryje meadows between the settlement of Lučina and the village of Malá Vrbka in the south-western part of the White Carpathians. 196 197 (14b) Zahrady pod Hájem meadows 14 Neighbouring the village of Velká nad Veličkou on its east side, at an area of 162 ha and an altitude of 300–480 m, the Zahrady pod Hájem National Nature Reserve is made up of strips of meadows and old orchards, separated by hedges and groves. Dry grasslands occur on shallow marly soils. At its lower edge some small ields host a remarkable arable weed lora. The reserve also includes a three-hectare orchard in which old and local fruit varieties have been brought together. Species-rich grassland with Melampyrum cristatum in the Zahrady pod Hájem meadows. Photo I. Jongepierová. Appendix 14 Selected species of vascular plants in the Čertoryje and Zahrady pod Hájem meadows. Achillea collina Aconitum lycoctonum Agrimonia eupatoria Agrostis capillaris Agrostis vinealis Allium carinatum Allium scorodoprasum Anacamptis pyramidalis Anemone sylvestris Antennaria dioica Anthericum ramosum Anthoxanthum odoratum Anthyllis vulneraria Aquilegia vulgaris Arabis hirsuta Asperula cynanchica Asperula tinctoria Aster amellus Astragalus cicer 198 Astragalus danicus Astrantia major Avenula pubescens Betonica oficinalis Brachypodium pinnatum Briza media Bromus commutatus Bromus erectus Buglossoides purpurocaerulea Bupleurum falcatum Calamagrostis arundinacea Campanula cervicaria Campanula glomerata Campanula persicifolia Carex caryophyllea Carex lacca Carex michelii Carex montana Carex panicea Carex pilosa Carex tomentosa Carlina biebersteinii subsp. brevibracteata Centaurea scabiosa Centaurea stenolepis Centaurea triumfetti Centaurium erythraea Chamaecytisus virescens Cirsium canum Cirsium oleraceum Cirsium pannonicum Clematis recta Coeloglossum viride Colchicum autumnale Cornus mas Crepis praemorsa Cruciata verna Cynosurus cristatus Plate 14a Plants of the White Carpathian meadows: (a) Pulmonaria angustifolia, (b) Orchis pallens, (c) Carex michelii, (d) Anacamptis pyramidalis, (e) Astragalus danicus, (f) Potentilla alba, (g) Geranium sanguineum, (h) Rosa gallica, (i) Ophrys holoserica subsp. holubyana, (j) Campanula cervicaria, (k) Dorycnium herbaceum, (l) Centaurea stenolepis. 199 14 The Zahrady pod Hájem meadows near the town of Velká nad Veličkou. Danthonia alpina Dianthus carthusianorum Digitalis grandilora Dorycnium germanicum Dorycnium herbaceum Elymus hispidus Epipactis muelleri Equisetum telmateia Erysimum odoratum Euphorbia illirica Euphorbia virgata Festuca heterophylla Festuca rubra Festuca rupicola Filipendula vulgaris Galium album Galium boreale Galium pumilum Galium verum Genista tinctoria Gentiana cruciata Gentiana pneumonanthe Geranium sanguineum Gladiolus imbricatus Gymnadenia conopsea Hacquetia epipactis Helianthemum grandilorum subsp. obscurum Hieracium umbellatum Hypericum perforatum 200 Hypochaeris maculata Inula ensifolia Inula hirta Inula salicina Iris graminea Iris variegata Juncus inlexus Klasea lycopifolia Knautia kitaibelii Koeleria macrantha Koeleria pyramidata Laserpitium latifolium Laserpitium prutenicum Lathyrus latifolius Lathyrus niger Lathyrus pannonicus subsp. collinus Leucanthemum margaritae Libanotis pyrenaica Lilium bulbiferum Lilium martagon Linum catharticum Linum lavum Listera ovata Loranthus europaeus Lotus maritimus Medicago falcata Melampyrum arvense Melampyrum cristatum Melampyrum nemorosum Melica picta Melittis melissophyllum Molinia arundinacea Muscari comosum Nepeta nuda Ononis spinosa Ophioglossum vulgatum Ophrys apifera Ophrys holoserica subsp. holubyana Orchis mascula subsp. speciosa Orchis militaris Orchis morio Orchis pallens Orchis purpurea Orchis ustulata Origanum vulgare Ornithogalum brevistylum Orobanche alba Orobanche lutea Peucedanum cervaria Phleum phleoides Phlomis tuberosa Pilosella bauhini Pilosella densilora Pilosella leucopsilon Pilosella oficinarum Platanthera bifolia Platanthera chlorantha Pleurospermum austriacum Plate 14b Plants of the Zahrady pod Hájem meadows and adjacent habitats: (a) Adonis aestivalis, (b) Gymnadenia densilora, (c) Viola alba, (d) Lathyrus pannonicus, (e) Linum lavum, (f) Veronica spuria, (g) Thesium linophyllon, (h) Klasea lycopifolia, (i) Nepeta nuda, (j) Bupleurum rotundifolium, (k) Erysimum odoratum, (l) Hacquetia epipactis. 201 Poa angustifolia Polygala major Polygala multicaulis Polygonatum multilorum Polygonatum odoratum Potentilla alba Potentilla erecta Potentilla heptaphylla Primula veris Prunella grandilora Prunella laciniata Pulmonaria angustifolia Pulmonaria mollis Pulsatilla grandis Ranunculus polyanthemos Rhinanthus major Rhinanthus minor Rosa gallica Salvia pratensis Salvia verticillata Sanguisorba minor Sanguisorba oficinalis Scabiosa ochroleuca Scilla vindobonensis Scorzonera hispanica Scorzonera purpurea Securigera varia Selinum carvifolia Senecio jacobaea Senecio umbrosus Serratula tinctoria Seseli annuum Silaum silaus Silene nutans Solidago virgaurea Sorbus torminalis Stachys recta Staphylea pinnata Succisa pratensis Symphytum tuberosum Tanacetum corymbosum Thalictrum lucidum Thalictrum minus Thalictrum simplex subsp. galioides Thesium linophyllon Thymus pannonicus Thymus pulegioides Tragopogon orientalis Traunsteinera globosa Trifolium alpestre Trifolium medium Trifolium montanum Trifolium ochroleucon Trifolium rubens Trisetum lavescens Valeriana stolonifera subsp. angustifolia Veronica orchidea Veronica spuria Veronica teucrium Viburnum lantana Viburnum opulus Vicia tenuifolia Vincetoxicum hirundinaria Viola alba Viola canina Viola hirta Spring-fen species Carex distans Carex lava Carex paniculata Dactylorhiza incarnata Dactylorhiza majalis Epipactis palustris Eriophorum angustifolium Eriophorum latifolium Gymnadenia densilora Succisa pratensis Taraxacum sect. Palustria Triglochin palustris Valeriana dioica Arable weeds Adonis aestivalis Allium rotundum Anthemis cotula Bifora radians Bupleurum rotundifolium Caucalis platycarpos Conringia orientalis Euphorbia exigua Euphorbia falcata Galium spurium Galium tricornutum Kickxia elatine Kickxia spuria Lathyrus aphaca (neo) Neslia paniculata Nonea pulla Ranunculus arvensis Sherardia arvensis Silene noctilora Stachys annua Thymelaea passerina Valerianella dentata References Antonín, V., Deckerová, H. & Jongepier, J.W. 2010. Red-listed macromycetes collected in the Bílé Karpaty (White Carpathian Mts.) Protected Landscape Area (Czech Republic). Acta Musei Moraviae, Scientiae biologicae 95: 163–200. Balátová-Tuláčková, E. & Hájek, M. 1998. Feuchtwiesengesellschaften des südlichen Teiles des Landschaftsschutzgebietes Bílé Karpaty (Südost-Mähren). Verhandlungen der Zoologisch-Botanischen Gesellschaft in Österreich 135: 1–40. Elsnerová, M., Holub, J., Jatiová, M. & Tlusták, V. (eds.) 1984. Sborník materiálů z loristického kursu ČSBS [Results of the Summer School of Field Botany of the Czechoslovak Botanical Society]. KS SPPOP, Brno. Grulich, V. (ed.) 1989. Výsledky loristického kursu ČSBS v Uherském Hradišti 1987 [Results of the Summer School of Field Botany of the Czechoslovak Botanical Society in Uherské Hradiště 1987]. ONV, Uherské Hradiště. Hájek, M. 1998. Mokřadní vegetace Bílých Karpat [The wetland vegetation in the White Carpathians]. Sborník Přírodovědného klubu v Uherském Hradišti, Supplementum 4: 1–158. Hájková, P., Roleček, J., Hájek, M., Horsák, M., Fajmon, K., Polák, M. & Jamrichová, E. 2011. Prehistoric origin of extremely species-rich semi-dry grasslands in the Bílé Karpaty Mts. (Czech Republic and Slovakia). Preslia 83: 185–204. 202 Jongepier, J.W. & Jongepierová, I. 2006. Komentovaný seznam cévnatých rostlin Bílých Karpat [Annotated checklist of vascular plants of the White Carpathian Mts.]. ZO ČSOP Bílé Karpaty, Veselí nad Moravou. Jongepier, J.W. & Jongepierová, I. 2009. The White Carpathian wild lower grasslands, Czech Republic. In: Veen, P., Jefferson, R., de Smidt, J. & van der Straaten, J. (eds.) Grasslands in Europe of high nature value, pp. 186–195. KNNV Publishing, Zeist. Jongepier, J.W. & Pechanec, V. 2006. Atlas rozšíření cévnatých rostlin CHKO Bílé Karpaty [Distribution atlas of vascular plants of the White Carpathians Protected Landscape Area]. ZO ČSOP Bílé Karpaty, Veselí nad Moravou. Jongepierová, I. (ed.) 2008. Louky Bílých Karpat [Grasslands of the White Carpathian Mountains]. ZO ČSOP Bílé Karpaty, Veselí nad Moravou. Jongepierová, I., Jongepier, J.W. & Klimeš, L. 1994. Obnova druhově bohatých luk v Bílých Karpatech [Restoration of species-rich meadows in the Bílé Karpaty Mountains]. Příroda (Praha) 1: 185–189. Jongepierová, I. & Malenovský, I. 2012. Grasslands. Introduction. In: Jongepierová, I., Pešout, P., Jongepier, J.W. & Prach, K. (eds.) Ecological restoration in the Czech Republic, pp. 35–38. Nature Conservation Agency of the Czech Republic, Praha. Jongepierová, I., Mitchley, J. & Tzanopoulos, J. 2007. A ield experiment to recreate species rich hay meadows using regional seed mixtures. Biological Conservation 139: 297–305. Klimeš, L. 1995. Small-scale distribution of species richness in a grassland (Bílé Karpaty Mountains, Czech Republic). Folia Geobotanica et Phytotaxonomica 30: 499–510. Klimeš, L. 1997. Druhové bohatství luk v Bílých Karpatech [Species richness of meadows in the White Carpathians]. Sborník Přírodovědného klubu v Uherském Hradišti 2: 31–42. Klimeš, L. 1999. Small-scale plant mobility in a species-rich grassland. Journal of Vegetation Science 10: 209–218. Klimeš, L. 2008. Druhové bohatství luk (Species diversity of grasslands). In: Jongepierová, I. (ed.) Louky Bílých Karpat [Grasslands of the White Carpathian Mountains], pp. 89–94. ZO ČSOP Bílé Karpaty, Veselí nad Moravou. Klimeš, L., Dančák, M., Hájek, M., Jongepierová, I. & Kučera, T. 2001. Scale-dependent biases in species counts in a grassland. Journal of Vegetation Science 12: 699–704. Klimeš, L., Hájek, M., Mudrák, O., Dančák, M., Preislerová, Z., Hájková, P., Jongepierová, I. & Klimešová, J. 2013. Effects of changes in management on resistance and resilience in three grassland communities. Applied Vegetation Science 16: 640–649. Klimeš, L., Jongepierová, I. & Jongepier, J.W. 2000. The effect of mowing on a previously abandoned meadow: a ten-year experiment. Příroda (Praha) 17: 7–24. Konvička, O., Malenovský, I., Kment, P. & Žmolík, M. 2012. The natural history of the Bílé Karpaty Protected Landscape Area and Biosphere Reserve (Czech Republic). Acta Musei Moraviae, Scientiae Biologicae 96 (2) (2011): 7–35. Kuča, P., Májsky, J., Kopeček, F. & Jongepierová, I. (eds.) 1992. Biele/Bílé Karpaty. Chránená krajinná oblasť [The White Carpathians. Protected Landscape Area]. Ekológia, Bratislava. Merunková, K., Preislerová, Z. & Chytrý, M. 2012. White Carpathian grasslands: can local ecological factors explain their extraordinary species richness? Preslia 84: 311–325. Michalcová, D., Chytrý, M., Pechanec, V., Hájek, O., Jongepier, J.W., Danihelka, J., Grulich, V., Šumberová, K., Preislerová, Z., Ghisla, A., Bacaro, G. & Zelený, D. 2014. High plant diversity of grasslands in a landscape context: A comparison of contrasting regions in central Europe. Folia Geobotanica 49: 117–135. Mitchley, J., Jongepierová, I. & Fajmon, K. 2012. The use of regional seed mixtures for the recreation of species-rich meadows in the White Carpathian Mountains: results of a ten-year experiment. Applied Vegetation Science 15: 253–263. Otýpková, Z. 2001. Plevelová vegetace Bílých Karpat [Weed vegetation of the White Carpathians]. Masarykova univerzita, Brno. Otýpková, Z., Chytrý, M., Tichý, L., Pechanec, V., Jongepier, J.W. & Hájek, O. 2011. Floristic diversity patterns in the White Carpathians Biosphere Reserve, Czech Republic. Biologia 66: 266–274. Podpěra, J. 1951. Rozbor květenného komponentu Bílých Karpat [Phytogeographical analysis of the White Carpathian lora]. Spisy vydávané Přírodovědeckou fakultou Masarykovy university 325: 1–62. 203 14 Pospíšil, V. 1994. Mechorosty CHKO Bílé Karpaty [Bryophytes of the Protected Landscape Area Bílé Karpaty]. Preslia 66: 163–189. Prach, K., Jongepierová, I. & Řehounková, K. 2013. Large-scale restoration of dry grasslands on ex-arable land using a regional seed mixture: establishment of target species. Restoration Ecology 21: 33–39. Prach, K., Jongepierová, I., Řehounková, K. & Fajmon, K. 2014. Restoration of grasslands on ex-arable land using regional and commercial seed mixtures and spontaneous succession: successional trajectories and changes in species richness. Agriculture Ecosystems and Environment 182: 131–136. Rydlo, J. 2000. Vodní makrofyta v rybnících v Bílých Karpatech [Water macrophytes in ish ponds of the White Carpathians]. Muzeum a současnost, Řada přírodovědná 14: 86–104. Sillinger, P. 1929. Bílé Karpaty. Nástin geobotanických poměrů se zvláštním zřetelem ke společenstvům rostlinným [White Carpathians. Outlines of the geobotanical conditions with special regard to plant communities]. Rozpravy Královské české společnosti nauk, Třída mathematicko-přírodovědecká 8/3: 1–73. Staněk, S., Jongepierová, I. & Jongepier, J.W. 1996. Historická květena Bílých Karpat [Historical lora of the White Carpathians]. Sborník Přírodovědného klubu v Uherském Hradišti, Supplementum 1: 1–200. Tlusták, V. 1975. Syntaxonomický přehled travinných společenstev Bílých Karpat [Syntaxonomic overview of grasslands of the White Carpathians]. Preslia 47: 129–154. Tlusták, V. & Jongepierová-Hlobilová, I. 1990. Orchideje Bílých Karpat [Orchids of the White Carpathians]. Krajské vlastivědné muzeum, Olomouc. Wilson, J.B., Peet, R.K., Dengler, J. & Pärtel, M. 2012. Plant species richness: the world records. Journal of Vegetation Science 23: 796–802. 15 Hrubý Jeseník Mountains 15 Radim Hédl & Martin Kočí Introduction Hrubý Jeseník is the second highest mountain range in the Czech Republic (Mount Praděd, 1491 m). It belongs to the Sudetes, a mountain range stretching from eastern Germany to the north-east of the Czech Republic, forming a natural border between Poland and the Czech Republic. It was elevated during the Variscan Orogeny in the Palaeozoic and subsequently lattened by erosion. The Hrubý Jeseník is situated on the borderline between two historical lands, Moravia to the south-west and Silesia to the north-east. The excursion will lead to two remarkable sites at the heart of the main mountain range south of Mount Praděd: Mount Petrovy kameny (1446 m) and the glacial cirque Velká kotlina. Treeless summits of the Hrubý Jeseník Mountains with grasslands of Avenella lexuosa and heathlands of Calluna vulgaris and Vaccinium myrtillus. Photo M. Kočí. Geology, soils and climate The Hrubý Jeseník Mountains are formed mainly of metamorphic siliceous rocks including phyllite, gneiss and schist. Acidic soils ranging from cambisols to podzols and leptosols generally dominate the area. The soils of the treeless summits are relatively shallow and stony. In these conditions, the prevailing soil types are dystric cambisols and skeletic podzols. The climate is temperate, with cold winters and cool summers. At the summit of the Hrubý Jeseník, the mean annual temperature is about 1 °C and the annual precipitation sum is about 1200 mm. There are 200 rainy days annually, while the snow cover lasts on average for 167 days at the climate station on Mount Praděd (Tejnská & Tejnský 1972; Lednický et al. 1973). 204 205 Landscape history Nature conservation The natural upper timberline in the Hrubý Jeseník Mountains runs at an altitude of about 1350 m and is formed by small clumps of Picea abies. In glacial cirques, it can be also formed by Fagus sylvatica or Betula carpatica. The timberline is characterized by the natural absence of the dwarf mountain pine (Pinus mugo), which commonly occurs on the timberline in other Central European mountain ranges such as the Krkonoše Mountains (the highest mountain group of the Sudetes), the Carpathians and the Alps. The combination of diffuse, spruce-formed timberline with treeless alpine grasslands gives the main range of the Hrubý Jeseník Mts its unique appearance (Jeník & Hampel 1992). The whole area has been subjected to human impact for several hundred years. This has included mountain summer grazing, hay making and forest cutting (Rybníček & Rybníčková 2004). The natural timberline has been artiicially lowered during the last two millennia, chiely to make space for livestock grazing (Treml et al. 2008; Novák et al. 2010). The mean altitude of the timberline in the Hrubý Jeseník is currently 1310 m, with a maximum of 1405 m (Treml & Banaš 2000). There were several chalets and cattle watering sites in the close surroundings of both Velká kotlina and Petrovy kameny. Pasturing continued until the 1940s. The current vegetation is characterized by forests, mountain meadows and pastures, alpine grasslands and heathlands and patches of mires. Forests cover about 80% of the Hrubý Jeseník Mountains, dominated by Norway spruce (Picea abies) and European beech (Fagus sylvatica). The summit area of the Hrubý Jeseník came under conservation, with six small nature reserves established in the 1940s–1960s being merged into the single 2031-ha Praděd reserve in 1991. The Jeseníky Protected Landscape Area (744 km2) was established in 1969. Several areas protected under Natura 2000 have been declared in recent years. Human pressure persists, mainly from tourism and skiing, in spite of strict protection. There is a ski slope leading just beneath the summit of Petrovy kameny. During the 1960s–1990s, the whole Sudetes region underwent a period of air pollution and acid rainfall deposition, lowering the soil pH and affecting biological diversity (Hédl et al. 2011). The abandonment of pasturing has probably decreased the diversity of the grasslands above the timberline, resulting in extensive growths of Vaccinium myrtillus. Plantations of non-native dwarf mountain pine (Pinus mugo) and the introduction of chamois (Rupicapra rupicapra), both supported by the forest management authorities, are two specific anthropogenic inluences. Dwarf pine was introduced in order to elevate the timberline and prevent soil erosion, but it is spreading and beginning to occupy native alpine and subalpine grasslands and heathlands. Pine is also preventing the natural activity of avalanches and landslides. In the most sensitive areas, such as the glacial cirques of Velká kotlina and the adjacent Malá kotlina, pine has mostly been removed by cutting, though it remains elsewhere, still signiicantly changing local snow conditions. The chamois was brought from the Alps in 1912–1913 and its current population is about 150 animals. It causes damage to rare endemic plants in the Velká kotlina cirque, but its extermination is problematic in view of public resistance. The state enterprise Forests of the Czech Republic claim both dwarf pine and chamois to be a valuable heritage left by past generations of foresters. (15a) Ovčárna chalet and Sedlové peatbog The starting point of the excursion is the Ovčárna chalet (Schäferei in German, both meaning Shepherd Hut) at an altitude of 1300 m, which is one of the oldest chalets in the Hrubý Jeseník Mountains. Once a relatively modest wooden shepherd’s hut and later also a tourist shelter, Ovčárna was built in its current location in 1863 and it has grown into a hotel accessible by an asphalted road. Ovčárna is situated on the slope of Mount Petrovy kameny and above the steep valley slopes of the stream Bílá Opava with remnants of pristine mountain spruce forest. Professor Friedrich Kolenati, a distinguished naturalist working in the Hrubý Jeseník in the 19th century, died suddenly at Ovčárna in July 1864. One of the few summit peatbogs of the Hrubý Jeseník Mountains is located near Ovčárna in the mountain saddle between Mount Praděd and Mount Petrovy kameny. Its unoficial name is Sedlové rašeliniště (Saddle Peatbog). Raised bogs of the Hrubý Jeseník Mountains are about 6000–7000 years old originating in the Atlantic period (Dudová et al. 2012). The peat layer in Sedlové rašeliniště is formed of Sphagna and is only 130 cm deep. This bog is characterized by a hummock-and-hollow microtopography. Hummocks host the associations Andromedo polifoliae-Sphagnetum magellanici and Eriophoro vaginati-Sphagnetum recurvi (alliance Sphagnion magellanici), whereas hollows are occupied by Carex limosa, C. rostrata, Eriophorum angustifolium, forming the vegetation of the association Drepanoclado luitantis-Caricetum limosae (alliance Sphagnion cuspidati). The bog is generally species poor, but some interesting species can be found there, in addition to the above-mentioned Cyperaceae also Andromeda polifolia and Listera cordata. (15b) Mount Petrovy kameny The summit area of the Hrubý Jeseník Mountains with the mountains Praděd, Petrovy kameny, Vysoká hole and the Velká kotlina (= Velký kotel) glacial cirque. 206 Mount Petrovy kameny (1446 m) is located in the main range of the Hrubý Jeseník between Mount Praděd and Mount Vysoká hole. It is topped by a seven-metres-high rock (both the Czech name Petrovy kameny and the German name Peterstein mean Peter’s Rock). It consists of phyllite and quartzite. The rock itself is not accessible to the public because of the occurrence of rare lora and fauna, most importantly two endemic vascular plant species Campanula gelida and Poa riphaea. Both species are currently conined to the summit rock and its immediate surroundings (Kaplan 2012; Hoták et al. 2013). The former is related to Campanula scheuchzeri growing in the Alps and the latter to Poa glauca distributed in the Alps, Scandinavia and the Arctic. Rare plant species occurring on this site include Anemonastrum narcissilorum, Campanula rotundifolia subsp. sudetica (endemic to the Sudetes), Cardamine resedifolia, Hieracium chrysostyloides (endemic to the Eastern Sudetes) and Salix herbacea. 207 15 15 A slope of Mount Petrovy kameny above the Ovčárna chalet with subalpine tall-forb vegetation with Adenostyles alliariae. Photo M. Kočí. The vegetation around the summit rock on Petrovy kameny can be characterized as alpine tundra. It is a cold, treeless environment with abundant precipitation and long-lasting snow cover, although the snow on the windward slopes and summits is often swept by strong winds to leeward sites with subalpine tall-forb vegetation (Kočí 2001). The uneven distribution of snow cover on the treeless summit of the Hrubý Jeseník Mountains largely determines the distribution of plant communities (Klimešová 1993). Typical species of these communities are short grasses including Avenella lexuosa, Festuca supina and Nardus stricta. Alpine heathlands are another important component of alpine tundra and include Calluna vulgaris, Empetrum hermaphroditum, Vaccinium myrtillus and V. vitis-idaea. Carex bigelowii, Ligusticum mutellina and Homogyne alpina are other characteristic species. The tall-forb vegetation of lower slopes bordering the timberline spruce forests is dominated by abundant populations of Athyrium distentifolium. Several rare species of Hieracium can be found in the alpine tundra, e.g. H. alpinum, H. chlorocephalum and H. stygium. Viola lutea subsp. sudetica (endemic to Central European mountain areas), Bistorta oficinalis, Campanula barbata and Gentiana punctata (once nearly extinct due to collection for medicinal purposes) are also characteristic lowering components of the local alpine tundra. Endemic butterlies Erebia sudetica sudetica and E. epiphron are also worth mentioning (Kuras et al. 2001). Plant communities occurring on the summit and upper slopes of Petrovy kameny can be described in terms of the Braun-Blanquet system as follows. The alpine heathland belongs to the associations Avenello lexuosae-Callunetum vulgaris and Junco triidi-Empetretum hermaphroditi (alliance Loiseleurio procumbentis-Vaccinion). The alpine grasslands of the alliance Juncion triidi comprise the associations Cetrario-Festucetum supinae on wind-exposed sites and Carici bigelowii-Nardetum strictae in better-protected places with slightly deeper snow cover. The tall-forb communities of the lower slopes near Ovčárna belong to the class Mulgedio-Aconitetea, mainly to fern communities of the alliance Dryopterido ilicis-maris-Athyrion distentifolii. Plantations of non-native dwarf mountain pine are loristically and physiognomically analogous to the natural stands of the association Dryopterido dilatatae-Pinetum mugo (alliance Pinion mugo). 208 Plate 15a–b Plants of the summit area of the Hrubý Jeseník Mountains (surrounding of the Ovčárna chalet, Sedlové peatbog and Mount Petrovy kameny): (a) Eriophorum vaginatum, (b) Carex limosa, (c) Andromeda polifolia, (d) Listera cordata, (e) Carex paucilora, (f) Empetrum hermaphroditum, (g) Carex bigelowii, (h) Bistorta oficinalis, (i) Salix herbacea, (j) Campanula gelida, (k) Cardamine resedifolia, (l) Poa riphaea. 209 15 The Velká kotlina cirque is the most species-rich botanical locality in the Sudetes. Its central part is naturally treeless due to disturbance by avalanches. Shrubberies and woodlands of Salix silesiaca and Betula carpatica develop on slopes with a lower frequency of avalanches. Photo M. Kočí. Vegetation The top of Mount Petrovy kameny with the rock outcrop of the same name. Mount Praděd, the highest mountain in the Hrubý Jeseník, in the background. Photo M. Kočí. (15c) Velká kotlina cirque Introduction The glacial cirque of Velká kotlina is the most prominent botanical locality in the Hrubý Jeseník Mountains. Similar cirques in Central Europe can be found from the Vosges in eastern France to the Eastern Carpathians in Ukraine, often hosting a similar composition of plant species and communities. The loristic richness and uniqueness of Velká kotlina had already been recognized and reported by early botanists in the late 18th century (Jeník et al. 1983). Velká kotlina is not a purely natural environment. It was visited and inluenced by humans early in history, for example there was a cattle stable nearby. Velká kotlina was declared State Nature Reserve in 1955 and became part of the large Praděd National Nature Reserve, a strictly protected area with limited human intervention, in 1991. Velká kotlina is situated at altitudes of between 1100 and 1464 m, on the south-eastern slope of the main range of the Hrubý Jeseník Mountains. It comprises a range of ecological conditions taking in wind-swept upper slopes, steep rocky slopes, and shrubberies and forests on the lower slopes and bottom. There is a strong accumulation of snow in this leeward valley with the last remnants remaining until early summer. Snow accumulation and subsequent erosion can also be factors of long-term shaping of the cirque, besides local glacier detectable by relics of two moraines (Steffanová 2010). An important biodiversity hotspot is the rock outcrops in the centre of the cirque because of the admixture of calcium carbonate and crystalline limestone particles to the otherwise prevailing acidic phyllite. Habitat diversity is further enhanced by the presence of 43 springs and resulting streams. Avalanches are an environmental factor of key importance. They regularly disturb vegetation and the soil surface and prevent trees growing below the natural timberline in the central part of the cirque, allowing only shrubs or herbs to become established on suitable sites. 210 The plant communities of Velká kotlina were systematically surveyed by Jeník et al. (1980). They distinguished 29 associations (including 16 newly described) belonging to 15 alliances and 10 classes of the Braun-Blanquet system. Some of them were delimited too narrowly and are not recognized in recent literature, but others represent meaningful concepts accepted in further revisions. The vegetation on base-rich rock outcrops is represented by the association Saxifrago paniculatae-Agrostietum alpinae (alliance Agrostion alpinae), described from this locality and endemic to Velká kotlina. Communities of snow beds (class Salicetea herbaceae) are not present in typical form; Salix herbacea occurs on rock outcrops and wind-swept grasslands of the alliance Juncion triidi. The upper slopes of the main range of the Hrubý Jeseník and suitable sites on the lower slopes within the cirque are covered with Nardus stricta grasslands and heathlands. The most important associations are Festuco supinae-Nardetum strictae and Thesio alpini-Nardetum strictae of nutrient-enriched and moist locations (this species-rich association was described from this locality), both belonging to the alliance Nardion strictae, and Festuco supinae-Vaccinietum myrtilli (alliance Genisto pilosae-Vaccinion) characterized by dense coverage of Vaccinium myrtillus. A true richness of vegetation types can be observed in the tall-forb vegetation of the class Mulgedio-Aconitetea. Five alliances follow the ecological gradient from the valley bottom to the upper slopes. The alliance Calamagrostion villosae represents species-poor tall grasslands, the main association being Crepido conyzifoliae-Calamagrostietum villosae. The alliance Calamagrostion arundinaceae with the association Bupleuro longifolii-Calamagrostietum arundinaceae includes nutrient- and species-rich communities with many rare species. The alliance Adenostylion alliariae represents vegetation of nutrient-rich, moist soils with many species of broad-leaved forbs. A characteristic association is Ranunculo platanifolii-Adenostyletum alliariae; two other associations of this luxuriant, species-rich vegetation, Laserpitio archangelicae-Dactylidetum glomeratae and Trollio altissimi-Geranietum sylvatici, are probably endemic to the Hrubý Jeseník Mountains and are best developed in Velká kotlina. The alliance of subalpine fall-fern vegetation Dryopterido ilicis-maris-Athyrion distentifolii includes the associations Adenostylo alliariae-Athyrietum distentifolii and Daphno mezerei-Dryopteridetum ilicis-maris. Finally the alliance of the subalpine deciduous shrublands, Salicion silesiacae with the association Salici silesiacae-Betuletum carpaticae, occurs in the Hrubý Jeseník mainly here and occupies less-frequented avalanche tracks. Vegetation of numerous springs in Velká kotlina can be classiied to the class Montio-Cardaminetea and the alliance Swertio perennis-Dichodontion palustris. Three associations found here are Crepido paludosae-Philonotidetum seriatae (with a prevalence of mosses), Swertietum perennis and Cardaminetum 211 opicii. There are also fens, including a peculiar association Bartsio alpinae-Caricetum nigrae (alliance Caricion canescenti-nigrae) which comprises a mixture of fen and spring species. Forest vegetation is developed at the edges of the cirque and surrounding slopes. It includes mountain conifer forests (alliance Piceion abietis), partly left to natural development, and deciduous and mixed forests, mostly acidophilous and mesic beech forests (alliances Fagion sylvaticae and Luzulo-Fagion sylvaticae). Rare vegetation of the association Athyrio distentifolii-Fagetum sylvaticae combines elements of beech forests and tall-forb vegetation. Flora The loristic diversity of the Velká kotlina cirque has been studied for more than two hundred years and extensive information has been accumulated. A critical ield revision of the lora of Velká kotlina in 1971–1978 by Jeník et al. (1983) conirmed the occurrence of 356 species, subspecies and hybrids of vascular plants on an area of about just 1 km2, while records of 283 taxa listed in the literature were not conirmed in the ield. Of these 126 probably occurred historically, while 157 taxa were doubtful. Some corrections have been made since this revision, for example Kočí (2005) counted 385 species veriied in the ield or documented in reliable recent literature. A realistic estimate of the loristic richness of the site is between 350 and 500 vascular plant species. In addition, over 320 species of bryophytes were conirmed recently (Kučera et al. 2009) and the surveys of various groups of animals also reported a high species diversity. Plantago atrata subsp. sudetica and Dianthus carthusianorum subsp. sudeticus are two endemic subspecies occurring solely on the rocks of Velká kotlina. In addition, Carlina biebersteinii subsp. sudetica is endemic to the site and a few sites in the close surroundings (Bureš 2013). Two species with a broad Eurasian continental distribution, Conioselinum tataricum and Crepis sibirica, have their westernmost isolated localities in the Hrubý Jeseník Mountains. Species typical of lowland habitats, reaching their altitudinal maxima for the Czech Republic in Velká kotlina include Campanula persicifolia, Carex montana, Convallaria majalis, Gagea lutea, G. minima and Prunella grandilora. In contrast, Agrostis alpina, Carex bigelowii, Hieracium alpinum, Juncus triidus and Salix herbacea are species typical of alpine habitats. Hieracium villosum, Polystichum lonchitis, Rhodiola rosea and Thymus pulcherrimus subsp. sudeticus can be named among the rare species with preference of base-rich substrates (Bureš & Burešová 1989). The great botanical diversity of the Velká kotlina cirque The extreme species richness and uniqueness of Velká kotlina has been a puzzle for generations of botanists, zoologists and ecologists. Common species intermingle with extremely rare species, some of which have here a single occurrence in the Czech Republic or Central Europe. Alpine and subalpine species can be found together with species normally growing at low altitudes forming luxuriant vegetation. Various ecological extremes can be found in a relatively small area. There is probably a complex of factors contributing to the unique combination of species and their assemblages, with avalanches, geology, the presence of many streams and relatively warm conditions due to the leeward position of Velká kotlina being the most important (Klimeš & Rauch 1997). In an attempt to explain the great loristic and vegetation diversity of the glacial cirques of the Sudetes, Jeník (1961) proposed a theory that these cirques (there are about ten similar sites in the Krkonoše and Hrubý Jeseník Mountains) are part of anemo-orographic systems. Such systems consist of three main components: (1) a valley on the west-facing slope open to the direction of prevailing winds, into which air masses are forced and accelerate when reaching a mountain range; (2) lat plateaus on the mountain summits, typical of these old mountain ranges, where the wind speed is highest; (3) glacial cirques on the leeward side of the mountain range where air streams slow down and release solid particles brought from a distance. These may be dust, snow or seeds and other plant propagules. Rich soils on the cirque bottom, snow accumulation and avalanches result directly from these processes. Wind dispersal of plant propagules may be responsible for isolated localities of lowland species in the cirques. Snow accumulation and subsequent erosion may also be factors in the long-term shaping of the Velká kotlina cirque, as the presence of a true glacier moraine is uncertain. 212 Appendix 15 Selected species of vascular plants in the summit area of the Hrubý Jeseník Mountains near the Ovčárna chalet, on the Sedlové peatbog, Mount Petrovy kameny and in the Velká kotlina cirque. Acer pseudoplatanus Achillea millefolium subsp. sudetica Aconitum lycoctonum Aconitum plicatum Aconitum variegatum Adenostyles alliariae Agrostis alpina Alchemilla glabra Allium schoenoprasum Allium victorialis Alnus alnobetula (introduced) Andromeda polifolia Anemone ranunculoides Anemonastrum narcissilorum Antennaria dioica Arabidopsis arenosa Arabis sudetica Aruncus dioicus Asplenium viride Aster alpinus Athyrium distentifolium Athyrium ilix-femina Avenella lexuosa Bartsia alpina Betula carpatica Blechnum spicant Bistorta oficinalis Botrychium lunaria Bupleurum longifolium subsp. vapincense Calamagrostis arundinacea Calamagrostis villosa Calluna vulgaris Campanula barbata Campanula gelida Campanula latifolia Campanula persicifolia Campanula rotundifolia subsp. sudetica Cardamine amara subsp. opicii Cardamine resedifolia Carduus personata Carex aterrima Carex atrata Carex bigelowii Carex buxbaumii Carex capillaris Carex demissa Carex lava Carex lepidocarpa Carex limosa Carex montana Carex paucilora Carex rostrata Carex vaginata Carlina acaulis Carlina biebersteinii subsp. sudetica Cerastium fontanum Cicerbita alpina Cirsium heterophyllum Cirsium palustre Coeloglossum viride Conioselinum tataricum Convallaria majalis Corallorhiza triida Corydalis cava Corylus avellana Cotoneaster integerrimus Crepis conyzifolia Crepis mollis subsp. mollis Crepis sibirica Dactylorhiza fuchsii var. psychrophila Daphne mezereum Delphinium elatum Deschampsia cespitosa Dianthus carthusianorum subsp. sudeticus Dianthus superbus subsp. alpestris Digitalis grandilora Doronicum austriacum Drosera rotundifolia Dryopteris expansa Dryopteris ilix-mas Empetrum hermaphroditum Epilobium alpestre Epilobium alsinifolium Epilobium anagallidifolium Epilobium nutans Eriophorum angustifolium Eriophorum latifolium Eriophorum vaginatum Euphrasia oficinalis subsp. picta Fagus sylvatica Festuca supina Filipendula ulmaria Gagea lutea Gagea minima Gentiana punctata Gentiana verna Geranium sylvaticum Gnaphalium norvegicum Gymnadenia conopsea Hedysarum hedysaroides Helianthemum grandilorum subsp. grandilorum Helictochloa planiculmis Hieracium alpinum Hieracium engleri Hieracium inuloides Hieracium prenanthoides Hieracium silesiacum Hieracium villosum Homogyne alpina Hylotelephium maximum Hypochaeris unilora Juncus squarrosus Juncus triidus Juniperus communis subsp. nana Laserpitium archangelica Ligusticum mutellina Lilium martagon Listera cordata Listera ovata Lunaria rediviva Luzula sudetica Luzula sylvatica Lycopodium clavatum Maianthemum bifolium Milium effusum Molinia caerulea Moneses unilora Nardus stricta Paris quadrifolia Parnassia palustris Phleum alpinum Phyteuma orbiculare Phragmites australis Picea abies Pilosella aurantiaca Pinguicula vulgaris Pinus mugo (introduced) Plantago atrata subsp. sudetica Pleurospermum austriacum Poa alpina Poa chaixii Poa riphaea Polygonatum verticillatum Polystichum lonchitis Potentilla aurea Potentilla erecta Primula elatior Prunella grandilora Pseudorchis albida Pyrola minor Ranunculus platanifolius Rhinanthus riphaeus Rhodiola rosea Ribes alpinum Rosa pendulina Rubus saxatilis Rumex arifolius Sagina saginoides Salix hastata Salix herbacea Salix silesiaca Saxifraga paniculata Scrophularia scopolii 213 15 Sedum alpestre Scabiosa lucida subsp. lucida Scorzonera humilis Sedum alpestre Selaginella selaginoides Solidago virgaurea subsp. minuta Sorbus aucuparia var. glabrata Stachys alpina Streptopus amplexifolius Swertia perennis Tephroseris crispa Thalictrum minus Thelypteris limbosperma Thesium alpinum Thymus pulcherrimus subsp. sudeticus Tilia platyphyllos Traunsteinera globosa Trichophorum alpinum Trientalis europaea Trollius altissimus Vaccinium myrtillus Vaccinium oxycoccos Vaccinium uliginosum Vaccinium vitis-idaea Valeriana tripteris Veratrum album subsp. lobelianum Viola bilora Viola lutea subsp. sudetica Viola palustris 15 Praděd (1491 m), the highest mountain of Moravia with Picea abies forest and alpine grasslands above the timberline. The tall fern in the foreground is Athyrium distentifolium. Photo M. Kočí. References Bureš, L. 2013. Chráněné a ohrožené rostliny Chráněné krajinné oblasti Jeseníky [Protected and endangered plants of the Jeseníky Protected Landscape Area]. Rubico, Olomouc. Bureš, L. & Burešová, Z. 1989. Velká kotlina – státní přírodní rezervace – průvodce naučnou stezkou [Velká kotlina – state nature reserve – guide to the educational trail]. Krajský ústav státní památkové péče a ochrany přírody, Ostrava. Dudová, L., Hájková, P., Buchtová, H. & Opravilová, V. 2012. Formation, succession and landscape history of Central-European summit raised bogs: A multiproxy study from the Hrubý Jeseník Mountains. The Holocene 23: 230–242. Hédl, R., Petřík, P. & Boublík, K. 2011. Long-term patterns in soil acidiication due to pollution in forests of the Eastern Sudetes Mountains. Environmental Pollution 159: 2586–2593. Hoták, Z., Štěpánek, J., Plačková, I. & Jarolímová, V. 2013. Poa riphaea, an endangered stenoendemic species in the Hrubý Jeseník Mts (Eastern Sudetes). Preslia 85: 81–96. Jeník, J. 1961. Alpinská vegetace Krkonoš, Králického Sněžníku a Hrubého Jeseníku [Alpine vegetation of the Krkonoše, Králický Sněžník and Hrubý Jeseník]. Nakladatelství Československé akademie věd, Praha. 214 Plate 15c Plants of the Velká kotlina cirque: (a) Anemonastrum narcissilorum, (b) Hedysarum hedysaroides, (c) Swertia perennis, (d) Adenostyles alliariae, (e) Potentilla aurea, (f) Bartsia alpina, (g) Campanula barbata, (h) Ligusticum mutellina, (i) Salix hastata, (j) Rhodiola rosea, (k) Juncus triidus, (l) Viola lutea subsp. sudetica. 215 Jeník, J. & Hampel, R. 1992. Die waldfreien Kammlagen des Altvatergebirges: Geschichte und Ökologie. Mährisch-Schlesischer Sudetengebirgsverein, Kirchheim/Teck. Jeník, J., Bureš, L. & Burešová, Z. 1980. Syntaxonomic study of vegetation in Velká Kotlina cirque, the Sudeten Mountains. Folia Geobotanica et Phytotaxonomica 15: 1–28. Jeník, J., Bureš, L. & Burešová, Z. 1983. Revised lora of Velká Kotlina cirque, the Sudeten Mountains, I–II. Preslia 55: 25–62 & 123–142. Klimeš, L. & Rauch, O. 1997. Druhové bohatství v rostlinných společenstvech ve Velké kotlině (Hrubý Jeseník) [Species richness in plant communities in the Velká kotlina cirque (Hrubý Jeseník Mts)]. Příroda (Praha) 10: 65–80. Klimešová, J. 1993. Rostlinná společenstva alpinského stupně se smilkou tuhou (Nardus stricta) v Hrubém Jeseníku II. Vztah mezi smilkovými porosty a sněhovou pokrývkou [Alpine plant communities with Nardus stricta in the Hrubý Jeseník Mts (The Sudeten Mts., Czech Republic) II. Relations between Nardus stricta communities and snow cover]. Preslia 65: 67–79. Kočí, M. 2001. Společenstva vysokobylinných niv (Mulgedio-Aconitetea) v Hrubém Jeseníku [The tall-forb communities (Mulgedio-Aconitetea) in the Hrubý Jeseník Mts.]. Časopis Slezského zemského muzea, Vědy přírodní, Série A, 50: 175–191. Kočí, M. 2005. Inventarizační průzkum NPR Praděd – lóra a vegetace [Inventory of Praděd Nature Reserve – lora and vegetation]. Survey report. Kučera, J., Zmrhalová, M., Shaw, B., Košnar, J., Plášek, V. & Váňa, J. 2009. Bryolora of selected localities of the Hrubý Jeseník Mts summit regions. Časopis Slezského zemského muzea, Vědy přírodní, Série A, 58: 115–167. Kuras, T., Konvička, M., Beneš, J. & Čížek, O. 2001. Erebia sudetica and Erebia epiphron (Lepidoptera: Nymphalidae, Satyrinae) in the Czech Republic: review of present and past distribution, conservation implications. Časopis Slezského zemského muzea, Vědy přírodní, Série A, 50: 57–81. Lednický, V., Pivoňová, R. & Ujházy, R. 1973. Teplota vzduchu na Pradědu [Air temperature of the Mt. Praděd]. Campanula 4: 175–202. Novák, J., Petr, L. & Treml, V. 2010. Late-Holocene human-induced changes to the extent of alpine areas in the East Sudetes, Central Europe. The Holocene 20: 895–905. Rybníček, K. & Rybníčková, E. 2004. Pollen analyses of sediments from the summit of the Praděd range in the Hrubý Jeseník Mts (Eastern Sudetes). Preslia 76: 331–347. Steffanová, P. 2010. Morfologie údolního závěru Moravice, Hrubý Jeseník [Morphology of the Moravice Valley head, the Hrubý Jeseník Mountains]. MSc. thesis, Charles University, Praha. Tejnská, S. & Tejnský, J. 1972. Klimatické poměry Pradědu [Climatic conditions of Mt. Praděd]. Campanula 3: 53–60. Treml, V. & Banaš, M. 2000. Alpine timberline in the High Sudetes. Acta Universitatis Carolinae, Geographica 15: 83–99. Treml, V., Jankovská, V. & Petr, L. 2008. Holocene dynamics of the alpine timberline in the High Sudetes. Biologia 63: 73–80. 16 Botanical Garden of the Faculty of Science, Masaryk University, Brno 16 Magdaléna Chytrá & Milan Chytrý Introduction The Botanical Garden of the Faculty of Science, Masaryk University, is located near Brno’s centre at the intersection of the streets Kotlářská and Veveří, adjacent to the Faculty of Science’s Kotlářská Campus. The garden was founded in 1922 by Josef Podpěra, the irst Professor of Botany at the newly established Masaryk University (founded in 1919), on a 1.5-ha plot that was previously used as the kitchen garden of the former almshouse whose buildings were transferred to the new Faculty of Science (Vacek & Bureš 2001). Being mainly a plant geographer, Podpěra designed the garden following both systematic and ecological-phytogeographical principles. The systematic part of the garden contained plants arranged by families, though there were also displays of the Linnaean system, Mendel’s hybridization experiments, and medicinal and crop plants. The ecological-phytogeographical part represented major plant communities of southern Moravia and Central European mountain ranges and examples of various plant formations of temperate Eurasia. This original historical design has, with small changes, been maintained to this day. The irst three greenhouses were built in 1924–1926, one with a pool for Victoria regia which irst came into bloom in 1926 and immediately became an extremely popular attraction with the people of Brno. The garden was damaged during WWII by bombing by Allied air forces and by tree cuttings, but was restored after the war. In the late 1940s and 1950s, it was involved in applied projects to support socialist agriculture, in particular an attempt to introduce almond plantations in southern Moravia, though it later resumed its primary focus on education. The current greenhouses were built in 1995–1997. Although the Department of Botany and Zoology was moved from the Kotlářská Campus in 2006, the garden remains in this original location and also serves the public and other education institutions in addition to Masaryk University. Greenhouses at the Botanical Garden of the Faculty of Science, Masaryk University, in Brno city centre. Photo M. Chytrá. 216 217 The garden is a popular place in the city of Brno, regularly visited by many people. It is open daily throughout the year, with free access to the outdoor section and a moderate entrance fee to the greenhouses. The garden organizes annual exhibitions of carnivorous plants (May), succulents (September), tropical and subtropical crop plants (October) and exotic birds (November). Perhaps the most attractive annual event in the garden for the general public is the Jazz Evening held in August when Victoria cruziana opens its lowers after sunset. There are many sculptures and other art works in the garden, both in the greenhouses and outdoors. The oldest is a frog sculpture with a fountain from 1947 at one of the pools. The compositions made from various rock types in front of the greenhouses were built by the sculptor Jan Šimek in 1997 (Chytrá 2012). About 2500 plant species have been planted in the outdoor collections and another 2500 species in the greenhouses. The garden and the adjacent area of the Faculty of Science’s Kotlářská Campus together harbour more than 1000 individuals of 520 species of woody plants and recent surveys recorded 48 species of bryophytes and more than 90 species of macromycetes (Chytrá 2012). • Weed vegetation of arable land is presented in a small cereal ield, including both common weeds and those that have experienced a dramatic decline in Central Europe due to agricultural intensiication since the mid-20th century. The geographical plant groups include European temperate mountain lora displaying plants from the Alps, Carpathians, Pyrenees and Apennines, Balkan mountain lora, Eurasian continental temperate lora (the Caucasus, Siberia and the Himalayas), East Asian temperate lora (mainly China and Japan), Mediterranean and sub-Mediterranean lora and a group of North American woody plants. There is a roof garden on the top of the greenhouses featuring succulents and other drought-adapted plants. Outdoor collections The outdoor plant collections include the Plant System with about 1500 species from 85 families of vascular plants situated on an area of 0.3 ha in front of the greenhouses. There is also an example of the Linnaean System. The remaining outdoor parts of the garden comprise plant assemblages organized according to ecological and phytogeographical principles following the original design of Josef Podpěra (Chytrá et al. 2010; Chytrá 2012). The plant communities of southern Moravia and mountains of Central Europe are represented for example by: • Oak-hornbeam forest, the predominant type of potential natural vegetation of southern Moravia, with trees of Carpinus betulus and Quercus petraea, shrubs of Acer campestre and Ligustrum vulgare, herbaceous species such as Hepatica nobilis, Pulmonaria obscura, Stellaria holostea and spring geophytes including Anemone nemorosa, A. ranunculoides, Corydalis cava and Isopyrum thalictroides. • Carpathian beech forest with species typical of the mountain forests of eastern Moravia and Slovakia, in addition to Fagus sylvatica most notably Carex pilosa, and also Actaea spicata, Dentaria bulbifera, Galium odoratum, G. sylvaticum, Hordelymus europaeus, Polygonatum multilorum and Viola reichenbachiana. • Montane spruce forest and tall-forb grassland give an impression of the mountain vegetation of the Western Carpathians and the Sudetes, including Picea abies, shrubs of Lonicera nigra and Rosa pendulina, numerous ferns (e.g. Athyrium ilix-femina, Dryopteris ilix-mas and Polystichum aculeatum) and tall herbs such as Aruncus dioicus, Cicerbita alpina and Veratrum album subsp. lobelianum. • Floodplain forest and meadow containing, in particular, the lora of the lower Dyje and Morava loodplains in southern Moravia, e.g. Euphorbia lucida, E. palustris, Filipendula ulmaria, Gratiola oficinalis, Iris pseudacorus, Leucojum aestivum and Lythrum salicaria. • Forest-steppe vegetation represents famous sites in southern Moravia, notably the Pavlov Hills and the Pouzdřany Steppe. These plant groups include various species of Festuca and Stipa, Adonis vernalis, Allium lavum, Iris pumila, Potentilla incana and many other continental or southern European species. • Sand-dune vegetation gives an impression of the sand-dune area near the Morava River between the towns of Hodonín and Bzenec in south-eastern Moravia and in south-western Slovakia, with species such as Armeria elongata, Dianthus serotinus, Gypsophila paniculata and Peucedanum oreoselinum. • Serpentinite vegetation is a representation of the Mohelno Serpentinite Steppe in south-western Moravia, including Allium lavum, Bothriochloa ischaemum, Festuca pallens, Genista pilosa, Stipa dasyphylla and Teucrium chamaedrys. • Mire vegetation presents examples of species of Central European bogs and minerotrophic mires with various species of Carex and Eriophorum, and Menyanthes trifoliata in pools. • Aquatic and wetland vegetation is displayed in several garden pools, including species typical of wetlands in the Dyje and Morava River loodplains in southern Moravia. Stratiotes aloides is a remarkable species that was introduced to the garden from southern Moravian loodplain pools before WWII. It later became extinct in the wild and the native plant material preserved in the garden was used as a source for the re-establishment of its populations on original sites. 218 Garden section with Japanese and East Asian temperate lora. Photo M. Chytrá. Greenhouses The greenhouses consist of ive tunnel-like structures of which the largest (10.5 m high) is situated in the middle. Four are used for public exhibition and the ifth serves as a nursery. The total area of the greenhouses is 1200 m2. The following collections are harboured in the greenhouses: • The tropical collection is dominated by a pool with the South American nymphaeoid Victoria cruziana which has replaced V. regia planted in the old greenhouse in the 1920s–1930s. Other items in the collection are mainly various crops and ornamental plants such as Begonia, Carica papaya, Cocos nucifera, Cyperus papyrus, Gossypium, Musa, Pandanus, Sarracenia, Theobroma cacao, Vanilla planifolia and various orchids. • The collection of ferns, fern allies and cycads includes Blechnum, Dicksonia, Lygodium, Platycerium, Selaginella, Ceratozamia mexicana, Cycas circinalis, C. revoluta, Dioon edule, Encephalartos altensteinii, E. villosus, Stangeria eriopus and Zamia furfuracea. • The subtropical and Mediterranean collection with evergreen shrubs and trees, palms and lianas displays species such as Araucaria bidwillii, A. cunninghamii, Bougainvillea glabra, Ceratonia siliqua, Chamaerops humilis, Eriobotrya japonica, Eucalyptus camaldulensis, Laurus nobilis, Myrtus communis, Olea europaea, Passilora edulis, Podocarpus neriifolius, P. salicifolius, Strelitzia nicolai, Vitis voinieriana, Washingtonia ilifera and the recently added Wollemia nobilis, an Australian ‘living fossil’ from the Araucariaceae family. 219 16 • • The Bromeliaceae collection contains Aechmea, Ananas commosus, Billbergia, Guzmania, Neoregelia, Tillandsia and many others. The collection of Cactaceae and other succulents tends to be the most highly appreciated by visitors. It displays Agave, Aloe, Echinocactus grusonii, Haworthia, Nolina recurvata, Opuntia and many other species of Cactaceae, Crassulaceae and Euphorbiaceae. References Chytrá, M. 2012. 90 let Botanické zahrady Přírodovědecké fakulty Masarykovy univerzity [90 years of the Botanical Garden of the Faculty of Science, Masaryk University]. Masarykova univerzita, Brno. Chytrá, M., Hanzelka, P. & Kacerovský, R. 2010. Botanické zahrady a arboreta České republiky [Botanical gardens and arboreta of the Czech Republic]. Academia, Praha. Vacek, V. & Bureš, P. 2001. Botanika. Dějiny oboru na Masarykově univerzitě v Brně [Botany. History of the ield in Masaryk University in Brno]. Folia Historica 70: 1–100. List of vegetation units mentioned in the text The following list contains vegetation units of the Braun-Blanquet phytosociological system mentioned in the text with author citations and position in the syntaxonomical hierarchy of classes (two-letter codes), alliances (three-letter codes) and associations (ive-character codes). The concept, nomenclature and coding of syntaxa follows the monograph Vegetation of the Czech Republic (Chytrý 2007–2013). Note that this is not a complete list of vegetation units occurring at the excursion sites. AA. Loiseleurio-Vaccinietea Eggler ex Schubert 1960 Alpine heathlands AAA. Loiseleurio procumbentis-Vaccinion Br.-Bl. in Br.-Bl. et Jenny 1926 AAA01. Avenello lexuosae-Callunetum vulgaris Zlatník 1925 AAA02. Junco triidi-Empetretum hermaphroditi Šmarda 1950 AB. Juncetea triidi Hadač in Klika et Hadač 1944 Alpine grasslands on base-poor soils ABA. Juncion triidi Krajina 1933 ABA01. Cetrario-Festucetum supinae Jeník 1961 ABB. Nardo strictae-Caricion bigelowii Nordhagen 1943 ABB01. Carici bigelowii-Nardetum strictae (Zlatník 1928) Jeník 1961 AC. Elyno-Seslerietea Br.-Bl. 1948 Alpine grasslands on base-rich soils ACA. Agrostion alpinae Jeník et al. 1980 ACA02. Saxifrago paniculatae-Agrostietum alpinae Jeník et al. 1980 AD. Mulgedio-Aconitetea Hadač et Klika in Klika et Hadač 1944 Subalpine tall-forb and deciduous-shrub vegetation ADA. Calamagrostion villosae Pawłowski et al. 1928 ADA02. Crepido conyzifoliae-Calamagrostietum villosae (Zlatník 1925) Jeník 1961 ADB. Calamagrostion arundinaceae (Luquet 1926) Jeník 1961 ADB01. Bupleuro longifolii-Calamagrostietum arundinaceae (Zlatník 1928) Jeník 1961 ADC. Salicion silesiacae Rejmánek et al. 1971 ADC01. Salici silesiacae-Betuletum carpaticae Rejmánek et al. 1971 ADD. Adenostylion alliariae Br.-Bl. 1926 ADD01. Ranunculo platanifolii-Adenostyletum alliariae (Krajina 1933) Dúbravcová et Hadač ex Kočí 2001 ADD03. Trollio altissimi-Geranietum sylvatici Jeník et al. 1980 ADD04. Laserpitio archangelicae-Dactylidetum glomeratae Jeník et al. 1980 ADE. Dryopterido ilicis-maris-Athyrion distentifolii (Holub ex Sýkora et Štursa 1973) Jeník et al. 1980 ADE01. Daphno mezerei-Dryopteridetum ilicis-maris Sýkora et Štursa 1973 ADE02. Adenostylo alliariae-Athyrietum distentifolii (Zlatník 1928) Jeník 1961 TA. Crypsietea aculeatae Vicherek 1973 Vegetace jednoletých haloilních travin Vegetation of annual graminoids in saline habitats TAA. Cypero-Spergularion salinae Slavnić 1948 TAA01. Crypsietum aculeatae Wenzl 1934 TB. Thero-Salicornietea strictae Tüxen in Tüxen et Oberdorfer 1958 Vegetace jednoletých sukulentních halofytů Vegetation of annual succulent halophytes TBA. Salicornion prostratae Géhu 1992 TBA01. Salicornietum prostratae Soó 1964 220 221 TD. Molinio-Arrhenatheretea Tüxen 1937 Meadows and mesic pastures TDA. Arrhenatherion elatioris Luquet 1926 TDA01. Pastinaco sativae-Arrhenatheretum elatioris Passarge 1964 TDA02. Ranunculo bulbosi-Arrhenatheretum elatioris Ellmauer in Mucina et al. 1993 TDC. Cynosurion cristati Tüxen 1947 TDC01. Lolio perennis-Cynosuretum cristati Tüxen 1937 TDC02. Anthoxantho odorati-Agrostietum tenuis Sillinger 1933 TDD. Molinion caeruleae Koch 1926 TDD01. Molinietum caeruleae Koch 1926 TDE. Deschampsion cespitosae Horvatić 1930 TDE02. Holcetum lanati Issler 1934 TDE04. Cnidio dubii-Deschampsietum cespitosae Passarge 1960 TDF. Calthion palustris Tüxen 1937 TDF02. Cirsietum rivularis Nowiński 1927 TE. Calluno-Ulicetea Br.-Bl. et Tüxen ex Klika et Hadač 1944 Nardus grasslands and heathlands TEA. Nardion strictae Br.-Bl. 1926 TEA01. Festuco supinae-Nardetum strictae Šmarda 1950 TEA02. Thesio alpini-Nardetum strictae Jeník et al. 1980 TEC. Violion caninae Schwickerath 1944 TEC01. Festuco capillatae-Nardetum strictae Klika et Šmarda 1944 TEC02. Campanulo rotundifoliae-Dianthetum deltoidis Balátová-Tuláčková 1980 TEE. Euphorbio cyparissiae-Callunion vulgaris Schubert ex Passarge in Scamoni 1963 TEE01. Euphorbio cyparissiae-Callunetum vulgaris Schubert 1960 TEF. Genisto pilosae-Vaccinion Br.-Bl. 1926 TEF02. Calamagrostio arundinaceae-Vaccinietum myrtilli Sýkora 1972 TEF03. Festuco supinae-Vaccinietum myrtilli Šmarda 1950 TF. Koelerio-Corynephoretea Klika in Klika et Novák 1941 Pioneer vegetation of sandy and shallow soils TFE. Arabidopsion thalianae Passarge 1964 TFE01. Festuco-Veronicetum dillenii Oberdorfer 1957 TFF. Alysso alyssoidis-Sedion Oberdorfer et Müller in Müller 1961 TFF01. Cerastietum Oberdorfer et Müller in Müller 1961 TH. Festuco-Brometea Br.-Bl. et Tüxen ex Soó 1947 Dry grasslands THA. Alysso-Festucion pallentis Moravec in Holub et al. 1967 THA01. Festuco pallentis-Aurinietum saxatilis Klika ex Čeřovský 1949 corr. Gutermann et Mucina 1993 THB. Bromo pannonici-Festucion pallentis Zólyomi 1966 THB01. Poo badensis-Festucetum pallentis Klika 1931 corr. Zólyomi 1966 THC. Diantho lumnitzeri-Seslerion (Soó 1971) Chytrý et Mucina in Mucina et al. 1993 THC02. Minuartio setaceae-Seslerietum caeruleae Klika 1931 THC03. Saxifrago paniculatae-Seslerietum caeruleae Klika 1941 THD. Festucion valesiacae Klika 1931 THD01. Festuco valesiacae-Stipetum capillatae Sillinger 1930 THD04. Koelerio macranthae-Stipetum joannis Kolbek 1978 THD06. Astragalo exscapi-Crambetum tatariae Klika 1939 THE. Cirsio-Brachypodion pinnati Hadač et Klika ex Klika 1951 THE03. Polygalo majoris-Brachypodietum pinnati Wagner 1941 THF. Bromion erecti Koch 1926 THF01. Carlino acaulis-Brometum erecti Oberdorfer 1957 THF02. Brachypodio pinnati-Molinietum arundinaceae Klika 1939 222 THG. Koelerio-Phleion phleoidis Korneck 1974 THG01. Potentillo heptaphyllae-Festucetum rupicolae (Klika 1951) Toman 1970 THH. Geranion sanguinei Tüxen in Müller 1962 THH02. Geranio sanguinei-Dictamnetum albi Wendelberger ex Müller 1962 THI. Trifolion medii Müller 1962 XB. Stellarietea mediae Tüxen et al. ex von Rochow 1951 Annual vegetation of arable land and ruderal habitats XBA. Caucalidion von Rochow 1951 XC. Artemisietea vulgaris Lohmeyer et al. ex von Rochow 1951 Xerophilous ruderal vegetation with biennial and perennial species XCB. Dauco carotae-Melilotion Görs ex Rostański et Gutte 1971 XCC. Convolvulo arvensis-Elytrigion repentis Görs 1966 XD. Galio-Urticetea Passarge ex Kopecký 1969 Nitrophilous perennial vegetation of wet to mesic habitats XDA. Senecionion luviatilis Tüxen ex Moor 1958 SA. Asplenietea trichomanis (Br.-Bl. in Meier et Br.-Bl. 1934) Oberdorfer 1977 Vegetation of rocks, walls and stable screes SAB. Asplenion cuneifolii Br.-Bl. ex Eggler 1955 SAB02. Notholaeno marantae-Sempervivetum hirti Br.-Bl. 1961 VA. Lemnetea de Bolós et Masclans 1955 Vegetation of free loating aquatic plants VAA. Lemnion minoris de Bolós et Masclans 1955 VAA02. Lemnetum minoris von Soó 1927 VAC. Hydrocharition morsus-ranae (Passarge 1964) Westhoff et den Held 1969 VAC03. Ceratophylletum demersi Corillion 1957 VB. Potametea Klika in Klika et Novák 1941 Vegetation of aquatic plants rooted in the bottom VBA. Nymphaeion albae Oberdorfer 1957 VBA01. Nymphaeo albae-Nupharetum luteae Nowiński 1927 VBA07. Potamo natantis-Polygonetum natantis Knapp et Stoffers 1962 VBB. Potamion Miljan 1933 VBC. Batrachion luitantis Neuhäusl 1959 VBD. Ranunculion aquatilis Passarge 1964 VD. Littorelletea unilorae Br.-Bl. et Tüxen ex Westhoff et al. 1946 Vegetation of oligotrophic water bodies VDB. Eleocharition acicularis Pietsch ex Dierßen 1975 VDB03. Limosello aquaticae-Eleocharitetum acicularis Wendelberger-Zelinka 1952 MA. Isoëto-Nano-Juncetea Br.-Bl. et Tüxen ex Br.-Bl. et al. 1952 Vegetation of annual wetland herbs MAA. Eleocharition ovatae Philippi 1968 MAA02. Cyperetum micheliani Horvatić 1931 MAC. Verbenion supinae Slavnić 1951 MB. Bidentetea tripartitae Tüxen et al. ex von Rochow 1951 Vegetation of annual nitrophilous wetland herbs MBA. Bidention tripartitae Nordhagen ex Klika et Hadač 1944 MBA01. Rumici maritimi-Ranunculetum scelerati Oberdorfer 1957 MBA04. Polygono brittingeri-Chenopodietum rubri Lohmeyer 1950 223 MC. Phragmito-Magno-Caricetea Klika in Klika et Novák 1941 Marsh vegetation MCA. Phragmition australis Koch 1926 MCA04. Phragmitetum australis Savič 1926 MCA05. Glycerietum maximae Nowiński 1930 corr. Šumberová et al. in Chytrý 2011 MCA06. Glycerio-Sparganietum neglecti Koch 1926 MCC. Eleocharito palustris-Sagittarion sagittifoliae Passarge 1964 MCD. Phalaridion arundinaceae Kopecký 1961 MCD01. Rorippo-Phalaridetum arundinaceae Kopecký 1961 MCD02. Caricetum buekii Hejný et Kopecký in Kopecký et Hejný 1965 MCE. Glycerio-Sparganion Br.-Bl. et Sissingh in Boer 1942 MCE05. Leersietum oryzoidis Eggler 1933 MCG. Magno-Caricion elatae Koch 1926 MCG02. Equiseto luviatilis-Caricetum rostratae Zumpfe 1929 MCG07. Carici elatae-Calamagrostietum canescentis Jílek 1958 MCH. Magno-Caricion gracilis Géhu 1961 MCH03. Caricetum gracilis Savič 1926 MCH05. Caricetum distichae Nowiński 1927 MCH06. Caricetum ripariae Máthé et Kovács 1959 RA. Montio-Cardaminetea Br.-Bl. et Tüxen ex Klika et Hadač 1944 Vegetation of springs RAA. Caricion remotae Kästner 1941 RAA01. Caricetum remotae Kästner 1941 RAA02. Cardamino-Chrysosplenietum alternifolii Maas 1959 RAD. Swertio perennis-Dichodontion palustris Hadač 1983 RAD01. Crepido paludosae-Philonotidetum seriatae Hadač et Váňa 1972 RAD02. Swertietum perennis Zlatník 1928 RAD03. Cardaminetum opicii Szafer et al. 1923 RB. Scheuchzerio palustris-Caricetea nigrae Tüxen 1937 Vegetation of fens, transitional mires and bog hollows RBA. Caricion davallianae Klika 1934 RBA02. Carici lavae-Cratoneuretum ilicini Kovács et Felföldy 1960 RBB. Sphagno warnstorii-Tomentypnion nitentis Dahl 1956 RBB03. Menyantho trifoliatae-Sphagnetum teretis Warén 1926 RBC. Caricion canescenti-nigrae Nordhagen 1937 RBC04. Bartsio alpinae-Caricetum nigrae Bartsch et Bartsch 1940 RBD. Sphagno-Caricion canescentis Passarge (1964) 1978 RBD01. Sphagno recurvi-Caricetum rostratae Steffen 1931 RBD04. Polytricho communis-Molinietum caeruleae Hadač et Váňa 1967 RBE. Sphagnion cuspidati Krajina 1933 RBE01. Drepanoclado luitantis-Caricetum limosae (Kästner et Flössner 1933) Krisai 1972 RC. Oxycocco-Sphagnetea Br.-Bl. et Tüxen ex Westhoff et al. 1946 Bog vegetation RCA. Sphagnion magellanici Kästner et Flössner 1933 RCA01. Eriophoro vaginati-Sphagnetum recurvi Hueck 1925 RCA02. Andromedo polifoliae-Sphagnetum magellanici Bogdanovskaja-Gienev 1928 RCA05. Ledo palustris-Pinetum uncinatae Klika ex Šmarda 1948 KA. Salicetea purpureae Moor 1958 Riparian willow scrub and willow-poplar forests KAC. Salicion albae de Soó 1951 KAC01. Salicetum albae Issler 1926 KAC02. Salicetum fragilis Passarge 1957 224 KB. Rhamno-Prunetea Rivas Goday et Borja Carbonell ex Tüxen 1962 Mesic and xeric scrub and Robinia groves KBA. Prunion fruticosae Tüxen 1952 KBA01. Prunetum fruticosae Dziubałtowski 1926 KBB. Berberidion vulgaris Br.-Bl. et Tüxen 1952 KBB01. Junipero communis-Cotoneasteretum integerrimi Hofmann 1958 KBB02. Violo hirtae-Cornetum maris Hilbig et Klotz in Rauschert 1990 KC. Roso pendulinae-Pinetea mugo Theurillat in Theurillat et al. 1995 Subalpine krummholz vegetation KCA. Pinion mugo Pawłowski et al. 1928 KCA01. Dryopterido dilatatae-Pinetum mugo Unar in Unar et al. 1985 LA. Alnetea glutinosae Br.-Bl. et Tüxen ex Westhoff et al. 1946 Alder and willow carrs LAA. Alnion glutinosae Malcuit 1929 LAB. Salicion cinereae Müller et Görs ex Passarge 1961 LAB01. Salicetum auritae Jonas 1935 LB. Carpino-Fagetea Jakucs ex Passarge 1968 Mesic and wet deciduous broad-leaved forests LBA. Alnion incanae Pawłowski et al. 1928 LBA02. Piceo abietis-Alnetum glutinosae Mráz 1959 LBA03. Carici remotae-Fraxinetum excelsioris Koch ex Faber 1936 LBA04. Stellario nemorum-Alnetum glutinosae Lohmeyer 1957 LBA07. Fraxino pannonicae-Ulmetum glabrae Aszód 1935 corr. Soó 1963 LBB. Carpinion betuli Issler 1931 LBB01. Galio sylvatici-Carpinetum betuli Oberdorfer 1957 LBB03. Carici pilosae-Carpinetum betuli Neuhäusl et Neuhäuslová-Novotná 1964 LBB04. Primulo veris-Carpinetum betuli Neuhäusl et Neuhäuslová in Neuhäuslová-Novotná 1964 LBC. Fagion sylvaticae Luquet 1926 LBC01. Galio odorati-Fagetum sylvaticae Sougnez et Thill 1959 LBC02. Mercuriali perennis-Fagetum sylvaticae Scamoni 1935 LBC03. Carici pilosae-Fagetum sylvaticae Oberdorfer 1957 LBC04. Athyrio distentifolii-Fagetum sylvaticae Willner 2002 LBC05. Galio rotundifolii-Abietetum albae Wraber 1959 LBD. Sorbo-Fagion sylvaticae Hofmann in Passarge 1968 LBD01. Cephalanthero damasonii-Fagetum sylvaticae Oberdorfer 1957 LBE. Luzulo-Fagion sylvaticae Lohmeyer et Tüxen in Tüxen 1954 LBE01. Luzulo luzuloidis-Fagetum sylvaticae Meusel 1937 LBE02. Calamagrostio villosae-Fagetum sylvaticae Mikyška 1972 LBF. Tilio platyphylli-Acerion Klika 1955 LBF01. Aceri-Tilietum Faber 1936 LBF02. Mercuriali perennis-Fraxinetum excelsioris (Klika 1942) Husová in Moravec et al. 1982 LBF03. Arunco dioici-Aceretum pseudoplatani Moor 1952 LBF04. Seslerio albicantis-Tilietum cordatae Chytrý et Sádlo 1998 LC. Quercetea pubescentis Doing Kraft ex Scamoni et Passarge 1959 Thermophilous oak forests LCA. Quercion pubescenti-petraeae Br.-Bl. 1932 LCA01. Lathyro collini-Quercetum pubescentis Klika 1932 corr. Roleček in Chytrý 2013 LCA02. Lithospermo purpurocaerulei-Quercetum pubescentis Michalko 1957 LCA03. Euphorbio-Quercetum Knapp ex Hübl 1959 LCB. Aceri tatarici-Quercion Zólyomi 1957 LCB01. Quercetum pubescenti-roboris (Zólyomi 1957) Michalko et Džatko 1965 LCB02. Carici fritschii-Quercetum roboris Chytrý et Horák 1997 225 LCC. Quercion petraeae Issler 1931 LCC01. Sorbo torminalis-Quercetum Svoboda ex Blažková 1962 LCC02. Genisto pilosae-Quercetum petraeae Zólyomi et al. ex Soó 1963 LCC03. Melico pictae-Quercetum roboris (Mikyška 1944) Klika 1957 LD. Quercetea robori-petraeae Br.-Bl. et Tüxen ex Oberdorfer 1957 Acidophilous oak forests LDA. Quercion roboris Malcuit 1929 LDA01. Luzulo luzuloidis-Quercetum petraeae Hilitzer 1932 LDA02. Viscario vulgaris-Quercetum petraeae Stöcker 1965 LDA03. Vaccinio vitis-idaeae-Quercetum roboris Oberdorfer 1957 LDA04. Holco mollis-Quercetum roboris Scamoni 1935 LF. Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 Boreo-continental coniferous forests LFB. Dicrano-Pinion sylvestris (Libbert 1933) Matuszkiewicz 1962 LFB02. Vaccinio myrtilli-Pinetum sylvestris Juraszek 1928 LFB03. Hieracio pallidi-Pinetum sylvestris Stöcker 1965 LFC. Piceion abietis Pawłowski et al. 1928 LFC01. Calamagrostio villosae-Piceetum abietis Schlüter 1966 LFC03. Equiseto sylvatici-Piceetum abietis Šmarda 1950 LFC04. Soldanello montanae-Piceetum abietis Volk in Br.-Bl. et al. 1939 LFD. Vaccinio uliginosi-Pinion sylvestris Passarge 1968 LFD01. Vaccinio uliginosi-Betuletum pubescentis Libbert 1933 LFD02. Vaccinio uliginosi-Pinetum sylvestris de Kleist 1929 LFD03. Vaccinio-Pinetum montanae Oberdorfer 1934 226 Index of species photographs Abies alba 35 Acer campestre 113 Acer pseudoplatanus 47 Achillea setacea 171 Aconitum lycoctonum 97 Actaea europaea 47 Actaea spicata 107 Adenostyles alliariae 215 Adonis aestivalis 201 Adonis vernalis 143, 179 Adoxa moschatellina 101 Allium angulosum 159 Allium lavum 57 Allium senescens subsp. montanum 129 Allium ursinum 97 Alnus glutinosa 31 Alopecurus pratensis 153 Alyssum montanum 125 Anacamptis pyramidalis 199 Andromeda polifolia 209 Anemonastrum narcissilorum 215 Anemone nemorosa 83 Anemone ranunculoides 113 Anemone sylvestris 93 Antennaria dioica 83 Anthericum ramosum 101 Anthyllis vulneraria 93 Aquilegia vulgaris 107 Arenaria grandilora 125 Aristolochia clematitis 57 Armeria elongata subsp. elongata 61 Artemisia pancicii 179 Arum cylindraceum 129 Aruncus dioicus 101 Asarum europaeum 113 Asplenium cuneifolium 71 Asplenium ruta-muraria 131 Asplenium trichomanes 79 Aster amellus 51, 143 Astragalus austriacus 113 Astragalus danicus 179, 199 Astragalus exscapus 179 Astragalus onobrychis 125, 179 Astrantia major 97 Aurinia saxatilis 47 Bartsia alpina 215 Batrachium luitans 51 Berberis vulgaris 71 Betonica oficinalis 179 Biscutella laevigata subsp. varia 61, 131 Bistorta oficinalis 209 Bothriochloa ischaemum 71 Briza media 185 Bromus japonicus 129 Buglossoides purpurocaerulea 93 Bupleurum rotundifolium 201 Butomus umbellatus 171 Calamagrostis arundinacea 35 Calluna vulgaris 61 Caltha palustris 171 Calystegia sepium 153 Campanula barbata 215 Campanula bononiensis 113 Campanula cervicaria 199 Campanula gelida 209 Campanula persicifolia 83 Campanula sibirica 131, 143 Cardamine amara 107 Cardamine resedifolia 209 Carex appropinquata 27 Carex bigelowii 209 Carex buekii 47 Carex digitata 83, 113 Carex disticha 153 Carex lacca 27 Carex fritschii 185 Carex humilis 51, 57 Carex limosa 209 Carex melanostachya 159 Carex michelii 199 Carex paucilora 209 Carex pilosa 51 Carex pilulifera 35 Carex riparia 153 Carex rostrata 31 Carlina acaulis 27 Carpinus betulus 57 Centaurea scabiosa 131 Centaurea stenolepis 199 Ceratophyllum demersum 153 Circaea alpina 101 Cirsium eriophorum 107 Cirsium oleraceum 31 Cirsium palustre 31 Clematis recta 83 Comarum palustre 31 Convallaria majalis 83 Cornus mas 51, 97 Corydalis cava 113 Corydalis pumila 125 Cotoneaster integerrimus 131 Crepis praemorsa 185 Cyclamen purpurascens 51, 107 Cyperus michelianus 171 Cypripedium calceolus 107 Cytisus procumbens 129 Dactylorhiza fuchsii 185 Daphne mezereum 35, 101 Dentaria bulbifera 97 Dianthus lumnitzeri 125 Dianthus moravicus 79 Dianthus superbus 83 Dictamnus albus 93, 143 Dorycnium germanicum 79 Dorycnium herbaceum 199 Echium maculatum 93, 179 Empetrum hermaphroditum 209 Eriophorum angustifolium 27 Eriophorum vaginatum 209 Erysimum odoratum 201 Euonymus verrucosus 97 Euphorbia epithymoides 179 Euphorbia lucida 159 Euphorbia palustris 153 Euphorbia seguieriana 71 Fagus sylvatica 35 Festuca ovina 57 Festuca valesiaca 179 Filipendula ulmaria 31 Fragaria moschata 83 Frangula alnus 185 Fraxinus excelsior 35 Fumana procumbens 79, 131 Gagea bohemica 79 Galanthus nivalis 97 Galatella linosyris 143 Galeobdolon montanum 35 Galium odoratum 101 Genista pilosa 61 Gentiana pneumonanthe 171 Geranium sanguineum 179, 199 Gladiolus palustris 185 Globularia bisnagarica 129 Glyceria maxima 153 Gratiola oficinalis 159 Gymnadenia densilora 201 Hacquetia epipactis 201 Hedysarum hedysaroides 215 Helichrysum arenarium 61 Helictochloa pratensis 61 Hieracium lachenalii 47 Hieracium murorum 47 Hordelymus europaeus 107 Hottonia palustris 171 Hydrocharis morsus-ranae 171 Hylotelephium maximum 57 227 Impatiens noli-tangere 35 Inula ensifolia 93 Inula germanica 113 Inula hirta 79 Inula oculus-christi 125 Iris arenaria 131 Iris graminea 143 Iris pumila 125 Iris sibirica 159 Iris variegata 93 Isopyrum thalictroides 101 Jasione montana 61 Jovibarba globifera 79 Juncus effusus 31 Juncus triidus 215 Jurinea mollis 143 Klasea lycopifolia 201 Lathyrus niger 83 Lathyrus palustris 153 Lathyrus pannonicus 201 Leersia oryzoides 159 Leucojum aestivum 153 Ligusticum mutellina 215 Ligustrum vulgare 51 Lilium martagon 97 Limodorum abortivum 143 Linaria genistifolia 57, 125 Lindernia procumbens 171 Linum lavum 201 Linum tenuifolium 93 Listera cordata 209 Lithospermum oficinale 185 Loranthus europaeus 57 Lychnis los-cuculi 31 Lysimachia vulgaris 31 Lythrum virgatum 159 Maianthemum bifolium 35 Medicago prostrata 79 Melampyrum cristatum 113 Melampyrum pratense 47 Melica ciliata 129 Melica picta 185 Melica transsilvanica 97 Melittis melissophyllum 143 Menyanthes trifoliata 31 Mercurialis perennis 35 Neottia nidus-avis 83 Nepeta nuda 201 Notholaena marantae 71 Nuphar lutea 153 Odontites luteus 61 Ophioglossum vulgatum 159 Ophrys holoserica subsp. holubyana 199 Orchis pallens 199 228 Orlaya grandilora 129 Orobanche artemisiae-campestris 131 Papaver conine 125 Paris quadrifolia 107 Persicaria minor 159 Phalaris arundinacea 51 Phelipanche arenaria 131 Pinus sylvestris 24, 27, 71 Pinus uncinata subsp. uliginosa 24 Platanthera bifolia 97 Poa badensis 125 Poa riphaea 209 Polygonatum verticillatum 101 Polypodium interjectum 101 Polystichum aculeatum 107 Potamogeton nodosus 171 Potentilla alba 199 Potentilla aurea 215 Potentilla erecta 27 Potentilla incana 61 Prenanthes purpurea 101 Primula elatior 107 Prunella grandilora 93 Prunus mahaleb 71, 131 Pulmonaria angustifolia 199 Pulmonaria mollis 83 Pulsatilla pratensis subsp. bohemica 79 Quercus petraea 47 Quercus pubescens 93, 143 Quercus robur 51, 159 Ranunculus illyricus 129 Rapistrum perenne 129 Rhodiola rosea 215 Ribes alpinum 101 Rosa gallica 199 Rosa micrantha 93 Rosa pendulina 107 Rosa spinosissima 93 Rubus idaeus 35 Salix alba 153 Salix cinerea 31 Salix hastata 215 Salix herbacea 209 Salix pentandra 27 Salvia aethiopis 129 Salvia glutinosa 51 Salvia pratensis 179 Sanguisorba oficinalis 27 Sanicula europaea 97 Saxifraga paniculata 79, 107 Scabiosa canescens 71 Scirpoides holoschoenus 185 Scleranthus perennis 79 Scorzonera austriaca 79 Scorzonera hispanica 143 Scorzonera purpurea 185 Scutellaria hastifolia 171 Senecio erucifolius 71 Serratula tinctoria 83, 185 Seseli hippomarathrum 71 Silene nutans 57 Silene otites 61 Sorbus aucuparia 35 Stachys recta 125 Staphylea pinnata 97 Stellaria holostea 47 Stipa capillata 71 Stipa pennata 101 Stipa pulcherrima 113 Succisa pratensis 27 Swertia perennis 215 Symphytum tuberosum 57 Tanacetum corymbosum 51 Thalictrum foetidum 131 Thalictrum simplex subsp. galioides 185 Thesium linophyllon 201 Thymus pannonicus 113 Thymus praecox 71 Tilia cordata 113 Tilia platyphyllos 47 Trifolium rubens 143 Ulmus glabra 47 Vaccinium myrtillus 27, 47 Vaccinium oxycoccos 27 Vaccinium uliginosum 27 Verbascum chaixii subsp. austriacum 51 Verbascum phoeniceum 61, 179 Veronica maritima 171 Veronica spicata 61 Veronica spuria 201 Vicia tenuifolia 125 Vicia villosa subsp. villosa 129 Vincetoxicum hirundinaria 57 Viola alba 201 Viola elatior 159 Viola lutea subsp. sudetica 215 Viola palustris 31 Viola pumila 159 Viola stagnina 153 Viola suavis 131 Viola tricolor subsp. saxatilis 129 Viscaria vulgaris 57