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All models are wrong but some are useful.  

George Box. 
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Abstract 
Climate change is threatening forest ecosystems, driving the need to develop tools to 

assess species’ vulnerability, in order to support conservation management decisions. 

Maintaining adaptive capacity should be a key target for conservation managers 

given its importance for increasing species’ ability to cope with climate change.  

Species distribution models (SDMs) provide a useful tool for conservation by 

assessing the relationship between species’ distribution and environmental variables, 

and because they can be projected in any geographical space or time. Still, there are 

some issues that limit the applicability of SDMs in conservation. First of all, until 

now, SDMs rarely incorporate genetic information, an essential component of 

adaptive capacity and biodiversity. This trend even worsens in the case of forests 

trees. Thus, SDMs consider that all populations within a species would respond 

equally to climatic changes, although the contrary pattern has been reported. 

Second, there are few examples in literature in which SDMs consider biotic 

interactions when evaluating vulnerability to climate change. This issue is of large 

importance as changes in climatic conditions are likely to derive in alterations in 

species’ interactions. Third, most of SDM-based approaches fail in dealing with 

future uncertainties derived from the wide range of future climate models and 

scenarios currently available. The main objectives of the present thesis are to 

overcome these limitations by integrating genetic information, biotic exposure and 

future climate uncertainties in SDMs, in order to optimize their application for 

forest management and conservation.  

As a first step, we tested the effect of incorporating molecular information in SDMs 

and we analyzed the relationship among genetic, environmental and geographic 

distances. We used as a model species maritime pine (Pinus pinaster Ait.), for which 

we defined eight genetically based clades. We compared two SDMs incorporating or 

not genetic information, and we calculated genetic (Nei’s distances), environmental 

(Euclidean distances in an environmental space) and geographic (least-cost path 

distances) distances. We found that SDMs improved their predictions when 

incorporating molecular information and that environment had played a role in 

shaping the pine’s lower order phylogenetic structure.  
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Second, we evaluated the vulnerability of two iconic Mediterranean species, 

maritime pine and Aleppo pine (Pinus halepensis Mill.), considering their adaptive 

capacity and their exposure to climate change. We fit SDMs incorporating genetic 

information, projected them to 42 different future climate predictions corresponding 

to 2050 in order to consider future climate uncertainties and assessed exposure 

depending on the concordance among the predictions. Exposure evaluation was then 

employed to provide specific conservation guidelines for each genetically-defined 

clade. 

Third, we incorporated biotic exposure into vulnerability assessment. We employed 

as model species Pinus pinaster and its potentially important disease, pitch canker, 

caused by the fungus Fusarium circinatum Nirenberg & O’Donnell. We fit SDMs for 

both, the pine and the disease, we projected them to 18 future climate predictions 

and evaluated the exposure of the pine to abiotic (climatic) and biotic (pitch canker) 

exposure. This approach highlighted threatened populations while distinguishing 

the source of the threat.  

Finally, we employed SDMs to provide a standardized methodology to assess 

marginality considering processes affecting gene flow. Thus, we accounted 

separately for geographic and environmental factors, to consider isolation by 

distance and isolation by environment processes respectively. To assess geographic 

marginality, we used four different indices assessing the position of populations 

within their core patches and their position in respect to the entire distribution of 

the species. To assess environmental marginality, we employed the probability of 

environmental suitability obtained by fitting SDMs. We illustrated our approach 

with seven European conifers (four of them Mediterranean), namely, Pinus 

halepensis Mill., Pinus pinaster Ait., Pinus nigra Arnold, Pinus pinea L., Abies alba 

Mill., Pinus sylvestris L., and Picea abies L., all them genetically characterized, in 

order to perform a second stage analysis, in which we will assess the consequences of 

marginality on genetic patterns.  

Along this thesis, we successfully overcome major limitations of SDMs for their use 

in conservation management, providing approaches of large applicability in forestry.  
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Resumen 
La gran amenaza que supone el cambio climático para los sistemas forestales hace 

necesario desarrollar herramientas que evalúen la vulnerabilidad de las especies que 

los componen, de cara a guiar la gestión para la conservación.  Mantener la 

capacidad adaptativa de las especies debe ser un objetivo principal para los gestores, 

dada su importancia para lidiar con las alteraciones climáticas.  

En el ámbito de la conservación, los modelos de distribución de especies (MDE) son 

una herramienta útil ya que relacionan la distribución de las especies con variables 

ambientales pudiendo proyectarse en cualquier marco temporal o geográfico. Sin 

embargo, hay determinados factores que limitan la aplicabilidad de estos modelos. 

En primer lugar, hasta ahora, los MDE rara vez incorporan información genética, 

especialmente en el caso de árboles forestales, considerando, a pesar de las evidencias 

de lo contrario, que todas las poblaciones de una misma especie reaccionan de igual 

manera ante los cambios climáticos. En segundo lugar, son escasos los ejemplos en 

los que los MDE consideran factores bióticos de cara a evaluar la vulnerabilidad de 

las especies al cambio climático, lo cual es importante ya que los cambios en las 

condiciones climáticas pueden alterar las interacciones entre especies. Por último, la 

mayoría de estas aproximaciones no incorporan en sus predicciones la incertidumbre 

derivada de la gran variedad de modelos y escenarios de clima futuro disponibles. 

Esta tesis, por tanto, pretende integrar estos elementos (información genética, 

exposición biótica e incertidumbre climática futura) a lo largo de sus distintos 

capítulos persiguiendo optimizar la aplicación de los MDE para la gestión forestal y 

para su conservación.  

Como primer paso, testamos el efecto de incorporar información molecular en los 

MDE y analizamos la relación entre la distancia genética, ambiental y geográfica. 

Para este objetivo, empleamos como especie modelo el pino marítimo (Pinus pinaster 

Ait.) compuesto por ocho grupos infra-específicos definidos a partir de criterios 

genéticos. En este trabajo, comparamos dos modelos de nicho (incorporando y no 

incorporando información genética) y calculamos distancias genéticas (distancia de 

Nei), ambientales (distancia euclídea en un espacio ambiental) y geográficas 

(distancias de coste). Como resultado, encontramos una mejora significativa en las 

predicciones de los modelos que incorporaban información  genética así como un 

papel destacado del ambiente en definir la estructura filogeográfica del pino.  
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En segundo lugar, evaluamos la vulnerabilidad al cambio climático de dos 

emblemáticas coníferas Mediterráneas, el pino marítimo y el pino carrasco (Pinus 

halepensis Mill.) teniendo en cuenta su capacidad adaptativa, su exposición al 

cambio climático y la incertidumbre derivada de las proyecciones climáticas.  Para 

ello, calibramos MDE incorporando información genética, los proyectamos a 42 

predicciones climáticas diferentes correspondientes a 2050, de cara a incorporar la 

incertidumbre derivada de los escenarios climáticos futuros y evaluamos la 

exposición de las especies dependiendo de la concordancia entre las 42 proyecciones. 

Posteriormente, utilizamos esta evaluación para plantear directrices de conservación 

específicas (in situ, ex situ o in situ con monitorización) para cada grupo infra-

específico  de ambas especies.  

En tercer lugar, incorporamos en la evaluación de vulnerabilidad al cambio climático 

la exposición a factores bióticos. Para ello, usamos como especie modelo Pinus 

pinaster y una de sus potenciales enfermedades, el chancro resinoso, causado por el 

hongo Fusarium circinatum Nirenberg & O’Donnell. Este estudio se desarrolló a 

nivel nacional (España) de cara a obtener resultados con alta calidad y resolución a 

partir de los datos disponibles para este territorio. Calibramos MDE para el pino y la 

enfermedad, proyectamos a 18 escenarios futuros representativos de 2050 y 

evaluamos la exposición del pino a factores abióticos (climáticos) y bióticos 

permitiendo detectar poblaciones amenazadas a la vez distinguiendo el factor 

principal de riesgo.  

Finalmente, empleamos los MDEs para definir la marginalidad de una manera 

estandarizada y considerando los principales procesos que afectan al flujo genético. 

Para ello, se analizaron de manera independiente factores geográficos y ambientales, 

de cara a considerar los procesos de aislamiento por distancia y aislamiento por 

ambiente. Para evaluar la marginalidad geográfica, se definieron cuatro índices 

caracterizando la posición de las poblaciones dentro de la mancha de distribución en 

la que encuentran así como su posición con respecto al resto de la distribución de la 

especie. Para evaluar la marginalidad ambiental, se empleó la probabilidad de 

adecuación ambiental estimada a través de MDEs. Como especies modelos para el 

desarrollo de este trabajo, se emplearon siete coníferas Europeas (cuatro de ellas 

Mediterráneas): Pinus halepensis Mill., Pinus pinaster Ait., Pinus nigra Arnold, Pinus 

pinea L., Pinus sylvestris L., Picea abies L. y Abies alba Mill., todas ellas 
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caracterizadas genéticamente de cara a continuar el estudio con una segunda fase en 

la que evaluaremos las consecuencias de la marginalidad en los patrones de 

diversidad genética.  

A lo largo de este trabajo, se solucionan con éxito las principales limitaciones de los 

MDE para su uso en la gestión para la conservación, permitiendo desarrollar 

aproximaciones de gran aplicación para el mundo forestal.  

 



 

 

  

 
 



  

 

 

 
 
 
 
 
 

 
Chapter 0 
 
 
 
 
 

 
General Introduction and 
Methodological Overview 

 
 
 
 
 
  



 

 

 
 
 
 
 
 
 
 
 
 



  General Introduction and Methodological Overview 

 

   21 
 

General Introduction 

Forests ecosystems, climate change and conservation 

The importance of forest ecosystems is worldwide recognized as they occupy one 

third of the terrestrial surface, they sustain a myriad of species and represent a 

livelihood for over 1,600 million of human beings (FAO, 2006, 2010; see Fig. 1 for 

designated functions of forests). Forests play an essential role as biodiversity hotspots 

(Myers et al., 2000) given that they smooth regional climate characteristics (e.g. 

López-Carrasco et al., 2015), providing humidity, shadow, refuge and food for a large 

list of plant, animal and fungi species. As such, 12% of the world’s forest cover has 

been primarily designated for the conservation of biodiversity (FAO, 2010). Forests 

are also essential in the economy of many regions (see FAO, 2006; Hanewinkel et al., 

2012 for global and European data respectively) as a lot of highly demanded 

products like wood, resin, food and medicine are directly derived from them. In 

addition, forests ecosystems play an irreplaceable role in protecting water, avoiding 

soil erosion and maintaining traditional landscapes as well as providing recreational 

areas. Finally, forest trees are the “green lungs” of the planet as, by means of the 

photosynthesis, they constitute an oxygen source, which converts them in an 

essential component for life on Earth. During the photosynthesis, they also become a 

carbon sink and thus they are a key element for the mitigation of anthropogenic 

climate change (Canadell & Raupach, 2008). 

 

Figure 1: Designations of global forest cover. Figure from FAO, (2010) 
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Despite their importance, we have lost approximately 1.3 % of the total forest area 

during the last decade, and although deforestation rates are decreasing, they are still 

high (data for the period 2000-2010; FAO, 2014). Nevertheless, fortunately, in some 

regions, such as Europe, we find an inverse trend with an increasing forest cover 

(Rigo et al., 2016a). In Europe, 33 % of the total land area (215 million ha) are 

covered by forests from which more than half are coniferous, the rest being 

broadleaved and mixed (Rigo et al., 2016a; see Fig. 2). Among these, Mediterranean 

forests located in the Mediterranean Basin, stand out due to their considerably high 

plant diversity as a result of a noteworthy variety of habitats - e.g. 290 wooden 

species vs only 135 for non-Mediterranean Europe -, and of the many historical and 

paleo-geographic episodes in the area, especially during the last glaciation period. 

Mediterranean forests are dominated by evergreen species – although deciduous 

species are also represented - and in particular Mediterranean conifers are 

characterized by higher within-species diversity than other conifers (Fady, 2005). 

Accordingly, the Mediterranean Basin, which shelters the vast majority of 

Mediterranean forests in the world, has been identified as a biodiversity hotspot 

(Myers et al., 2000). 

Anthropogenic climate change, majorly characterized by global warming (IPCC, 

2013), is becoming a major threat for natural forests (Thomas et al., 2004; see Allen 

et al., 2010 for an example) and biodiversity. In the face of climate change, species 

can migrate, adapt, or become extinct (Aitken et al., 2008) and, in such context, 

forest ecosystems are especially vulnerable, due to their sessile nature that constrains 

migration and to their long life-span which does not allow for rapid adaptation to 

environmental changes (Lindner et al., 2010). In the leading edge of the distribution, 

migration constitutes the most important process, as trees become main sources of 

propagules for new available habitats. In contrast, in the trailing edge, adaptive 

responses of trees are particularly important (Kramer et al., 2010), as it is where 

species truly face the need to persist in current sites while the environmental 

conditions are changing (Thuiller et al., 2008). The extent to which populations will 

adapt, depends on genetic diversity, phenotypic variation (i.e. the ability of an 

individual to change its phenotype responding to environment), strength of 

selection, fecundity, interspecific competition and biotic interactions (Aitken et al., 

2008). Although phenotypic plasticity plays a major role for survival in the short 

term, evolutionary adaptation becomes crucial in long periods (Thuiller et al., 2008). 
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Mediterranean regions are particularly vulnerable to climate change (IPCC, 2007; 

Lindner et al., 2010), due to their position at the rear edge of the distribution of 

species (Hampe & Petit, 2005), and to the predicted increased frequency of extreme 

events such as droughts and fires (IPCC, 2007). This threat is particularly relevant 

not only because of their ecological importance, but also because these forests play 

an essential role for the society (Gauquelin et al., 2016) – as such, the Mediterranean 

Basin is considered as an important priority for conservation. Nevertheless, despite 

their threatened situation, Mediterranean forests remain underrepresented in the 

current European conservation network (Lefèvre et al., 2013) and in currently 

available conservation literature (e.g. Schueler et al., 2014; but see Noce et al., 2016). 

 

 

Figure 2: Broadleaved and coniferous forest density, computed with a spatial grid of 50 km2, 
for the datasets used: Pan European Forest Type Map 2006 (FTM), CORINE Land Cover 
map 2006 (CLC) and ESA GlobCover 2009 (EGC). Figure from Rigo et al., (2016b). 
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Conservation of biodiversity at broad scales is challenging and requires international 

collaboration to standardize concepts and procedures. Initially, the United Nations 

Environment Programme (UNEP) gathered experts on biological diversity in 1988, 

resulting in the development of the convention on biological diversity text (CBD, 

1992). This document highlights that conserving biodiversity requires maintaining 

diversity within species, between species, and between ecosystems. Thus, the CBD 

extended the goal of conservation from preserving species and their habitats to 

maintaining their capacity to evolve and adapt to new environmental conditions. In 

fact, the CBD explicitly highlights the importance of maintaining infra-specific 

differentiation, and particularly genetic variation as the basis of species divergence 

when aiming to conserve biodiversity.  

Infra-specific differences within forest populations appear due to different processes. 

Plants rely on pollen and seeds to disperse, but their dispersal abilities are often 

limited. Thus, when a new factor, such as an environmental or topographic change, 

appears it may lead to population fragmentation, and consequently to the 

interruption of gene flow. Within this context, populations evolve independently 

through neutral and/or adaptive genetic processes resulting in different genetic 

lineages or clades, an effect that is increased by genetic drift in small populations. If 

this process continues through time it can ultimately lead to speciation (see Fig. 3). 

Figure 3 : Population differentiation processes that may ultimately lead to speciation. 
Figure from Dr. Dana Krempels (included in Lecture notes for evolution and 
biodiversity -BIL 160 Section HJ at University of Miami). 
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These genetically differentiated clades, which may show (or not) morphological 

differences, are likely to diverge in their evolutionary potential and adaptive 

capacity in which genetic diversity plays a major role (Nicotra et al., 2015). Higher 

genetic variation implies higher evolutionary potential (Sgró et al., 2011) as selection 

acts on it, promoting best adapted genotypes and eradicating deleterious ones, 

ultimately leading to local adaptation. Thus, maintaining or increasing genetic 

diversity is a major challenge for scientists and managers in the current climatic 

change context leading to the development of conservation genetics. 

The term conservation genetics, was coined more than thirty years ago (Soulé & 

Wilcox, 1980), and represents the branch of science aiming to maintain genetic 

diversity through the characterization of population genetic variation, population 

viability, and future evolution of the species (Frankham, 2010). Evaluating these 

components enables the delineation of conservation units (CUs), to base 

conservation plans upon. CUs, all together, should ideally represent the evolutionary 

potential and heritage of the target species (Moritz, 1994), which depends on the 

species’ genetic and phenotypic variation. 

The definition of CUs should rely on empirical information integrating both neutral 

and adaptive patterns (Fraser & Bernatchez, 2001; Rodríguez-Quilón et al., 2016). 

Still, the arduousness and economic costs associated to obtain the required field 

sampled information, has commonly led to the use of alternative strategies. 

Particularly, in the case of forest trees, eco-geographical zonation has been used as 

an indicator of homogeneous adaptive genetic zones (e.g. Hamann et al., 2004; 

Schueler et al., 2013) rather than using real genetic measurements (Ledig, 1986), as 

environment has been proved to be related to genetic variation (e.g. Jaramillo-

Correa et al., 2015). In fact, in EUFORGEN, the most important international effort 

for conserving forest tree genetic resources in Europe, the selection of target focal 

populations (so called dynamic conservation units – DCUs) is based on the 

stratification of the European environment developed by Metzger et al., (2005). 

However, but for some exceptions (e.g. Vandergast et al., 2008; Zonneveld et al., 

2012; Schueler et al., 2013), genetic variation, is still largely neglected in 

conservation policies (Laikre et al., 2010) although the already visible effects of the 

warming climate, are leading to an increasing development of conservation plans 
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(e.g. Kremen et al., 2008; Gummer et al., 2010) and seed transfer guidelines (e.g 

Wang et al., 2006; Bower & Aitken, 2008). 

While adaptive capacity is essential to select target populations that altogether 

capture the evolutionary potential of species, assessing the magnitude of the impacts 

that climate change may have on species i.e. their exposure to climate change sensu 

Dawson et al., (2011), is of paramount importance to define conservation strategies 

and the urgency of the actuations. Once conservation targets have been defined, 

genetic resources can be maintained with two different strategies: ex situ and in situ 

(Ledig, 1986). While the former contemplates a plethora of actions, from the storage 

of tissues, pollen or life material in gene banks to the plantation of specific 

conservation stands, in situ conservation techniques pursue the preservation of 

genetic resources in their original ecosystem. Nowadays, in situ conservation is the 

preferred approach as it involves several advantages over ex situ conservation 

(Rotach, 2005): i) it allows for dynamic conservation i.e. it preserves natural 

selection processes, thus maintaining the evolutionary potential of populations ii) it 

conserves the function of the ecosystem as a whole —not only the target species, but 

also its associated living organisms— and iii) it is easier, safer and cheaper than ex 

situ conservation. Still, to assess whether in situ conservation is possible requires a 

solid assessment of exposure. However, when ex situ conservation is the only option, 

both, translocation or assisted migration (Leech et al., 2011) and conservation in 

germplasm banks are possible, the former requiring an assessment of possible 

locations where it is likely to be successful.   

Assessing exposure to climate change requires not only considering abiotic factors, 

such as climate, but also biotic ones, such as pests, as climate change impacts both 

abiotic and biotic factors. The predicted impacts of climate change on the formers, 

such as global warming, or increased intensity and duration of droughts, have been 

described in detail (e.g. IPCC, 2013), and their effects on forests ecosystems have 

been commonly studied (e.g. Coops & Waring, 2011; Schueler et al., 2014). 

However, the impact of climate change on biotic factors is commonly neglected 

when assessing exposure to climate change (but see Heikkinen et al., 2007; Preston 

et al., 2008), although biotic interactions also play an important role in determining 

the distribution of species (Moore et al., 2007), particularly in a climatic (Araújo & 

Luoto, 2007; Sturrock et al., 2011) and global (Pautasso et al., 2010) change scenario,  
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as climate change may not only affect species performances, but also species 

interactions (Tylianakis et al., 2008). For instance, new habitats may become 

available for predators or pests, or trees may be more prone to infections due to the 

effects of abiotic factors. Indeed, forest diseases caused by exotic pathogen invasions 

have been increasing in number and severity (Santini et al., 2013). In addition, 

studies addressing climate change exposure do not account with future climate 

uncertainties derived from the wide range of future climatic predictions available, 

none better than the other (but see Fordham et al., 2011). Thus, future climate 

uncertainty becomes a major problem when assessing exposure. 

 

Throughout this section, we have exposed the new challenges that conservation 

management is facing. To successfully resolve them, it is necessary to use novel 

methods combining different branches of science, principally genetics and landscape 

ecology. Species distribution models (SDMs - see Guisan & Zimmermann, 2000 for 

details), provide a common framework to develop these kind of approaches, and 

constitute powerful tools to guide conservation management (see Fig. 4; Guisan et 

Figure 4: A structured decision-making process with indication of potential entry points for 
the use of SDMs for conservation. Figure from Guisan et al., (2013) 
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al., 2013). These models utilize associations between environmental variables and 

known species’ occurrence records to identify environmental conditions within 

which populations can be maintained (Pearson, 2010), and their underlying 

concepts can be easily transferred to the infra-specific level.  

Their applications for conservation management are multiple. For instance, they can 

facilitate our understanding of past processes shaping current genetic structure, 

which is ultimately interesting to predict future trends, or they make possible an 

evaluation of exposure to both abiotic and biotic factors. In addition, they enable to 

apply the concepts and information obtained from genetic/genomics science in a 

spatially explicit framework, contributing to connect scientists and managers worlds 

(Shafer et al., 2015). However, despite the high potential SDMs may have in 

conservational issues, a big effort needs to be undertaken to enhance communication 

and strengthen collaboration among scientists and managers, as there are few 

examples in literature in which SDMs support solutions for on-ground conservation 

problems (Guisan et al., 2013). Because of the high relevance in conservation of 

SDMs, we will dedicate the next section to introduce their main characteristics. 

Species Distribution Models 

The origin  

Species distribution models (SDMs) evaluate species’ habitat suitability based on 

known occurrence records and on environmental variables. They rely on the well-

known concept that ecological factors determine the distribution of species 

(Grinnell, 1904), and their origin during XXth century, aimed to disentangle how 

species responded to ecological changes and which were the most important factors 

driving their distribution patterns (see Grinnell, 1916; Elton, 1927 for examples). As 

reviewed in Guisan & Thuiller (2005), the earliest examples of SDMs were 

developped by Johnstons (1924) who predicted the invasive spread of a cactus 

species in Australia, and Hittinka (1963) who assessed the climatic determinants of 

the distribution of several European species.  

Since the seventies computer-based predictions became an essential tool for the 

evolution of SDMs, a good example being the work developped by Nix et al., (1977). 

From then on, the appearance of SDMs in literature increased rapidly (see Ferrier, 
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1984; Verner et al., 1986; Busby, 1991 for examples; Guisan & Zimmermann, 2000 

for a review) including all kind of taxa, from mammals to invertebrates and plants.  

During their “growing-up” process, SDMs evolved from a non-spatial, statistical 

quantification of species-environment relationship based on empirical data or expert 

knowledge, to an spatially explicit statistical and empirical modeling of species 

distribution. Objectives also evolved from exclusively explanatory aims (e.g. Parra-

Olea et al., 2005; Sánchez de Dios et al., 2009), to more prognostic or practical 

approaches. Nowadays, they are multifunctional tools that are commonly utilized in 

a plethora of applications, such as evaluating potential invasive species 

(Broennimann et al., 2007), predicting future distributions in a changing climate 

framework (Skov & Svenning, 2004), estimating species richness (Steinmann et al., 

2009), locating new sample areas for rare species (Guisan et al., 2006), guiding 

conservation management issues (Marini et al., 2009), simulating palaeo-

distributions (Lorenzen et al., 2011) or testing alternative hypotheses of relevant 

aspects of species history combining SDMs with coalescent models (Richards et al., 

2007) or with demographic models (Knowles & Alvarado-Serrano, 2010; Brown & 

Knowles, 2012).  

The modern concept of niche modeling became possible when two parallel streams 

of research activity converged. On the one hand, field-based ecological studies, 

enriched with new statistical methods such as Generalized Linear Models (GLM - 

Nelder & Wedderburn, 1972), Generalized Additive Models (GAM - Hastie & 

Tibshirani, 1990) or Machine Learning methods (Dietterich, 1996), replaced the 

previous and more simple regression-based techniques. On the other hand, the huge 

increase of information availability concerning geography, environmental issues and 

the development of Geographic Information System as a tool to handle it (Elith & 

Leathwick, 2009), enabled to characterize the territory. 

Concepts and assumptions  

First insights on SDMs require a brief summary of the concept of niche, commonly 

used as a synonymous of habitat or environment. The misunderstanding of these 

concepts has led to significant confusion about what is actually being modeled and 

about how the models should be applied (Kearney, 2006). Following Kearney's 

(2006) work, we will briefly highlight the differences among them.  
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Habitat refers to the physical and biotical features that are thought to be important 

for the distribution of an organism, although it can be defined without a reference to 

the organism e.g. savannah or grassland. Moreover, an environment is composed by 

the biotic and abiotic factors surrounding an organism and potentially interacting 

with it.  

Organisms can modify and even create their own environment (e.g. the roots of a 

plant change soil properties) and thus, although not all components of the 

organisms’ environment will necessarily influence its capacity to grow, survive and 

reproduce, a reference to the particular organism must be done. To illustrate this 

concept, in the same habitat two different organisms can experience different 

environments (e.g. diurnal and nocturnal species). Finally, a niche is defined by all 

the environmental conditions that affect a particular organism, limiting its survival 

and reproduction. The niche is defined by the organism since its specific properties 

determine which environmental conditions are relevant. 

Following Hutchinson (1957), the niche is conceptualized as a an environmental n-

dimensional space whose axes comprise the conditions and resources that limit an 

organism’s survival and reproduction. The idea is similar to the geographical space 

(two or three dimensional depending on whether we include elevation or not), but 

in a more complex multi-dimensional space. Hutchinson also established a 

distinction between fundamental niche (when the effects of biotic interactions are 

excluded and only abiotic factors are considered) and realized niche (when biotic 

interactions, e.g. competition and predation are included).  

The concept of realized niche was broadened later to include all the geographical 

and historical constraints that influence the distribution of species given their 

limited ability to reach or re-occupy all suitable areas (see Fig. 5). 

Accordingly, significant factors relevant in species distribution patterns are divided 

into three groups (Guisan & Thuiller, 2005; Soberón & Peterson, 2005): (i) Spatial 

distribution of environmental conditions favorable to the establishment, 

survivorship and reproduction of species, (ii) Biotic environment constituted by the 

species’ competitors, predators and pathogens together with the availability and 

dynamics of resources and, (iii) Species’ dispersal capacities. Based on the group of 

factors selected to define a niche, we can distinguish between two different niche 

classes: Grinellian and Eltonian (Soberón, 2007). Grinellian niche class is defined 
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fundamentally with non-interactive variables -without the need of resorting to 

models of exploitation or density competitors- while Eltonian niche class focuses on 

biotic interactions and resource-consuming dynamics.  

 

 

Therefore, Eltonian niche concept coincides with Hutchinson’s realized niche idea 

explained above. Grinellian and Eltonian niches seem to apply to differential spatial 

scales (global and local scale respectively). Still, the Grinellian niche is the most 

commonly modeled in SDMs (but see Araújo & Luoto, 2007; Heikkinen et al., 2007). 

However, because of the observed distribution being already constrained by biotic 

interactions and limiting resources, SDMs de facto quantify Hutchinson’s realized 

niche of species  (Guisan & Thuiller, 2005).  

Furthermore, when using SDMs, two assumptions are implicitly accepted. First, we 

assume that the modeled species is in equilibrium with current environmental 

conditions, i.e. it occurs in all suitable areas while being absent from all unsuitable 

areas. This is unlikely to be true as equilibrium strongly depends on the dispersal 

ability of the species as well as on biotic interactions, and as sampling is performed  

during a limited period of time and thus it only reflects a snapshot view (Pearson, 

2010). The second premise is that observed occurrence records provide a sample of 

the entire environmental space occupied by the species, which is not guaranteed by 

an intense sampling on the geographical space (Pearson, 2010). Although the non-

compliance of these two premises leads to restrictions in the use of SDM, there is 

Figure 5 : Realized niche (RN ) according to Hutchinson, (1957) 
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still very interesting information that can be extracted from them as long as we 

consider it during the interpretation of the results.  

How do SDMs work? 

The relationship between environmental variables and species’ occurrence records 

can be addressed through correlative or mechanistic approaches (see Dormann et al., 

2012).  

While correlative models aim to estimate the environmental conditions that are 

suitable for a species by associating its known occurrence records with relevant 

environmental variables that are expected to affect its distribution, mechanistic 

models pursue the integration of the physiological limiting mechanisms that 

constrain species’ distribution (Pearson, 2010) and their outputs generally consist on 

fitness maps. Particularly in the case of plant distribution modeling, the bulk of 

recent publications dealing with SDMs has commonly ignored physiological factors 

due to the difficulty associated to scaling up from physiological attributes to 

ecosystem level processes (Higgins et al., 2012) - although some examples can be 

found in Kearney & Porter (2004, 2009), Crozier & Dwyer (2006) and Morin et al. 

(2008).  

In addition, although selecting between a correlative or mechanistic approach 

depends on the objective, on the spatial scale and commonly on the available 

information, comparisons between both have reported better predictions from 

correlative methods as these aim to obtain better performance, while mechanistic 

approaches pursue understanding the consequences of physiological processes 

(Kramer et al., 2010). Finally, correlative approaches require more easily obtainable 

data sets, especially when working at broad scales.  

From a conceptual perspective, correlative approaches  link the presence/absence of 

a species (dependent variable) with environmental factors (independent variables) in 

the environmental space by means of an algorithm and then, it is possible to project 

the results in the geographic space (see Fig. 6).  

There are a wide range of available methods such as regression based - among which 

GLM and GAM are the most commonly utilized (see Fleishman et al., 2003; Elith & 

Leathwick, 2007 for examples), machine learning methods – such as Random Forest 

(RF - Breiman, 2001; see Lorena et al., 2011 for a review and comparison of machine 
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learning classifiers), classification methods like classification tree analysis (CTA; 

Breiman et al., 1984), or maximum entropy  models (e.g. MaxEnt; Phillips et al., 

2006) among others. While the number of techniques is large and increasing 

steadily, the discrepancies between them can be very large making it difficult to 

select the most appropriate methodology (Thuiller et al., 2009).  

 

 

Several studies have compared the accuracy of these methods (see Olden & Jackson, 

2002; Segurado & Araújo, 2004; Elith et al., 2006; Lorena et al., 2011 for examples). 

However, they have not reached a consensus on the superiority of any of them. 

Currently, there is an increasing use of ensembles of forecasts combining different 

algorithms (Araújo & New, 2007; Grenouillet et al., 2011) as their use is facilitated 

by available platforms such as BIOMOD (Thuiller et al., 2009), which provide a 

common framework to test all the different techniques. Yet, the importance of 

individual predictions should not be neglected as ensembles remain dependent on 

them (Araújo & New, 2007).  

Data availability is an important issue when selecting the modeling algorithm, 

which can be categorized in two groups: methods that only require presence data 

and methods that require presence and absence data (Brotons et al., 2004). Contrary 

Figure 6 : Conceptual representation of a correlative species distribution model 
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to popular belief, there are very few presence-only SDM algorithms, the most 

common being rectilinear envelopes (e.g. BIOCLIM; Busby, 1991) and distance 

based envelopes (e.g. Mahalanobis distance Farber & Kadmon, 2003). In addition, 

presence/absence methods have been reported to perform better than presence-only 

models (Elith et al., 2006) and thus they are the preferred option. However, absence 

records are scarce and problematic since they might have been recorded when the 

species was not detected although the environmental variables were suitable for it 

(false absence). Thus it is very common to use artificially created absence datasets 

called pseudo-absences or background data. Although these two concepts are very 

similar, they are not exactly the same. Pseudo-absences records do not include 

occurrence localities as their aim is to assess differences between occurrence 

localities and localities chosen to be used in place of real-absence data. Contrarily, 

background records include occurrence localities as they focus on how the 

environment where the species is known to occur relates to the environment across 

the rest of the area (Pearson, 2010). A guidance for the different choices to select 

pseudo-absences or background records - how, where and how many – is provided 

in Barbet-Massin et al., (2012).  

Whether the environmental variables are categorical or continuous is also a factor to 

take into account when selecting a modeling algorithm, as not all of them permit the 

use of the former (Pearson, 2010). Nevertheless, this is not a major task given that a 

categorical variable can normally be converted into a continuous variable. Finally, 

whether it is important or not to assess the relative influence of the different 

environmental factors on the model’s fit or predictive capacity is another 

consideration when selecting the model algorithm (Pearson, 2010). Some models 

have good predictive power although they do not enable us to understand the 

relative contributions of different variables. 

Other relevant issues when working with SDMs 

When working with SDMs, the selection of an appropiate algorithm is relevant as it 

is the core of the distribution model. Still, it is just one part of the broader modeling 

process in which a lot more of important decisions must be performed such as the 

environmental factors to be considered, the spatial scale or the method to evaluate 

or validate the model.  
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 Environmental factors  

Determining the factors underlying species’ distribution patterns has been a 

major task in species distribution modeling. However, although there is a wide 

range of studies concerning the optimization of different statistical techniques 

and comparing their quality (see previous section), there are comparably few 

studies that attempt to optimize the selection of model predictors (but see Mac 

Nally, 2000; Austin et al., 2006). The number of factors to be included in a SDM is 

still a matter of discussion between scientists, as complex models, which include 

numerous factors, are more realistic than simpler ones but not necessarily more 

accurate (Hijmans & Graham, 2006). Finally, it is generally accepted that complex 

models are likely to be more accurate at finer spatial resolutions or in cases where 

the species has still not reached equilibrium, whereas simpler models are likely to 

offer useful and parsimonious solutions at broader scales (Thuiller et al., 2008). 

Only those factors with direct physiological impact on the species must be 

selected, as those with indirect effects can cause erroneous predictions when 

models are used in new regions or under alternative climate scenarios (Guisan & 

Thuiller, 2005). Currently, remote sensing has provided a new source of 

information with new environmental datasets. In addition, the use of information 

extracted from global climate models can provide predictions about the past or 

the future climate providing new scenarios to project the model. 

 Spatial Scale  

The spatial scale, defined by the grain (resolution) and the extent of the study 

area (Wiens et al., 2002), is a key factor in SDMs as the sample structure and the 

final results obtained are dependent on it (Dungan et al., 2002; Graham & 

Hijmans, 2006). It is essential to understand the theory and processes driving the 

observed distribution patterns to avoid mismatches between the scale used for 

modeling and the one at which key processes occur (Guisan & Thuiller, 2005). 

Although conceptually there is not a single natural scale at which ecological 

patterns should be studied (Levin, 1992), some evidence (see Mackey & 

Lindenmayer, 2001; Holmes et al., 2005 for examples) suggests that many non-

interactive variables (variables considered in Grinellian niche, see Concepts and 

assumptions section) have broad spatial structures, whereas biotic interactions 

and resource-consumer dynamics (corresponding to Eltonian niche class) tend to 
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have more fined grained structures (Soberón, 2007). The gradual distribution 

observed over a large extent and at coarse resolution is likely to be controlled by 

climate regulators, whereas the patchy distribution observed over a smaller area 

and at fine resolution is more likely to result from a patchy distribution of 

resources driven by a micro-topographic variation of habitat fragmentation 

(Guisan & Thuiller, 2005).  

Available information plays a major role when deciding on the spatial scale, as 

the spatial characteristics of the data, for both environmental (e.g. grid cell size) 

and occurrence records (e.g. sample size or geographical accuracy), constrain the 

decision. The accuracy of the data employed is of paramount importance to 

obtain reliable results (e.g. Bedia et al., 2013). A list of useful information sources 

to be applied in SDMs of can be found in Carstens & Richards, (2007); Pearson, 

(2010) and Thomassen et al., (2010).  

Concerning climatic information, there are high resolution data sets available 

that cover large extensions such as WORLDCLIM (Hijmans et al., 2005) for the 

entire globe or E.OBS (Moreno & Hasenauer, 2016) for Europe. These are of 

large use and constitute an impressive effort as they compile data sets from 

different continents and countries. However, they must be utilized with caution, 

particularly in those areas that lack enough observational points and that are 

therefore majorly based on interpolations. National meteorological networks 

provide with more locally accurate datasets such as the the Spanish 

Meteorological Agency (AEMET) with over 5000 meteorological stations 

available.  

On the other hand, concerning species’ distribution data, there are global 

occurrences data sets, such as GBIF (www.gbif.es), in which researchers 

worldwide include their observational points of species from all different 

kingdoms. In particular, for the case of forest trees, and at the European level, 

there are two main sources of information: (i) the Joint Research Center (JRC - 

ftp://mars.jrc.ec.europa.eu/Afoludata/Public/DS66/), which  encompasses 

national forestry inventories from different countries and combined them with 

other sources of information such as satellite imaginary and European ICP plots, 

to provide high resolution (1 Km) distribution maps (see Köble & Seufert, 2001) 

and, (ii) EUFORGEN (http://www.euforgen.org/distribution_maps.html), whose 

http://www.gbif.es/
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distribution maps (polygons shapefiles) are based on expert knowledge and 

strictly delimitate the native distribution of their target species. As in the case of 

climatic data, there are local sources of information, such as National Forest 

Inventories. In Spain, the third Spanish Forest Inventory has already been 

published and the work for the forth is ongoing.  

Independently of the scale selected, SDMs are typically grid-based assuming that 

environmental variables are homogeneous within each cell. As a result, although 

broad-scale spatial variability is well represented, small-scale heterogeneity, 

which can be crucially important for predicting species responses to climate 

change, is generally not considered (Thuiller et al., 2008).   

 Model evaluation  

Assessing the robustness and performance of SDMs is challenging. Models with 

low goodness of fit could successfully explain the relationship between the 

included variables and the distribution, although there may be other non-

considered factors relevant for the distribution of the species.  On the opposite, 

models that perfectly fit the distribution of the species may be over fitted. 

There are several statistical techniques to evaluate models performance by 

comparing predictions with observations (see Fig. 7). These can be based on 

totally independent evaluation data set, or on resampled observations within the 

training set, as in the case of cross-validation or bootstrapping. In particular, the 

area under the ROC curve (AUC - Fielding & Bell, 1997) distinguishes as the 

most commonly used. Still, its reported problematic issues (see Lobo et al., 2008) 

have led to the utilization of other alternative metrics such as the true skill 

statistic (TSS - Allouche et al., 2006) or the H-Measure (Hand, 2010, 2012). In 

fact, multiple assessments, based on several measures, should be preferred over 

reporting of a single measure (Fielding, 2002).  
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When dealing with presence-absence models, two types of errors are possible. 

Commission errors arise from predicting a species where it does not occur, while 

omission errors stem from failing to predict a species where it does occur.  

Molecular information and SDMs  

The incorporation of genetic variation in conservation plans has been extensively 

endorsed (see “Forests ecosystems, climate change and conservation section), as well 

as the relevance of SDMs in supporting conservation management decisions. Still, 

very few SDMs integrate infra-specific information, and even less molecular infra-

specific information. This fact is surprising given the many authors claiming the 

importance of combining genetic and environmental variables in a spatially explicit 

framework (Thuiller et al., 2008; Matyas et al., 2009; Thomassen et al., 2010; 

Schoville et al., 2012), and given the different responses shown by infra-species 

groups in their response to climatic changes (Beierkuhnlein et al., 2011). 

Although there are some models that incorporate infra-specific information, they 

are generally based on sub-species (e.g. Pearman et al., 2010; Oney et al., 2013), and 

those based on molecular markers are, up to now, exclusively for animals (Pease et 

al., 2009; D’Amen et al., 2013). In the case of plants, O’Neill et al. (2008) used an 

Figure 7: General structure of a correlative species distribution model including 
evaluation procedure. Figure from Guisan & Zimmermann, (2000) 
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universal transfer function based on different species provenances tested in multi-

site trials to model the distribution and productivity of lodgepole pine. In addition, 

Benito-Garzón et al., (2011) integrated infra-specific information in SDMs to 

calibrate models of tree survival for maritime and scots pines using adaptive traits 

quantified from provenance trials. Both studies highlighted the importance of 

considering infra-specific information when modelling species’ responses to climate 

change, as future predicted distributions varied largely depending on the 

populations modelled. Nevertheless, to our knowledge, integrating genetic 

information directly derived from molecular markers (for instance by delineating 

genetically defined clades) has still not been addressed in the literature.  

Consequently, here, we integrated already available infra-specific information, 

directly derived from molecular markers (majorly from Single Nucleotide 

Polymorphisms – SNPs) into SDMs aiming to provide support for conservation 

management.   
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Methodological overview 

Structure of the thesis  

This thesis aims to enhance the applicability of SDMs in conservation management 

by integrating molecular information and biotic interactions while incorporating 

future climate uncertainties.  

We focused on Mediterranean conifers and developed multi-specific approaches 

including taxa with different evolutionary histories to ensure that our approach is 

valid independently of the target.  

We used correlative SDMs (see “How do SDMs work” for justification) to model the 

distribution of our target species majorly based on exclusively climate-related 

variables i.e. abiotic factors. Still, we implicitly modelled the realized niche of 

species as our datasets, which were based on real occurrences, reflected all the 

factors (abiotic, biotic and dispersal related) that constrained the distribution of the 

target species. In this thesis, we explicitly incorporated biotic interactions, in order 

to provide a framework to consider these in SDMs which is particularly important 

when assessing climate change impacts. Finally, when projecting the obtained SDMs 

into future climate scenarios, we used a wide range of future climate predictions to 

deal with future climate uncertainties.  

We organized the work in subsequent chapters as follows (see Table 1):  

Chapter 1 addresses two objectives: (i) to test whether integrating molecular 

information into SDMs improved their predictions and, (ii) to disentangle the role of 

environment and geography on delineating the infra-specific structure of Pinus 

pinaster Ait (maritime pine). We found that molecular information improved SDMs’ 

predictions and that environment played a role in defining maritime pine’s lower 

order phylogenetic structure.  

Chapter 2 assesses vulnerability by means of two of its major components, i.e. 

adaptive capacity and exposure, using SDMs incorporating molecular information. 

We illustrated our approach with two iconic Mediterranean conifers – P. pinaster 

and Pinus halepensis Mill. (Aleppo pine). Based on the exposure component of 

vulnerability, we recommended optimal conservation strategies distinguishing 
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among in situ, in situ with monitoring and ex situ conservation strategies and we 

evaluated current European efforts for the conservation of forest genetic resources.  

In Chapter 3, we incorporated biotic interactions into SDMs. We analyzed the 

exposure to climate change of maritime pine considering both, abiotic (climate) and 

biotic (pitch canker disease caused by the fungus Fusarium circinatum Nirenberg & 

O’Donnell) factors. We aimed to provide an accurate and high resolution tool for the 

management of the species and thus, we performed this study at a national scale 

(Spain) for which we had information fulfilling these requirements. We 

recommended setting up breeding programmes in highly exposed and productive 

populations, while silvicultural methods and monitoring should be applied in those 

less productive but still exposed populations.   

Finally, in Chapter 4, we provided a standardized methodology to delineate marginal 

populations considering two relevant processes for gene flow, isolation by distance 

and isolation by environment. Thus, we defined geographic and environmental 

indices (the former based on geometry and the latter on SDMs predictions) to assess 

both aspects of marginality. This work set the basis for a second-stage analysis 

including molecular information, in which we will assess the effects of marginality 

on genetic patterns. We illustrated our approach with four Mediterranean conifers, 

i.e. Pinus halepensis Mill., Pinus pinaster Ait., Pinus nigra Arnold, Pinus pinea L., 

and three other European conifers Pinus sylvestris L., Picea abies L. and Abies alba 

Mill., all them genetically characterized. This chapter describes on going work, and 

thereby, we provide preliminary results and discussion.  

In this work we have used WORLDCLIM, EUFORGEN and JRC data for those 

studies at the European level (Chapter 1, Chapter 2, Chapter 4), and the Spanish 

national forestry inventory and Spanish Meteorological information (AEMET) when 

performing the analysis at a national (Spain) level (Chapter 3).  

Concerning genetic information, we compiled data from all available studies 

covering the (almost) entire distribution of the target species to delineate genetically 

defined clades. For Pinus pinaster, genetically defined clades were based on 

maternally inherited markers (mitochondrial DNA sequences - Burban & Petit, 

2003), paternally inherited markers (chloroplast Simple Sequence Repeats - SSRs; 

Vendramin et al., 1998; Bucci et al., 2007) and bi-parental markers namely 12 

nuclear Simple Sequence Repeats (nSSRs) and 266 Single Nucleotide Polymorphisms 
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(SNPs), the latter being a subset of the 384 SNPs from 772 individuals/36 populations 

analysed in Jaramillo-Correa et al., (2015). In the case of Pinus halepensis, we 

delineated genetic clades based on a SNP dataset (1325 individuals from 49 

populations) published in Serra-Varela et al. (in revision).    
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 OBJECTIVE SPATIAL EXTENT MODEL SPECIES ALGORITHMS RESULTS 

Chapter 1 

(i) Influence of molecular 
information in Species 
Distribution Models 

(ii) Role of environment 
and geography on infra-
specific structure  

Western Mediterranean 
Basin and European 
Atlantic coast. 

 

Pinus pinaster Ait. 

Generalized Linear Models (GLM) 

Generalized Additive Models (GAM) 

Random Forest (RF) 

Classification tree Analysis (CTA) 

MaxEnt 

Serra-Varela et al., (2015); 
Global Ecology and 
Biogeography 

Chapter 2 

(i) Vulnerability assessment  

(ii) Selection of adequate 
conservation strategies 
based on exposure 

Europe Pinus pinaster Ait. 
Pinus halepensis Mill. 

Generalized Linear Models (GLM) 

Generalized Additive Models (GAM) 

Random Forest (RF) 

Classification tree Analysis (CTA) 

MaxEnt 

Serra-Varela et al., in revision 
in Diversity and Distributions 

Chapter 3 

(i) Incorporate biotic 
exposure in SDMs 

(ii) Provide a useful tool for 
forest management    

Spanish Iberian 

Peninsula 
Pinus pinaster Ait. Generalized Additive Models (GAM) 

Serra-Varela et al. in revision 
in PLOSONE 

Chapter 4 

(i) Delineation of marginal 
populations from a 
geographical and 
environmental perspective 

(ii) Set the basis to analyze 
marginal populations from 
a genetic perspective. 

Europe 

Pinus pinaster Ait. 

Pinus halepensis Mill. 

Pinus nigra Arnold. 

Pinus pinea L. 

Pinus sylvestris L. 

Abies alba Mill.  

Picea abies L. 

Generalized Additive Models (GAM) Serra-Varela et al., in prep 

Table 1: Overview of the structure of this thesis, including objectives, spatial extent, target species, algorithms and results in forms of manuscripts.  
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Abstract 

Aim:  To assess two major components of vulnerability to climate change: adaptive 

capacity (approached by genetic clades) and exposure (approached by risk of habitat 

loss) illustrated by the maritime (Pinus pinaster Ait.) and Aleppo (Pinus halepensis 

Mill.) pines.To integrate such information in the selection of conservation strategies 

(i.e. ex situ vs in situ conservation) and to evaluate current European conservation 

efforts of forest genetic resources. 

Location Mediterranean Basin and European Atlantic coast. 

Methods: We consider genetically defined clades as main conservation units. For 

each of them, we fit a species distribution model and project it to current climate 

and 42 different future climatic predictions for 2050. We create future suitability 

maps to assess risk of habitat loss based on the number of future climate projections 

for which each clade is suitable. According to this assessment on the risk of habitat 

loss, we propose suitable conservation strategies selecting amongst: in situ, in situ 

with monitoring and ex situ conservation. 

Results: We found areas suitable for in situ conservation for most of the clades, the 

exception being the central-eastern-southern clades of maritime pine and the 

Moroccan clade of Aleppo pine which required ex situ conservation. In the current 

European conservation network, three and two clades for maritime and Aleppo pine 

respectively, remain unrepresented, and the representation of the rest is unbalanced. 

Main conclusions: We provide a tool to support conservation management of forest 

trees, an increasingly important task given the negative impact of climate change on 

forest ecosystems. We also provide a framework to increase the efficiency of the 

European conservation network: (i) exposure assessment should be considered as a 

requirement for a population to become a dynamic conservation unit (DCU); and (ii) 

as illustrated with for our two target species, the selection of DCUs should 

adequately represent all existing clades. 

Keywords: Aleppo pine, Conservation biology, maritime pine, Pinus halepensis Mill., 

Pinus pinaster Ait., Species Distribution Models. 
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 Introductio  

Climate change has a worldwide impact on forest ecosystems often leading to their 

decline (e.g. Wang et al., 2006; Allen et al., 2010)  and consequently to negative 

impacts on forest economies in many regions (Hanewinkel et al., 2012). Therefore, 

and given the importance of preserving biodiversity (see 

http://www.cbd.int/convention/text), conservation plans are increasingly being 

implemented in national and international policies. In this context, it is essential to 

assess the extent to which a species or population is threatened by climate change 

(i.e. its vulnerability sensu Dawson et al., 2011; see Mazziotta et al., 2015 for an 

example). Nevertheless, the three components of vulnerability (adaptive capacity: 

ability to cope with climate change by persisting in situ; exposure: magnitude of 

climate change; and sensitivity: likelihood of an adverse response to climate change) 

are rarely considered together in conservation plans (Watson et al., 2013), mainly 

due to the challenge in compiling the necessary information and the difficulty 

derived from combining various approaches. Quantifying vulnerability is 

challenging, especially in long-lived organisms such as trees where evaluating the 

viability of a population from demographic analyses, or estimating adaptive capacity 

by direct experimental observations is problematic.  

Adaptive capacity  of a species  is determined by different factors (see Nicotra et al., 

2015 for a review), among which phenotypic plasticity and standing genetic 

variation play a fundamental role (Chevin et al., 2010). In the particular case of 

forest trees, genetic variation is a key component of adaptive capacity (Hampe & 

Petit, 2005; Savolainen et al., 2007; Neale & Kremer, 2011), and can be used as a 

proxy to identify genetic units (or clades) within which populations have a similar 

adaptive potential (see Serra-Varela et al., 2015 for an example with Pinus pinaster 

Ait.). These units are relevant from a conservation perspective as they ideally 

represent the complete evolutionary potential and heritage of a species (Moritz, 

1994) ultimately constituting  conservation units (CUs). 

Exposure has been addressed by different approaches (see Johnston et al., 2009; 

Coops & Waring, 2011; Schueler et al., 2014 for examples). In particular, Schueler et 

al., (2014) analysed the exposure component of vulnerability on dynamic 

http://www.cbd.int/convention/text
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conservation units (DCUs) of the EUFORGEN programme (Koskela et al., 2013) of 

six forest tree species, by calculating the increment between current and future 

favourability by means of species distribution models (SDMs). In addition, they 

approached the exposure of the whole Forest Genetic European conservation 

network by estimating the velocity of climate change as proposed in Loarie et al., 

(2009). However, their approach did not explicitly account for the adaptive 

component of vulnerability (i.e. infraspecific genetic variation), which is ultimately 

relevant as infraspecific clades have shown to differ in their response to climate 

change (e.g. Wang et al., 2006; Benito-Garzón et al., 2011; D’Amen et al., 2013). 

Furthermore, they did not deal with future climate uncertainties derived from the 

wide range of future climate predictions originating from climate models and 

scenarios. Indeed, previous approaches that have attempted to integrate future 

predictions to assess best suitable provenances for the future or optimal conservation 

management options, generally fail to deal with the issue of uncertainty in future 

climate predictions (e.g. Wang et al., 2006; Schueler et al., 2013; Rehfeldt et al., 

2015). In this framework, SDMs (see Guisan & Zimmermann, 2000) constitute a 

suitable tool as they assess a species’ habitat suitability under different climatic 

scenarios. However, the fact that SDMs generally do not account for local adaptation 

or migration processes (but see Normand et al., 2011; Meier et al., 2012; Hamann & 

Aitken, 2013), must be taken into consideration when interpreting the results. Still, 

SDMs enable to assess the risk of loss of suitable habitat (as a proxy of exposure) as 

they can predict whether future climatic conditions would be suitable or not for a 

species at any location in space.  

Finally, considering sensitivity involves assessing the influence of climatic changes 

on the survival, persistence, fitness, performance or regeneration of a species or 

population (Dawson et al., 2011). These issues are largely related to ecophysiology 

and thus, mechanistic models are suitable tools to address them. Nevertheless, these 

approaches require large empirical datasets and are difficult to implement in order to 

address vulnerability at a coarse scale.  
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In this study, we estimate vulnerability focusing on two of its components, adaptive 

capacity and exposure. We centre our approach on forest trees and aim to provide a 

tool to support conservation management decisions directed at maintaining species’ 

evolutionary potential, and thus at increasing their probabilities to cope with 

climate change. We use exposure of a given genetic clade (a proxy of  conservation 

units based on molecular markers) to select the most adequate among the different 

available conservation strategies (i.e. in situ vs ex situ conservation; see Ledig, 1986 

for more detailed information) while dealing with future climate uncertainties (see 

Fig. 1). An optimized selection of a conservation strategy is ultimately relevant as 

DCUs aim to maintain evolutionary processes within tree populations, in order to 

safeguard their potential for future adaptation and keep them as dynamic evolving 

populations, both in situ and ex situ. In the face of climate change, the selection of 

conservation strategy over another should rely on a solid assessment of exposure, 

with the aim of maximizing the likelihood of effectively preserving a species. We 

deal with adaptive capacity by using genetically homogeneous groups of populations 

as conservation units. On the other hand, exposure is assessed by risk of habitat loss 

due to climate change by combining a wide range of future climate predictions (42) 

to incorporate the uncertainty in future climate predictions.  

 

OTHER FACTORS: 
Uniqueness, local policies, 

ecosociological 
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CURRENT 
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Figure 1: Framework for conservation management 
decisions. 
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To illustrate the performance of our proposed approach we select two 

Mediterranean pine species with very different evolutionary histories and genetic 

structure patterns, namely maritime pine (Pinus pinaster Ait. - see Bucci et al., 2007; 

Jaramillo-Correa et al., 2015) and Aleppo pine (Pinus halepensis Mill. - see Morgante 

et al., 1998; Gómez et al., 2001; Grivet et al., 2009). As conservation units (CUs) we 

use clades defined with molecular markers for both species. The choice of these two 

species, fulfils two objectives: (i) it increases the representation of Mediterranean 

species, scarcely contemplated in current conservation approaches (Lefèvre et al., 

2013), and (ii) it enables the evaluation of current efforts in conserving forest tree 

genetic resources in Europe for these two species, by assessing the exposure of their 

currently defined DCUs to future climate change and whether all CUs (i.e. genetic 

clades) are appropriately represented.  
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 Methods 

2.1.  Molecular data and definition of genetic clades 

We obtained eight genetically defined clades for the full distribution range of P. 

pinaster from Serra-Varela et al. (2015) (Fig. 2a) namely  Atlantic Iberian Peninsula 

(G1-pin), Eastern populations (G2-pin), Atlantic France (G3-pin), Morocco (G4-pin), 

Eastern (G5-pin), Central (G6-pin) and Southern (G7-pin) Spain, and Tunisia (G8-

pin) based on mitochondrial, chloroplast and nuclear (Simple Sequence Repeats - 

SSRs -and Single Nucleotide Polymorphisms – SNPs) molecular markers. The SNP 

dataset comprised 772 individuals from 36 populations  (see Jaramillo-Correa et al., 

2015 for more details). 

For P. halepensis we detected seven different genetic clades namely Central and 

southern Spain clade (G1-hal), Balearic and southern France clade (G2-hal), 

Tunisian and northern Italian clade (G3-hal), Moroccan and southern Spain clade 

(G4-hal), Greek clade (G5-hal), Central and northern Spain clade (G6-hal) and 

Northern Spain and southern France clade (G7-hal) (see Fig. 2b),  by performing a 

Bayesian clustering analysis using STRUCTURE (Pritchard et al., 2000) on a SNP 

dataset (1325 individuals from 49 populations) covering most of the species natural 

range (see Appendix S1 in Supporting Information for more details).  

Contrary to P. pinaster where the clades were spatially differentiated, P. halepensis 

presented transition areas occupied by more than one clade simultaneously and that 

we defined based on Q values as explained in Appendix S1. Some small areas of the 

distribution of the species (located in Algeria) could not be assigned to any clade due 

to insufficient sampling (see Fig. 2b). 

For both, P. pinaster and P. halepensis, the clades were based on a priori neutral 

molecular markers, which are primarily influenced by demographic processes and 

not by adaptation. However, some of these markers may also be influenced by 

adaptive selection (especially the SNPs, e.g. Jaramillo-Correa et al., 2015 for P. 

pinaster). 

2.2.-Species data 

The complete native range for both species was obtained by combining the Tree 

Species Distribution for Europe (TSDE; Köble & Seufert, 2001) from the Joint 
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Research Center’s AFOLU data portal 

(ftp://mars.jrc.ec.europa.eu/Afoludata/Public/DS66/) and the EUFORGEN database 

from the European forest genetic resources programme 

(http://www.euforgen.org/distribution-maps/) (see Serra-Varela et al. 2015 for 

further details).  

We prepared a presence-pseudoabsence dataset for each genetic clade individually. 

Presences of genetic clades were defined as the subset of the overall presences 

records that belonged to one specific genetic clade. In the case of P. halepensis 

presence records of transition zones were considered as presence records for both 

genetic clades inhabiting that territory. Possible pseudo-absences corresponded to all 

the rest of the territory within the study area where TSDE reported 0 % occupancy.  

The number of presences for the genetic clades of P. pinaster amounted to: 59,159 

(G1-pin), 12,225 (G2-pin), 17,898 (G3-pin), 4,966 (G4-pin), 8,792 (G5-pin), 13,005 

(G6-pin), 4,896 (G7-pin), and 4,058 (G8-pin). For P. halepensis the number of 

presence records was as follows:  34,251 (G1-hal), 8,010 (G2-hal), 24,738 (G3-hal), 

12,228 (G4-hal), 4,390 (G5-hal), 48,369 (G6-hal), 22,720 (G7-hal). The selection 

method and the number of selected pseudo-absences are specified below.  
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Figure 2: Distribution of the genetic clades of Pinus pinaster Ait. from Serra-Varela et al. 
(2015) (a) and Pinus halepensis Mill. (b) along the natural distribution of the species.  

 
 
 
a) 

b) 
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2.3.-Bioclimatic data 

We used the 19 bioclimatic variables available in WORLDCLIM (Hijmans et al., 

2005) representative of the period between 1950-2000 for the analysis. After 

screening for correlations and variance inflation, the final set of relevant variables 

that correlate less than 0.75 among each other contained: BIO4 (Temperature 

Seasonality), BIO11 (Mean Temperature of Coldest Quarter), BIO12 (Annual 

Precipitation) and BIO18 (Precipitation of Warmest Quarter) (see Appendix S2 for 

more details). Overall, we detected a strong relationship between this same set of 

bioclimatic predictors and the distribution of each species. 

Future bioclimatic predictions were also obtained from WORLDCLIM, as these 

predictions are based on the most recent Global Climate Models (GCMs) projections 

that have been used in the Intergovernmental Panel on Climate Change (IPCC) Fifth 

Assessment report (IPCC, 2013). We used all GCMs that were simultaneously 

available for the scenarios of representative concentration pathways (RCP) 2.6, 4.5 

and 8.5. This included 14 GCMs (see Appendix S2) and totalled to 42 different future 

climate predictions. 

2.4.-Species Distribution Models 

We used five different statistical methods, namely General Linear Model (GLM - 

McCullagh & Nelder, 1989), Generalized Additive Model (GAM - Hastie & 

Tibshirani, 1990), Random Forest (RF - Breiman, 2001), Classification Tree Analysis 

(CTA - Breiman et al., 1984) and MaxEnt (Phillips et al., 2006) in an ensemble 

approach by means of the same settings and statistical environment as specified in 

Serra-Varela et al. (2015). Model performance was assessed by means of the True 

Skill Statistic (TSS; Allouche et al., 2006). Thus, we built 8 ensemble models for P. 

pinaster clades (G1-pin to G8-pin, based on 5x8=40 individual algorithm models) 

and 7 ensemble models for P. halepensis clades (G1-hal to G7-hal, based on 5x7=35 

individual algorithm models).  

We set the number of randomly selected pseudo-absences for all the models to five 

times the number of total presences used per species (see Serra-Varela et al. 2015 for 

more details). This amounted to 644,190 presence and pseudo-absence points for P. 

pinaster and 679,110 for P. halepensis. Pseudo-absences and presences were given 
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weights inversely proportional to their respective numbers, so as to give equal total 

weights to the two sets as recommended by Barbet-Massin et al., (2012). 

The large number of occurrence records available permitted a random division of 

each dataset (corresponding to both species and to each clade) into two equally-sized 

subsets for training and evaluation, and maintaining the prevalence. 

The probabilistic model outputs based on current and future climatic conditions 

were converted to binary presence-absence maps by defining thresholds that 

maximized TSS values in a test of initial models against the half of the data not used 

for model building (split-sample test). Thereby for each climatic dataset (current 

plus 42 future climate predictions representing 2050) eight/seven different 

distribution maps were created respectively for P. pinaster and P. halepensis 

corresponding to each of the genetically-defined clade models.  

2.5.-Future suitability maps 

For each clade, we obtained 42 future binary projections, which classify each cell as 

environmentally suitable or unsuitable by 2050. None of the 42 future climate 

predictions is better than another (but see Fordham et al., 2011). Instead, all are 

equally likely and we used the number of future climate predictions projecting 

suitability in one specific cell as an indicator of the degree of agreement among 

models that the future habitat will be suitable in that cell. Thereby, combining the 

42 binary projections, we obtained a map in which values could possibly range from 

0.0 (none of the future climate predictions was projected to be suitable) to 1.0 (all 

future climate predictions tested were projected to be suitable) with higher scores 

indicating higher agreement of suitable habitat in the future. Then, we defined three 

different future suitability categories: “likely suitable” with suitability scores >0.7 

(suitable habitat for more than 70% of future projections), “uncertain” with a 

suitability score of 0.36-0.7, and “likely unsuitable” with suitability scores <0.36. We 

performed this analysis for each clade individually.  

2.6.-Defining conservation strategies based on exposure to climate change 

Future suitability maps were overlaid with maps of current distribution in order to 

assess risks of habitat loss (a proxy of exposure), and set the basis for the 

recommendation of the different conservation strategies within the current 

distribution of each clade (see Table 1). In situ conservation is an effective 



Chapter 2: Assessing vulnerability of two iconic Mediterranean conifers to support European 
genetic conservation management in the face of climate change 

82 
 

conservation strategy for populations highlighted as “likely suitable” and “uncertain” 

by future suitability maps. However, in this last case (“uncertain” locations), a 

monitoring programme (see Graudal et al., 2014) would be essential in order: (i) to 

ascertain that genetic processes linked to the adaptability of the species are 

maintained over time, and (ii) to apply more intense management aimed at 

supporting local adaptation processes if necessary. On the contrary, ex situ 

conservation is recommended in the case of exposed populations (Schueler et al., 

2014) that are classified as “likely unsuitable”. This strategy includes translocation 

(Leech et al., 2011) and/or conservation  in germplasm banks. Between both, 

translocation is the preferred option as it maintains dynamic evolution within 

populations and, future suitability maps identify possible locations lowly exposed in 

the future. Only when future suitability maps do not highlight available locations 

for translocation, germplasm banks are recommended.  

Finally, for each clade, we calculated the percentage of the currently occupied 

territory proposed for ex situ conservation in order to assess the risk of habitat loss 

of the clade. 

2.7.-Exposure assessment of Dynamic Conservation Units  

We assessed the exposure of the currently defined DCUs for both species covering 

the current range of the species which totalled to 46 in the case of P. pinaster - 36 

from the EUFGIS database and 10 from Rodríguez-Quilón et al., (2016) based on 

molecular and quantitative trait information - and 19 for P. halepensis from the 

EUFGIS database. DCUs from EUFGIS without a clear association to a particular 

genetic clade were excluded from the analysis.  

We associated each unit to its corresponding clade and assessed the degree to which 

different gene pools (clades) were represented in the European network. We also 

evaluated the risk of losing each DCU due to failure of finding suitable habitat in the 

future using future suitability maps.  In the case of P. halepensis, when DCUs 

represented two clades simultaneously (transition zones) risk evaluations of habitat 

(and clade) loss were performed separately for both clades.  
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Table 1: Conservation strategy recommendations based on current distribution of the clade, 
current projection of its species distribution model (SDM) and future suitability map. 
 

Current 
distribution 

SDM - Current 
projection 

Future Suitability 
Map 2050 

Conservation Strategy 

present - likely unsuitable ex situ 

present - likely suitable in situ 

present - uncertain 
in situ with 
monitoring 

absent suitable likely suitable  
current first option 
area for translocation  

absent suitable uncertain 
current second 
option area for 
translocation 

absent unsuitable likely suitable 
midterm first option 
area for translocation 

absent unsuitable uncertain 
midterm second 
option area for 
translocation 
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 Results 

3.1.-Species Distribution Models 

Models performed similarly to those described by Serra-Varela et al. (2015) in cross-

validation tests: (i) models built by means of individual algorithms performed well 

(TSS and AUC values above 0.80 in all cases except for GLM G4-hal; see Table S2 

and S3 in Appendix S2); (ii) RF displayed the highest AUC and TSS scores in general; 

(iii) overall, ensemble models obtained higher TSS scores than most single models 

from individual statistical algorithms, except for RF. With the obtained TSS values, 

the relationship between both species’ distribution and their relevant climatic 

variables can be considered well captured by the ensemble models, which represent 

a sound method to include variability originating from different statistical 

algorithms (Araújo & New, 2007; Grenouillet et al., 2011). 

Finally, sensitivity and specificity scores obtained in the split-sample test of the final 

ensemble binary models were also very high (above 0.95 in all cases; see Tables S4 

and S5 in Appendix S2). All geographical projections can be checked in Appendix 

S3. The projected niches were largely broader than the current distribution of the 

clades (see Appendix S3), especially in the case of P. halepensis.  

3.2.-Future suitability maps 

Likely suitable areas at clade level generally concentrated around the clade’s current 

distribution (see Appendix S3). Away from the current distribution, uncertain 

habitat suitability areas were majorly found in other locations around the 

Mediterranean basin (e.g. G2-pin and G1-hal). Only in the case of G6-hal, we found 

larger regions of likely suitable areas in northern Central Europe. For both species, 

there were several other clades that additionally found suitable areas in northern 

Central Europe, although with a medium to low probability of suitability (which 

was classified as uncertain or likely unsuitable). 

3.3.-Defining conservation strategies based on exposure to climate change 

According to the results obtained, we proposed conservation guidelines for each 

genetic clade based on its characteristics with regards to their currently observed  

and their projected current and future distribution (see Appendix S3).  
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As a first remarkable result, the risk of habitat loss of the clades varied widely from 

one clade to another within each of the two species. We detected from very slightly 

exposed clades, in which less than 15 % of the currently realized niche was 

recommended for ex situ conservation (e.g. G8-pin and G3-hal; see Table S6 in 

Appendix S3), to cases in which over 90 % of the currently realized niche was 

recommended for ex situ conservation (e.g. G5/G6/G7-pin or G4-hal). This analysis 

revealed very diverging patterns of exposure to possible future habitat loss for both 

species along the Mediterranean coast of Spain: while P. pinaster‘s clades inhabiting 

this area (G5/G6/G7-pin) were highly exposed, P. halepensis’ clades occupying the 

same territory (G1/G4/G6/G7-hal) were not (percentage below 60 %, except for G4-

hal in southern Spain and Morocco, which was also found to be highly exposed). 

Overall, we found that in situ conservation should be suffice to guarantee 

conservation of the different clades, as large areas were found in which in situ 

conservation will likely be successful without need of special monitoring 

programmes. Nevertheless, there were some cases in which monitoring seemed 

strictly necessary (i.e. the cases of G3-pin, G4-pin and G5-hal).  

There were few clades, which lacked areas that could be proposed for in situ 

conservation (i.e. G5/G6/G7-pin and G4-hal). In these cases it was necessary to 

consider ex situ conservation strategies either by translocation or by conservation in 

germplasm banks.  For three of them (G5/G7-pin and G4-hal) translocation was the 

recommended ex situ conservation strategy, while for G6-pin that lacked 

translocation areas, germplasm bank conservation had to be recommended.  In 

addition, because there were only few translocation areas available for G7-pin, the 

conservation of this clade would also benefit from germplasm conservation. 

3.4.-Exposure assessment of Dynamic Conservation Units  

First, we analysed whether the already established EUFORGEN DCUs for P. pinaster 

and P. halepensis adequately represented the different gene pools detected in both 

species. In the case of P. halepensis, DCUs located within transition zones were 

considered representative for both clades. We found that while some clades were 

overrepresented (e.g. in P. pinaster 13 and 10 out of 36 DCUs harbour G2/G7-pin 

populations respectively and in P. halepensis 14 out of 19 DCUs combined 

admixtures of G3/G5-hal populations), there were other clades not included in the 
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DCU network (G1/G4/G8-pin and G1/G4-hal). The remaining clades, although 

present within the DCU network, were underrepresented (e.g. G6-pin and G6-hal 

with just 2 and 1 DCUs, respectively; see Appendix S4 for more details).  

Second, we evaluated the risk of habitat loss within the different DCUs. In the case 

of P. pinaster, we detected seven DCUs classified as “likely suitable” in 2050 all of 

which belonged to G2-pin (except for one representing G5-pin).  The other DCUs 

were classified as “likely unsuitable” (13) or “uncertain” (16) (see Fig. 3 and 

Appendix S4 for more details). As for P. halepensis, we detected eight DCUs 

classified as “likely suitable” in 2050 for one of the clades they represented (all of 

them located in Italy and representing G2/G3-hal). The rest were classified as “likely 

unsuitable” for the clade(s) they were representing but for one DCU classified as 

“uncertain”. None of the DCUs were classified as “likely suitable” for both 

represented clades at the same time (see Fig. 3 and Appendix S4 for more details). 

Thus, except for some DCUs representing G2/G3-hal, the clades would need to be 

revised for conservation planning (selection of new DCUs or applying a more 

intense management to accelerate the adaptation processes within populations). 

 

Figure 3 : Exposure assessment for the EUFGIS Dynamic Conservation Units (DCUs) of 
Pinus pinaster Ait. and Pinus halepensis Mill. along their natural distribution.   
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The ten genetically-homogeneous conservation relevant units for P. pinaster, were 

composed of an oscillating number of populations ranging from 1 to 10 (see Table 

S10 in Appendix S4). Overall, all genetics clades were represented except for G8-pin. 

Exposure varied widely across populations within units composed of more than one 

population (example SpAtl in which the three possible classifications where assigned 

along its ten composing populations) while among single population-groups the 

classification ranged from “likely unsuitable” to “uncertain”.   
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 Discussion 

The consequences of climate change on European forest trees have been well 

documented (e.g. Thuiller et al., 2006; Sykes et al., 2009). Mediterranean regions in 

particular are expected to suffer more intensively from the effects of climate change, 

compared to other more northerly regions of Europe (Lindner et al., 2010) due to 

their location at the rear edge of species’ distribution (Hampe & Petit, 2005), and to 

their expected increased risk of drought and fire (Mouillot et al., 2002; Pausas, 2004). 

Despite this threat, Mediterranean species remain underrepresented in the current 

European conservation network (Lefèvre et al., 2013) as well as in earlier 

conservation studies (e.g. Schueler et al., 2014). 

To fill this gap, we employ two iconic Mediterranean species to illustrate an 

approach that assesses two major components of vulnerability to climate change 

(adaptive capacity and exposure), and that provides solid scientific criteria to support 

conservation management decisions. The goal of conservation management should 

not only be the preservation of species in climatically stable areas as proposed by 

Iwamura et al., (2010), but also to guarantee the maintenance of the species` 

potential to dynamically evolve and adapt to new emerging climatic conditions. By 

selecting genetic clades as evolutionary units and by assessing exposure accounting 

for future uncertainties, our approach constitutes a step forward in comparison with 

previous studies such as those of Hamann et al., (2004), Kapeller et al., (2012) and 

Schueler et al., (2014).  

Regarding the first component of vulnerability, i.e. adaptive capacity, our two target 

species have high levels of adaptive differentiation within clades - reported in 

Rodríguez-Quilón et al. (2016) for the clades of P. pinaster and likely to be also 

present within the gene pools of P. halepensis as shown in Voltas et al., (2008) -  as 

well as show significant levels of phenotypic plasticity (see Corcuera et al. (2010, 

2011) for P. pinaster, and Baquedano et al. (2008), Santos-del-Blanco et al. (2013) for 

P. halepensis). Regarding the second component of vulnerability, exposure, 

according to our results, with few exceptions, most of the clades defined based on 

molecular data span relatively large areas of the species distribution that are likely to 

remain suitable in the future. Thus, it is expected that these clades will be able to 

withstand climate change and in situ conservation management should be the basic 
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strategy to apply. Nevertheless, there are some highly exposed clades (e.g. 

G5/G6/G7-pin and G4-hal) for which further work is needed to disentangle the 

relationship between adaptive genetic variability and resiliency towards climatic 

changes. In these cases it is necessary to assess whether high exposure translates into 

high vulnerability, or on the contrary adaptive capacity of the clades is enough to 

cope with climatic changes and thus the clades are not ultimately threatened. 

Our results reveal suitable habitat space extending beyond the current distribution 

of the clades. Reasons for this are, for instance, dispersal limitations, historical 

barriers, land use, soil factors, or other factors unaccounted for in our model, which 

only considers climatic factors. We detect this especially in the case of P. halepensis 

(see Appendix S3), and it illustrates that such factors should also be analysed and 

considered when developing a conservation plan. In addition, in our approach we 

only assessed exposure in terms of the effects of climate change on abiotic factors 

(i.e. climatic variables). Biotic interactions may also be altered along with climatic 

changes resulting in new pests or competitors constraining the distribution of 

species in the future. Finally, from a temporal point of view, we estimated exposure 

by means of future projections for a 30-year period (from present to 2050), which 

seems realistic in long-lived forest trees with long rotation times (from 30 to almost 

100 years) as there is likely less than one generation present during this time span. 

Thus, we can assume niche conservatism between the two time-slices analysed, 

despite the fact that niche evolution has been reported to influence P. pinaster at the 

infraspecific level(Serra-Varela et al., 2015).  

In the framework of the current pan-European conservation network (EUFORGEN 

and EUFGIS programme), Koskela et al., (2013) established the minimum 

requirements for DCUs of forest tree genetic diversity, namely: (i) to designate 

genetic conservation areas (ii) to set up a basic management plan, and (iii) to identify 

one or more species as targets to conserve genetic diversity. Here, we suggest the 

inclusion of a new factor as a compulsory minimum requirement: the overlay of 

current and future habitat suitability. Accounting for exposure is essential in a 

conservation network as it provides insights in to the most appropriate management 

of DCUs. For instance, if we are dealing with a population for which climate will 

likely/uncertainly become unsuitable in the future, monitoring would become an 

indispensable tool to detect population decay, or to address possible management 
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with the aim of accelerating adaptive processes. If DCUs are not capable of tracking 

climate change, all resources invested in their conservation management would 

become obsolete. Furthermore, the size of DCUs should be estimated taking in to 

account  the velocity of climate change (Loarie et al., 2009; Hamann et al., 2015), 

which was assessed by Schueler et al., (2014) for the whole network, and species-

specific requirements to maintain viable populations. We also highlight possible 

improvements for our two model species P. pinaster and P. halepensis: (i) new DCUs 

are necessary to represent all genetic clades of a given species, and (ii) in the specific 

case of P. halepensis, in which there are territories occupied by two clades 

simultaneously, it would be more cost-effective to select adequate DCUs for both 

clades at the same time.  

In this work, we aimed to integrate all previous efforts related to conservation of 

genetic resources and apply them to two Mediterranean iconic species, in order to 

enhance the design of an optimized conservation network. Within this framework, 

we also included in our analysis the ten conservation relevant units highlighted for 

P. pinaster (see Rodríguez-Quilón et al., 2016). Within units composed of more than 

one population, exposure assessment can guide the selection of the most relevant 

target population for conservation. On the other hand, as explained for DCUs, 

exposure assessment indicates adequate management options to increase the 

likelihood of successfully maintaining target populations.  

To conclude, forest management can benefit from our approach by bridging both 

conservation and active management. In the two case studies presented here, we are 

able to identify areas with different vulnerability levels, and therefore where 

different managing options can be established to enhance resilience. Further, 

recommendations concerning target areas for translocation can be used to assign 

afforestation needs that may have objectives other than the conservation of 

biodiversity (such as habitat restoration, wood production or protection against 

erosion).  
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 Biosketch  

This study represents a collaborative effort aiming at integrating genetic information 

in ecological niche modelling within the framework of the AdapCon project. Within 

this project, we investigate patterns of adaptive variation in Mediterranean conifers, 

integrating genetic variation (neutral and potentially adaptive) in natural 

populations, phenotypic variation in common garden experiments and ecological 

niche modelling.  This work will be included in the first author´s PhD thesis. 
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and description of the clades.  

Table S1. Estimated membership coefficients (Q) for each population. Q 

values above 0.80 for one clade (K) correspond with pure populations for that 

specific K. Q coefficients above 0.25 for one K indicate presence of that K 

into the population. Colors correspond to overall genetic clusters eventually 

defined for the study. 

Appendix S2. Evaluation scores obtained in the Species Distribution Models 

Table S2. True Skill Statistic (TSS) scores obtained by the individual statistic 

algorithms models of the eight genetically defined clades of Pinus pinaster 

Ait. (G1-pin to G8-pin) 

Table S3. True Skill Statistic (TSS) scores obtained by the individual statistic 

algorithms models of the seven genetically defined clades Pinus halepensis 

Mill. (G1-hal to G7-hal). 
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Abstract 

Climate change and its impacts on abiotic and biotic factors are largely affecting 

forest ecosystems resulting in shifts in their distribution ranges and in increased 

infections and biological invasions. Thus, it is necessary to assess the magnitude of 

climatic changes (i.e. exposure) on both abiotic and biotic terms, in order to guide 

management for adaptation and enhance species’ capacities to cope with new 

climatic conditions. In this work, we integrated both factors in order to assess the 

exposure of the conifer Pinus pinaster Ait. to climate change, and to obtain useful 

information to guide its management. We approached abiotic exposure by means of 

risk of habitat loss, whereas we evaluated biotic exposure based on the future 

climatic suitability of the pitch canker, a pine disease caused by Fusarium circinatum 

Nirenberg & O’Donnell. As we aimed to obtain useful and reliable information for 

managers, we constrained our study area to the Spanish Iberian Peninsula where we 

disposed of accurate climate and occurrence databases. While P. pinaster is widely 

distributed across the study area, the disease has only been detected in its north and 

north-western edges. We fit species distribution models for the current distribution 

of the conifer and the disease. Then, we projected these models into 18 different 

future climate simulations representative of 2050 and created two future suitability 

maps (for the pine and for the disease individually) based on the level of agreement 

among future projections. Finally, we used future suitability maps to assess whether 

current populations of P. pinaster were exposed to climate change in both abiotic 

and biotic terms. We found that almost the entire distribution of P. pinaster in the 

Spanish Iberian Peninsula was subjected to abiotic exposure likely to be driven by 

the predicted increase in drought events in the future. On the other hand, likely 

suitable areas in the future for the disease concentrated in the north of the study 

area whereas we found a reduction in its suitable habitat in its north-western 

distribution. Based on these results, with the objective of enhancing maritime pine’s 

capacity to cope with two major stresses, we recommend setting up breeding 

programmes in highly exposed and productive populations, while silvicultural 

methods and monitoring should be applied in those less productive but still exposed 

populations.   

Keywords: maritime pine Fusarium circinatum, Species Distribution Models, SDMs, 

vulnerability 
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 Introduction  

Anthropogenic climate change largely affects forest ecosystems, claiming for the 

need of management actions for adaptation. The development of management plans 

for adaptation requires an assessment of exposure, i.e. an evaluation of the 

magnitude of climate change (see Dawson et al., 2011), integrating its impacts on 

abiotic and biotic factors (Bolte et al., 2009). The alterations of abiotic factors due to 

climate change, such as increased intensity and/or duration of droughts (mid-

latitudes) and ascending global mean temperatures (IPCC, 2013), have led to 

increasing tree mortality (Allen et al., 2010) and northwards shifts of the 

distributions of many species (Walther et al., 2012). Because of these major climate-

related shifts, abiotic exposure to climate change has been commonly addressed in 

literature (e.g. Coops & Waring, 2011; Johnston et al., 2009; Schueler et al., 2014). In 

contrast, there have been few studies addressing how pests and pathogens are 

responding to climate change and their effect on hosts (but see Chakraborty, 2013; 

Pautasso et al., 2015; Sturrock et al., 2011), although the importance of climate 

change on biotic factors is progressively becoming evident. For instance, changes in 

temperatures and seasonal precipitation are responsible for increased infection of 

several species of Phytophthora in European forests (Jung, 2009; Redondo et al., 

2015) and of Dothistroma pini and D. septosporum in the northern hemisphere 

(Welsh et al., 2014). Climate and global change are also responsible for increasing 

biological invasions (Pautasso et al., 2010; Sturrock et al., 2011) which constitute 

new threats for forests. In fact, only in Europe during the last four decades, forest 

pathogen invasions have grown exponentially, with introductions mainly from 

North America and recently, from Asia (Santini et al., 2013). In most situations, 

these invasions had an important consequence on native tree species: Ophiosthoma 

novo-ulmi in Western Europe had a devastating impact on mature elm trees (Ulmus 

minor) in the 1970s (Anderson et al., 2004), while Hymenoscyphus fraxineus has 

caused extensive ash (Fraxinus excelsior) dieback throughout Europe since the 1990s 

(Bakys et al., 2009). Still, biotic exposure is rarely contemplated when assessing 

vulnerability to climate change (but see Heikkinen et al., 2007; Preston et al., 2008 

for examples with birds), thus limiting the scientific basis of management for 



Chapter 3: Incorporating exposure to pitch canker disease to support management decisions of 
Pinus pinaster Ait. in the face of climate change 

 104 
 

adaptation, which would promote resilience of forest ecosystems to climate change 

(Bolte et al., 2009).  

Assessing the impact of climate change on a potential pathogen invasion is 

challenging since climate change will affect the pathogen, the host and the dynamic 

of their interaction. There are at least two requirements that need to be fulfilled for 

a successful pathogen invasion, namely that the pathogen is able to infect the host 

species and that the pathogen is able to survive in the same environmental 

conditions as the host species. Evaluating the first prerequisite is difficult as we 

generally lack empirical information and because climate change may also affect 

species interactions (Tylianakis et al., 2008). The second prerequisite can be more 

easily evaluated and provides a first insight into biotic exposure (e.g. Giljohann et al., 

2011). Approaches that integrate both, abiotic and biotic exposure to climate change 

constitute a solid tool to effectively guide forest management and breeding 

programmes directed to increase forest capacity to cope with climate change, and to 

guarantee that they maintain their essential role of providing services for the society 

(see FAO, 2006).  

In this framework species distribution models (SDMs - see Guisan & Zimmermann, 

2000 for a detailed description) provide a useful tool as they evaluate a species’ 

habitat suitability under different climatic scenarios based on known occurrence 

records and on environmental variables. Abiotic exposure can be approached by the 

probability that the habitat of a species will remain suitable in the future and, 

similarly, we can assess whether a territory is likely or not to become suitable for 

new pests and diseases affecting the target species and consequently assess its 

potential biotic exposure (see Baxter & Possingham, 2011; Giljohann et al., 2011; 

Thuiller et al., 2005 for some examples).  

Here, we evaluated exposure to climate change of Pinus pinaster Ait. (maritime 

pine), an iconic, ecologically and economically important Mediterranean conifer, 

integrating both, abiotic and biotic factors. We assessed abiotic exposure by 

estimating risk of habitat loss in future climate predictions representative of 2050. 

We incorporated biotic exposure by considering pitch canker disease, an emergent 

forest disease of Pinus species caused by the fungus Fusarium circinatum Nirenberg 

& O’Donnell, as a potential biotic threat for P. pinaster. This disease was first 

detected in Europe in pine nurseries in 2005 (Landeras et al., 2005). Since then, it 
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has been reported in P. radiata plantations in Northern Spain (Pérez-Sierra et al., 

2007; Iturritxa et al., 2011), and only rarely in P. pinaster (see Iturritxa et al., 2013).  

Nevertheless, the scientific community is concerned that disease incidence in P. 

pinaster could be largely increased due to global change, with important ecologic 

and economic consequences, in the case of larger infected areas or of higher 

inoculate concentration.  

A combined approach assessing habitat suitability for both P. pinaster and the 

disease has still not been addressed although previous studies have evaluated it 

separately (see Serra-Varela et al., 2015,in revision for P. pinaster and Baker et al., 

2010; Ganley et al., 2009; Iturritxa et al., 2015; Möykkynen et al., 2014; Watts et al., 

2011 for pitch canker disease). From these, only Serra-Varela et al., (in revision), 

Möykkynen et al. (2014) and Watt et al. (2011) assessed suitability in the future. 

Nevertheless, given their large scale input climatic and distribution databases, these 

constitute broad scale approaches aiming to obtain general trends. Here, we aim to 

fulfil the accuracy and resolution requirements needed for local forest management. 

Consequently, we constrained our study area to the Spanish Iberian Peninsula for 

which we have specific sources of information (i.e. data from the Spanish 

Meteorological Agency – AEMET - with over 5000 meteorological stations available 

and from the Spanish National Forest Inventory in which sampling is performed at a 

1Km grid). A solid and high resolution assessment of abiotic and biotic exposure of 

P. pinaster is of particular interest for managers, who can opt for distinct practices in 

order to enhance this economically important pine to cope with these stresses: 

breeding programmes can be applied for highly exposed and productive populations, 

while particular silvicultural methods (Prieto-Recio et al., 2015) and monitoring 

could be set up for less productive but still exposed populations. 
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 Materials and Methods 

2.1. Occurrence data 

SDMs require an occurrence dataset including presence records (for all statistical 

algorithms) and, in general, also absence, pseudo-absence or background records of 

the target species (see Pearson, 2010 for more details) to base their predictions upon. 

Nevertheless, the difficulty associated to detect real absence records translates into a 

generalized use of pseudo-absence or background records. Thus, we obtained an 

occurrence dataset composed of presence and pseudo-absence records for the pine 

species  (P. pinaster) and the pitch canker disease along the study area (i.e. Spanish 

Iberian Peninsula). In this section, we explain the method for selecting presences 

but given that the number of pseudo-absences and their selection technique strongly 

depends on the specific algorithm selected (see Barbet-Massin et al., 2012 for details) 

it will be explained in the SDM section along with other algorithm specifications.  

In the case of P. pinaster, we employed the third Spanish National Forestry 

Inventory (NFI) developed between 1997-2007 based on a 1 km grid. We selected as 

presences those plots where natural and seed-born populations of P. pinaster were 

reported as one among the three major species, which after removing duplicates, led 

to a set of 6081 plots. To avoid possible misguiding results due to the inclusion of 

non-native populations in the analysis, we further eliminated those plots not 

included within the native distribution of P. pinaster (assessed from Alía et al., 

2009). This reduced the number of selected plots to 2971, representative of the 

native distribution of P. pinaster along the study area and we used the central 

coordinates of the plots as presences records. We considered the rest of the study 

area, not fulfilling these criteria, as potential pseudo-absence records.  

Concerning pitch canker disease, we used data from a survey performed by different 

Regional Authorities in Spain and collected by the Spanish Ministry of Agriculture, 

Food and Environment concerning the period 2006-2012. We obtained 159 

municipalities, located in the north-western side of the Iberian Peninsula where at 

some point during that period a disease outbreak was declared. All pitch canker 

disease outbreaks were reported in Pinus radiata D.Don. In order to select adequate 

coordinates to represent presence records, we divided the study area in a 1 Km grid 
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and selected the 1444 grid cells that were simultaneously (i) within the positive-

detected municipality borders and (ii) within the host species distribution (i.e. P. 

radiata obtained from the NFI).  Finally, to prevent the municipality size from 

affecting model outputs (as bigger municipalities tended to have higher number of 

disease presences included in the models) we considered a maximum of 10 presences 

per municipality i.e. the mean number of potential disease presences per 

municipality. Thus, in those municipalities enclosing less than 10 potential 

presences all records were included within the definitive presence data set, whereas 

in those municipalities where potential presences were larger, we randomly selected 

10 records to be included within the final presence dataset. The definitive presence 

dataset reckoned 943 records. Similarly to the case of P. pinaster, we considered all 

the rest of the study area, as potential pseudo-absence records.  

2.2. Bioclimatic data 

Global data bases do not fulfill the requirements in accuracy or resolution to support 

local forest management. Indeed, WORDLCLIM (Hijmans et al., 2005) has already 

been reported as problematic in the Spanish Iberian Penisula (see Bedia et al., 2013) 

as its interpolations are based on 142 clustered distributed, meteorological stations, 

among which highest altitudes are barely represented (see Fig. S1 in Appendix S1).  

To avoid this problem, here, we used 5053 meteorological stations with observed 

daily precipitation data and 1830 with observed daily maximum and minimum 

temperature data from AEMET, covering the period between 1950-2000 to obtain 

accurate and high resolution bioclimatic surfaces (see Fig. S1 in Appendix S1 for a 

comparison between WORDLCLIM and AEMET meteorological stations). First, we 

calculated monthly variables as monthly accumulated precipitation and as monthly 

means for maximum and minimum temperature. Then, we interpolated these 

monthly variables by means of Thin Plate Splines (TPS) (Hutchinson, 1991) using 

elevation as independent co-variable to obtain continuous surfaces (1 Km grid cell) 

across the study area. We selected TPS as our interpolation method as it has 

performed well in previous comparative tests of multiple interpolation techniques 

(Hartkamp et al., 1999; Jarvis & Stuart, 2001), it has been widely used previous 

studies - including WORLDCLIM (Hijmans et al., 2005) and others such as New et 

al. (1999) – and because it is computationally efficient and easy to run. Finally, we 
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calculated the 19 bioclimatic variables proposed by WORLDCLIM (Hijmans et al., 

2005) (BIO1-BIO19; see Table 1).  

As additional variables, we also included distance to the coast (dist_coast) and two 

topographic variables namely elevation and slope, both derived from GTOPO30 

model (courtesy of the U.S. Geological Survey) as these have been reported as 

relevant in determining the distribution of the disease (Rosso & Hansen, 2003; 

Iturritxa et al., 2015). Table 1 provides for a summary of the variables tested.  

In order to avoid multicollinearity effects, we retained variables with Pearson 

correlations lower than 0.60 (see Table 1 for more information) as the use of simple 

methods based on rules of thumb has proved to be as effective as more complicated 

methods (Dormann et al., 2013). Among highly correlated variables we kept the one 

with highest explained deviance scores (D2) when individually fitted in a 

Generalized Linear Model (GLM - McCullagh and Nelder, 1989). We avoided the 

use of BIO8 and BIO9 as the steep gradient shown by these variables, in which very 

often two adjacent cells are characterized by extremely different values within the 

study area for no obvious reason, may lead to artefacts in the SDM output maps. 

Finally, we checked for possible collinearity by performing a Variance Inflation 

Factor (VIF; Belsley, 1991; Hair Jr et al., 1995), ensuring that all VIF values were 

below 5. The final sets of relevant weakly correlated variables to build SDMs were 

(i) BIO4 - Temperature Seasonality, BIO12 - Annual Precipitation, BIO17 - 

Precipitation of Driest Quarter and elevation for P. pinaster and, (ii) BIO4 - 

Temperature Seasonality, BIO6 - Mean Temperature of Coldest Month, BIO12 - 

Annual Precipitation, BIO17 - Precipitation of Driest Quarter and Distance to the 

coast for the disease. For both, the pine and the disease, we also calculated mean and 

standard deviations values of the environmental variables separately for presences 

and absences to get insights about their currently inhabited habitat conditions. 
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Table 1: Complete list of environmental variables tested as candidates to be included in 
species distribution models (SDMs) for the pitch canker disease and Pinus pinaster Ait. D2 

indicates the explained deviance score obtained when individually fitting the variable in a 
Generalized Linear Model (GLM). Similarly coloured rows group highly correlated variables 
(Pearson correlation > 0.60) while non-coloured ones indicate non-correlated variables. 
Variables in bold show finally selected variables.  
 
 
TYPE OF 
VARIABLE 

VARIABLE EXPLANATION 
DATA 
SOURCE D2 P. pinaster D2Pitch canker 

CLIMATIC 

BIO1 Annual Mean Temperature AEMET 0.12 0.24 

BIO2 
Mean Diurnal Range: Mean of 
monthly (max temp - min temp) 

AEMET 0.01 0.43 

BIO3 Isothermality (BIO2/BIO7) AEMET 0.01 0.32 

BIO4 
Temperature Seasonality 
(standard deviation) 

AEMET 0.04 0.57 

BIO5 
Max Temperature of Warmest 
Month 

AEMET 0.14 0.50 

BIO6 
Min Temperature of Coldest 
Month 

AEMET 0.08 0.24 

BIO7 
Temperature Annual Range 
(BIO5-BIO6) 

AEMET 0.04 0.57 

BIO8 
Mean Temperature of Wettest 
Quarter 

AEMET 0.04 0.11 

BIO9 
Mean Temperature of Driest 
Quarter 

AEMET 0.08 0.39 

BIO10 
Mean Temperature of Warmest 
Quarter 

AEMET 0.15 0.36 

BIO11 
Mean Temperature of Coldest 
Quarter 

AEMET 0.10 0.22 

BIO12 Annual Precipitation AEMET 0.06 0.49 

BIO13 Precipitation of Wettest Month AEMET 0.01 0.42 

BIO14 Precipitation of Driest Month AEMET 0.13 0.46 

BIO15 
Precipitation Seasonality 
(Coefficient of Variation) 

AEMET 0.01 0.07 

BIO16 Precipitation of Wettest Quarter AEMET 0.01 0.43 

BIO17 Precipitation of Driest Quarter AEMET 0.21 0.49 

BIO18 
Precipitation of Warmest 
Quarter 

AEMET 0.19 0.47 

BIO19 Precipitation of Coldest Quarter AEMET 0.02 0.40 

TOPOGRAPHIC 

Elevation Elevation above the sea level (m) G30TOPO  0.17 0.20 

Slope  G30TOPO  0.01 0.09 

Dist_coast Distance to the coast G30TOPO 0.04 0.40 
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Future climatic variables (monthly accumulated precipitation and monthly 

maximum and minimum temperature) representative of 2050 (average for 2041 – 

2060) were obtained from nine of the most recent Global Climate Models (GCMs) 

that have been used in the Intergovernmental Panel on Climate Change (IPCC) Fifth 

Assessment report (IPCC, 2013) (see Table 2). As future projection simulations, we 

used the two different Representative Concentration Pathways (RCP), namely 

RCP4.5 (medium emission scenario) and RCP8.5 (high emission scenario)  (Taylor et 

al., 2009) totalling to 18 different future climate predictions. 

GCMs, which have a coarse resolution (ca. 2 degrees), were transformed to a local 

scale using a two-step analogue statistical downscaling method developed by 

Ribalaygua et al., (2013). The first step is an analogue approach (Zorita & Von 

Storch, 1999) in which the n most similar days to the day to be downscaled are 

selected by using four different meteorological large-scale fields. The second step 

differed depending on the target variable: (i) precipitation was calculated by re-

assigning the calculated amounts using an empirical distribution function; and (ii) 

temperature was obtained by using a multiple linear regression analysis using the n 

most analogous days selected. We followed this procedure for each AEMET 

meteorological station and for each target day, and then averaged the resulting daily 

simulations to obtain monthly means. Further details of the methodology are 

described in Ribalaygua et al., (2013).  

We obtained a systematic error when comparing the simulated data from climate 

models with the observed data from reference time series due to the inherent 

downscaling methodology error and to the inner GCM error (which usually 

incorporates a bias over the data). Thus, to improve our simulations, future climate 

projections were corrected according to a parametric quantile–quantile method 

(Monjo et al., 2014). Then, we interpolated the obtained variables i.e. future 

monthly accumulated precipitation and future montly maximum and minimum 

temperatures, across the entire study area following the same procedure as employed 

in current climate interpolations i.e. TPS. Finally, we calculated WORLDCLIM 

bioclimatic variables representative of 2050 (BIO1 to BIO19; see Table 1). 
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Table 2: Global Climate Models (GCMs) employed to obtain future climate predictions 
representative of 2050 
 

MODEL INSTITUTION COUNTRY 
RESOLUTION 
(LongXLat)  

BCC-CSM1-1 
Beijing Climate Center (BCC), China Meteorological 
Administration 

China 2·8 × 2·8° 

CanESM2 
Canadian Centre for Climate Modelling and Analysis 
(CC-CMA) 

Canada 2·8 × 2·8° 

CNRM-CM5 
Centre National de Recherches Meteorologiques/Centre 
Europeen de Recherche et Formation Avancees en Calcul 
Scientifique (CNRM-CERFACS) 

France 1·4 × 1·4° 

GFDL-ESM2 M Geophysical Fluid Dynamics Laboratory (GFDL) 
United 
States 

2 × 2·5° 

HADGEM2-CC Met Office Hadley Centre (MOHC) UK 1·87 × 1·25° 

MIROC-ESM-
CHEM 

Japan Agency for Marine-Earth Science and Technology 
(JAMSTEC), Atmosphere and Ocean Research Institute 
(AORI), and National Institute for Environmental Studies 
(NIES) 

Japan 2·8 × 2·8° 

MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M) Germany 1·8 × 1·8° 

MRI-CGCM3 Meteorological Research Institute (MRI) Japan 1·2 × 1·2° 

NorESM1-M Norwegian Climate Centre (NCC) Norway 2·5 × 1·9° 

 

2.3. Species Distribution Models 

We used generalized additive models (GAM; Hastie & Tibshirani, 1990) by which 

we fit response curves using a non-parametric smoothing function to model the 

relationship between the environmental variables and each occurrence dataset. 

Models were processed in BIOMOD (Thuiller et al., 2009) using the package 

“biomod2” (default settings for the model) in the R statistical software environment 

(R Development Core Team, 2016). As recommended for GAM by Barbet-Massin et 

al. (2012), we randomly selected 10000 pseudo-absences and same weight was given 

to presences and absences. Finally, we performed a five independent 70-30 training-

evaluating subsets of the data for model evaluation and assessed model performance 

as the mean True Skill Statistic (TSS; Allouche et al., 2006). Thus, we obtained a 
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probabilistic prediction of habitat suitability for each climatic data set (current 

climate and 18 future climate predictions) and for each, the pine and the disease. 

These were converted to binary presence-absence maps by defining thresholds that 

maximized TSS values.  

We analysed variable importance following the method available in the package 

“biomod2”: First, the model was trained with the selected environmental variables 

and predictions were performed (reference predictions). Then, one environmental 

variable was changed to random values and new predictions were done. This process 

was repeated four times with each environmental variable included in the model. 

Finally, we calculated Pearson´s correlations - which range between 0 (no 

correlation) and 1 (maximum correlation) - between reference predictions and the 

new ones. The final score for each environmental variable is provided as the 

difference between 1 and mean correlation among the four repetitions performed 

for each variable so that higher values indicate higher importance. 

2.4 Future suitability maps 

For the pine and the disease separately, we obtained 18 future binary projections 

which classify each grid cell of the study area as suitable or unsuitable in 2050. In 

order to incorporate the uncertainty derived from the wide range of future climate 

predictions available avoiding the use of an average prediction, we followed the 

methodology proposed in Serra-Varela et al. (in revision). Accordingly to their 

work, we used the number of future climate predictions projecting suitability in one 

specific cell as an indicator of the degree of agreement among models that the future 

habitat will be suitable in that cell . Thus, we combined the 18 binary projections 

and obtained a map in which values could possibly range from 0 (none of the future 

climate predictions was projected to be suitable) to 1.0 (all future climate predictions 

tested were projected to be suitable) with higher scores indicating higher agreement 

of suitable habitat in the future. Finally we defined three different future suitability 

categories: “likely suitable” with suitability scores >0.7 (suitable habitat for more 

than 70% of future projections), “uncertain” with a suitability score of 0.36-0.7, and 

“likely unsuitable” with suitability scores <0.36. We performed this analysis for each 

species individually.  
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Our future suitability maps rely on the assumption of niche conservatism during a 

30 year timespan (i.e. a constant relationship between each species and climate). 

This is expectable in the case of P. pinaster, as it is long-lived tree with long rotation 

times (from 30 to almost 100 years) and thus, only one generation should be 

involved during this period. Furthermore, F. circinatum, the fungus responsible for 

the pitch canker disease, reproduces asexually, and evidence supports that sexual 

reproduction does not occur (Berbegal et al., 2013). In Spain, there is a clonal 

population structure with two genotypes widely distributed (Berbegal et al., 2013) 

but it is unknown how climate change will influence the growth and reproduction 

of any of these genotypes and their interaction with the host. 

2.5 Abiotic and biotic exposure for P. pinaster Ait.  

We assessed the abiotic and biotic exposure of P. pinaster by means of future 

suitability maps (both, P. pinaster and pitch canker disease respectively) and we used 

the three different suitability categories defined in them, i.e. likely suitable, 

uncertain and likely unsuitable, as an evidence to recommend the most appropriate 

management to facilitate that populations are able to cope with climate change. For 

this analysis, we considered the entire distribution of the species P. pinaster i.e. 

native and planted populations and we presented our results following the Spanish 

regions of identification and utilization (RIUs) of forest reproductive material 

(García et al., 2001). RIUs delimitate ecologically homogeneous distribution areas 

and thus, they are expected to group genetically similar populations likely to be 

locally adapted as well as to differ in their productivity, and thereby in their 

economic impact on regional economies. Consequently, RIUs are appropriate as 

management units and provide a perfect framework to guide forest management. 

To assess abiotic exposure, we employed P. pinaster future suitability map. Likely 

suitable areas highlighted locations barely exposed where no special management for 

adaptation to climate change was needed. Contrarily, likely unsuitable areas 

indicated high abiotic exposure sites where additional measures should be 

considered such as breeding programmes or silvicultural actions enhancing the 

species’ capacities to cope with climate change. Furthermore, we used the future 

suitability map of the disease to assess biotic exposure. Likely suitable locations for 

pitch canker were considered as high biotic exposure areas where urgent actions 

were needed to improve the capacities of P. pinaster to avoid possible infections, 
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while likely unsuitable locations were considered as low biotic exposure areas where 

no further actions were needed. Finally, uncertain areas in both future suitability 

maps, indicated locations where there was not an agreement among future climate 

predictions and thus, where monitoring is needed in order to see the development of 

populations and to address its management accordingly.  
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 Results 

3.1 Bioclimatic data and Species Distribution Models 

We found little differences between the mean environmental conditions in 

presences and pseudo-absences records of P. pinaster (see Table 3 and Fig. S2a in 

Appendix S1), an outcome that was expected given the low explained deviance 

scores obtained by most of its environmental predictors (see Table 1). Nevertheless, 

this analysis only considered environmental variables individually and the SDM 

fitted for P. pinaster, which considers altogether the set of selected environmental 

variables, had an acceptable performance as revealed by its TSS score (0.69) and its 

sensitivity and specificity values (93.50 and 75.30 respectively).  

Contrarily, in the case of pitch canker disease we found large differentiation 

between the mean environment of presences and pseudo-absences (see Table 3 and 

Fig S2b in Appendix S1). Its distribution seemed to be constrained by low 

temperatures (represented by BIO6) as well as low precipitation regimes (BIO12 and 

BIO17; see Table 3 and Fig. S2b in Appendix S1). Short distance to the coast was also 

found to be very relevant for the disease’s habitat suitability presumably due to the 

higher relative humidity in these locations, a key factor during the infection stage 

(Sakamoto & Gordon, 2006; Sakamoto et al., 2007). The SDM of the disease 

performed very well as assessed by its evaluation scores (TSS = 0.93, sensitivity = 

99.26 and specificity = 93.63) revealing a very important role of climate in 

determining the distribution of the disease. The detected suitable area was located 

along the north-western side of the Iberian Peninsula (see Fig. 1d & Fig. 1e) which is 

consistent with the declared infection outbreaks in Spain. We also detected marginal 

suitability areas along the eastern coast of the Iberian Peninsula, where there are no 

declared infection outbreaks.  

Pseudo-absences are ultimately representing the entire study area so they are very 

similar for both, the pine and the disease (see Table 3 and Fig. S2 in Appendix S1). 

All variables included in the SDMs were highly significant for both, the pine and the 

disease (p-value < 0.0001). As for variable importance (see Table 3), BIO17 obtained 

by far the highest score in the SDM of P. pinaster as compared to the other variables 

included in the model. Variables in the SDM of the disease obtained evener values 
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scores than in the case of P. pinaster, although BIO4 highlighted as the most influent 

variable. Finally, the threshold values maximizing TSS and thus employed for 

transforming probabilistic into binary projections were 60.5 and 45.0 respectively 

for P. pinaster and pitch canker disease.  

 

Table 3: Mean values and variable importance, calculated with the package “biomod2” in R 
Statistical software, of the environmental variables used to fit species distribution models for 
Pinus. pinaster and pitch canker disease. Standard deviation is shown in brackets    
 

Variable 
 

Mean Variable Importance  

P. pinaster Pitch canker P. pinaster Pitch canker 

 Presences Absences Presences Absences  
 

BIO4 
638.7 
(51.3) 

617.8  
(84.1) 

428.2  
(35.9) 

618.3  
(84.6) 

0.19 0.56 

BIO6  
(ºC) 

- - 
3.4  
(1.1) 

1.1  
(2.5) 

- 0.36 

BIO12 
(mm) 

694.9 
(223.2) 

694.2 
(345.4) 

1452.9 
(225.0) 

693.2 
(341.9) 

0.11 0.46 

BIO17 
(mm) 

80.0  
(17.3) 

81.6  
(51.23) 

199.2  
(46.1) 

81.5  
(51.2) 

0.50 0.45 

Dist. Coast 
(Km) 

- - 
17366.3 
(12613.8) 

129052.6 
(86349.8) 

- 0.40 

Elevation 
(m) 

968.8 
(240.6) 

685.84 
(396.5) 

- - 0.25 - 
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ure 1: Geographic projections of species distribution models of Pinus pinaster (P. pin; a-
c) and Pitch canker disease (Disease; d-f). Current climate projections are shown in 
probabilistic projections - a) and d) - and in binary projections – b) and e). Future suitability 
maps summarizing 18 future climate predictions are shown in c) and f). 

a) d) 

b) e) 

c) f)
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3.2 Future suitability maps 

Future suitability maps revealed a reduction in suitable territory for both the pine 

and the disease (see Fig. 1c & Fig. 1f). In the case of P. pinaster, the reduction in 

habitat suitability was more severe along the central and south-western Iberian 

Peninsula as most of the likely suitable territory concentrated in the central plateau 

(RIUs 5, 16 and 17; comparison between Fig. 1b and Fig. 1c). Concerning pitch 

canker disease, the reduction in habitat suitability mainly occurred in the north-

western edge of the study area (RIUs 1 and 2) while the rest of likely suitable areas, 

was very similar to that detected as currently suitable for the species (comparison 

between Fig. 1e & Fig. 1f).  

3.3 Abiotic and biotic exposure for P. pinaster Ait.  

We assessed exposure across all the populations of P. pinaster within the study area 

depending on its own future suitability map and on the future suitability map of its 

disease (see Fig. 2).  

Our results showed that all populations composing the distribution of P. pinaster are 

exposed to a certain degree (but for ca. 8% of the distribution, concentrated around 

the central plateau and north-western edge of the study area, i.e. RIUs number 1, 2, 

5, 16 and 17, which were classified as low exposure for both, abiotic and biotic 

factors). Nevertheless, only ca 5 % of the distribution of P. pinaster was classified as 

highly exposed to both abiotic and biotic factors. These populations were located in 

the northernmost distribution of the species, majorly in the populations from RIUs 3 

and 6 (see Fig. 2).   

Abiotic exposure affected P. pinaster across its entire distribution; in fact, over 50% 

of its distribution was classified as highly exposed to abiotic factors.  Contrarily, 

areas with high biotic exposure concentrated in the northern edge of the study area 

which translated into almost 80 % of the distribution classified to be under low 

biotic exposure.  

 

 



Chapter 3: Incorporating exposure to pitch canker disease to support management decisions of Pinus pinaster Ait. in the face of climate change 

 

 

ure 2: Abiotic and biotic 
exposure assessment of Pinus 
pinaster Ait in 2050 approached 
by future suitability maps of 
Pinus pinaster and pitch canker 
disease respectively. Charts 
sizes are proportional to P. 
pinaster occupancy within 
deployment regions. Numbers 
in the legend correspond to the 
percent of the distribution 
classified within each exposure 
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 Discussion 

Designing strategic management plans for adaptation, directed to facilitate that 

species withstand anthropogenic climate change, requires integrated approaches 

assessing both, abiotic and biotic exposures (Bolte et al., 2009). These plans are 

essential for forest owners and managers, as they guide the application of 

appropriate mitigation measures aiming to guarantee that forests maintain their role 

in providing their ecological and economical services. Management for adaptation 

englobes two different strategies, namely (i) breeding programmes incorporating 

new and adapted genes and, (ii) silvicultural methods directed to enhance local 

adaptation. Selecting one of them should directly depend on exposure and on the 

importance of the target population on regional economies. For instance, breeding 

programmes, which require high investments, are normally restricted to highly 

productive (and exposed) populations. Here, we integrated abiotic and biotic 

exposures to climate change of P. pinaster in order to support its local forest 

management.  

Overall, the entire distribution of the pine in the Spanish Iberian Peninsula is 

affected by the impacts of climate change on abiotic factors (but for some exceptions 

– see RIUs 1, 2, 5, 16 and 17). Abiotic exposure seems to be particularly important 

along the central and southernmost edge of the Iberian peninsula as all populations 

in these locations are highly exposed, which is consistent with the results obtained 

in Serra-Varela et al. (in revision). These locations correspond to the rear edge of the 

distribution of the species and are prone to suffer more strongly the consequences of 

climate change than others located at northern locations in Europe (Hampe & Petit, 

2005). Abiotic exposure is likely to be a consequence of the predicted increased 

intensity and/or duration of droughts (Mediterranean mid-latitudes IPCC, 2013), as 

suggested by the importance of BIO17 (Precipitation of Driest Quarter) in 

determining the species’ distribution (see Table 1 & 2). In fact, variables representing 

drought were also found as relevant in determining the distribution of the pine in 

previous studies including its entire range (Serra-Varela et al., 2015, in revision) and 

in other local studies (Madrigal-González & Zavala, 2014; Prieto-Recio et al., 2015). 

Thus, forest management of P. pinaster, would benefit from strategies directed to 

improve the species’ capacities to deal with drought stresses. In this direction, 
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breeding programmes are likely to be effective as differences in responses to drought 

have been attributed to genetic variation (see Gaspar et al., 2013). Nevertheless, 

because breeding programmes are an expensive procedure they cannot be applied to 

all populations, and should be restricted to those populations with highest impacts 

on regional economies, i.e. those most productive, which concentrate at the 

northernmost edge of the distribution (i.e. RIUs 1 to 6). For the remaining 

populations, silvicultural actions directed to fasten adaptation and monitoring 

should be applied. Among these actions, measures directed at reducing competition 

for (water) resources, such as decreasing tree density (Prieto-Recio et al., 2015) and 

favouring unevenness between sizes and ages of the trees in the stand (Madrigal-

González & Zavala, 2014), are particularly adequate for P. pinaster. In addition, 

thinning (Prieto-Recio et al., 2015) and extending rotation times - as juveniles are 

more sensitive to droughts than adults (Madrigal-González & Zavala, 2014) - are 

other recommended management guidelines for threatened populations.  

Biotic exposure to pitch canker disease was assessed by models that captured the 

relationship between the distribution of the disease and environmental variables. 

Current suitable locations for the disease concentrated in the north and north-

western edge of the study area, which was consistent with previous studies 

predicting potential global distribution of pitch canker disease on Pinus spp  (Ganley 

et al., 2009). Furthermore, we found that future climatic changes are likely to 

constrain its distribution to the north of the Iberian Peninsula (majorly RIUs 3 and 

6), thus reducing biotic exposure on the north western pine populations (RIUs 1 and 

2). Breeding programmes enhancing the species’ resistance to the pathogen are likely 

to be successful as differences in responses to F. circinatum have been reported to be 

genetically driven (Vivas et al., 2012).  In fact, in a provenance/progeny trial (Elvira-

Recuenco et al., 2014), large differences in resistance were found among and within 

populations suggesting a good host response to the disease through natural or 

artificial selection, and predicting a successful adaptation of P. pinaster to the 

disease. In addition, high biotic exposure areas coincide with most productive RIUs 

and consequently investing in breeding programmes would be justified although 

they must be applied exclusively in exposed populations. Uncertain areas 

(particularly those from RIUs 1 and 2) should at least be shortly monitored given the 

important consequences of a disease outbreak and that pine that changes on abiotic 
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factors may interact with biotic factors, e.g. stressing the pine and facilitating the 

infection. 

Our P. pinaster suitability maps do not pretend to inform about the distribution 

(present or future) of the species, for which other variables should be included in the 

model including local adaptation and phenotypic plasticity (Morin & Thuiller, 2009; 

Valladares et al., 2014), as well as migration (Normand et al., 2011; Hamann & 

Aitken, 2013). In fact areas of suitable habitat extended largely beyond the current 

distribution of P. pinaster (Figures 1a & 1b) indicating that other factors not related 

to climate and not considered in our models, such as soils, anthropogenic 

interactions or intraspecific competition, could be playing an important role in 

determining the distribution of the pine. Instead, our models aim to assess the 

relationship between climate and the pine’s distribution in order to evaluate 

whether the pine’s current populations are likely to be subjected to abiotic stress in 

the future.  

The obtained suitability maps of pitch canker disease can be used to assess biotic 

exposure of any other (pine) species affected by this fungus although its incidence or 

severity would vary according to the species susceptibility. In fact, for this study, we 

trained our models based on infections detected in P. radiata although there is some 

evidence that suggests that P. pinaster is more resistant to the infection, namely (i) 

the area under disease progress curve (AUDPC) for P. pinaster was lower than for P. 

radiata in field experiments (Martinez-Alvarez et al., 2014) and, (ii) the mean wound 

size for both host species was 27 mm for P. radiata and 5 mm for P. pinaster in 

inoculated seedlings (Iturritxa et al., 2012). However, procuring a consistent model 

of pitch canker disease is challenging given the difficulty associated to obtain a 

reliable occurrence dataset. In addition, other factors not related to climate such as 

the distribution of the host species, the different resistance of the pines to the disease 

and effective prevention plans also influence the current distribution of the disease.  

Our work, illustrated with P. pinaster, provides an approach to assess abiotic and 

biotic exposure with regards to climate change. We supply a useful tool for forest 

managers as both, the resolution and the accuracy of the information employed are 

adequate for this objective. Nevertheless, other factors could be considered to better 

characterize the exposure of the species. For instance, fire should be incorporated as 

an additional abiotic factor as it plays an important role in its biology (Barbéro et al., 
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1998; Fernandes & Rigolot, 2007), while other destructive pine pests such as the pine 

processionary moth (Arnaldo & Torres, 2005) or the pine weevil (Zas et al., 2005) 

should also be included to more fully assess biotic exposure. 

Finally, we contribute to forest management in three straight ways: (i) pitch canker 

future suitability map can be employed to assess biotic exposure of any other 

susceptible species in the Spanish Iberian Peninsula, (ii) we provide a high 

resolution and scientifically solid assessment of exposure for P. pinaster in the 

Spanish Iberian Peninsula that can be directly employed in delineating its breeding 

and management programmes,  and (iii) our approach can be easily transferred to 

any other species.  
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Supporting Information  
Additional Supporting Information may be found in the annex section. 

Appendix S1. Details on meteorological stations and climatic data 
Fig S1: Geographical representation and histogram of elevations of the 

meteorological stations from AEMET and WORLDCLIM 

Fig S2: Selected environmenal variables for Pinus pinaster Ait. (a) and pitch 

canker disease (b) to be included within their species distribution models.  
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Abstract 

Genetic patterns in marginal populations have been largely studied, as these 

populations may harbour unique genetic combinations due to their location in the 

rear/leading edge of species distribution. However, according to the abundant-centre 

hypothesis, they may have low genetic diversity due to patchy distributions and 

small population sizes. Until the date, empirical studies are controversial, the main 

reason being that we lack standardized definition of marginality, which would 

require considering processes affecting gene flow, such as isolation by distance (IBD) 

and isolation by environment (IBE). Here, we provide a consistent approach to 

define marginality integrating each of these two processes, by separately accounting 

for geographic and environmental factors respectively. We based our methodology 

on a set of indices (both geography and environment related) that can be directly 

integrated, in a subsequent step, with genetic diversity indices, to further 

understand the relationship among these three elements. We illustrated our work 

with four Mediterranean conifers, namely, Pinus halepensis Mill., Pinus pinaster 

Ait., Pinus nigra Arnold. and Pinus pinea L., as well as three European conifers 

namely Abies alba Mill., Pinus sylvestris L. and Picea abies L. These broadly-

distributed European species are suitable for our analysis, as they have been 

genetically characterized, enabling the development of the second stage of the work 

(i.e. the effect of marginality on genetic patterns).  

We approached geographic marginality by means of four geographic indices, 

namely, core size, distance to the border of the core, cost-distances to the centroid of 

the distribution and distance to the nearest large patch, aiming to characterize the 

position of each population within its core patch and in relation to the entire 

distribution of the species. We assessed environmental marginality by fitting 

individual species distribution models (SDMs) for each species, characterizing each 

location with a probability of environmental suitability (environmental index). For 

each species, we considered as environmentally marginal, those populations whose 

environmental indices were below the 5th and the 10th percentile of its entire 

distribution. Finally, we calculated the above described indices for all genetically 

characterized populations. 
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Because this study is still undergoing at the time this manuscript is being produced, 

we will present here the concepts and methodology related to the current available 

results, as well as comments on the preliminary results. We expect to have a 

definitive report by the end of 2016.  

Keywords: Species Distribution Model (SDMs), Morphological Spatial Pattern 

Analysis (MSPA), Isolation by Distance (IBD), Isolation by Environment (IBE). 
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 Introduction  

Marginal or peripheral populations, have been a focus of interest since the 70’s (see 

Soule, 1973), aiming to disentangle the effect of marginality on genetic diversity and 

on fitness related traits, and resulting in the development of different theoretical 

hypotheses. Genetic variation in marginal populations could be shaped by past 

climate, and these populations may therefore accumulate important and unique 

genetic combinations pivotal to the species’ adaptation to climate change (Hardie & 

Hutchings, 2010), particularly at the edges of the distribution (Hampe & Petit, 

2005). Thereby, although we should not presuppose their importance (Lesica & 

Allendorf, 1992; Hardie & Hutchings, 2010), their implications for conservation 

management must be carefully analysed. According to the abundant-centre 

hypothesis (Hengeveld & Haeck, 1982), these populations are likely to be smaller 

and more spatially isolated than in the core, where species are supposed to achieve 

their highest abundance. Thus, marginal populations are expected to have lower 

genetic diversity due to genetic drift and inbreeding (Frankham, 1996), as well as 

lower fitness than core populations, given that local adaptation could be constrained 

by incoming migrants from more central populations. However, gene flow from 

central populations could also increase genetic diversity and consequently the 

probabilities of a successful adaptation (see Kremer et al., 2012 for a review). 

Empirical studies have not been able to solidly support theoretical assumptions as 

they have reported contradictory results, reviewed in  Eckert et al. (2008) and 

Sagarin & Gaines (2002), the main reason being that they differ in the use of the 

term marginality. Consequently, there is an urgent necessity to develop a 

standardized and objective procedure to define marginal populations, in the context 

of meeting theoretical predictions and empirical results.  

The effects of marginality on genetic patterns are driven by the same processes that 

underlie species’ genetic structure i.e. gene flow and genetic drift (Orsini et al., 

2013). While the latter is mainly affected by population size, the former is 

influenced by different factors within which geography and environment play a 

major role. Geographic distance constrains gene flow and thus we expect nearer 

populations to be more genetically similar than more separated ones (Isolation by 
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distance pattern; IBD - Wright, 1943). Similarly, in the case of isolation by 

environment (IBE - Wang & Bradburd, 2014), genetic resemblance is associated to 

environmental similarity, as gene flow is more likely to be successful between 

similar environments (Sexton et al., 2014). Thus, when assessing the effects of 

marginality on genetic patterns, both processes should be considered. In fact, both 

are contemplated within the framework of the abundant-centre hypothesis, 

although this theory assumes that geography and environment vary together and 

consequently, populations inhabiting peripheral locations experience extreme 

environmental conditions (compared to the rest of the distribution) close to the limit 

of species’ physiology. However, in practice, it is common to find peripheral 

populations inhabiting environmental conditions similar to those of the core, as well 

as the opposite scenario where core populations occupy extreme habitats: these 

situations claim for the need to consider separately both concepts of marginality, i.e. 

geographic marginality vs environmental marginality. Indeed, despite that 

geography is the most commonly used factor to define marginal populations (see 

Jiménez et al., 1999; Hamrick et al., 1989; Yeh & Layton, 1979), topographic  (see 

Angert, 2006 for an example with altitude) and even environmental variables (see 

Lira-Noriega & Manthey, 2014; Diniz-Filho et al., 2009) have already been 

employed to test the abundant-centre hypothesis.  

Here, we provide a framework to assess both concepts of marginality (geographical 

and environmental) following an objective and standardized procedure in order to, 

in a second stage, assess its consequences on genetic diversity. We approach 

geographic marginality by means of four indices relevant from a genetic point of 

view. Two of them, core size and distance to the border of the core, represent the 

location of the population within its core patch, while the other two, namely, cost-

distance to the centroid of the distribution and distance to a large core patch, 

illustrate the position of the population with respect to the entire distribution of the 

species. We approach environmental marginality by means of species distribution 

models (SDMs; see Guisan & Zimmermann, 2000 for details) that associate a 

probability value to each population representing its habitat suitability.  

We exemplify our approach with seven widely distributed European conifers 

namely, Pinus halepensis Mill., Pinus pinaster Ait., Pinus nigra Arnold., Pinus pinea 

L., Abies alba Mill., Pinus sylvestris L. and Picea abies L. including (but for two 
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exceptions) their entire distribution ranges. These species are of large interest for the 

scientific community, and as such they are genetically characterized for a set of 

populations, based on different genetic markers available – namely, isozymes, single 

nucleotide polymorphisms (SNPs) and nuclear or cloroplast simple sample repeats 

(cp/n-SSR). This available information will allow performing the second stage of the 

analysis, i.e. studying the effect of marginality on genetic patterns. Moreover, 

developing a multi-specific approach will enable to analyse whether there are 

marginality hotspots encompassing different species’ marginal populations. 
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 Materials and Methods 

For each species, and on the basis of its distribution and its genetically characterized 

populations, we calculated five indices to assess geographic and environmental 

marginality (see Table 1). Geographical indices were based exclusively on 

geometrical measures, aiming to summarize those characteristics of the distribution 

that are likely to affect gene flow. To assess environmental marginality we used 

SDMs, based on the distribution of species and climatic variables from 

WORLDCLIM (Hijmans et al., 2005). These models enabled to characterize each 

location with a probability of suitability (here on environmental index), based on its 

climatic conditions and to assess the percentile they occupy with respect to the 

entire distribution.  

We assessed the distribution of the seven species based on EUFORGEN polygons 

(http://www.euforgen.org/distribution_maps.html; which map exclusively native 

populations), filtered with the more spatially accurate Tree Species Distribution for 

Europe (TSDE; Köble & Seufert, 2001) from the Joint Research Center’s AFOLU data 

portal (ftp://mars.jrc.ec.europa.eu/Afoludata/Public/DS66/).  

  

http://www.euforgen.org/distribution_maps.html
ftp://mars.jrc.ec.europa.eu/Afoludata/Public/DS66/
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Geographic 

indices 

Position 

within the 

core 

 

Size of the core 

patch 

 

 

 

 

Distance to the 

border of the 

core 

 

 

 

 

Position 

within the 

distribution 

Cost-distance to 

the centroid of 

the distribution 

 

Distance to the 

nearest large 

patch outside a 

50 Km buffer 

 

 

 

 

 

Environmen

tal index 

Probability 

of habitat 

suitability 

Environmental 
marginality: 
populations 

whose 
environmental 
index is below 
the 5th or 10th 

percentile 

 

 

Distance 
(Km)  

Area (Km2)  

 

Distance (Km)  

50 km buffer  

Distance 
(Km)  

X: 
Centroid 

Probability  
of suitability 

Environmental  
gradient 

Environmentally 
marginal 
conditions 

Environmentally 
marginal 
conditions 

X=Probability threshold 
corresponding to 5th-10th 
percentile 

X 

Table 1: Indexes employed to assess geographical and environmental marginality. Blue 
polygons represent the distribution. Red dots are genetically characterized populations. 
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2.1. Geographic marginality 

2.1.1.  Morphological Spatial Pattern Analysis - MSPA 

First, we smoothed distribution’s noisy boundaries, resulting from the combination 

of EUFORGEN and TSDE, as they impeded a correct performance of the analysis. 

We addressed this issue by performing an erosion/dilation process using a 2x2 kernel 

in the “EBImage” package in R statistical environment (R Development Core Team, 

2016). Subsequently, and using the same package, we performed a morphological 

spatial pattern analysis (MSPA - Soille & Vogt, 2008), a customized sequence of 

mathematical morphological operators targeted at the description of the geometry 

and connectivity of the components of a binary image. In our particular case, the 

binary image corresponded to the species’ distribution and we differentiated 

foreground data (presence cells), background data (absence cells) and non-available 

data (in this case corresponding to the sea cells).  Then, by means of our MSPA, 

exclusively based on geometric concepts, we divided the distribution into three 

generic MSPA classes: i) cores i.e. continuous patches of presences excluding their 

perimeters, ii) edges, which corresponded to external cores’ perimeters (1 Km 

width), and iii) others, that ingathered other categories such as islets, branches or 

loops as we applied a simplified version of the categories proposed in the JRC Guidos 

Tool Box (see Vogt, 2016).  

2.1.2.  Geographic marginality indices 

We calculated geographic indices for genetically characterized populations. 

Geographic indices aimed to characterize both, (i) the position of the population 

within its corresponding core, (ii) the position of the population in relation to the 

entire distribution of the species. 

Position within the patch was characterized by means of (i) core size and (ii) 

distance to the edge of the core. When target populations were located outside a 

core, we calculated the size of their nearest core, and associated a negative sign to its 

distance to the nearest edge. To assess the position of populations in relation to the 

rest of the distribution, we estimated two additional indices. First, we calculated 

least cost-distances to the centroid of the distribution. We used a least cost patch 

analysis in order to avoid non-possible paths. For this aim, we constructed a gene 
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flow conductance matrix (the opposite of a resistance matrix) considering the sea to 

have low conductance (1), the land as having an intermediate conductance (50) and 

other populations of the species to be highly conducting (100). We performed this 

analysis by means of the “gdistance” package in R. Second, we aimed to assess the 

level of broad-scale connectivity of populations. To do so, we assessed their 

proximity (distance) to the nearest large core - larger than 100 ha, as this is our 

resolution size – and outside a 50 Km buffer - to prevent the consideration of very 

close cores.  

2.2. Environmental marginality 

2.2.1.  Occurrence records 

Our study area, encompassing the European continent and northern Africa, covers 

the entire distribution of all target species but for P. sylvestris and Picea abies, which 

spread largely into the Asian continent. We set the eastern limits of our study area 

to the Ural Mountains, as this orographic feature constitutes an important barrier to 

gene flow, resulting in different subspecies of P. sylvestris and P. abies inhabiting 

each slope. Thereby, for these two species, SDMs are exclusively based on  European 

occurrences, as these models have been reported to better perform when fitted to 

sub-species rather than to the species level (see Serra-Varela et al., 2015; D’Amen et 

al., 2013 for examples).  

Presence records were those included simultaneously in EUFORGEN and TSDE. 

Possible pseudo-absences corresponded to all the rest of the territory within the 

study area where TSDE reported 0 % occupancy. The numbers of presences within 

our defined area amounted to: 135,737 for P. halepensis, 128,744  for P. pinaster, 

363,620 for P. nigra, 30,591 for P. pinea, 8,222,990 for P. sylvestris, 247,966 for A. 

alba and 7,667,354 for P. abies. The number of pseudo-absences and the method to 

select them is specified below together with algorithm selection.  

2.2.2.  Bioclimatic data 

We downloaded the 19 bioclimatic variables available in WORLDCLIM (Hijmans et 

al., 2005) representative of the period 1950-2000 for the analysis and selected for 

each species, four or five variables, relevant and low correlated variables, both 
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temperature- and precipitation-related, to characterize their bioclimatic niche (see 

Table 2). For more details on variable selection see Appendix S1. 

 

Table 2: Set of relevant and weakly correlated bioclimatic predictors selected for 
each target species 
 

SPECIES BIOCLIMATIC PREDICTORS 

Pinus halepensis 
Pinus pinaster 

BIO1  
(Annual Mean 
Temperature) 

BIO4 
(Temperature 
Seasonality) 

BIO18 
(Precipitation 
of Warmest 
Quarter) 

BIO19 
(Precipitation 
of Coldest 
Quarter) 

- 

Pinus nigra 
BIO2  
(Mean diurnal 
range) 

BIO4 
(Temperature 
Seasonality) 

BIO11 (Mean 
Temperature 
of Coldest 
Quarter) 

BIO19 
(Precipitation 
of Coldest 
Quarter) 

- 

Pinus pinea 
BIO1  
(Annual Mean 
Temperature) 

BIO4 
(Temperature 
Seasonality) 

BIO15 
(Precipitation 
seasonality) 

BIO18 
(Precipitation 
of Warmest 
Quarter) 

BIO19 
(Precipitation 
od Coldest 
Quarter) 

Abies alba 
BIO3 
(Isothermality) 

BIO7 
(Temperature 
Annual 
Range) 

BIO10 (Mean 
Temperature 
of Warmest 
Quarter) 

BIO16 
(Precipitation 
of Wettest 
Quarter) 

BIO18 
(Precipitation 
of Warmest 
Quarter) 

Pinus sylvestris 
Picea abies 

BIO3 
(Isothermality) 

BIO4 
(Temperature 
Seasonality) 

BIO10 (Mean 
Temperature 
of Warmest 
Quarter) 

BIO15 
(Precipitation 
seasonality) 

BIO18 
(Precipitation 
of Warmest 
Quarter) 

 

2.2.3 Species Distribution Models 

We used Generalized Additive Models (GAM; Hastie & Tibshirani, 1990) to model 

the distribution of the target species, processed in BIOMOD (Thuiller et al., 2009) 

using the package “biomod2” (default settings for the model) in the R statistical 

software environment (R Development Core Team, 2016). We randomly selected a 

large number of pseudoabsences (five times the number of presences except for P. 

sylvestris - 16,426,602 - and P. abies – 16,620,411 - as their large extent, and thus 

large number of presence records, resulted in a too large number of required 

absences for which there were not enough cells within the study area), and the same 

weight was given to presences and absences as recommended for GAM by Barbet-

Massin et al., (2012). Model performance was assessed by means of True Skill 

Statistic (TSS; Allouche et al., 2006) and Area Under the ROC Curve (AUC; Fielding 
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& Bell, 1997). The large number of occurrence records available permitted a random 

division of each dataset into two equally-sized subsets for training and evaluating. 

Both subsets maintained the initial proportion between presence and pseudo-

absence records. Probabilistic model outputs based on current climatic conditions 

were converted to binary maps (environmentally suitable vs environmentally 

unsuitable) by defining thresholds that optimized TSS values. 

2.2.4 Environmental marginality: Locations and indices 

Based on the SDM-probabilistic projections, we calculated environmental indices for 

genetically characterized populations as the probability of suitability of their 

locations.  This way, we prepared the second-stage analysis of this work in which we 

will integrate environmental and geographical marginality to assess their effect on 

genetic diversity. In addition, we assessed the percentile occupied by the 

environmental index of each population considering the entire distribution of the 

species. 

Environmentally marginal populations are those inhabiting rare or extreme 

environmental conditions compared with the rest of the species’ distribution. 

Accordingly, to detect them, we selected those populations whose environmental 

indices (i.e. probabilities of environmental suitability) were below the fifth and 

tenth percentile within the entire distribution of the species. Then, by overlapping 

in the geographic space the environmentally marginal populations detected (only for 

the 10th percentile as these included the 5th-percentile) corresponding to the seven 

analysed species, we assessed possible environmentally marginal hotspots across our 

study area. To facilitate the interpretation of the results, we also obtained the level 

of overlap among the current distribution of all our target species. 
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 Results and Discussion 

3.1.- Geographic marginality 

3.1.1. Morphological Spatial Pattern Analysis - MSPA 

The MSPA enabled to disaggregate the distribution of species in cores, edges or 

others (see Fig. 1 for an example with P. pinaster). The number of cores detected, 

which depended on the extent of the species and on its fragmentation, varied among 

species as follows: P. halepensis (122 cores); P. pinaster (115 cores); P. nigra (70 

cores); P. pinea (55 cores); A. alba (241 cores); P. sylvestris (1608 cores); P. abies (598 

cores). The number of cores majorly depends on the extent of the distribution of the 

species. However, among species that occupy similar extensions, higher number of 

cores would indicate higher fragmentation.  

3.1.2.  Geographic marginality indices 

The results for this section are still on going. Those already available can be checked 

in Tables S2-S7 in Appendix S1.   
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 Environmental marginality 

3.2.1 Species distribution models 

Our models obtained moderate to high performance as revealed by AUC and TSS 

scores (Table 3). AUC scores were all very high (above 0.94 for all species), while 

TSS values showed a wider range of values (from 0.74 in P. sylvestris to 0.898 in P. 

pinea). Sensitivity and specificity scores were also elevated, although sensitivity 

displayed higher values than specificity in all cases. Thereby, models were better 

able to adequately identify suitable than unsuitable locations. 

  

Figure1:  Morphological Spatial Pattern Analysis – MSPA (Soille & Vogt, 2008), 
exemplified by Pinus pinaster Ait.  
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Table 3: Area Under the ROC Curve (AUC) and True Skill Statistic (TSS) scores from 
the Species Distribution Models fitted for the different species. Cut-off values 
(optimizing TSS) to convert probabilistic projections into binary models are also 
included as well as their associated Sensitivity and Specificity.  
 

Species AUC TSS 
Cutoff value 
(optimizing 

TSS) 

Sensitivity 
(optimizing 

TSS) 

Specificity 
(optimizing 

TSS) 
P. halepensis 0.963   0.880   53.9       97.875       90.164 

P. pinaster 0.976 0.876   56.5       96.311       91.245 

P. nigra 0.962   0.805   59.3       92.492       88.055 

P. pinea 0.984   0.898   55.6       95.921       93.836 

A. alba 0.980   0.892   45.5       97.450       91.743 

P. sylvestris 0.945   0.740   52.5       89.058       84.933 

P. abies 0.977   0.845   46.5       95.096       89.387 

 

Probabilistic and binary geographic projections for all species are shown in 

Appendix S1 (Fig. S1 - Fig. S7). In the purely Mediterranean species, i.e. P. 

halepensis, P. pinaster, P. nigra and P. pinea, the predicted projections (both 

probabilistic and binary) widely extended beyond the currently occupied territory 

of the species (Fig. S1 – Fig.S4), suggesting that there are additional reasons, further 

than climate, limiting these species’ distributions (e.g. dispersal limitation, 

anthropogenic disturbances or pests and diseases), which was consistent with 

previous studies analyzing Mediterranean species (e.g. Serra-Varela et al., 2015; in 

revision). On the contrary, the predicted projections for P. abies and P. sylvestris 

were very similar to their realized niches (i.e. current distribution) suggesting that, 

in this case, bioclimatic variables play a major role in driving these species’ 

distribution.  

3.2.2. Environmental marginality: Locations and indices  

Environmentally marginal populations for our seven target species are shown in 

Appendix S1 (Fig. S1 – Fig. S7) and their corresponding environmental indices 

thresholds for the 5th and 10th percentiles are shown in Table 4. All species, but P. 

pinea (which threshold values were extremely low, see Table 4), showed relative 

high probability thresholds: all were above the TSS scores employed to separate 

suitable from unsuitable locations in binary projections (comparison of Tables 3 & 

4), except for P. sylvestris. This result suggests that although some species inhabit 



Chapter 4: Integrating geography and environment in a standardized procedure to assess marginality 

and its effects on genetic patterns. An example with European conifers 

 150 
 

very different habitats across their distributions (e.g. Pinus pinaster presents Atlantic 

and Mediterranean populations), their diverse habitats are represented by many 

populations, translating into few populations living in rare habitats.  

 
Table 4: Environmental indices corresponding to the fifth and tenth percentiles used 
as thresholds to detect populations experiencing rare or extreme environmental 
conditions 
 

Species 5  percentile  percentile 
P. halepensis 66.7 77.8 

P. pinaster 62.7 77.6 

P. nigra 47.4 65.6 

P. pinea 1.3 6.7 

A. alba 58.9 76.7 

P. sylvestris 28.1 50.1 

P. abies 46.9 64.7 

 

We found a maximum of four species coinciding in their distribution that 

concentrated in the Balkans and in the Spanish Mediterranean coast (Fig. 2a). Of 

these two regions, locations encompassing four-species environmentally marginal 

populations were very scarce and only found in the Balkans (see Fig. 2b). Majorly, 

we found one-species environmentally marginality locations, although scattered 

two-species locations could also be found across central Europe and the Baltic 

Peninsula (comparison between Fig. 2a & 2b).   

We found a maximum of four species coinciding in their distribution that 

concentrated in the Balkans and in the Spanish Mediterranean coast (Fig. 2a). Of 

these two regions, locations encompassing four-species environmentally marginal 

populations were very scarce and only found in the Balkans (see Fig. 2b). Majorly, 

we found one-species environmentally marginality locations, although scattered 

two-species locations could also be found across central Europe and the Baltic 

Peninsula (comparison between Fig. 2a & 2b).   

Environmental indices for genetically characterized populations are shown in Tables 

S2 - S7, except for the case of P. nigra for which the genetic information was still not 

available at the time we were preparing this document. Abies alba, P. sylvestris, and 

P. abies distinguished for the high number of populations characterized by 

environmental indices associated to low percentiles (see Fig. 3). Pinus halepensis and 
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P. pinaster showed a more homogeneous distribution across the different 

percentiles, while P. pinea, showed the contrary pattern with high percentiles being 

the most represented. These results indicated that for some species sampling was not 

homogenously performed across the environmental gradient occupied by the 

species. Thus, while P. halepensis and P. pinaster are well represented, the rest show 

a clear bias towards environmentally suitable locations (P. pinea) or 

environmentally unsuitable locations (Abies alba, P. sylvestris, and P. abies). Our 

analysis aims to understand the effects of marginality (both geographic and 

environmental) on genetic patterns, which would be more easily performed for 

those species (such as P. pinaster and P. halepensis) in which both types of 

populations (core and marginal) are represented. The unbalanced representation of 

populations concerns exclusively the environmental aspect of marginality, while a 

different pattern may be detected in the geographical aspect of marginality (ongoing 

analyses). 
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ure 2 : Overlap among target species distribution (a) and distribution below the 10th 
environmental suitability percentile (b) 
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ure 3 : Histograms of the percentiles from the genetically characterized populations for 
which we calculated environmental indexes (see Tables S.1-S.7 in Appendix S.1)  

P. halepensis P. pinaster 

A.alba P. sylvestris P. abies 

P. pinea 
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 Conclusions 

This chapter presents a novel and standardized methodology to assess marginality 

from two different perspectives, the environmental and geographical points of view. 

From our preliminary results on environmental marginality, we highlight: i) 

probability thresholds corresponding to the 10th percentile varied widely across 

species (from 6.7 in P. pinea to 77.8 in P. halepensis);  ii) the very few overlap 

among species in terms of environmental suitability, presaged a reduced number of 

hotspot of environmental suitability across species; iii) it is important to select well 

the populations to be genetically characterized across all habitat types, to ensure a 

good representation of all environmental conditions. While the integration of 

geography to assess marginality is still undergoing, the final step of this study, will 

be to assess the effect of geographic and environmental marginality on genetic 

patterns. The fact that we will perform our analysis across a wide range of species, 

will contribute to ensure a solid evaluation of these effects. 
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Supporting Information 

Additional Supporting Information may be found in the annex section. 

Appendix S1. Details on meteorological stations and climatic data 
Fig S1: Geographical representation and histogram of elevations of the 

meteorological stations from AEMET and WORLDCLIM 

Fig S2: Selected environmenal variables for Pinus pinaster Ait. (a) and pitch 

canker disease (b) to be included within their species distribution models.  
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Future perspectives 

This thesis provides several examples of the important role that SDMs can play in 

forest conservation management (Chapters 2, 3 & 4) while addressing three possible 

directions to improve their predictions (Chapters 1, 2 & 3). First of all, SDMs have 

proven to better assess the distribution of species when including infra-specific 

information (Chapter 1) converting them on particularly powerful tools for 

conservation management of genetic resources (Chapter 2). In addition, we have 

provided an approach to integrate both, abiotic and biotic factors, in order to more 

accurately predict exposure to climate change (Chapter 3). Lastly, we have employed 

a solid method to account for the uncertainty derived from algorithm selection 

(Chapter 2) and the wide range of future climate predictions (Chapters 2 & 3). On 

the other hand, we developed a novel approach to assess environmental (based on 

SDMs) and geographical (based on geometric indexes) marginality of populations as 

these may play an essential role in the adaptation processes of species to climate 

change.  

However, the integration of genetic information into SDMs is only in its starting 

point and more ambitious goals than separately modelling genetic groups could be 

obtained. In fact, we should evolve from the traditional use of SDMs - to indicate 

environmental suitability for a species or genotype – to approaches modelling fitness 

related traits or the frequency of alleles - that have been previously detected to be 

environmentally driven - in a spatially explicit framework. In these cases, the 

dependant variable could change from binomial (presence/absence) to continues 

(ranging between 0-1) representing, for instance, survival or the probability of 

finding a specific allele. These kind of approaches would enable us to know the 

distribution of relevant traits or/and genes in space. Although information 

availability is the major constrain for these studies, common garden experiments 

constitute a very valuable alternative, as they test different populations in contrasted 

environments. In addition, the development of next generation sequencing 

techniques is resulting in genetic datasets increasingly becoming available.  
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Conclusions 

1. Species distribution models, commonly based on abiotic factors, improve their 

predictions when incorporating infra-specific level information, i.e. genetic 

data, providing useful tools to evaluate species’ vulnerability to climate change 

and thereby to assess conservation forest management (Chapters 1 & 2).  

2. When assessing vulnerability to climate change, it is possible to integrate 

abiotic and biotic exposure in order to guide management for adaptation 

(Chapter 3). 

3. Assessing exposure to climate change requires dealing with future climate 

uncertainties derived from the wide range of future climate predictions 

available. To circumvent these uncertainties, approaches integrating all the 

available information, should be favoured in regards to those dealing with a 

single or averaged climate prediction (Chapter 2 & 3). 

4. Evaluating abiotic and biotic exposures to climate change can guide the 

selection of appropriate management and conservation strategies (Chapters 2 

and 3). Based on exposure assessment, diverse options are recommended to 

enhance adaptation, differentiating among in situ conservation, ex situ 

conservation or in situ conservation with monitoring (Chapter 2), and 

between breeding programmes or silvicultural methods (Chapter 3).  

5. Exposure evaluation should be included as a requirement for dynamic 

conservation units (DCUs) within EUFGIS, the most important European 

conservation network of forest genetic resources. DCUs should adequately 

represent all genetically defined clades of the species included in the network. 

(Capítulo 2) 

6. Marginal populations may play an important role in species’ adaptation. To 

understand how their genetic patterns and subsequent fitness are affected, it is 

necessary to define marginality in a standardized procedure based on major 

processes affecting gene flow, i.e. isolation by distance (geography) and 

isolation by environment (environment). The former can be approached by 

geometric criteria while SDMs can provide a tool to assess the latter (Chapter 

4). 
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7. Integrating geographic and environmental aspects of marginality may enable 

to disentangle their separate and ensemble effects on genetic diversity. It 

would be interesting to compare core vs marginal populations genetic patterns 

to obtain solid conclusions, although this is not always possible as population 

sampling has been majorly directed by geographic factors (Chapter 4).  

8. The genetic structure within Pinus pinaster Ait. is primarily a consequence of 

its demographic history. Nevertheless, local environmental adaptation played 

a role in shaping its lower order phylogeographical structure suggesting that 

niche evolution contributed to the differentiation of the clades (Chapter 1). 

9. Pinus pinaster Ait will likely be largely affected by climate change (Chapters 

2 and 3), particularly along the Spanish Mediterranean coast (Chapter 3). 

Pinus halepensis Mill., although also affected, seems to be better able to cope 

with predicted climate alterations (Chapter 2) 

10. According to the future climate predictions available, the suitable area of 

Fusarium circinatum, a potential fungus pathogen for Pinus pinaster, will be 

reduced in the future, thus reducing the biotic exposure of the pine, 

particularly in the north-western edge of the Iberian Peninsula. Still, strict 

monitoring should be maintained given the large negative ecological and 

economic impacts of an outbreak (Chapter 3). 
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Conclusiones 

1. Los modelos de distribución de especies, comúnmente basados en factores 

abióticos, mejoran sus predicciones al incorporar información infra-

específica, es decir, datos genéticos, y constituyen herramientas útiles para 

evaluar la vulnerabilidad de las especies al cambio climático y por tanto para 

guiar la gestión forestal (Capítulos 1 & 2). 

2. De cara a evaluar la exposición al cambio climático, es necesario considerar, 

además de la exposición abiótica, la biótica, para guiar la gestión forestal para 

la adaptación (Capítulo 3). 

3. Evaluar la exposición al cambio climático requiere lidiar con la incertidumbre 

derivada del gran rango de predicciones de clima futuro disponibles. Para 

evitar esta incertidumbre, se deben favorecer enfoques que integren toda la 

información disponible, evitando el empleo de una única predicción o de una 

predicción media (Capítulos 2 & 3).  

4. La selección de estrategias de manejo y conservación apropiadas puede 

guiarse a través de una evaluación de la exposición al cambio climático tanto 

abiótica como biótica (Capítulos 2 y 3). Basándose en esta evaluación, se 

proponen diferentes alternativas diferenciando entre conservación in situ, 

conservación ex situ y conservación in situ con monitorización (Capítulo 2) o 

entre utilizar programas de mejora genética o métodos silvícolas (Capítulo 3). 

5. La evaluación de la exposición al cambio climático se debe incorporar como 

un requisito en las unidades de conservación dinámicas (UCDs) de EUFGIS, la 

red Europea más importante para la conservación de recursos genéticos 

forestales. Las UCDs deben representar adecuadamente todos los grupos 

genéticos definidos para las especies incluidas en la red (Capítulo 2).  

6. Las poblaciones marginales pueden jugar un papel importante en la 

adaptación de las especies. Para entender la relación entre sus patrones 

genéticos y su consiguiente fitness se ven afectados, es necesario definir la 

marginalidad de manera estandarizada y basada en los principales procesos 

que afectan al flujo genético, es decir, aislamiento por distancia y aislamiento 

por ambiente. El primer proceso se puede evaluar a partir de criterios 
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genéticos, mientras que los MDEs pueden emplearse para evaluar el segundo 

(Capítulo 4)  

7. La integración de los aspectos geográficos y ambientales de la marginalidad 

puede permitir desentrañar sus efectos individuales y conjuntos sobre la 

diversidad genética. Sería interesante comparar los patrones genéticos de 

poblaciones centrales vs marginales aunque esto no siempre es posible ya que 

el muestreo suele estar dirigido principalmente por criterios geográficos 

(Capítulo 4). 

8. La estructura genética de Pinus pinaster Ait. es principalmente consecuencia 

de su historia demográfica. Sin embargo, la adaptación local ha jugado 

también un papel importante en la determinación de su estructura 

filogeogeográfica sugiriendo que la evolución de nicho ha contribuido a la 

diferenciación de los grupos genéticos (Capítulo 1). 

9. El cambio climático parece tener importantes consecuencias sobre Pinus 

pinaster Ait (Capítulos 2 & 3), particularmente a lo largo de la costa 

Mediterránea española. Aunque Pinus halepensis Mill., también se verá 

afectado por las alteraciones climáticas, parece estar mejor preparado para 

lidiar con ellas (Capítulo 2).  

10. Según las predicciones climáticas futuras, el área climáticamente apta para el 

hongo Fusarium circinatum, potencialmente patógeno para Pinus pinaster 

Ait., se reducirá, reduciéndose por tanto la exposición biótica del pino, 

particularmente en el noroeste de la Península Ibérica. Es necesario mantener 

monitorizadas las poblaciones en estas zonas dadas las graves consecuencias 

ecológicas y económicas de una epidemia.  
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Supporting information Chapter 1: 

APPENDIX S1:  

Detailed description of genetic clades 

APPENDIX S2:  

Specifications for the preparation of presence/pseudoabsence data inputs, algorithm 

settings for the species distributions models, comparisons of model performance and 

scatterplots of phylogenetic-environmental distances /phylogenetic-geographic 

distances 

APPENDIX S3:  

Detailed description of bioclimatic variables and selection procedure 

APPENDIX S4:  

Geographic projections of the five algorithms (GLM, GAM, RF, CTA, MaxEnt and 

Ensemble) of the species and its genetic clades (G1-G8). 
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APPENDIX S1:  

Detailed description of genetic clades 

Pinus pinaster phylogeography has been widely studied using a variety of molecular 

markers, each of them unveiling part of the species' evolutionary history. Maternally 

inherited markers (mitochondrial DNA sequences), which reflect seed dispersal 

events, pointed to three main clusters, namely a Moroccan cluster, a western cluster 

(Iberian Peninsula and continental France, except Catalonia and southeastern 

France), and an eastern cluster (southeastern France, Catalonia, Corsica, Italy, 

Sardinia, Tunisia and Algeria) (Burban & Petit, 2003). Paternally inherited markers 

(chloroplast Simple Sequence Repeats (SSRs)), which reflect pollen dispersal events, 

identified eight main genetic clusters (Vendramin et al., 1998; Bucci et al., 2007), 

namely northern Spain and France, forming an Atlantic subgroup; the Atlantic, 

central, and eastern regions of the Iberian Peninsula, forming a central subgroup; 

and western and eastern Africa as well as northern Italy, Corsica, and Sardinia, 

forming a southeastern subgroup.  

A first set of bi-parental markers consisting of 12 nuclear SSRs  (Santos-del-Blanco et 

al., 2012) identified five genetically-defined regions: Morocco, Corsica, the Atlantic 

coast of France, as well as the Atlantic and Mediterranean regions of the Iberian 

Peninsula. The delimitation of the same genetic pools was confirmed by different 

sets of bi-parental markers (nine nuclear SSRs and 1745 Single Nucleotide 

Polymorphisms - SNPs) further dividing the Mediterranean Spain region into 

central Spain and south-eastern Spain (Jaramillo-Correa et al., 2015). Here, by means 

of 12 nSSRs (analysed in Jaramillo-Correa et al., 2015) and 266 SNPs (subset of the 

384 SNPs analysed in Jaramillo-Correa et al., 2015) we further confirmed the 

delimitation of the same six regions with an even higher resolution, especially in the 

Iberian Peninsula, where three gene pools can be further defined based on the 

estimated membership coefficients for each individual within each cluster (Q; see 

Table S1). Q were calculated as a mean-over-population of individual coefficients of 
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membership to each of the eight clusters defined by Structure clustering method 

(Pritchard et al., 2000) on the 266 SNP data set. The cluster harbouring the highest 

Q value for each population (ranging from 0.38 to 0.99) was one of the parameters 

used to define genetic clusters, along with highly concordant Unweighted Pair 

Group Method with Arithmetic Mean (UPGMA) phylogenetic results. The southern 

Spain group (populations COM, CAZ, ORI, QUA) did not appear here as a separate 

cluster, but as a mixed group sharing characteristics of Moroccan and eastern 

Spanish groups.  

The combination of information from all available molecular markers permitted 

defining eight genetic clades that characterize the evolutionary history of P. 

pinaster, described in detail below: 

G1 – an Atlantic Iberian Peninsula clade defined by northwest Spain and Portugal. 

Both chloroplast and nuclear markers detected a substructure within the Atlantic 

populations that subdivide in Atlantic France (G3) and Atlantic Iberian Peninsula 

(G1).    

G2 – an eastern clade including southeastern France, northern Italy and Corsica. All 

markers point to this clade as an eastern origin, even though only nuclear markers 

for Corsica populations are available. Populations from this cluster are independent 

from all other populations.  

G3 – an Atlantic France clade formed by all Atlantic French populations. Both 

chloroplast and nuclear markers detect a substructure within the Atlantic 

populations that subdivide them into Atlantic France (G3) and Atlantic Iberian 

Peninsula (G1).   

G4 – a Moroccan clade formed by all Moroccan populations. Although nuclear 

markers point to a certain degree of connection between Moroccan and southern 

Spanish populations, mitochondrial and chloroplast markers point to the Strait of 

Gibraltar as a genetic breakpoint (with the exception of the northern Moroccan 

population, Punta Cires; see Burban & Petit, 2003; Bucci et al., 2007).  
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G5, G6, G7 – represent, respectively, eastern, central and southern Spanish clades. 

This substructure of the Spanish populations was partially detected with chloroplast 

markers, and was better defined with nuclear markers. The eastern clade G5 results 

from a genetic admixture between the southern and central Spanish clade. The 

central clade G6 results from an admixture between the Atlantic clades and the 

other Spanish clades. Finally, the southern clade, G7 results from an admixture 

between the Moroccan clade and the Spanish clades (see Table S1).  

G8 – a Tunisian clade. This clade stands by itself, based on mitochondrial and 

chloroplast markers that point to its eastern origin, while nuclear markers connect it 

to an Atlantic clade. However, the origin of the Tunisian populations is dubious in 

the dataset screened with nuclear data. We suspect that these individuals were 

mistakenly labelled as of Tunisian origin for nSSR and SNPs studies, as both analysed 

the same set of individuals (Jaramillo-Correa et al., 2015).  As Tunisian individuals, 

we would have expected them to group with eastern European clades based on 

mitochondrial and chloroplast markers for which distinct sets of individuals were 

analyzed (see Vendramin et al., 1998; Burban & Petit, 2003; Bucci et al., 2007). 
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Population 
 

Coordinates Q for 8 Structure clusters  
Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 7 Cl. 8 

TBK  0.01 0.02 0.14 0.03 0.60 0.05 0.04 0.11 

SID  0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TAM  0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MAD  0.87 0.00 0.01 0.00 0.00 0.08 0.00 0.03 

FCN  0.01 0.01 0.03 0.01 0.02 0.03 0.87 0.02 

COM  0.27 0.01 0.04 0.02 0.03 0.48 0.01 0.13 
CAZ  0.12 0.01 0.05 0.02 0.03 0.46 0.08 0.25 

ORI  0.27 0.01 0.01 0.01 0.01 0.47 0.02 0.20 

QUA  0.06 0.02 0.03 0.01 0.04 0.61 0.03 0.21 

ESL  0.01 0.01 0.03 0.02 0.01 0.62 0.02 0.29 

CAL  0.01 0.01 0.08 0.05 0.02 0.54 0.04 0.25 

OLB  0.04 0.02 0.30 0.05 0.02 0.39 0.02 0.15 

BON  0.09 0.01 0.10 0.10 0.00 0.50 0.05 0.15 

SIN  0.03 0.01 0.21 0.03 0.02 0.43 0.04 0.22 

BAY  0.01 0.01 0.66 0.07 0.03 0.07 0.01 0.14 

SAL  0.01 0.02 0.68 0.05 0.05 0.08 0.04 0.08 

ARN  0.00 0.02 0.38 0.03 0.09 0.19 0.05 0.24 

CEN  0.00 0.01 0.55 0.01 0.07 0.12 0.04 0.20 

VAL  0.00 0.00 0.69 0.05 0.02 0.08 0.02 0.13 

COC  0.02 0.07 0.54 0.11 0.05 0.08 0.02 0.11 

CAR  0.02 0.02 0.60 0.07 0.07 0.05 0.03 0.14 

CUE  0.01 0.00 0.57 0.17 0.07 0.04 0.02 0.11 

TBY  0.01 0.01 0.58 0.01 0.03 0.09 0.02 0.26 

LEI  0.01 0.02 0.13 0.02 0.66 0.04 0.02 0.10 

SAC  0.01 0.01 0.14 0.02 0.74 0.03 0.02 0.03 

SEG  0.00 0.01 0.06 0.03 0.86 0.02 0.01 0.02 

ARM  0.00 0.00 0.01 0.01 0.96 0.01 0.00 0.01 

ALT  0.00 0.01 0.01 0.04 0.83 0.02 0.00 0.08 

ROD  0.00 0.01 0.54 0.02 0.03 0.13 0.02 0.26 

LAM  0.00 0.01 0.01 0.01 0.95 0.00 0.01 0.00 

CAD  0.00 0.00 0.01 0.03 0.93 0.01 0.01 0.01 

SIE  0.01 0.02 0.07 0.06 0.66 0.08 0.01 0.09 

PUE  0.00 0.01 0.01 0.01 0.93 0.01 0.01 0.02 

CAS  0.00 0.01 0.06 0.01 0.79 0.06 0.03 0.04 

BIB  0.00 0.71 0.01 0.07 0.04 0.04 0.01 0.13 

PIA  0.00 0.81 0.02 0.01 0.08 0.02 0.02 0.04 
PIE  0.00 0.84 0.04 0.00 0.01 0.03 0.01 0.06 

PIN  0.00 0.81 0.01 0.07 0.01 0.02 0.01 0.07 

PLE  0.00 0.00 0.05 0.85 0.02 0.02 0.02 0.03 

STJ  0.01 0.01 0.02 0.84 0.03 0.02 0.02 0.03 

OLO  0.01 0.01 0.03 0.84 0.03 0.02 0.04 0.02 

VER  0.01 0.01 0.05 0.80 0.05 0.02 0.02 0.04 

HOU  0.01 0.01 0.03 0.91 0.01 0.02 0.01 0.02 

MIM  0.00 0.01 0.06 0.80 0.02 0.03 0.02 0.06 
PET  0.01 0.02 0.04 0.79 0.04 0.03 0.03 0.03 

Table S1: Estimated membership coefficients (Q) for each individual within each cluster. In 
bold, highest Q values used for assignment of each population to a cluster. Colours 
correspond to the overall genetic clusters eventually defined for the study.   
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APPENDIX S2:   

Specifications for the preparation of presence/pseudo-absence data inputs, 

algorithm settings for the species distribution models, comparison of 

model performance and scatterplots of phylogenetic-environmental 

distances / phylogenetic-geographic distances 

Preparation of presence/pseudo-absence data inputs 

The Tree Species Distribution for Europe (TSDE; Köble & Seufert, 2001) from the 

Joint Research Centre's (JRC) AFOLU data portal1 and (ii) the EUFORGEN database 

from the European forest genetic resources programme2 were combined to 

approximately obtain the natural distribution of Pinus pinaster.  

In general, the distribution of maritime pine is similar in both databases (Fig. S1). 

There are, however, some areas of mismatch in which TSDE detects presences not 

included within EUFORGEN limits. These areas are located mainly in southwestern 

Spain, northwestern France and the Croatian coast, and are probably due to 

plantations (i.e. non-natural species presence). The opposite disagreement also 

occurs, with EUFORGEN indicating presence while TSDE does not (mainly in the 

Italian coast and southern Spain). EUFORGEN has been created at a broader scale 

than TSDE, while the latter provides more information about the exact location of 

the species' presence within the polygon defined by EUFORGEN.  

TSDE was reclassified considering 0 as a pseudo-absence cell, and any percentage 

higher than 0 as a presence cell. In the European territory, presence records were 

selected as those cells that are considered as presences by TSDE and that are also 

included within the EUFORGEN shape limits. On the other hand, as TSDE does not 

extend to Northern Africa, only EUFORGEN was therefore used with all cells 

within the limits of this database, as assumed to represent true presences. 

                                                 
 
 
1 http://afoludata.jrc.ec.europa.eu/index.php/public_area/tree_species_distribution 
2 http://www.euforgen.org/ 

http://afoludata.jrc.ec.europa.eu/index.php/public_area/tree_species_distribution
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Presences of genetic clades were defined as the subset of the overall presences 

records that belong to one specific genetic clade. Possible pseudo-absences 

correspond to all the rest of the territory including presences from other genetic 

clades. One of the populations included in the SNP analysis (Fuencaliente, FCN, 

Spain) was not included within EUFORGEN limits and was not considered in 

further analyses.  

 

The final number of presences selected for the species model summed 128,653, 

while the number of presences for the eight genetic clades amounted to: 59,109 

(G1), 12,215 (G2), 17,877 (G3), 4,940 (G4), 8,785 (G5), 13,005 (G6), 4,981 (G7), and 

3,997 (G8). The patches corresponding to unclassified genetic clades were not 

included in the individual calibrations of genetic clades, but were considered when 

modelling the species-level model. Number of pseudo-absences is specified in the 

next section, as it depends on algorithm selection. 

  

Figure S1: Combination of EUFORGEN and “Tree Species Distribution for Europe” (TSDE) 
data bases for Pinus pinaster distribution. TSDE has been reclassified considering cells with 
percentage higher than 0 to represent presence of the species.  
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Algorithm specifications 

Five different statistical methods were individually calibrated and then combined to 

build an ensemble Species Distribution Model (SDM). As regression methods, we 

selected Generalized Linear Models (GLM; McCullagh & Nelder, 1989) and 

Generalized Additive Models (GAM; Hastie & Tibshirani, 1990). Random Forest 

(RF; Breiman, 2001) represents machine-learning methods while Classification Tree 

Analysis (CTA; Breiman, 1984) stands for classification methods. Finally, we also 

used MaxEnt representing a maximum entropy model (Phillips et al., 2006). We set 

up GLM to perform a stepwise variable reduction/addition procedure by maximizing 

Akaike Information Criterion (AIC) starting from a full model based on linear and 

quadratic terms for all five variables. The number of trees was fixed to 1,000 for RF 

while default settings were applied in GAM, CTA and MaxEnt. Model performance 

was assessed from the True Skill Statistic (TSS; Allouche et al., 2006), the Area 

Under the ROC Curve (AUC) (Fielding & Bell, 1997) and the H-Measure (Hand, 

2010, 2012). Values of H-Measure are calculated from binary models constructed 

from probabilistic outputs by defining thresholds that optimized TSS values.  

Concerning pseudo-absence selection, given the broad spatial and environmental 

scale of P. pinaster's range, a large number of pseudo-absences were needed. 

Randomly selecting pseudo-absences produce the most accurate GLM and GAM, 

while RF and CTA show less variation according to pseudo-absence selection 

methods (Barbet-Massin et al., 2012). Large number of pseudo-absences records is 

also recommended for GLM and GAM (Barbet-Massin et al., 2012), and this is 

consistent with the results obtained for MaxEnt (Phillips & Dudík, 2008). We set the 

number of randomly selected pseudo-absences to five times the number of presences 

detected in the species model. For the clade models, we maintained the number of 

pseudo-absences used in the species model. Pseudo-absences and presences were 

given weights inversely proportional to their numbers, so as to give equal total 

weights to the two sets, as recommended by Barbet-Massin et al. (2012). 

The large number of occurrence records available permitted a random division of 

each dataset (corresponding to the species and to each clade) into two equally sized 

subsets for training and evaluating maintaining the initial proportion between 

presence and pseudo-absence records. Subsequently, during the model evaluation 
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stage, we only used 20 % of the set-aside evaluation records to minimize 

computation time. The reduced evaluation subset contained equal numbers of 

presence and pseudo-absence records.    

Comparison of model performance 

We built 45 different models, five for each of the eight genetic clades, and another 

five for the species model.  

The models calibrated individually for each genetic clade reached better 

performance (slightly superior AUC and TSS scores and notably higher H-Measure 

values) than the models calibrated at the species level (Table S2). Although the five 

statistical algorithms performed well (with AUC, TSS and H-Measure scores all 

higher than 0.968, 0.851 and 0.767, respectively, in the individually calibrated clade 

models), RF displayed the best AUC, TSS and H-Measure scores compared to the 

other algorithms in all cases except for G8, where GLM and GAM performed slightly 

better.   

The ensemble models summarize the individual statistical model information for 

each clade and for the species into one single prediction. Overall, TSS and H-

Measure scores of ensemble models were higher, compared to most models from 

individual statistical algorithms (Table S3). Nevertheless, TSS and H-Measure scores 

from RF generally outcompete ensemble TSS and H-Measure scores (see Table S3 vs. 

Table S2). Sensitivity and specificity scores obtained in the final ensemble binary 

models are also considerably high (above 89 % in all cases), and again, genetic clade's 

ensemble models outperformed the species ensemble model.  

 

  



Sup Info Chapter 1: Does phylogeographic structure relate to climatic niche divergence? A test using 
maritime pine (Pinus pinaster Ait. 

     183 
 

 

Table S2: Assessment of model performance by means of True Skill Statistic (TSS), Area 
Under the Curve (AUC) and H-Measure scores. Values are displayed separately according to 
model inputs (species level models and genetic clade level (G1-G8) models) and, 
additionally, to the five different algorithms employed: General Linear Model (GLM), 
General Additive Model (GAM), Random Forest (RF), Classification Tree Analysis (CTA) 
and MaxEnt. Values of H-Measure are calculated from binary models constructed from 
probabilistic outputs by defining thresholds that optimized TSS values. This evaluation is 
based on a split sample test. 
 
 

Model Algorithm AUC score TSS score H-Measure 

 

 

Species Level 

GLM 0.893 0.634 0.455 

GAM 0.909 0.666 0.495 

RF 0.980 0.877 0.804 

CTA 0.934 0.773 0.647 

MaxEnt 0.909 0.643 0.465 

 

 

 

GLM 0.995 0.950 0.919 

GAM 0.997 0.967 0.947 

RF 1.000 0.992 0.988 

CTA 0.992 0.969 0.950 

MaxEnt 0.996 0.961 0.938 

 

 

 

GLM 0.979 0.919 0.871 

GAM 0.983 0.942 0.908 

RF 0.999 0.955 0.928 

CTA 0.980 0.951 0.922 

MaxEnt 0.987 0.920 0.873 

 

 

 

GLM 0.999      0.988     0.981 

GAM 1.000     0.996     0.993 

RF 1.000      0.996     0.994 

CTA 0.994   0.986   0.978 

MaxEnt 0.999      0.988      0.981 
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GLM 0.968     0.851     0.767 

GAM 0.981   0.933   0.893 

RF 0.999      0.953     0.925 

CTA 0.979   0.948   0.917 

MaxEnt 0.986   0.904   0.846 

 

 

 

GLM 0.996      0.980     0.968 

GAM 0.997   0.983   0.973 

RF 1.000   0.988   0.981 

CTA 0.991   0.982   0.971 

MaxEnt 0.997    0.976    0.962 

 

 

 

GLM 0.990   0.949   0.919 

GAM 0.993      0.960    0.936 

RF 0.999      0.977     0.963 

CTA 0.986   0.964   0.943 

MaxEnt 0.994    0.943    0.909 

 

 

 

GLM 0.989   0.929   0.887 

GAM 0.989   0.954   0.926 

RF 1.000      0.966     0.946 

CTA 0.983   0.962   0.939 

MaxEnt 0.992      0.939      0.903 

 

 

 

GLM 1.000   0.996   0.993 

GAM 1.000   0.996   0.993 

RF 1.000   0.987   0.980 

CTA 0.994   0.990   0.984 

MaxEnt 0.999    0.991    0.985 
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Table S3: True Skill Statistic (TSS), H-Measure, Cutoff, Sensitivity and Specificity scores of 
the Ensemble model (average of the five algorithms), for the species level model and for the 
different genetic clades' (G1-G8) models. This evaluation is based on a split sample test. 
 

Model H-
Measure 

TSS Cutoff value Sensitivity Specificity 

Species 

level 

0.692 0.804 456 90.914 89.450 
G1 0.967 0.979 488 99.132 98.799 
G2 0.923 0.952 458 99.099 96.070 
G3 0.991 0.994 491 99.720 99.720 
G4 0.936 0.960 494 98.583 97.436 
G5 0.977 0.986 455 99.848 98.748 
G6 0.953 0.971 494 99.052 97.975 
G7 0.929 0.956 569 97.410 98.160 
G8 0.985 0.991 607 99.083 100.000 
 

Scatterplots of phylogenetic-genetic distances / phylogenetic-geographic distances 

Figure S2 shows the scatterplots of phylogenetic vs genetic distances and 

phylogenetic vs geographic distances. Each dot represents a pairwise distance among 

the eight genetic clades. The scatterplots suggest a positive correlation between 

genetic and environmental distances and, although less obvious, the same pattern 

can be observed for genetic and geographic distances. This is corroborated by the 

Mantel regression, which explained 12.6 % of the variation in phylogenetic distance 

among the eight clades by means of linear combinations of environmental and 

geographic distance. In this regression, the linear term for environmental distance 

was barely significant (p = 0.06), while the intercept (p = 0.87) and the geographic 

distance (p = 0.74) were not.  
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Figure S2: Scatterplots of phylogenetic vs environmental distances (left side) and 
phylogenetic vs geographic distances (right side).  
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APPENDIX S3:  

Detailed description of bioclimatic variables and selection procedure 

We considered 23 bioclimatic variables for the analysis, representative of the period 

1950-2000. Nineteen of them (BIO1 to BIO19; see Box 1) were downloaded from the 

current bioclimatic variables available in WORLDCLIM (Hijmans et al., 2005). Four 

new variables were created following Zimmermann et al. (2007), as it characterizes 

water availability better: summer and spring potential evapotranspiration 

(ETPTsummer ; ETPTspring) and summer and spring moisture index (MINDsummer; 

MINDspring) (see Box 2).  

In order to avoid multicollinearity effects, we retained variables with Pearson 

correlations lower than 0.75, as the use simple methods based on rules of thumb 

have proved to be as effective as more complicated methods (Dormann et al., 2013). 

This threshold value is a bit less restrictive than the common value of 0.70, but more 

flexible thresholds have also been used in the literature (see Elith et al., 2006 for an 

example). Among the highly correlated variables we kept the one with highest 

explained deviance scores (D2) when individually fitted in a Generalized Linear 

Model (GLM; McCullagh & Nelder, 1989). We avoided the use of BIO8 and BIO9, as 

the steep gradient shown by these variables (i.e. very often two adjacent cells are 

characterized by extremely different values within the study area for no obvious 

reason) may lead to artefacts in the SDM output maps. From the remainining set we 

selected two temperate and two water-related variables considering that both 

moisture and temperature have been shown to play a key role in Mediterranean 

species' distribution (Benito-Garzón et al., 2013).  We chose BIO3 (Isothermality), 

BIO11 (Mean Temperature of Coldest Quarter), BIO13 (Precipitation of Wettest 

Month) and MINDsummer as best predictor variables. Finally, we checked for possible 

collinearity problems among the selected variables by means of a Variation Inflation 

Factor test (VIF; Belsley, 1991; Hair Jr et al., 1995), which indicated no problem 

since all VIF values were below a threshold value of 10. 
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BIO1 = Annual Mean Temperature 
BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) 
BIO3 = Isothermality (BIO2/BIO7) (* 100) 
BIO4 = Temperature Seasonality (standard deviation *100) 
BIO5 = Max Temperature of Warmest Month 
BIO6 = Min Temperature of Coldest Month 
BIO7 = Temperature Annual Range (BIO5-BIO6) 
BIO8 = Mean Temperature of Wettest Quarter 
BIO9 = Mean Temperature of Driest Quarter 
BIO10 = Mean Temperature of Warmest Quarter 
BIO11 = Mean Temperature of Coldest Quarter 
BIO12 = Annual Precipitation 
BIO13 = Precipitation of Wettest Month 
BIO14 = Precipitation of Driest Month 
BIO15 = Precipitation Seasonality (Coefficient of Variation) 
BIO16 = Precipitation of Wettest Quarter 
BIO17 = Precipitation of Driest Quarter 
BIO18 = Precipitation of Warmest Quarter 
BIO19 = Precipitation of Coldest Quarter 

Four new variables were created following Zimmermann et al. (2007): 
summer and spring potential evapotranspiration (ETPTsummer ; ETPTspring) and 
summer and spring moisture index (MINDsummer; MINDspring). Potential 
evapotranspiration estimates water loss as a ratio depending on average 
temperature and solar radiation (obtained from Kumar et al., 2007) 
following Turc's empirical equation (Turc, 1963).  Moisture index is defined 
as the difference between precipitation (water source) and potential 
evapotranspiration (water loss), so values below zero indicate drought, 
while positive scores indicate that precipitation exceeds potential 
evapotranspiration. 
 

Box 2: Newly generated bioclimatic variables 

Box 1: variables from WORLDCLIM (Hijmans et al., 
2005) 
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APPENDIX S4:  Geographic projections of the five algorithms (GLM, GAM, RF, CTA, MaxEnt and Ensemble) 

of the species and its genetic clades (G1-G8). 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure S3: Geographic projection of P. pinaster using five algorithms (General Linear Model-GLM, General Additive Model-GAM, 
Random Forest-RF, Classification Tree Analysis-CTA, and MaxEnt) and the Ensemble model. Probability of presence ranges from 100 
(red areas) to 0 (blue areas), while for the binary model it ranges from 1 (red areas) to 0 (white areas) (the threshold was defined 
optimizing TSS values from the Ensemble model, see main text for details). 
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Figure S4: Geographic projection of the Atlantic Iberian Peninsula clade – G1 using five algorithms (General Linear Model-GLM, 
General Additive Model-GAM, Random Forest-RF, Classification Tree Analysis-CTA, and MaxEnt) and the Ensemble model. 
Probability of presence ranges from 100 (red areas) to 0 (blue areas), while for the binary model it ranges from 1 (red areas) to 0 (white 
areas) (the threshold was defined optimizing TSS values from the Ensemble model, see main text for details). 
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Figure S5: Geographic projection of the Eastern clade – G2 using five algorithms (General Linear Model-GLM, General Additive 
Model-GAM, Random Forest-RF, Classification Tree Analysis-CTA, and MaxEnt) and the Ensemble model. Probability of 
presence ranges from 100 (red areas) to 0 (blue areas), while for the binary model it ranges from 1 (red areas) to 0 (white areas) 
(the threshold was defined optimizing TSS values from the Ensemble model, see main text for details). 
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Figure S6: Geographic projection of the Atlantic France clade – G3 using five algorithms (General Linear Model-GLM, 
General Additive Model-GAM, Random Forest-RF, Classification Tree Analysis-CTA, and MaxEnt) and the Ensemble 
model. Probability of presence ranges from 100 (red areas) to 0 (blue areas), while for the binary model it ranges from 1 
(red areas) to 0 (white areas) (the threshold was defined optimizing TSS values from the Ensemble model, see main text 
for details). 
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Figure S7: Geographic projection of the Moroccan clade – G4 using five algorithms (General Linear Model-GLM, General Additive 
Model-GAM, Random Forest-RF, Classification Tree Analysis-CTA, and MaxEnt) and the Ensemble model. Probability of presence 
ranges from 100 (red areas) to 0 (blue areas), while for the binary model it ranges from 1 (red areas) to 0 (white areas) (the threshold was 
defined optimizing TSS values from the Ensemble model, see main text for details). 
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Figure S8: Geographic projection of the Eastern Spanish clade – G5 using five algorithms (General Linear Model-GLM, General Additive 
Model-GAM, Random Forest-RF, Classification Tree Analysis-CTA, and MaxEnt) and the Ensemble model. Probability of presence 
ranges from 100 (red areas) to 0 (blue areas), while for the binary model it ranges from 1 (red areas) to 0 (white areas) (the threshold was 
defined optimizing TSS values from the Ensemble model, see main text for details). 
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Figure S9: Geographic projection of the Central Spanish clade – G6 using five algorithms (General Linear Model-GLM, General Additive 
Model-GAM, Random Forest-RF, Classification Tree Analysis-CTA, and MaxEnt) and the Ensemble model. Probability of presence 
ranges from 100 (red areas) to 0 (blue areas), while for the binary model it ranges from 1 (red areas) to 0 (white areas) (the threshold was 
defined optimizing TSS values from the Ensemble model, see main text for details). 
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Figure S10: Geographic projection of the Southern Spanish clade – G7 using five algorithms (General Linear Model-GLM, General 
Additive Model-GAM, Random Forest-RF, Classification Tree Analysis-CTA, and MaxEnt) and the Ensemble model. Probability of 
presence ranges from 100 (red areas) to 0 (blue areas), while for the binary model it ranges from 1 (red areas) to 0 (white areas) (the 
threshold was defined optimizing TSS values from the Ensemble model, see main text for details). 
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Figure S11: Geographic projection of the Tunisian clade – G8 using five algorithms (General Linear Model-GLM, General Additive 
Model-GAM, Random Forest-RF, Classification Tree Analysis-CTA, and MaxEnt) and the Ensemble model. Probability of presence 
ranges from 100 (red areas) to 0 (blue areas), while for the binary model it ranges from 1 (red areas) to 0 (white areas) (the threshold was 
defined optimizing TSS values from the Ensemble model, see main text for details). 
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APPENDIX S1 

Details on Pinus halepensis Mill. genetic clades: Q membership values 

and description of the clades.  

We detected seven different genetic clades by performing a Bayesian clustering 

analysis using STRUCTURE (Pritchard et al., 2000) on a 294 Single Nucleotide 

Polymorphisms (SNPs) dataset (1325 individuals from 49 populations covering most 

of Pinus halepensis natural range); we estimated membership coefficients (Q*) for 

each individual within each clade (K); finally, we calculated definitive membership 

values (Q) for the 49 populations as a mean-over-population of individual Q* 

coefficients to each of the 7 gene pools defined when using Structure (see Table S1). 

Contrary to Pinus pinaster where the clades are spatially differentiated, we defined 

transition areas, occupied by more than one clade simultaneously, based on Q values 

as follows:  (i) a population was classified as “pure” for one gene pool (K) if its Q 

values scored above 0.80 for that specific clade K; (ii) a population with Q values 

above 0.25 for one K was considered to have individuals belonging to that K (and 

thus that K was considered present in this population). Following this methodology, 

we obtained both pure populations and populations including up to two different 

genetic clades.  

Below, we briefly describe the seven detected genetic clades namely Central and 

southern Spain clade (G1-hal), Balearic and southern France clade (G2-hal), 

Tunisian and northern Italian clade (G3-hal), Moroccan and southern Spain clade 

(G4-hal), Greek clade (G5-hal), Central and northern Spain clade (G6-hal) and 

Northern Spain and southern France clade (G7-hal). Some small areas of the 

distribution of the species (located in Algeria) could not be assigned to any clade due 

to insufficient sampling (see Fig. 2b in main text). 

Brief description of the detected genetic clades 

 Central and southern Spain clade (G1-hal): This clade coexists with G4-hal in 

southern Spain and with G6-hal in central Spain. 
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 Balearic and southern France clade (G2-hal): This clade is the only gene pool 

present in the Balearic Islands. Nevertheless, we can also find G2-hal in 

southern France where it coexists with G7-hal. 

 Eastern Mediterranean clade (G3-hal): This clade is largely distributed in 

northern Africa (Tunisia) where it does not coexist with any other clade. We 

can also find it in Israel and in the Balkans, as well as in the Italian Peninsula 

where it shares territory with G5-hal. 

 Moroccan and southern Spain clade (G4-hal): This clade represents the 

Moroccan distribution of Pinus halepensis and it also coexists with G1-hal in 

southern Spain. 

 Greek clade (G5-hal): This clade is widely distributed in the eastern side of 

the Mediterranean Basin (Italy, Israel and the Balkans) along with G3-hal. 

Nevertheless, it is the only clade present in the Greek distribution of the 

species but for four marginal populations in the eastern-most distribution of 

the species. 

 Central and northern Spain clade (G6-hal): This clade is distributed in central 

Spain (along with G1-hal) and in northern Spain along with G7-hal.  

 Northern Spain and southern France clade (G7-hal): This clade co-occurs 

with G6-hal in the northern Spain and with G2-hal in southern France. 
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Table S1: Estimated membership coefficients (Q) for each population. Q values above 0.80 
for one clade (K) correspond with pure populations for that specific K. Q coefficients above 
0.25 for one K indicate presence of that K into the population. Colours correspond to overall 
genetic clusters defined for the study. 

 

Population name Long Lat        
Amfilohia 21.28 38.88 0.00 0.01 0.01 0.01 0.97 0.00 0.00 

North Eubea 23.18 38.58 0.00 0.00 0.01 0.00 0.97 0.00 0.00 

Elea 21.53 37.77 0.00 0.00 0.00 0.00 0.98 0.00 0.00 

Zaouia Ifrane -5.14 33.57 0.00 0.00 0.01 0.97 0.00 0.00 0.00 

Kassandra 23.88 40.09 0.01 0.01 0.34 0.02 0.62 0.01 0.01 
Imperia 8.05 43.90 0.01 0.33 0.02 0.02 0.00 0.02 0.61 

Shaharia 34.83 31.60 0.01 0.01 0.96 0.01 0.01 0.00 0.00 

Litorale Tarantino 17.12 40.62 0.01 0.01 0.54 0.02 0.40 0.01 0.01 

Thala 8.65 35.57 0.02 0.02 0.87 0.05 0.02 0.02 0.02 

Aures Beni Melloul 6.83 35.17 0.02 0.01 0.83 0.07 0.01 0.03 0.04 

Quercianella 10.34 43.49 0.02 0.03 0.58 0.01 0.30 0.02 0.04 

Tabarka 9.08 36.51 0.02 0.01 0.89 0.05 0.00 0.01 0.01 

Alcotx 4.17 39.97 0.02 0.70 0.01 0.01 0.00 0.02 0.24 

Carlo Forte 8.18 39.08 0.02 0.75 0.16 0.01 0.00 0.04 0.01 

Santanyi 3.05 39.28 0.03 0.83 0.03 0.02 0.00 0.05 0.04 

Otricoli 12.38 42.24 0.04 0.06 0.61 0.01 0.24 0.03 0.01 

Gargano Marzini 15.94 41.90 0.05 0.01 0.51 0.01 0.35 0.02 0.05 

Garzano Monte Pucci 15.86 41.55 0.05 0.01 0.49 0.01 0.37 0.01 0.06 

Nat 35.03 32.72 0.05 0.00 0.52 0.01 0.37 0.01 0.04 

Palma de Mallorca 2.94 39.15 0.09 0.72 0.00 0.01 0.00 0.15 0.03 
Alcudia 3.17 39.87 0.10 0.75 0.01 0.01 0.00 0.05 0.07 

Zuera -0.92 41.92 0.11 0.13 0.02 0.02 0.00 0.23 0.50 

Atalix 4.05 39.92 0.11 0.71 0.01 0.02 0.00 0.06 0.09 

Cabanellas 2.78 42.25 0.12 0.06 0.01 0.01 0.00 0.13 0.65 

Tivissa 0.76 41.06 0.16 0.08 0.01 0.01 0.00 0.26 0.47 

Serra d'Irta 0.32 40.35 0.18 0.05 0.02 0.03 0.00 0.30 0.42 

Benicassim 0.03 40.08 0.24 0.02 0.01 0.00 0.00 0.33 0.39 

Tuéjar -1.16 39.82 0.28 0.03 0.01 0.01 0.00 0.62 0.05 

Alhama de Murcia -1.53 37.86 0.29 0.03 0.02 0.07 0.00 0.55 0.03 

Benamaurel -2.74 37.70 0.29 0.01 0.01 0.13 0.00 0.53 0.03 

Frigiliana -3.92 36.82 0.29 0.02 0.01 0.32 0.00 0.20 0.16 

Carratraca -4.83 36.84 0.29 0.01 0.00 0.39 0.00 0.12 0.19 

Tibi -0.65 38.52 0.30 0.04 0.02 0.06 0.00 0.55 0.03 

Serra d'Irta 0.32 40.35 0.32 0.04 0.01 0.02 0.00 0.14 0.48 

Bicorp -0.86 39.10 0.33 0.07 0.02 0.03 0.00 0.52 0.03 

Serra Calderona -0.48 39.74 0.34 0.03 0.05 0.04 0.01 0.45 0.09 

Alcantud -2.31 40.56 0.35 0.04 0.01 0.01 0.00 0.52 0.06 

Colmenar de Oreja -3.33 40.09 0.35 0.03 0.01 0.01 0.00 0.58 0.02 

Santiago de la Espada -2.47 38.23 0.37 0.04 0.01 0.07 0.00 0.46 0.04 

Serra Calderona -0.48 39.74 0.38 0.02 0.01 0.02 0.00 0.49 0.08 

Villajoyosa -0.30 38.50 0.39 0.03 0.02 0.03 0.00 0.49 0.04 

Monovar -0.96 38.39 0.40 0.05 0.02 0.04 0.01 0.45 0.03 

Montan -0.59 40.05 0.41 0.08 0.01 0.02 0.00 0.39 0.09 

Cabanes 0.04 40.10 0.42 0.03 0.01 0.00 0.00 0.13 0.41 

Sinarcas -1.20 39.80 0.43 0.05 0.01 0.01 0.00 0.46 0.04 

Titaguas -1.30 39.89 0.43 0.09 0.01 0.01 0.00 0.40 0.05 

Cabanes 0.04 40.10 0.47 0.02 0.02 0.01 0.00 0.18 0.30 

Alzira -0.39 39.12 0.50 0.03 0.02 0.02 0.00 0.38 0.05 

Eslida -0.29 39.87 0.50 0.05 0.01 0.01 0.00 0.32 0.11 
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APPENDIX S2  

Variable selection and evaluation scores obtained in the Species 

Distribution Models 

Variable selection 

We used the 19 bioclimatic variables available in WORLDCLIM (Hijmans et al., 

2005) representative of the period between the years 1950-2000 for the analysis.  

In order to avoid multicollinearity effects, we retained variables with Pearson 

correlations lower than 0.75 as the use of simple methods based on rules of thumb 

have proved to be as effective as more complicated ones (Dormann et al., 2013). This 

threshold value is a bit less restrictive than the common value of 0.70 but more 

flexible thresholds have also been used in literature (see Elith et al., 2006 for an 

example). Among highly correlated variables we kept the one with highest 

explained deviance scores (D2) when individually fitted in a Generalized Linear 

Model (GLM; McCullagh & Nelder, 1989). The similar patterns detected in D2 values 

in Pinus pinaster and Pinus halepensis scores enabled the selection of the same set of 

variables for both species, which also eased the subsequent interpretation of the 

results. We discarded BIO15 (due to its very low D2 scores: 0.05 and 0.11 for P. 

pinaster and P. halepensis respectively) and BIO8 (as the steep gradient shown by 

this variable may lead to artefacts in the SDM output maps, because very often two 

adjacent cells are characterized by extremely different values within the study area 

for no obvious reason). Finally we performed a Variance Inflation Factor (VIF) test 

and removed BIO1 to ensure that all VIF values were below a threshold value of 10.  

The final set of relevant weakly correlated variables was BIO4 (Temperature 

Seasonality), BIO11 (Mean Temperature of Coldest Quarter), BIO12 (Annual 

Precipitation) and BIO18 (Precipitation of Warmest Quarter). 
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Future climate projections 

We used all Global Climate Models (GCMs) that were simultaneously available for 

the scenarios of representative concentration pathways (RCP) 2.6, 4.5 and 8.5. This 

included 14 GCMs: BCC-CSM1-1 (BC), CCSM4 (CC), CNRM-CM5 (CN), GFDL-

CM3 (GF), GISS-E2-R (GS), HadGEM2-AO (HD), HadGEM2-ES (HE), IPSL-CM5A-

LR (IP), MIROC-ESM-CHEM (MI), MIROC-ESM (MR), MIROC5 (MC), MPI-ESM-

LR (MP), MRI-CGCM3 (MG), NorESM1-M (NO). 
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Evaluation scores obtained in the Species Distribution Models 
Table S2: Assessment of Pinus pinaster Ait. model performance by means of True Skill 
Statistic (TSS) and Area Under the Curve (AUC). Values are displayed separately according 
to genetic clade level (G1-pin to G8-pin) and also to the five different algorithms employed: 
General Linear Model (GLM), General Additive Model (GAM), Random Forest (RF), 
Classification Tree Analysis (CTA) and MaxEnt.  

Model Algorithm         AUC                              TSS 

-pin 

GLM 0.996 0.964 

GAM 0.997 0.981 

RF 0.999 0.990 

CTA 0.994 0.976 

MaxEnt 0.997 0.977 

-pin 

GLM 0.982 0.871 

GAM 0.985 0.948 

RF 1.000 0.983 

CTA 0.985 0.967 

MaxEnt 0.988 0.914 

-pin 

GLM 0.999 0.996 

GAM 1.000 0.997 

RF 1.000 0.997 

CTA 0.997 0.994 

MaxEnt 0.999 0.990 

-pin 

GLM 0.804 0.710 

GAM 0.986 0.943 

RF 1.000 0.960 

CTA 0.993 0.972 

MaxEnt 0.992 0.931 

-pin 

GLM 0.996 0.974 

GAM 0.998 0.989 

RF 1.000 0.975 

CTA 0.993 0.977 

MaxEnt 0.998 0.972 

-pin 

GLM 0.986 0.933 

GAM 0.993 0.970 

RF 1.000 0.982 

CTA 0.991 0.977 

MaxEnt 0.993 0.945 

-pin 

GLM 0.973 0.898 

GAM 0.989 0.951 

RF 0.999 0.943 

CTA 0.982 0.963 

MaxEnt 0.989 0.917 

-pin 

GLM 1.000 0.997 

GAM 1.000 0.998 

RF 1.000 0.986 

CTA 0.994 0.988 
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Table S3: Assessment of Pinus halepensis Mill. model performance by means of True Skill 
Statistic (TSS) and Area Under the Curve (AUC). Values are displayed separately according 
to genetic clade level (G1-hal to G7-hal) and also to the five different algorithms employed: 
General Linear Model (GLM), General Additive Model (GAM), Random Forest (RF), 
Classification Tree Analysis (CTA) and MaxEnt.  
 

Model Algorithm                          AUC                              TSS 

-hal 

GLM 0.970 0.870 

GAM 0.889 0.889 

RF 0.999 0.971 

CTA 0.969 0.917 

MaxEnt 0.977 0.869 

-hal 

GLM 0.978 0.915 

GAM 0.990 0.962 

RF 0.999 0.973 

CTA 0.988 0.967 

MaxEnt 0.990 0.895 

-hal 

GLM 0.989 0.916 

GAM 0.991 0.942 

RF 0.999 0.987 

CTA 0.985 0.951 

MaxEnt 0.991 0.923 

-hal 

GLM 0.987 0.935 

GAM 0.994 0.936 

RF 0.999 0.969 

CTA 0.987 0.953 

MaxEnt 0.992 0.919 

-hal 

GLM 0.983 0.959 

GAM 0.988 0.959 

RF 0.998 0.928 

CTA 0.981 0.955 

MaxEnt 0.990 0.939 

-hal 

GLM 0.973 0.835 

GAM 0.979 0.883 

RF 0.998 0.977 

CTA 0.979 0.926 

MaxEnt 0.982 0.872 

-hal 

GLM 0.980 0.914 

GAM 0.984 0.929 

RF 0.999 0.971 

CTA 0.976 0.940 

MaxEnt 0.987 0.907 

 
 
 

MaxEnt 0.999 0.989 
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Table S4: True Skill Statistic (TSS), Cutoff, Sensitivity and Specificity scores of the Ensemble 
model (average of the five algorithms), for the models of the clades of Pinus pinaster Ait. 
(G1-pin to G8-pin).  
 

Model TSS Cutoff Sensitivity Specificity 

G1-pin 0.986 552 99.503 99.096 

G2-pin 0.967 479 98.855 97.979 

G3-pin 0.997 415 99.955 99.779 

G4-pin 0.968 584 97.624 99.187 

G5-pin 0.987 466 99.591 99.113 

G6-pin 0.981 536 99.154 98.989 

G7-pin 0.946 589 96.201 98.402 

G8-pin 0.996 441 99.704 99.904 

 
 
Table S5: True Skill Statistic (TSS), Cutoff, Sensitivity and Specificity scores of the Ensemble 
model (average of the five algorithms), for the models of the clades of Pinus halepensis Mill. 
(G1-hal to G7-hal).  
 

Model TSS Cutoff Sensitivity Specificity 

G1-hal 0.927 481 97.448 94.350 

G2-hal 0.968 496 98.542 98.412 

G3-hal 0.959 595 97.453 98.429 

G4-hal 0.969 508 98.626 98.265 

G5-hal 0.952 632 96.492 98.719 

G6-hal 0.927 470 97.172 95.576 

G7-hal 0.945 601 97.069 97.461 
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APPENDIX S3  

A: Summary of conservation guidelines for Pinus pinaster Ait. 

-pin: In general, the conservation of G1-pin can be easily guaranteed as areas for in situ conservation are largely available. There are also areas for 
translocation in northern Spain for current actions and northern France for midterm performance although they should not be necessary. 

-pin: G2-pin is very likely to withstand climate change as only ca. 15 % of its distribution is largely exposed. There are in situ conservation areas 
available where in principle no monitoring is needed. There are also large areas proposed for translocation in case it would be necessary both 
currently and in the midterm (in Italy, southern France and Turkey for the former and northern France for the later).  

-pin: From the currently occupied territory of G3-pin, almost 50% is highly exposed and thus designated for ex situ conservation. There are not areas 
proposed for in situ conservation without monitoring. In parallel, there are new areas very likely to become suitable for the clade in the future 
in United Kingdom (classified as likely suitable in the future) which provides the possibility of translocation in the midterm. 

-pin: Approximately 70 % of the current distribution of this gene pool is classified as largely exposed. In situ conservation areas are available but 
monitoring is generally needed. In case translocation wants to be tested, there are a set of locations provided (Morocco for current actions and 
southern Spain for midterm performance). 

-pin: This clade is largely exposed (over 95 % of its current distribution is designated for ex situ conservation). The scarce locations proposed for in 
situ conservation require monitoring.  Ex situ conservation is thus the recommended option for this clade. Despite that the proposed areas for 
translocation are majorly secondary options, there are also priority territories available for both current and midterm performance. 

-pin: This clade is highly exposed: its current distribution range is fully designated for ex situ conservation (100 %).  In addition there are no areas 
suitable for the clade outside its distribution and new areas will not become suitable in the future. Thus, translocation is not very likely to be 
successful and the conservation of this clade requires new alternatives such as conservation in germplasm banks. 

-pin: G7-pin is largely exposed as over 95 % of its territory is proposed for ex situ conservation. Thus, areas for in situ conservation are very scarce 
and require monitoring. As for ex situ conservation, assisted migration is possible as there are some priority assisted migration locations. 
Nevertheless, they are scarce and conservation in germplasm banks should not be dismissed.  

-pin: Very low percent of the G8-pin clade is recommended for ex situ conservation and thus this is not a largely exposed clade. On the contrary, in 
situ conservation should be enough to guarantee the maintenance of this gene pool. Translocation is also possible (especially in the midterm) to 
some areas of Portugal, the Balkans and the Italian Peninsula.  
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B: Summary of conservation guidelines for Pinus halepensis Mill. 
 

-hal: In this clade, there are large areas proposed for in situ conservation and in most of them monitoring is not strictly necessary. Nevertheless, if ex 
situ conservation alternatives want to be explored there are translocation areas proposed (e.g. northern Spain for current actions). 

-hal: G2-hal has large areas proposed for in situ conservation and in most of them monitoring is not strictly necessary. There are also translocation 
areas available, although majorly to be applied in the midterm and with an intermediate probability of success (midterm secondary option 
translocation areas). 

-hal: G3-hal is likely to withstand climate change as only ca. 11 % of its currently occupied territory is under high risk of habitat loss, and almost all 
populations are capable of in situ conservation. In addition, the spatial extent of suitable territory is very likely to widen in the future enabling 
translocation with high probability of success.  

-hal: This gene pool is largely exposed (over 90 % of its currently occupied territory is recommended for ex situ conservation). Areas proposed for in 
situ conservation are scarce and require monitoring. On the contrary, translocation seems to be a good option as there are relatively large areas 
suited for it in southern Morocco and southern Spain.  

-hal: This clade is highly exposed as a large proportion of its distribution is designed for ex situ conservation (ca.80 %). Nevertheless, there are 
territories proposed for in situ conservation although mainly these need monitoring. There are also some current first option translocation areas 
very near the current distribution of the species (southern Greece). 

-hal: G6-hal is weakly exposed to climate change (only ca. 30 % of its currently occupied territory is under high risk of habitat loss). There are large 
in situ conservation areas and, if desired, translocation could also be performed (overall in Spain and Italy for current actions and northern 
France, Belgium and Netherlands for the midterm). 

-hal: Over 55 % of the distribution of G7-hal is recommended for ex situ conservation (thus considered highly exposed). Nevertheless, there are 
populations recommended for in situ conservation some of them with no need of monitoring. There are also first option translocation areas 
proposed (both for current and midterm performance) located in northern France in case ex situ conservation efforts want to be tested. 
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a) Pinus pinaster Ait. (G1-pin) - Current Distribution 

Range 

absent 

present 

b) Pinus pinaster Ait. (G1-pin) – Suitable Habitat Current Climate 

unsuitable 

suitable 

c) Pinus pinaster Ait. (G1-pin) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 

d) Pinus pinaster Ait. (G1-pin) – Conservation Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

Figure S1: 
 Current 

distribution range of 
Atlantic Iberian 
Peninsula (G1-pin) of 
Pinus pinaster Ait.  

 Simulated habitat 
suitability under 
current climate for 
clade G1-pin.  
c) Classified future 
(2050) habitat 
suitability map of G1-
pin.  

 Conservation 
strategies proposed 
for clade G1-pin. 

 -Figures for Pinus pinaster Ait. clades 
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a) Pinus pinaster Ait. (G2-pin) - Current Distribution 

Range 

absent 

present 

b) Pinus pinaster Ait. (G2-pin) – Suitable Habitat Current Climate 

unsuitable 

suitable 

c) Pinus pinaster Ait. (G2-pin) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 

d) Pinus pinaster Ait. (G2-pin) – Conservation Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

Figure S2:  
 Current 

distribution range of 
the Eastern clade 
(G2-pin) of Pinus 
pinaster Ait. 

 Simulated habitat 
suitability under 
current climate for 
clade G2-pin.  

: Classified future 
(2050) habitat 
suitability map of G2-
pin.  
d): Conservation 
strategies proposed 
for clade G2-pin. 
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a) Pinus pinaster Ait. (G3-pin) - Current Distribution 

Range 

absent 

present 

b) Pinus pinaster Ait. (G3-pin) – Suitable Habitat Current 

Climate 

unsuitable 

suitable 

c) Pinus pinaster Ait. (G3-pin) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 

d) Pinus pinaster Ait. (G3-pin) – Conservation Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

Figure S3: 
 Current distribution 

range of the Atlantic 
France (G3-pin) of 
Pinus pinaster Ait.  

 Simulated habitat 
suitability under 
current climate for 
clade G3-pin. : 
Classified future (2050) 
habitat suitability map 
of G3-pin.  
d): Conservation 
strategies proposed for 
clade G3-pin. 
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a) Pinus pinaster Ait. (G4-pin) - Current Distribution 

Range 

absent 

present 

b) Pinus pinaster Ait. (G4-pin) – Suitable Habitat Current Climate 

unsuitable 

suitable 

c) Pinus pinaster Ait. (G4-pin) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 

d) Pinus pinaster Ait. (G4-pin) – Conservation Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

Figure S4 : 
  Current 
distribution range of 
the Morocco clade 
(G4-pin) of Pinus 
pinaster Ait. 

 Simulated habitat 
suitability under 
current climate for 
clade G4-pin.  

: Classified future 
(2050) habitat 
suitability map of G4-
pin.  
d): Conservation 
strategies proposed for 
clade G4-pin. 
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a) Pinus pinaster Ait. (G5-pin) - Current Distribution 

Range 

absent 

present 

b) Pinus pinaster Ait. (G5-pin) – Suitable Habitat Current Climate 

unsuitable 

suitable 

c) Pinus pinaster Ait. (G5-pin) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 

d) Pinus pinaster Ait. (G5-pin) – Conservation Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

Figure S5 : 
 Current 

distribution range of 
the Eastern Spain 
clade (G5-pin) of 
Pinus pinaster Ait. 

 Simulated habitat 
suitability under 
current climate for 
clade G5-pin.  
Classified future 
(2050) habitat 
suitability map of G5-
pin. 
d): Conservation 
strategies proposed for 
clade G5-pin. 
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a) Pinus pinaster Ait. (G6-pin) - Current Distribution 

Range 

absent 

present 

b) Pinus pinaster Ait. (G6-pin) – Suitable Habitat Current Climate 

unsuitable 

suitable 

c) Pinus pinaster Ait. (G6-pin) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 

d) Pinus pinaster Ait. (G6-pin) – Conservation Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

Figure S6 :  
 Current 

distribution range of 
the Central Spain 
clade (G6-pin) of 
Pinus pinaster Ait.  

 Simulated habitat 
suitability under 
current climate for 
clade G6-pin.  

 Classified future 
(2050) habitat 
suitability map of G6-
pin.  

 Conservation 
strategies proposed 
for clade G6-pin. 
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a) Pinus pinaster Ait. (G7-pin) - Current Distribution 

Range 

absent 

present 

b) Pinus pinaster Ait. (G7-pin) – Suitable Habitat Current Climate 

unsuitable 

suitable 

c) Pinus pinaster Ait. (G7-pin) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 

d) Pinus pinaster Ait. (G7-pin) – Conservation Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

Figure S7 :  
 Current distribution 

range of the Southern 
Spain clade (G7-pin) of 
Pinus pinaster Ait.  

 Simulated habitat 
suitability under 
current climate for 
clade G7-pin.  

 Classified future 
(2050) habitat 
suitability map of G7-
pin.  

 Conservation 
strategies proposed for 
clade G7-pin. 
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a) Pinus pinaster Ait. (G8-pin) - Current Distribution 

Range 

absent 

present 

b) Pinus pinaster Ait. (G8-pin) – Suitable Habitat Current Climate 

unsuitable 

suitable 

c) Pinus pinaster Ait. (G8-pin) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 

d) Pinus pinaster Ait. (G8-pin) – Conservation Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

Figure S8:  
 Current distribution 

range of the Tunisia 
clade (G8-pin) of Pinus 
pinaster Ait.  

 Simulated habitat 
suitability under 
current climate for 
clade G8-pin.  

 Classified future 
(2050) habitat 
suitability map of G8-
pin.  

 Conservation 
strategies proposed for 
clade G8-pin. 
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Figure S9:  
 Current 

distribution range of 
the Central and 
Southern Spain clade 
(G1-hal) of Pinus 
halepensis Mill.  

 Simulated habitat 
suitability under 
current climate for 
clade G1-hal.  

: Classified future 
(2050) habitat 
suitability map of the 
Central and Southern 
Spain clade G1-hal.  
d): Conservation 
strategies proposed 
for clade G1-hal. 

a) Pinus halepensis Mill. (G1-hal) - Current Distribution 

Range 

absent 

present 

b) Pinus halepensis Mill.  (G1-hal) – Suitable Habitat Current Climate 

unsuitable 

suitable 

d) Pinus halepensis Mill. (G1-hal) – Conservation 

Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

c) Pinus halepensis Mill. (G1-hal) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 

D: Figures for Pinus halepensis Mill. clades  
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Figure S10 :  
 Current distribution 

range of the Balearian 
and Southern France 
clade (G2-hal) of Pinus 
halepensis Mill.  

 Simulated habitat 
suitability under 
current climate for 
clade G2-hal.  

: Classified future 
(2050) asuitability map 
of the Central and 
Southern Spain clade 
G2-hal.  
d): Conservation 
strategies proposed for 
clade G2-hal.  

a) Pinus halepensis Mill. (G2-hal) - Current Distribution 

Range 

absent 

present 

b) Pinus halepensis Mill.  (G2-hal) – Suitable Habitat Current 

Climate 

unsuitable 

suitable 

d) Pinus halepensis Mill. (G2-hal) – Conservation 

Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

c) Pinus halepensis Mill. (G2-hal) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 
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Figure S11 :  
 Current distribution 

range of Tunisian and 
Northern Italian clade 
(G3-hal) of Pinus 
halepensis Mill.  

 Simulated habitat 
suitability under 
current climate for 
clade G3-hal.  

: Classified future 
(2050) asuitability map 
of the Central and 
Southern Spain clade 
G3-hal.  
d): Conservation 
strategies proposed for 
clade G3-hal.  

a) Pinus halepensis Mill. (G3-hal) - Current Distribution 

Range 

absent 

present 

b) Pinus halepensis Mill. (G3-hal) – Suitable Habitat Current Climate 

unsuitable 

suitable 

d) Pinus halepensis Mill.  (G3-hal) – Conservation 

Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

c) Pinus halepensis Mill. (G3-hal) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 
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Figure S12 :  Current 
distribution range of 
Moroccan and 
Southern Spain clade 
(G4-hal) of Pinus 
halepensis Mill.  

 Simulated habitat 
suitability under 
current climate for 
clade G4-hal.  

: Classified future 
(2050) suitability map 
of the Central and 
Southern Spain clade 
G4-hal.  
d): Conservation 
strategies proposed for 
clade G4-hal.  

a) Pinus halepensis Mill. (G4-hal) - Current Distribution 

Range 

absent 

present 

b) Pinus halepensis Mill. (G4-hal) – Suitable Habitat Current Climate 

unsuitable 

suitable 

d) Pinus halepensis Mill.  (G4-hal) – Conservation 

Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

c) Pinus halepensis Mill. (G4-hal) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 
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Figure S13 : 
  Current distribution 
range Greek clade (G5-
hal) of Pinus 
halepensis Mill.  
Simulated habitat 
suitability under 
current climate for 
clade G5-hal.  

: Classified future 
(2050) suitability map 
of the Central and 
Southern Spain clade 
G5-hal.  
d): Conservation 
strategies proposed for 
clade G5-hal.  

a) Pinus halepensis Mill. (G5-hal) - Current Distribution 

Range 

absent 

present 

b) Pinus halepensis Mill. (G5-hal) – Suitable Habitat Current Climate 

unsuitable 

suitable 

d) Pinus halepensis Mill. (G5-hal) – Conservation 

Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

c) Pinus halepensis Mill. (G5-hal) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 
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Figure S14 : 
 Current distribution 

range Central-
Northern Spain clade 
(G6-hal) of Pinus 
halepensis Mill. 

 Simulated habitat 
suitability under 
current climate for 
clade G6-hal.  

: Classified future 
(2050) suitability map 
of the Central and 
Southern Spain clade 
G6-hal.  
d): Conservation 
strategies proposed for 
clade G6-hal.  

a) Pinus halepensis Mill. (G6-hal) - Current Distribution 

Range 

absent 

present 

b) Pinus halepensis Mill. (G6-hal) – Suitable Habitat Current 

Climate 

unsuitable 

suitable 

d) Pinus halepensis Mill. (G6-hal) – Conservation 

Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

c) Pinus halepensis Mill. (G6-hal) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 
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Figure S15 :  
 Current distribution 

range Northern Spain-
Southern France clade 
(G7-hal) of Pinus 
halepensis Mill.  

 Simulated habitat 
suitability under 
current climate for 
clade G7-hal.  

: Classified future 
(2050) suitability map 
of the Central and 
Southern Spain clade 
G7-hal.  
d): Conservation 
strategies proposed for 
clade G7-hal.  

a) Pinus halepensis Mill. (G7-hal) - Current Distribution 

Range 

absent 

present 

b) Pinus halepensis Mill. (G7-hal) – Suitable Habitat Current Climate 

unsuitable 

suitable 

d) Pinus halepensis Mill. (G7-hal) – Conservation 

Proposal 

current 1. translocation 
assisted 

ex situ 

in situ 

current 2. translocation 

midterm 1. translocation 

midterm 2. translocation 

c) Pinus halepensis Mill. (G7-hal) – Suitable Habitat 2050 

Climate 

likely unsuitable 

uncertain 

likely suitable 
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E: Summary table of areas assigned to different conservation strategies 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Table S6: Areas (Km2) corresponding to the territories proposed for the different conservation strategies within each clade for both Pinus 
pinaster Ait. and Pinus halepensis Mill. 
 

 

In situ 
In situ with 
monitoring 

Ex situ 
Ex 

situ 
Current 1  

translocation 
Current 2 

translocation 
Midterm 1 

translocation 
Midterm 2 

translocation 

-pin 17705.16 8204.38 12551.22 32.63 19900.94 11155.76 495.22 7012.78 

-pin 4018.92 2509.93 1087.43 14.28 56344.12 91077.41 12576.06 80793.09 

-pin 0.00 5546.33 5461.39 49.61 152.78 5801.86 2436.11 12412.18 

-pin 25.27 1033.07 2474.07 70.04 2942.59 16597.06 17.62 5083.37 

-pin 0.00 234.51 5551.36 95.95 1126.91 17304.47 2377.91 15864.50 

-pin 0.00 0.00 8442.64 100.00 183.11 532.33 39.89 303.46 

-pin 0.00 74.32 3245.49 97.76 624.98 4616.07 252.42 13796.36 

-pin 914.61 1797.52 81.90 2.93 1661.48 8185.67 3286.68 19431.03 

-hal 6083.29 4973.49 11938.10 51.92 51656.41 93759.80 3462.11 15869.45 

-hal 1428.37 1081.02 2573.68 50.63 14312.61 32168.77 3254.16 48487.86 

-hal 11798.66 3653.03 1845.59 10.67 59856.54 68721.48 87104.06 230536.26 

-hal 0.00 622.22 8174.68 92.93 5044.45 10857.58 95.36 1644.97 

-hal 80.76 500.10 2388.70 80.44 2883.85 15812.66 4617.21 24701.42 

-hal 16002.16 5937.70 10021.55 31.36 93155.30 113639.69 75152.99 207605.12 

-hal 953.86 5438.08 8118.76 55.95 27357.19 50344.32 39672.77 179632.45 
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APPENDIX S4  

Dynamic Conservation Units: Classification within clades and Exposure 
assessment 
 
Table S7: Pinus pinaster Ait. Exposure assessment of its dynamic conservation units (DCUs) 
 

DCU Code Clade Future Suitability 2050  

ESP00018 Southern Spanish group - G7 Likely unsuitable 

ESP00016 Southern Spanish group - G7 Likely unsuitable 

ESP00007 Southern Spanish group - G7 Likely unsuitable 

ESP00017 Southern Spanish group - G7 Likely unsuitable 

ESP00042 Southern Spanish group - G7 Uncertain 

ESP00043 Southern Spanish group - G7 Uncertain 

ESP00025 Not within Euforgen limits (G7) Uncertain 

ESP00045 Not within Euforgen limits (G7) Likely unsuitable 

ESP00035 Southern Spanish group - G7 Likely unsuitable 

ESP00038 Southern Spanish group - G7 Likely unsuitable 

ESP00039 Eastern Spanish group - G5 Likely suitable 

ESP00037 Central Spanish group - G6 Likely unsuitable 

ESP00032 Eastern Spanish group - G5 Uncertain 

ESP00044 Eastern Spanish group - G5 Uncertain 

ESP00030 Not classified Not classified 

ESP00023 Central Spanish group - G6 Likely unsuitable 

ESP00033 Not within Euforgen limits (G5) Uncertain 

ESP00034 Not within Euforgen limits (G5) Uncertain 

ESP00006 Not within Euforgen limits (G5) Uncertain 

ESP00031 Eastern Spanish group - G5 Likely unsuitable 

ESP00024 Not classified Not classified 

ESP00020 Not classified Not classified 

ESP00022 Not classified Not classified 

ESP00029 Not classified Not classified 

ITA00135 Eastern group - G2 Likely unsuitable 

ITA00019 Eastern group - G2 Likely unsuitable 

ITA00172 Eastern group - G2 Likely unsuitable 

ITA00073 Eastern group - G2 Uncertain 

ITA00242 Eastern group - G2 Uncertain 

ITA00136 Eastern group - G2 Uncertain 

ITA00152 Not within Euforgen limits (G2) Uncertain 

ITA00011 Eastern group - G2 Likely suitable 

ITA00104 Eastern group - G2 Likely suitable 

ITA00132 Eastern group - G2 Likely suitable 

ITA00097 Eastern group - G2 Likely suitable 

ITA00060 Eastern group - G2 Likely suitable 

FRA00048 Atlantic France group - G3 Uncertain 
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Table S8: Pinus halepensis Mill Exposure assessment of its dynamic conservation units 
(DCUs) 

 

DCU Code Clade 
Future Suitability 2050 
(Clade 1) 

Future Suitability 2050  
(Clade 2) 

GRC00001 Greek clade (G5) Likely unsuitable - 

GRC00002 
Not within Euforgen limits (G3 & 
G5) 

Coordinates outside 
study area 

Coordinates outside 
study area 

GRC00003 
Not within Euforgen limits (G3 & 
G5) 

Coordinates outside 
study area 

Coordinates outside 
study area 

ITA00027 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Coordinates outside 
study area 

Coordinates outside 
study area 

ITA00107 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Likely suitable Likely unsuitable 

ITA00108 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Likely suitable Likely unsuitable 

ITA00109 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Likely suitable Likely unsuitable 

ITA00046 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Coordinates outside 
study area 

Coordinates outside 
study area 

ITA00110 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Likely suitable Likely unsuitable 

ITA00111 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Likely suitable Likely unsuitable 

ITA00112 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Likely suitable Likely unsuitable 

ITA00113 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Coordinates outside 
study area 

Coordinates outside 
study area 

ITA00114 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Coordinates outside 
study area 

Coordinates outside 
study area 

ITA00025 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Coordinates outside 
study area 

Coordinates outside 
study area 

ITA00115 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Likely unsuitable Likely unsuitable 

ITA00133 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Likely unsuitable Likely unsuitable 

ESP00003 
Central and northern Spain clade 
(G6) & Northern Spain-southern 
France clade (G7) 

Uncertain Likely unsuitable 

ITA00076 
Not within Euforgen limits (G3 & 
G5) 

Likely unsuitable Likely unsuitable 

ITA00072 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Likely unsuitable Likely unsuitable 

ITA00075 Tunisian and northern Italian clade Likely unsuitable Likely unsuitable 

FRA00049 Atlantic France group - G3 Uncertain 

ITA00203 Eastern group - G2 Likely suitable 

ITA00059 Not within Euforgen limits (G2) Coordinates outside study area 

FRA00050 Atlantic France group - G3 Uncertain 

FRA00051 Atlantic France group - G3 Uncertain 
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(G3) & Greek clade (G5) 

BIH00065 
Tunisian and Northern Italian clade 
(G3) & Greek clade (G5) 

Likely unsuitable Likely unsuitable 

ITA00007 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Likely unsuitable Likely unsuitable 

ITA00242 
Tunisian and northern Italian clade 
(G3) & Greek clade (G5) 

Likely unsuitable Likely unsuitable 

ITA00061 
Balearic and southern France clade 
(G2) & Northern Spain and 
southern France clade (G7) 

Likely suitable Likely unsuitable 

ITA00179 
Balearic and southern France clade 
(G2) & Northern Spain and 
southern France clade (G7) 

Likely suitable Likely unsuitable 

ITA00165 
Balearic and southern France clade 
(G2) & Northern Spain and 
southern France clade (G7) 

Likely unsuitable Likely unsuitable 
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Table S9: Pinus pinaster Ait. Exposure assessment of its genetically-homogeneous 
conservation relevant population groups   
 

Population 
name 

Code Genetic clade 
Conservation 
groups 

Future Suitability 
 

Pleucadec PLE Atlantic France group - G3 FrAtl_1 Likely unsuitable 

Hourtin HOU Atlantic France group - G3 FrAtl_2 Uncertain 

Mimizan MIM Atlantic France group - G3 FrAtl_1 Uncertain 

Olonne sur 
Mer OLO Atlantic France group - G3 FrAtl_2 

Coordinates outside 
study area 

Petrocq PET Atlantic France group - G3 FrAtl_2 Uncertain 

St-Jeans des 
Monts STJ Atlantic France group - G3 FrAtl_2 

Coordinates outside 
study area 

Leverdon VER Atlantic France group - G3 FrAtl_2 Likely unsuitable 

Alto Llama ALT Atlantic Iberian Peninsula group - G1 SpAtl Likely unsuitable 

Arenas 
S.Pedro ARM Atlantic Iberian Peninsula group - G1 SpAtl Likely unsuitable 

Cadavedo CAD Atlantic Iberian Peninsula group - G1 SpAtl Likely unsuitable 

Castropol CAS Atlantic Iberian Peninsula group - G1 SpAtl Likely unsuitable 

Lamu±o LAM Atlantic Iberian Peninsula group - G1 SpAtl Likely unsuitable 

Leiria LEI Atlantic Iberian Peninsula group - G1 SpAtl Likely suitable 

Pto. Vega PUE Atlantic Iberian Peninsula group - G1 SpAtl Uncertain 

S.Cipriano SAC Atlantic Iberian Peninsula group - G1 SpAtl Likely suitable 

Sergurde SEG Atlantic Iberian Peninsula group - G1 SpAtl Likely suitable 

Sier. Barcia SIE Atlantic Iberian Peninsula group - G1 SpAtl Likely unsuitable 

Tamrabta TAM Moroccan group - G4 Mor Likely unsuitable 

Boniches BON Eastern Spanish group - G5 CSp_2 Likely unsuitable 

Olba OLB Eastern Spanish group - G5 CSp_2 Uncertain 

S.Leonardo SAL Central Spanish group - G6 CSp_1 Likely unsuitable 

Valdemaqueda VAL Central Spanish group - G6 CSp_2 Likely unsuitable 

Pineta PIE Eastern group - G2 Pie Uncertain 

Bayubas BAY Central Spanish group - G6 CSp_1 Likely unsuitable 

Coca COC Central Spanish group - G6 CSp_1 Likely unsuitable 

Armayán ARN Central Spanish group - G6 CSp_2 Likely unsuitable 

Cuellar CUE Central Spanish group - G6 CSp_1 Likely unsuitable 

Oria ORI Southern Spanish group- G7 Ori Uncertain 

Cenicientos CEN Central Spanish group - G6 CSp_2 Likely unsuitable 

Pinia PIA Eastern group - G2 Pia Likely unsuitable 

Quatretonda QUA Southern Spanish group - G7 Qua Likely unsuitable 
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Supporting information Chapter 3: 

APPENDIX S1:  

Details on meteorological stations and climatic data 
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APPENDIX S1:  

Details on meteorological stations and climatic data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 

a) 

Fig S1: Geographical representation (a) and histogram of elevations (b) of the 142 
meteorological stations employed for climatic interpolations in WORLDCLIM database  
(temperature and precipitation; Hijmans et al., 2005) and the 1830 (temperature) and 5053 
(precipitation) meteorological stations provided by the Spanish Meteorological Agency 
(AEMET) across the Spanish Iberian Peninsula. 

WORLDCLIM – 
Temperature and 
Precipitation 

AEMET - Temperature AEMET - Precipitation 

WORLDCLIM – 
Temperature and 
Precipitation AEMET - Temperature AEMET - Precipitation 
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a) 

Fig S2: Selected environmenal variables for Pinus pinaster Ait. (a) and pitch canker disease 
(b) to be included within their species distribution models. 1/0 values as well as green and 
red lines correspond to presence and pseudoabsence records respectively. 
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Supporting information Chapter 4: 

APPENDIX S1:  

Environmental variable selection, Environmental marginality figures and 

Geographical and environmental indices for genetically characterized populations 

APPENDIX S2:  

Geographic and environmental indices for genetically characterized populations  
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APPENDIX S1 

Environmental variable selection, Environmental marginality figures and 
Geographical and environmental indices for genetically characterized 
populations 
 
Variable selection for Species Distribution Models 

We downloaded the 19 bioclimatic variables available in WORLDCLIM (Hijmans et 

al., 2005) representative of the period 1950-2000 for the analysis.  

In order to avoid multicollinearity effects, we retained variables with Pearson 

correlations lower than 0.75 as the use of simple methods based on rules of thumb 

have proved to be as effective as more complicated methods (Dormann et al., 2013). 

This threshold value is a bit less restrictive than the common value of 0.70 but more 

flexible thresholds have also been used in literature (see Elith et al., 2006 for an 

example). Among highly correlated variables we kept the one with the highest 

explained deviance scores (D2) when individually fitted in a Generalized Linear 

Model (GLM; McCullagh & Nelder, 1989). We performed this analysis individually 

for each species and selected four or five variables, both temperature- and 

precipitation-related, to characterize their bioclimatic niche. For all the species, we 

automatically discarded BIO8 and BIO9 as the steep gradient shown by these 

variables, in which very often two adjacent cells are characterized by extremely 

different values within the study area for no obvious reason, may lead to artefacts in 

the SDM output maps. Finally we performed a Variance Inflation Factor (VIF) test 

and adjusted variable selection to ensure that all VIF values were below a threshold 

value of 10. The similar patterns detected in D2 values in P. pinaster /P. halepensis 

and P. picea / P. sylvestris enabled the selection of the same set of variables for each 

pair of species while P. nigra, P. pinea and A. alba had an independent bioclimatic 

variable set. The final set of relevant weakly correlated variables for each species is 

shown in Table S1.  

 

 

 

 



 Sup Info Chapter 4: Integrating geography and environment in a standardized procedure to assess 

marginality and its effects on genetic patterns. An example with European conifers 

     239 
 

 
Table S1: Set of relevant and weakly correlated bioclimatic predictors selected for each 
target species 
 

Species Bioclimatic predictors 

Pinus halepensis 
Pinus pinaster 

BIO1 
(Annual Mean 
Temperature) 

BIO4 
(Temperature 
Seasonality) 

BIO18 
(Precipitation 
of Warmest 
Quarter) 

BIO19 
(Precipitatio
n of Coldest 
Quarter) 

- 

Pinus nigra 
BIO2 
(Mean diurnal 
range) 

BIO4 
(Temperature 
Seasonality) 

BIO11 
(Mean 
Temperature of 
Coldest 
Quarter) 

BIO19 
(Precipitatio
n of Coldest 
Quarter) 

- 

Pinus pinea 
BIO1 
(Annual Mean 
Temperature) 

BIO4 
(Temperature 
Seasonality) 

BIO15 
(Precipitation 
seasonality) 

BIO18 
(Precipitatio
n of 
Warmest 
Quarter) 

BIO19 
(Precipitation 
od Coldest 
Quarter) 

Abies alba 
BIO3 
(Isothermality
) 

BIO7 
(Temperature 
Annual Range) 

BIO10 
(Mean 
Temperature of 
Warmest 
Quarter) 

BIO16 
(Precipitatio
n of Wettest 
Quarter) 

BIO18 
(Precipitation 
of Warmest 
Quarter) 

Pinus sylvestris 
Picea abies 

BIO3 
(Isothermality
) 

BIO4 
(Temperature 
Seasonality) 

BIO10 
(Mean 
Temperature of 
Warmest 
Quarter) 

BIO15 
(Precipitatio
n 
seasonality) 

BIO18 
(Precipitation 
of Warmest 
Quarter) 
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Fig S1: Current distribution, probabilistic and binary geographic projections from Species Distribution Models, and 
environmental marginal populations (two different thresholds: 5th and 10th percentiles) of Pinus halepensis Mill. Black dots 
correspond to genetically characterized populations.  

Probabilistic projection 
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Fig S2: Current distribution, probabilistic and binary geographic projections from Species Distribution Models, and environmental 
marginal populations (two different thresholds: 5th and 10th percentiles) of Pinus pinaster Ait. Black dots correspond to genetically 
characterized populations.  

Probabilistic projection 
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Fig S3: Current distribution, probabilistic and binary geographic projections from Species Distribution Models, and environmental 
marginal populations (two different thresholds: 5th and 10th percentiles) of Pinus nigra Arnold. Black dots correspond to genetically 
characterized populations.  

 

Probabilistic projection 
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Fig S4: Current distribution, probabilistic and binary geographic projections from Species Distribution Models, and environmental 
marginal populations (two different thresholds: 5th and 10th percentiles) of Pinus pinea L. Black dots correspond to genetically 
characterized populations.  

Probabilistic projection 
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Fig S5: Current distribution, probabilistic and binary geographic projections from Species Distribution Models, and environmental 
marginal populations (two different thresholds: 5th and 10th percentiles) of Abies alba Mill. Black dots correspond to genetically 
characterized populations.  
 

Probabilistic projection 
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Fig S6: Current distribution, probabilistic and binary geographic projections from Species Distribution Models, and environmental marginal 
populations (two different thresholds: 5th and 10th percentiles) of Pinus sylvestris L. Black dots correspond to genetically characterized 
populations.  

Probabilistic projection 
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Fig S7: Current distribution, probabilistic and binary geographic projections from Species Distribution Models, and environmental 
marginal populations (two different thresholds: 5th and 10th percentiles) of Picea abies L. Black dots correspond to genetically 
characterized populations.  

 

Probabilistic projection 
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APPENDIX S2 

Geographic and environmental indices for genetically characterized 
populations 
 
 
 
 
 

Population Lat Long 
Dborder 
(km) 

SizeCore 
(ha) 

Dlargepatch 
(Km) 

Env. Index 

Amfilohia 21.28 38.88 -79.54 163025.08 80.72 72.5(7.2) 

North Eubea 23.18 38.58 -5.37 21441.77 53.43 94.3(60.4) 

Elea 21.53 37.77 -15.53 163025.08 81.50 90.2(32.1) 

Zaouia Ifrane -5.14 33.57 -40.36 131965.81 158.41 87.8(24.6) 

Kassandra 23.88 40.09 -139.63 32500.26 140.73 95.7(74) 

Imperia 8.05 43.9 -140.07 407490.13 141.03 90.0(31.3) 

Shaharia 34.83 31.6 -1179.42 522406.96 1180.24 1.5(0.1) 

Litorale 
Tarantino 17.12 40.62 -473.20 163025.08 474.34 96.5(82.1) 

Thala 8.65 35.57 6.27 778425.03 69.52 96.2(79.7) 

Aures Beni 
Melloul 6.83 35.17 -7.30 540120.92 110.35 96.6(83.1) 

Quercianella 10.34 43.49 -317.08 407490.13 317.78 87.7(24.4) 

Tabarka 9.08 36.51 2.13 242335.82 186.06 93.4(52) 

Alcotx 4.17 39.97 2.68 26692.73 67.77 94.6(63) 

Carlo Forte 8.18 39.08 -278.66 242335.82 279.81 - 

Santanyi 3.05 39.28 -5.18 993.11 52.38 96.1(78.8) 

Otricoli 12.38 42.24 -504.89 407490.13 505.76 85.0(18) 

Gargano Marzini 15.94 41.9 -638.47 163025.08 639.64 93.5(52.8) 

Garzano Monte 
Pucci 15.86 41.55 -619.59 163025.08 620.75 96.1(78.8) 

Nat 35.03 32.72 -1149.90 5946.95 1150.96 8.3(0.2) 

Palma de Mallor 2.94 39.15 -20.21 993.11 55.06 96.6(83.1) 

Alcudia 3.17 39.87 -8.37 58913.98 51.29 92.7(45.9) 

Zuera -0.92 41.92 1.67 30444.19 53.29 92.0(41.1) 

Atalix 4.05 39.92 -6.06 26692.73 56.24 94.3(60.4) 

Cabanellas 2.78 42.25 8.79 110454.99 53.51 84.7(17.4) 

Tivissa 0.76 41.06 12.62 1070044.22 75.43 93.7(54.6) 

Serra d'Irta 0.32 40.35 -9.24 2336787.15 98.16 94.5(62.1) 

Benicassim 0.03 40.08 -5.20 2336787.15 51.46 95.6(72.7) 

Tuéjar -1.16 39.82 14.44 2336787.15 50.01 95.3(69.2) 

Alhama de 
Murcia -1.53 37.86 -2.13 2701.27 51.34 98.3(97.9) 

Benamaurel -2.74 37.7 0.51 1828.14 54.61 95.7(74) 

Table S2: Geographical – distance to the border (Dborder), size of the core patch (Sizecore), 
distance to the nearest big (>100 ha) core path (Dlargepatch) - and environmental indexes 
(Env. Index; corresponding percentile in brackets) for genetically characterized 
populations of Pinus halepensis Mill.  
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Frigiliana -3.92 36.82 1.56 162332.66 58.14 95.6(72.7) 

Carratraca -4.83 36.84 3.98 26627.30 76.67 92.7(45.9) 

Tibi -0.65 38.52 4.55 2336787.15 51.81 92.6(45.1) 

Serra d'Irta 0.32 40.35 -9.24 2336787.15 98.16 94.5(62.1) 

Bicorp -0.86 39.1 20.40 2336787.15 50.34 98.0(96.3) 

Serra Calderona -0.48 39.74 6.42 2336787.15 66.29 95.9(76.7) 

Alcantud -2.31 40.56 -28.53 195.74 57.41 79.0(10.8) 

Colmenar de 
Oreja -3.33 40.09 -50.58 781.16 51.74 96.8(85.4) 

Santiago de la 
Espada -2.47 38.23 12.33 2336787.15 59.29 96.5(82.1) 

Serra Calderona -0.48 39.74 6.42 2336787.15 66.29 95.9(76.7) 

Villajoyosa -0.3 38.5 -11.28 2336787.15 59.99 97.4(92.2) 

Monovar -0.96 38.39 2.00 2336787.15 55.37 98.3(97.9) 

Montan -0.59 40.05 -0.51 2336787.15 65.02 94.0(57.4) 

Cabanes 0.04 40.1 7.27 2336787.15 77.92 95.5(71.5) 

Sinarcas -1.2 39.8 13.19 2336787.15 52.01 91.5(38.3) 

Titaguas -1.3 39.89 -0.45 2336787.15 64.27 85.9(19.9) 

Cabanes 0.04 40.1 7.27 2336787.15 77.92 95.5(71.5) 

Alzira -0.39 39.12 2.20 49494.60 69.75 96.7(84.2) 

Eslida -0.29 39.87 7.34 2336787.15 78.04 96.1(78.8) 
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Table S3: Geographical – distance to the border (Dborder), size of the core patch (Sizecore), distance to the 
nearest big (>100 ha) core path (Dlargepatch) and cost-distances to the centroid of the distribution 
(Dcentroid) - and environmental indexes (Env. Index; corresponding percentile in brackets) for 
genetically characterized populations of Pinus pinaster Ait.  
 

Population Lat Long 
Dborder 
(km) 

SizeCore (ha) 
Dbigpatch 
(Km) 

Dcentroid Env. Index 

Pleucadec -2.34 47.78 -233.26 417.63 233.88 13593.57 83.0(15.4) 

Hourtin -1.15 45.18 1.70 1292246.35 54.30 7518.83 92.6(37.9) 

Mimizan -1.30 44.13 -0.38 1292246.35 69.42 6237.69 89.5(26.8) 

Olonne sur Mer -1.83 46.57 -95.21 417.63 95.65 11147.12 92.3(36.6) 

Petrocq -1.30 44.06 1.71 1292246.35 63.22 6145.10 91.5(33.2) 

StJean des Monts -2.03 46.76 -121.93 417.63 122.36 11704.16 92.6(37.9) 

Leverdon -1.09 45.55 -4.31 119.83 52.54 8028.02 94.3(46.2) 

Alto de la Llama -6.49 43.28 -17.31 28337.31 50.62 5429.84 95.2(51.9) 

Armayan -6.46 43.30 -13.65 28337.31 55.31 5412.26 94.4(46.8) 

Cadavedo -6.42 43.54 -11.21 28337.31 94.51 5689.60 87.9(23) 

Castropol -6.98 43.50 -50.99 5543287.95 51.93 6417.39 95.1(51.2) 

Lamu±o -6.22 43.56 -0.44 28337.31 99.71 5477.12 81.4(13.5) 

Leiria -8.96 39.78 3.46 5543287.95 60.72 5603.88 96.8(63.4) 

Puerto de Vega -6.63 43.55 -28.46 28337.31 54.88 6003.76 90.2(28.7) 

Rodoiros -6.54 43.43 -19.38 28337.31 54.52 5699.99 92.3(36.6) 

San Cipriano de 
Ribaterme -8.36 42.12 28.29 5543287.95 52.35 5701.62 99.1(87.6) 

Segurde -8.45 42.82 26.99 5543287.95 51.21 6274.23 97.1(66.2) 

Sierra de Barcia -6.49 43.53 -17.30 28337.31 88.46 5817.20 89.3(26.3) 

Tamrabta -5.02 33.60 -23.82 21447.27 61.03 16972.04 94.2(45.7) 

Boniches -1.66 39.99 19.85 566441.97 56.03 4471.16 93.0(39.8) 

Olba -0.62 40.17 -41.82 566441.97 65.63 5502.86 95.8(56.4) 

San Leonardo -3.06 41.83 6.31 186452.57 57.56 1328.94 79.8(11.7) 

Valquemada -4.31 40.52 18.16 378431.57 50.62 978.80 94.3(46.2) 

Pineta 9.04 41.97 2.06 110436.87 217.86 32795.50 96.6(61.9) 

Madisouka -5.23 35.18 1.26 120547.09 116.52 13540.41 98.2(76.7) 

Bayubas de Abajo -2.88 41.52 1.17 186452.57 50.02 1575.99 92.6(37.9) 

Carbonero el Mayor -4.28 41.17 -1.55 219842.08 52.83 123.84 94.1(45.2) 

Coca -4.50 41.25 4.14 219842.08 60.24 274.61 95.1(51.2) 

Arenas de San Pedro -5.12 40.19 -3.06 378431.57 64.23 1583.05 92(35.3) 

Cuellar -4.48 41.37 12.10 219842.08 51.67 324.89 95.2(51.9) 

Oria -2.35 37.53 -44.93 3986.62 63.52 7886.41 90(28.1) 

Cenicientos -4.49 40.28 8.25 378431.57 60.65 1285.61 90.9(31) 

Pinia 9.46 42.02 -8.61 110436.87 188.05 33048.86 79.1(11) 

Competa -3.95 36.83 -37.84 128915.67 153.03 9036.95 80.4(12.4) 

Quatretonda -0.36 38.97 -79.37 566441.97 80.54 6814.63 78.3(10.4) 
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Population Lat Long Env. index 

Ponte de Lima -8.60 41.77 98.9(99.8) 

Vieira do Minho -8.10 41.68 99.8(100.0) 

Amarante -8.10 41.30 99.4(100.0) 

Serra do Minho -8.15 41.00 99.5(100.0) 

Viseu Figueira do Campo -7.90 40.66 99.4(100.0) 

Vila Cha de Sa (Viseu) -7.90 40.67 99.4(100.0) 

Alcacer do Sal -8.52 38.38 83.5(65.9) 

Alcácer Sal Herdade Ervideira -8.50 38.25 79.1(59.6) 

Vega Sicilia -4.30 41.62 91.6(81.0) 

Valorio -5.77 41.52 95.3(95.6) 

Toro -5.45 41.52 95.6(97.8) 

Tordesillas -4.95 41.50 95.4(96.3) 

Portillo -4.52 41.50 92.9(85.0) 

Montemayor de Pililla -4.42 41.50 93.1(86.0) 

Iscar -4.52 41.35 95.3(95.6) 

Cogeces de Iscar -4.52 41.41 94.8(92.8) 

Budia -2.75 40.67 87.8(74.1) 

Sistema Central -4.33 40.50 94.1(90.0) 

Cadalso -4.52 40.28 94.1(90.0) 

Garrovillas -6.58 39.68 70.7(51.1) 

Tarazona de la Mancha -1.92 39.28 94.4(91.1) 

Biar -0.75 38.63 89.5(77.0) 

Sierra Morena -4.00 38.17 11.3(12.0) 

Cartaya -7.18 37.37 55.8(39.7) 

Doñana -6.42 36.92 46.2(33.2) 

Conil de la Frontera -6.08 36.33 86.9(72.3) 

Conil de la Frontera -6.03 36.33 86.8(72.1) 

Las Lomas -5.87 36.30 84.5(67.9) 

Mizzine -5.35 35.10 90.3(78.3) 

Cap Spartel -5.92 35.78 78.8(59.3) 

Cap Spartel -5.89 35.79 84.3(67.5) 

Koudia Hamra -6.17 35.18 63.1(44.4) 

Ain Grana -5.33 35.17 84.6(68.1) 

Forêt d'Izarène -5.47 34.82 73.9(54.0) 

Cataluna Litoral 1 2.83 41.83 38.9(26.9) 

Parafrugell 3.10 41.95 81.5(62.7) 

Vinassan (Aude) 3.08 43.20 78.0(58.4) 

Villeneuvette (Hérault) 3.40 43.62 87.0(72.5) 

Saintes-Maries (B. du Rh.) 4.42 43.47 82.5(64.3) 

Le Val  / Brignoles (Var) 6.08 43.43 93.0(85.5) 

Hyères (Var) 6.15 43.08 91.7(81.2) 

St Aygulf (Var) 6.68 43.43 96.9(99.2) 

Table S4: Environmental indexes (corresponding percentile in brackets) for genetically 
characterized populations of Pinus pinea L. 
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St Raphaël (Var) 6.77 43.43 97.7(99.5) 

S. Rossore  Via dei Pini-Via dei 
Bicchi (Pi) 10.28 43.75 93.3(86.9) 

Migliarino 10.28 43.78 93.8(88.8) 

Cecina 10.30 43.75 93.4(87.3) 

Tromboli di Cecina 10.47 43.32 74.5(54.7) 

Tomboli di Cecina  Rosignano  
Bibbona (Pi) 10.53 43.25 75.2(55.4) 

Follonica  Tombolo settentrionale 
(Gr) 10.77 42.92 72.5(52.7) 

Follonica  Bandita Scarlino 
Gavorrano (Gr) 10.83 42.92 73.2(53.4) 

Feniglia  duna  Orbetello (Gr) 11.28 42.42 67.8(48.3) 

Dar Chichou (Cap Bon) 10.98 36.95 22.2(16.2) 

Bizerte 9.93 37.25 59.3(42.0) 

Metochi Patras 21.50 38.10 89.7(77.3) 

Kunupeli 21.37 38.12 85.0(68.8) 

Strophillia 21.38 38.13 84.8(68.5) 

Mandraki 23.41 39.17 41.8(29.5) 

Polygyros (Chalkidiki) 23.68 40.23 15.3(13.6) 

Kumluca 30.33 36.30 19.6(15.2) 

Serik 31.02 36.87 25.9(18.0) 

Mugla / Katranci / Turtuglu  28.05 37.37 63.1(44.4) 

Yatagan-Katranci 27.92 37.45 75.5(55.7) 

Aydin Karine 27.38 37.77 81.6(62.9) 

Izmir / Bergama / Kartai (n° 3227) 26.95 39.20 97.0(99.3) 

Balikesir / Edremit / Atkayasi 
3226 27.10 39.67 94.2(90.3) 

Canakkale / Eceabat / Milli Parki  
(n°3243) 26.27 40.18 96.1(98.6) 

Çanakkale 26.28 40.33 93.7(88.5) 

Bursa / Yalova / Dumanlidag 
(3225) 29.37 40.53 97.7(99.5) 

Yalova 29.38 40.54 98.1(99.6) 

Artvin 3229 41.85 41.18 88.7(75.6) 

Bkassine 35.57 33.55 6.7(10.0) 

Kornael 35.72 33.85 87.8(74.1) 

Qsaibe 35.68 33.88 63.5(44.7) 

Beit Mounzer 35.91 34.29 80.9(61.8) 

Monte Carmelo 35.00 32.75 0.3(3.4) 
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Population Lat Long Env. index 

FP d'Amélie les Bains 2.72 42.42 65.1(6.2) 

FC camparan 0.36 42.83 87.1(16.4) 

FC de Sainte Engrâce (bois 
d’Arbouty) -0.81 43.01 72.4(8.3) 

FD des Corbieres occidentales et 
FC d'Arques 2.40 42.93 23.5(0.7) 

FC d’Aspet 0.48 43.00 83.0(13.4) 

FD des 3 Asses 6.23 44.40 84.8(14.6) 

FC d'Aulus les Bains 1.39 42.77 93.2(27.2) 

FC d’Aragnouet 0.12 42.47 15.6(0.4) 

FC Bagnères de Bigorre 0.10 43.00 81.4(12.3) 

FD Barousse 0.47 42.93 86.2(15.7) 

FP : GF de Cabrefol  1.96 42.87 77.1(10.2) 

FD de Bethmale 1.96 42.87 77.1(10.2) 

FC de Bielle et Bilhères -0.50 43.06 66.2(6.5) 

FC de Bolquère 2.06 42.53 87.4(16.7) 

FC de Borce 0.34 42.54 58.3(4.9) 

FD de Boscodon 6.28 44.32 95.8(40.6) 

FC de Boutx 0.76 42.91 90.9(21.1) 

FC de la Brigue 7.37 44.03 73(8.5) 

FD de Cagne 9.44 41.35 - 

FD Callong-Mirailles 2.10 42.87 72.8(8.4) 

FD de l'Eau salée (Camps sur 
Agly) 2.42 42.89 41.5(2.1) 

FD du Canigou 2.41 42.50 84.0(14.0) 

Forêt de la Commission syndicale 
de la Vallée de Saint-Savin 0.64 42.53 90.1(19.8) 

FD de Celles 6.57 48.27 58.1(4.8) 

FD de la Grande Chartreuse 5.48 45.20 25.8(0.8) 

FD du Canigou 2.25 42.34 85.4(15.0) 

FP de Contrazy 1.22 43.07 7.4(0.2) 

FD du Mont Lozère 3.60 44.47 49.8(3.2) 

FC de Cruis 5.50 44.03 86.2(15.7) 

Forêt du Pré de la Dame 3.90 44.39 69.9(7.5) 

FD du Donon 7.09 48.29 66.2(6.5) 

FD de Belissens  1.35 42.95 81.8(12.6) 

FS La Fage et le Réal 3.16 45.04 16.9(0.4) 

FD Callong-Mirailles 1.98 42.75 89.9(19.5) 

FD des Fanges 1.97 42.77 85.8(15.3) 

FC de Gèdre 0.11 42.47 14.4(0.4) 

FD de Gerardmer 6.52 48.04 96.6(48.6) 

FD de Montnaie-Gravas 2.93 42.42 1.4(0.0) 

Table S5: Environmental indexes (corresponding percentile in brackets) for genetically 
characterized populations of Abies alba Mill. 
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FD des Hares 2.28 42.83 57.9(4.8) 

F syndicale 2.02 42.70 89.1(18.5) 

FP : GF d'Hèches -0.03 42.99 73.6(8.7) 

FC d'Iraty -1.07 43.00 78.2(10.7) 

FS d’Issaux  0.50 42.85 87.9(17.2) 

FD de la Joux 5.57 46.51 81.1(12.2) 

FD de la Cigalère  0.65 42.81 86.1(15.6) 

Bois des Laitiers 0.37 48.45 4.4(0.1) 

FP : Syndicale d’Assouste -0.41 42.96 69.3(7.3) 

FC de la Léchère Doucy 6.28 45.31 97.5(61.8) 

FP : GF de Vilhac  1.54 42.56 92.3(24.2) 

FD du Livradois 3.31 45.32 2.8(0.1) 

FC de Bagnères de Luchon  0.65 42.72 92.8(25.8) 

FD de Lure 6.29 47.41 82.0(12.7) 

FD de la Haute-Ariège 1.86 42.67 91.1(21.4) 

FP de Montbrun Bocage 1.22 43.11 9.1(0.2) 

Forêt du Bois Noir 3.84 44.44 66.1(6.4) 

FC de Montferrier 1.78 42.86 92.3(24.2) 

FS d’Issaux  0.50 42.95 82.3(12.9) 

FC de Planès 2.82 42.29 1.3(0.0) 

FD de Prémol 5.48 45.07 97.3(58.2) 

FD Punteniellu 9.11 41.99 0.0(0.0) 

FD Punteniellu 9.11 41.99 0.0(0.0) 

Forêt du Sapet 3.60 44.47 49.8(3.2) 

FD du Val de Siguer 1.33 42.46 93.5(28.4) 

FC de St Etienne 4.29 45.22 65.8(6.4) 

FD St Lary 0.87 42.90 94.8(34.0) 

Haut Vallespir 2.34 42.27 67.5(6.8) 

FC de Beaumont de ventoux 5.09 44.11 10.1(0.2) 

FC de Beaumont de ventoux 5.09 44.11 10.1(0.2) 

FD Ste Croix Volvestre (foret 
ancienne) 1.17 43.11 5.5(0.1) 

FD Ste Croix Volvestre (foret 
récente) 1.16 43.11 3.8(0.1) 

Jazero 20.73 48.73 95.6(38.9) 

Zwierzyniec 22.97 50.62 34.3(1.4) 

Cisna 22.30 49.18 93.7(29.1) 

Borynja 22.97 49.08 93.3(27.6) 

Rovte-Lavrovec 15.17 45.98 88.8(18.1) 

Nyrsko 13.10 49.27 94.3(31.6) 

Bily Potok 13.57 49.15 97.4(59.9) 

Zofin 14.68 48.65 97.7(66.0) 

Pisek 14.15 49.30 84.7(14.5) 

Mala Morava 17.02 50.23 91.6(22.4) 

Stribrnice 16.85 50.18 89.8(19.3) 

Borsucie 19.50 49.57 98.9(92.6) 

Hnilcik 20.58 48.85 98.6(85.5) 
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Polana 19.50 48.65 96.2(44.4) 

Dobroc 19.73 48.72 98.8(90.7) 

Sitno 18.85 48.37 91.0(21.3) 

Boryslav 23.40 49.28 89.6(19.1) 

Vorotec 26.07 46.85 98.5(83.2) 

Baiut 24.00 47.58 97.2(56.6) 

Valea Ierii 23.35 46.65 96.6(48.6) 

La Tour d'Auvergne 2.68 45.53 45.7(2.6) 

St Haon 3.77 44.85 51.6(3.6) 

Mieussy 6.53 46.13 72.9(8.5) 

Grande Chartreuse 5.72 45.37 96.5(47.5) 

F2 6.66 45.04 97.3(58.2) 

F3 6.81 45.61 88.8(18.1) 

A3 14.68 47.54 99.6(97.7) 

Altensteig 8.62 48.58 93.0(26.4) 

Hornberg 8.23 48.22 93.4(28) 

Nagold Hornberg- 8.73 48.55 88.1(17.4) 

Nazarje 14.52 46.27 98.8(90.7) 

Postojna 14.22 45.78 92.6(25.1) 

Idrija 14.03 46.00 78.6(10.9) 

Pohorje-Hudi Kot 15.27 46.52 98.9(92.6) 

Bohor 15.28 46.07 96.6(48.6) 

Hrusica 14.13 45.55 76.0(9.7) 

Zelezna Ruda 13.23 49.13 97.3(58.2) 

Kubova Hut 13.42 49.00 96.1(43.4) 

Jirikovo udoli 14.67 48.67 97.7(66.0) 

Javorina 20.15 49.27 99.0(94.2) 

Stara Voda 20.68 48.80 95.7(39.7) 

Vtacnik 18.62 48.62 96.1(43.4) 

Hedwizyn 22.82 50.58 40.4(2.0) 

Toporcza 22.97 50.65 41.6(2.1) 

Dukla 21.68 49.55 88.1(17.4) 

Losie 21.07 49.58 93.4(28.0) 

Tarnawa Nizna 22.73 49.07 85.9(15.4) 

Puscza Biesczads 22.72 49.10 91.2(21.6) 

Rozluch 23.33 49.67 69.1(7.3) 

Zhdinievo 23.77 48.53 90.7(20.7) 

Menczul up 24.37 48.08 97.7(66.0) 

Menczul down 24.35 48.07 97.9(70.7) 

Jasinja 24.37 48.27 97.6(63.7) 

Rarau 25.55 47.47 98.5(83.2) 

Valiug-2 22.12 45.13 96.3(45.4) 

Retezat 22.75 45.37 97.3(58.2) 

Auzelles 3.53 45.62 49.4(3.2) 

Forez 3.70 45.93 92.9(26.1) 

S1 7.10 46.03 95.1(35.6) 

S3 9.87 46.78 79.1(11.2) 
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D1 10.89 47.54 98.8(90.7) 

D2 12.94 47.49 99.3(96.5) 

I1 12.13 46.63 51.7(3.6) 

Hotedrsica 14.13 45.93 87.4(16.7) 

Novo Mesto 15.37 45.80 97.0(53.6) 

Kubinska Hola 19.25 49.27 98.7(88.4) 

Bumbalka-Salajka 18.42 49.40 97.3(58.2) 

Sramkova 18.97 49.17 97.7(66.0) 

Brzeznica 19.97 49.28 99.5(97.5) 

Biely Vah 20.07 49.10 98.9(92.6) 

Cierny Vah 19.90 49.03 98.9(92.6) 

Rudno nad Hronom 18.68 48.42 29.5(1.1) 

Cervena Skala 20.15 48.82 98.7(88.4) 

Mlacik 19.02 48.68 98.4(81.0) 

Jasenie 19.45 48.83 97.7(66.0) 

Skarzysko-Kam. 20.85 51.10 52.4(3.7) 

Nizny Komarnik 21.70 49.38 90.7(20.7) 

Nawojowa 20.75 49.53 96.0(42.5) 

Moczarna 22.48 49.10 91.8(22.9) 

Poiana Brasov 25.57 45.60 98.5(83.2) 

Vladeasa 22.78 46.80 97.3(58.2) 

Muntele Mic 22.62 45.45 96.5(47.5) 

Senj 15.00 44.83 80.0(11.6) 

F1 7.27 44.11 86.9(16.3) 

A1 13.18 47.13 98.7(88.4) 

A2 13.89 47.52 100.0(99.0) 

I2 12.10 47.03 96.4(46.4) 

Sneznik 14.35 45.58 96.2(44.4) 

Velke Karlovice 17.23 50.08 80.4(11.8) 

Radim 17.18 50.00 94.8(34.0) 

Valaska Dubova 19.30 49.32 99.2(95.8) 

Wielka Wies 20.98 50.87 81.7(12.5) 

Riaba Skala 22.42 49.10 91.3(21.8) 

Moldovita 25.53 47.68 98.6(85.5) 

Tazlau  26.62 46.47 45.0(2.5) 

Cristian 25.47 45.60 93.5(28.4) 

Valiug-1 22.00 45.23 95.4(37.5) 

Borovec-Pamp. 23.45 42.15 35.9(1.5) 

Jundoly 23.87 42.07 51.4(3.5) 

Devin 24.40 41.73 33.9(1.3) 

Mavrovo 20.58 41.72 98.5(83.2) 

Skopje 21.33 41.83 87.4(16.7) 

Dlhy les 20.27 49.22 97.5(61.8) 

Stuzica 22.53 49.08 94.2(31.2) 

Busteni 25.53 45.45 98.7(88.4) 

Poiana Rusca  22.50 44.95 95.9(41.5) 

Gospic 15.37 44.53 95.8(40.6) 



Sup Info Chapter 4: Integrating geography and environment in a standardized procedure to assess 

marginality and its effects on genetic patterns. An example with European conifers 

                                       257 
 

Delnice 14.63 45.55 90.8(20.9) 

Bitola 21.05 41.07 74.0(8.9) 

Kopaonik 20.92 43.25 84.1(14.1) 

Aspromonte 15.87 38.20 25.7(0.8) 

Serra san Bruno 16.30 38.50 20.0(0.5) 

Monte Pecoraro 16.17 38.33 10.8(0.3) 

Vallombrosa 11.55 43.82 68.4(7.0) 

Sila Grande Mucone 16.22 39.47 0.1(0.0) 

Listi alto Aspromonte 15.78 38.17 1.8(0.0) 

 S. Francesco Pollino 16.20 39.90 0.0(0.0) 

Serra S. Bruno Pecoraro 16.33 38.55 20.7(0.6) 

Camaldoli 11.82 43.80 2.4(0.0) 

Campigna 11.73 43.87 0.0(0.0) 

Abeti Soprani 14.28 41.87 32.3(1.2) 

Serra S. Bruno Archiforo 16.33 38.55 20.7(0.6) 

Serra S. Bruno Santa Maria 16.32 38.57 13.3(0.3) 

Gariglione 16.45 39.10 22.5(0.7) 

Listi Basso 15.78 38.17 1.8(0.0) 

Fossa Nardello Aspromonte 15.78 38.17 1.8(0.0) 

La Verna 11.92 43.70 63.5(5.8) 

Chiusa Pesio 7.65 44.32 52.8(3.8) 

Paularo 13.10 46.52 99.0(94.2) 

Vrbovsko 15.05 45.40 87.7(17.0) 

Skrad 14.88 45.43 94.3(31.6) 

Fužine 14.68 45.30 96.2(44.4) 

Gerovo 14.60 45.30 70.0(7.5) 

Oštrelj 16.38 44.47 98.1(75.2) 

Grme? 16.65 44.55 97.0(53.6) 

Bos. Grahovo 16.58 44.18 92.7(25.4) 

?abulja 17.58 43.53 89.4(18.8) 

Biokovo 17.13 43.13 57.3(4.7) 

Troglav 16.55 43.95 91.9(23.1) 

Glamo? 16.83 44.02 96.0(42.5) 

Bugojno 17.30 44.03 97.4(59.9) 

Vranica 17.90 43.93 97.7(66.0) 

Igman 18.27 43.75 97.9(70.7) 

Jahorina 18.57 43.73 94.1(30.8) 

Vlaši? 17.48 44.32 96.8(51.0) 

Tešanj 18.00 44.57 77.2(10.2) 

Zavidovi?i 18.25 44.30 97.4(59.9) 

O?evija 18.45 44.17 97.4(59.9) 

Klis 18.68 44.10 96.8(51.0) 

Knežina 18.75 43.98 96.7(49.8) 

Romanija 18.65 43.90 97.6(63.7) 

Kalinovik 18.58 43.48 98.4(81.0) 

Orjen 18.55 42.63 98.4(81.0) 

Bansko 23.39 41.84 51.9(3.6) 
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Sandansk 23.38 41.65 51.9(3.6) 

Kupena 24.30 42.00 54.3(4.1) 

Kipilovo 26.28 42.90 60.6(5.3) 

Sosogovo 22.55 42.21 51.0(3.4) 

Rila 23.37 42.14 52.1(3.7) 

Ossau -0.46 42.86 70.7(7.7) 

Lure 5.82 44.11 88.3(17.6) 

Vesubie 7.36 43.97 81.3(12.3) 

toc 8.46 46.17 97.4(59.9) 

sal 6.89 45.05 96.5(47.5) 

pes 7.67 44.21 67.2(6.7) 

tar 13.60 46.49 99.4(97.2) 

noa 11.85 46.13 98.2(77.3) 

ner 9.51 44.56 0.0(0.0) 

cer 10.24 44.29 0.0(0.0) 

abe 10.67 44.14 0(0.0) 

btr 12.22 43.60 24.5(0.8) 

pig 11.66 42.81 2.0(0.0) 

vdc 13.37 42.71 80.2(11.7) 

cep 13.44 42.67 72.5(8.3) 

cor 13.49 42.62 83.0(13.4) 

tos 13.61 42.53 80.8(12.0) 

abs 14.29 41.86 32.9(1.3) 

cil 15.45 40.40 9.9(0.2) 

lau 15.96 40.41 5.6(0.1) 

tdp 16.22 39.96 27.2(0.9) 

sil 16.64 39.13 56.3(4.5) 

ssb 16.35 38.56 30.2(1.1) 

gam 15.85 38.14 36.4(1.6) 

MNE_Bj 20.01 42.66 96.6(48.6) 

MNE_Po 19.77 42.85 98.0(73.0) 

MNE_Vst 19.04 43.13 55.1(4.3) 

R11 22.25 44.90 94.7(33.5) 

R14 21.93 45.08 94.7(33.5) 

R22 21.89 45.07 93.7(29.1) 

R23 22.48 45.34 96.9(52.2) 

R12 22.53 45.39 97.1(55.0) 

R15 22.27 45.68 97.1(55.0) 

R16 22.46 45.68 97.2(56.6) 

R20 24.50 45.64 98.9(92.6) 

R21 24.69 45.44 96.7(49.8) 

R4 25.53 45.43 98.9(92.6) 

R13 25.88 45.28 98.2(77.3) 

R2 26.52 45.84 97.0(53.6) 

R3 26.73 46.00 79.8(11.5) 

R5 26.41 46.65 98.1(75.2) 

R6 25.86 46.15 96.5(47.5) 
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R7 25.19 47.02 98.8(90.7) 

R8 26.25 47.17 92.2(23.9) 

R9 24.01 47.64 98.4(81.0) 

R10 24.62 47.88 97.6(63.7) 

R17 25.70 47.82 97.4(59.9) 

R18 22.85 46.70 97.8(68.4) 

R19 22.62 46.78 97.5(61.8) 

R1 23.03 46.46 97.5(61.8) 

SRB_Tara 19.31 43.94 97.7(66.0) 

F1 7.27 44.11 86.9(16.3) 

F2 6.66 45.04 97.3(58.2) 

F3 6.81 45.61 88.8(18.1) 

F-ISP 5.28 44.18 37.1(1.6) 

S1 7.10 46.03 95.1(35.6) 

S2 8.05 46.40 80.9(12.1) 

S3 9.87 46.78 79.1(11.2) 

D1a 10.89 47.54 98.8(90.7) 

D1b 11.15 47.51 96.9(52.2) 

D2a 12.94 47.49 99.3(96.5) 

D2b 12.85 47.67 99.6(97.7) 

D-ISP 12.90 47.57 99.8(98.3) 

A1 13.18 47.13 98.7(88.4) 

A2 13.89 47.52 100.0(99.0) 

A2x 13.83 47.48 100.0(99.0) 

A3 14.68 47.54 99.6(97.7) 

I1 12.13 46.63 51.7(3.6) 

I2 12.10 47.03 96.4(46.4) 

I-ISP 12.25 46.57 95(35.1) 

Kostryna 22.59 48.93 89.2(18.6) 

Veretskij pereval 23.17 48.82 95.8(40.6) 

Volovets 23.26 48.74 95.9(41.5) 

Sojmy 23.49 48.56 95.8(40.6) 

Ust' Chorna 23.94 48.34 97.2(56.6) 

Lugi 24.53 48.03 97.9(70.7) 

Dilove 24.21 47.93 96.9(52.2) 

Yasinya 24.32 48.23 97.9(70.7) 

Krivopilskij pereval 24.74 48.20 98.0(73.0) 

Mykulychyn 24.61 48.42 97.7(66.0) 

Beli Oslavi 24.70 48.49 95.6(38.9) 

Knyazhdvir 24.90 48.55 92.0(23.4) 

Kobyletska Polyana 24.08 48.12 98.2(77.3) 

Rosilna 24.40 48.77 93.1(26.8) 

Korchivtsi 25.78 47.96 93.3(27.6) 

Migove 25.40 48.16 92.5(24.8) 

Sepin - Putila 25.29 48.00 98.1(75.2) 

Budynets 25.65 48.08 88.4(17.7) 

Bagne 25.23 48.22 95.0(35.1) 
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Rybne 24.61 48.95 88.9(18.2) 

Morzhin 23.89 49.15 86.1(15.6) 

Rakhinja 24.04 49.02 93.3(27.6) 

Tukhla 23.47 48.90 95.8(40.6) 

Truskavec 23.51 49.29 84.1(14.1) 

Pidbuzh 23.23 49.33 87.3(16.6) 

Rozluch 22.97 49.24 93.2(27.2) 

Slatioara 25.67 47.47 98.3(79.1) 

Campulung Moldovenesc 25.57 47.55 98.3(79.1) 

Palotské jedliny NPR 22.03 49.27 95.1(35.6) 

Kamenica  21.00 49.21 98.4(81.0) 

Baiut Marmaros 24.01 47.66 97.1(55.0) 

Lunca Bradului  25.14 47.01 98.6(85.5) 

SANT 24.82 47.47 98.2(77.3) 
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Population Lat Long Env. index 

Abernethy -3.61 57.21 17.0(2.7) 

Allt Cul -3.35 57.04 9.0(1.2) 

Amat -4.60 57.87 14.0(2) 

Ballochbuie -3.30 56.99 6.8(1) 

Beinn Eighe -5.35 57.63 4.4(0.7) 

Black Wood -4.32 56.67 25.1(4.4) 

Coille Coire Chuilc -4.71 56.41 26.7(4.7) 

Cona Glen -5.33 56.79 21.1(3.6) 

Crannach -4.68 56.58 29.2(5.2) 

Glen Affric -4.92 57.27 16.5(2.5) 

Glen Cannich -4.96 57.33 19.6(3.3) 

Glen Derry -3.58 57.03 19.0(3.1) 

Glen Einig -4.76 57.95 7.9(1.1) 

Glen Loy -5.13 56.91 20.3(3.4) 

Glen Tanar -2.86 57.05 6.2(0.9) 

Loch Clair -5.36 57.56 5.9(0.8) 

Meggernie -4.35 56.58 22.9(4) 

Rhidorroch -4.98 57.89 10.0(1.4) 

Rothiemurcus -3.77 57.15 14.7(2.2) 

Sheildaig -5.64 57.51 2.3(0.4) 

Strath Oykel -4.61 57.98 7.0(1) 

lowe Austria east border of the 
Alps near Pernitz 16.00 47.91 42.3(7.9) 

Trevenque (La Cortijuela; southern 
Spain) -3.55 37.10 0.9(0.2) 

Valsain 4.04 40.87 - 

Punkaharju 29.39 61.76 95.2(71) 

Kolari 24.05 67.18 84.2(35.5) 

Jarocin 17.48 51.97 32.6(5.8) 

Krp. Tjärnbergsheden (8 famil) 20.80 64.62 67.8(19.3) 

Väster Mj?ingenn (7 famil) 13.58 62.75 76.0(24.5) 

Cella di Palmia 10.17 44.63 0.5(0.1) 

Dale Wood -9.63 51.97 0.0(0.0) 

Rockforest 8.98 53.00 34.5(6.2) 

Vezzano sul Crostolo 10.52 44.52 3.2(0.5) 

Carpe 7.78 43.92 1.1(0.2) 

Carnino Briga Alta 7.73 44.13 19.8(3.3) 

Bossolasco 8.05 44.53 8.3(1.1) 

Vezza d'Alba 7.98 44.75 0.2(0.0) 

Fenestrelle 7.05 45.03 27.6(4.9) 

Savoulx 6.80 45.05 40.6(7.5) 

Table S6: Environmental indexes (corresponding percentile in brackets) for 
genetically characterized populations of Pinus sylvestris L. 
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Passerano Marmorito 8.02 45.03 0.4(0.1) 

Casalborgone 7.98 45.13 1.3(0.2) 

Sarre 7.27 45.75 18.1(2.9) 

Toceno 8.48 46.15 63.5(17) 

Ticino 8.53 45.53 3.4(0.5) 

Olgelasca 9.18 45.73 2.2(0.4) 

Val Masino 9.62 46.15 4.8(0.7) 

Valvestino Garda 10.58 45.75 14.5(2.1) 

Valda 11.27 46.20 36.9(6.6) 

Alpe di Siusi 11.58 46.53 56.0(12.8) 

Brunico 11.97 46.80 58.2(14.1) 

Cortina 12.17 46.53 8.2(1.1) 

Claut 12.50 46.27 42.9(8) 

Val Dogna 13.32 46.43 61.3(15.8) 

Morgex 7.08 45.83 3.2(0.5) 

Challand St. Anselme 7.67 45.67 12.6(1.8) 

Vysoké Chvojno 15.98 50.12 43.3(8.1) 

Zámecký 14.84 48.99 46.3(8.9) 

Hadce u Želivky 15.11 49.69 44.1(8.3) 

Pluh?v Bor 12.73 50.03 64.3(17.4) 

Vl?ek 12.78 50.06 71.0(21.3) 

Šumava Dra?í skály 13.48 49.12 43.7(8.2) 

Siberia  Shapsha 69.46 61.07 - 

Siberia Kondinsky Ozera - Green 
Moss Forest 63.58 60.86 88.7(45.9) 

Siberia Kondinsky Ozera - Lichen 
Forest 63.54 60.86 88.1(44.1) 

Siberia Kondinsky Ozera - Ryam 
Forest 63.52 60.85 88(43.8) 

Siberia Mukhrino 68.70 60.89 - 

Siberia Khanty-Mansiysk 69.01 60.98 -! 

Siberia roadside 1 65.47 61.39 89.1(47.1) 

Siberia  roadside 2 64.12 61.21 90.9(52.5) 

BAZ -2.85 37.37 30.2(5.4) 

BR -0.58 42.70 28.7(5.1) 

BRA -3.92 41.03 17.6(2.8) 

CAM -3.20 41.22 21.7(3.7) 

CERC -4.06 40.77 26.3(4.7) 

COC -4.50 41.20 4.7(0.7) 

COV -2.82 41.95 16.1(2.5) 

CUE -4.22 41.27 4.2(0.6) 

G -0.68 40.42 17.6(2.8) 

GAL -3.12 41.25 15.8(2.4) 

IRE -2.74 42.02 24.2(4.2) 

JAV -1.00 40.13 12.5(1.8) 

LC 0.05 40.75 0.8(0.2) 

LILL -5.25 43.07 0.0(0.0) 
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LOZ -3.82 40.98 24.9(4.4) 

LLAV 1.21 42.50 27.1(4.8) 

MED -3.30 42.98 4.8(0.7) 

MP 1.01 41.34 1.2(0.2) 

MU -1.63 40.52 27.7(4.9) 

NAR -5.12 40.35 36.7(6.6) 

NAV -3.83 41.00 42.4(7.9) 

NDA -4.02 40.76 25.3(4.5) 

PEG -4.20 40.65 29.7(5.3) 

PLIL 1.97 42.23 20.2(3.4) 

PM -0.10 42.20 5.2(0.8) 

PN -1.54 42.89 13.3(1.9) 

TRE -3.47 37.09 34.3(6.2) 

VAL -4.02 40.82 20.6(3.5) 

ZAD -3.18 42.83 6.6(0.9) 

Cauterets 0.14 42.85 0.3(0.1) 

Saint Lary Soulan 0.16 42.83 3.1(0.5) 

Saint Lary Soulan 0.31 42.74 20.2(3.4) 

Camparan 0.36 42.84 21.7(3.7) 

Camparan 0.36 42.82 17.4(2.7) 

Marignac 0.67 42.91 15.0(2.2) 

Marignac 0.66 42.88 32.1(5.7) 

Laruns 0.43 42.91 14.3(2.1) 

Lescun 0.42 42.90 20.3(3.4) 

Le Port 1.69 42.80 20.1(3.4) 

Joucou 2.09 42.81 15.6(2.4) 

Galinagues 2.05 42.81 15.8(2.4) 

Prades 1.86 42.81 21.3(3.6) 

Aston 1.63 42.80 19.8(3.3) 

Mérens-les-Vals 1.84 42.63 17.3(2.7) 

Les Angles 2.11 42.60 17.6(2.8) 

Les Angles 2.11 42.60 17.6(2.8) 

Fontrabiouse 2.09 42.63 16.2(2.5) 

Osséja 1.98 42.39 18.4(3) 

Prats de Mollo 2.38 42.43 10.3(1.4) 

Jujols 2.29 42.59 17.2(2.7) 

Serdinya 2.30 42.59 15.4(2.3) 

Ayguatébia-Talau 2.21 42.54 17.1(2.7) 

Allanches 2.93 45.20 69.6(20.4) 

Joursac 3.03 45.18 71.2(21.4) 

Lieutadès 2.92 44.82 56.2(12.9) 

Chaudes-Aigues 3.00 44.81 62.9(16.7) 

Ruynes en Margeride 3.26 45.02 53.6(11.5) 

Rouffiac 2.17 45.01 0.0(0.0) 

Leyvaux 3.09 45.34 76.1(24.5) 

Davignac 2.04 45.51 0.0(0.0) 

Retournac 3.98 45.23 61.1(15.7) 
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Le Vernet 3.65 45.04 56.5(13.1) 

Vernassal 3.72 45.16 54.7(12.1) 

Charraix et St Julien des Chazes 3.55 45.05 53.1(11.2) 

St-Pal de Chalencon 3.95 45.37 63.5(17) 

Rimeize 3.30 44.74 57.7(13.8) 

Chanac 3.38 44.46 15.1(2.2) 

Chanac 3.70 45.40 57.1(13.5) 

Arlanc 3.64 45.50 58.1(14.1) 

Chambon sur Dolore 3.04 45.40 74.2(23.2) 

Mazoires 3.06 45.40 75.3(24.0) 

Mazoires 3.65 45.53 52.7(11.0) 

Le Monestier 2.90 46.11 33.6(6.0) 

Menat 3.93 45.57 45.8(8.8) 

Saint Antheme 3.93 45.57 45.8(8.8) 

Millau 3.18 44.13 13.8(2.0) 

Fontan 7.51 44.02 15.8(2.4) 

La Brigue 7.64 44.03 11.2(1.6) 

St Martin Vésubie 7.26 44.09 16.6(2.6) 

Châteauneuf d'Entraunes 6.84 44.15 16.8(2.6) 

Guillaumes 6.88 44.03 13.2(1.9) 

Château Ville Vieille 6.77 44.72 40.6(7.5) 

Château Ville Vieille 6.78 44.73 28.1(5.0) 

Montgenèvre 6.69 44.92 40.3(7.4) 

Les Vigneaux 6.55 44.83 41.7(7.7) 

Mimet 5.49 43.41 2.1(0.4) 

Venelles 5.52 43.59 1.1(0.2) 

Montfuron 5.68 43.84 2.9(0.5) 

Mazaugues 5.86 43.34 2.9(0.5) 

Moissac-Bellevue 6.20 43.67 3.3(0.5) 

Estoublon 6.22 43.94 3.1(0.5) 

Tourrettes 6.72 43.64 0.6(0.1) 

Séranon 6.70 43.76 12.5(1.8) 

Espenel 5.25 44.67 19.9(3.3) 

Le Fugeret 6.67 44.02 20.0(3.3) 

Verdaches 6.34 44.24 32.5(5.8) 

Bayons 6.18 44.31 18.3(3.0) 

St Eusèbe en Champsaur 6.01 44.73 28.7(5.1) 

Bakony mountains Feny?f?i 
?sfenyves 17.77 47.35 7.0(1.0) 

Tinovul Poiana Stampei 25.12 47.30 24.4(4.3) 

Turková 19.91 49.02 75(23.8) 

Horhanska 24.25 48.43 56.4(13.0) 

Holyatunska 23.00 48.77 44.2(8.4) 

Mshanska 23.95 48.65 78.0(26.2) 

Jaremchanska 24.33 48.40 64.6(17.6) 

Zelenska 24.33 48.37 55.7(12.6) 

Tatarovska 24.60 48.37 55.1(12.3) 
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Sokol 24.20 48.70 61.9(16.2) 

Mizunska 23.88 48.93 44.4(8.4) 

Wuhodska 23.90 48.93 43.0(8.1) 

Turova Datcha 24.42 48.88 34.7(6.2) 
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Population   Lat Long Env. index 

BIJ-nSSR_1 18.50 44.09 43.7(4.3) 

BUG-nSSR_2 17.69 43.96 28.2(2.0) 

BUS-nSSR_3 16.82 44.03 67.3(11.0) 

DUB-nSSR_4 18.34 44.27 59.2(8.2) 

GRM-nSSR_5 16.62 44.66 35.4(2.9) 

IGMA-nSSR_6 18.27 43.74 79.2(18.6) 

IGMB-nSSR_7 18.27 43.75 79.5(18.9) 

PIJ-nSSR_8 18.89 44.04 63.1(9.4) 

PRE-nSSR_9 16.49 44.61 73.2(14.0) 

RAS-nSSR_10 17.22 44.06 82.2(21.7) 

ROM-nSSR_11 18.66 43.90 78.4(17.8) 

VLA-nSSR_12 17.45 44.32 66.8(10.8) 

ZEL-nSSR_13 18.53 43.49 58.7(8.0) 

DOL-nSSR_14 14.37 46.40 84.1(24.0) 

LIP-nSSR_15 13.93 46.37 84.3(24.3) 

JER-nSSR_16 13.96 46.36 87.2(28.7) 

SIJ-nSSR_17 13.99 46.32 88.0(30.1) 

CJ-nSSR_18 15.44 46.44 93.7(43.4) 

FIS-nSSR_19 15.42 46.50 94.3(45.0) 

KON-nSSR_20 15.29 46.42 91.1(37.4) 

PEV-nSSR_21 14.01 45.96 37.6(3.2) 

HRU-nSSR_22 14.14 45.86 35.4(2.9) 

SD-nSSR_23 13.87 45.98 86.0(26.7) 

LG-nSSR_24 14.39 45.62 68.9(11.7) 

VP-nSSR_25 14.44 45.55 87.6(29.4) 

1-nSSR_26 6.94 48.07 66.6(10.7) 

2-nSSR_27 7.61 46.18 62.3(9.2) 

3-nSSR_28 8.84 46.98 95.2(47.9) 

4-nSSR_29 10.59 47.30 32.6(2.5) 

5-nSSR_30 11.70 48.00 68.2(11.4) 

6-nSSR_31 12.12 47.22 63.2(9.5) 

7-nSSR_32 10.71 46.50 7.6(0.4) 

8-nSSR_33 12.50 47.00 58.3(7.9) 

9-nSSR_34 13.88 47.17 93.7(43.4) 

10-nSSR_35 12.30 49.50 55.0(7.0) 

11-nSSR_36 13.40 48.90 80.1(19.5) 

12-nSSR_37 14.50 49.30 22.2(1.4) 

13-nSSR_38 15.50 48.60 31.3(2.4) 

14-nSSR_39 15.00 44.70 77.9(17.4) 

15-nSSR_40 19.41 43.92 71.7(13.1) 

16-nSSR_41 18.10 49.10 63.3(9.5) 

17-nSSR_42 21.20 49.00 8.4(0.5) 

Table S7: Environmental indexes (corresponding percentile in brackets) for genetically 
characterized populations of Picea abies L. 
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18-nSSR_43 24.30 48.30 74.1(14.6) 

19-nSSR_44 25.90 46.80 23.7(1.5) 

20-nSSR_45 25.50 45.30 49.7(5.7) 

21-nSSR_46 20.00 50.80 38.5(3.4) 

22-nSSR_47 22.96 50.59 26.9(1.9) 

23-nSSR_48 5.76 60.82 9.9(0.5) 

24-nSSR_49 6.54 60.60 48.6(5.4) 

25-nSSR_50 7.34 61.26 - 

26-nSSR_51 8.30 58.78 73.5(14.2) 

27-nSSR_52 9.88 61.19 57.2(7.6) 

28-nSSR_53 10.52 60.09 87.5(29.2) 

29-nSSR_54 15.60 57.76 39.3(3.5) 

30-nSSR_55 17.74 59.94 53.9(6.7) 

31-nSSR_56 13.20 61.40 87.0(28.3) 

32-nSSR_57 12.85 61.55 66.9(10.9) 

33-nSSR_58 12.43 63.24 70.7(12.6) 

34-nSSR_59 12.38 63.29 77.6(17.1) 

35-nSSR_60 11.82 63.37 82.3(21.8) 

36-nSSR_61 12.73 63.44 79.7(19.1) 

37-nSSR_62 12.49 63.49 75.7(15.7) 

38-nSSR_63 12.28 63.57 68.8(11.7) 

39-nSSR_64 10.96 63.78 51.3(6.1) 

40-nSSR_65 15.47 64.67 62.7(9.3) 

41-nSSR_66 16.13 65.56 50.3(5.8) 

42-nSSR_67 19.92 66.70 83.7(23.5) 

43-nSSR_68 27.42 68.40 46.9(5.0) 

44-nSSR_69 27.80 65.89 92.9(41.5) 

45-nSSR_70 28.05 64.66 98.1(62.1) 

46-nSSR_71 29.81 63.10 98.7(68.0) 

47-nSSR_72 24.65 62.00 82.6(22.2) 

48-nSSR_73 30.03 60.18 95.0(47.2) 

49-nSSR_74 26.51 58.06 94.3(45.0) 

50-nSSR_75 30.00 57.83 88.9(32.0) 

51-nSSR_76 24.05 54.51 51.8(6.2) 

52-nSSR_77 31.25 53.50 49.7(5.7) 

53-nSSR_78 32.33 54.50 86.9(28.2) 

54-nSSR_79 37.50 55.70 95.6(49.3) 

55-nSSR_80 34.42 62.88 96.6(53.2) 

56-nSSR_81 36.72 62.25 98.1(62.1) 

57-nSSR_82 40.00 64.58 97.7(59.0) 

58-nSSR_83 40.00 59.33 98.5(65.9) 

59-nSSR_84 41.00 57.58 94.3(45.0) 

60-nSSR_85 48.58 57.10 98.9(70.1) 

61-nSSR_86 52.17 56.25 98.5(65.9) 

62-nSSR_87 56.13 54.23 10.7(0.6) 

63-nSSR_88 54.17 58.50 99.8(81.7) 

64-nSSR_89 54.07 63.95 99.9(86.5) 
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I19-nSSR_90 11.56 47.32 41.6(3.9) 

Q14-nSSR_91 15.08 47.08 29.8(2.2) 

R06-nSSR_92 15.20 47.32 94.8(46.5) 

R13-nSSR_93 15.53 47.28 64.4(9.9) 

S10-nSSR_94 16.02 48.08 12.4(0.7) 

Std-nSSR_95 13.29 48.04 77.8(17.3) 

X05-nSSR_96 14.64 48.58 86.7(27.8) 

Y18-nSSR_97 16.04 47.28 6.2(0.4) 

F07-nSSR_98 14.75 47.07 97(54.9) 

Gusswerk-nSSR_99 15.35 47.66 92.4(40.4) 

Pa22-nSSR_100 60.60 56.80 96.0(50.7) 

Pa46-nSSR_101 48.58 57.10 98.9(70.1) 

Pa41-nSSR_102 41.00 57.58 94.3(45.0) 

Pa45-nSSR_103 40.00 64.58 97.7(59.0) 

Pa77-nSSR_104 36.72 62.25 98.1(62.1) 

Pa78-nSSR_105 34.42 62.88 96.6(53.2) 

Pa44-nSSR_106 30.03 60.18 95.0(47.2) 

Pa37-nSSR_107 30.00 57.83 88.9(32.0) 

Pa40-nSSR_108 31.25 53.50 49.7(5.7) 

Pa79-nSSR_109 24.05 54.51 51.8(6.2) 

Pa81-nSSR_110 26.51 58.06 94.3(45.0) 

Pa80-nSSR_111 24.65 62.00 82.6(22.2) 

Pa25-nSSR_112 29.81 63.10 99.2(73.0) 

Pa30-nSSR_113 28.05 64.66 98.2(62.9) 

Pa29-nSSR_114 27.80 65.89 92.9(41.5) 

FIN-nSSR_115 27.42 68.40 46.9(5.0) 

Pa26-nSSR_116 30.07 69.45 28.2(2.0) 

Pa33-nSSR_117 19.92 66.70 83.7(23.5) 

Pa38-nSSR_118 17.33 66.00 72.8(13.8) 

Pa34-nSSR_119 16.13 65.56 55.5(7.2) 

Pa42-nSSR_120 16.31 64.79 68.9(11.7) 

Pa43-nSSR_121 15.47 64.67 61.3(8.8) 

Pa39-nSSR_122 13.20 61.40 87.0(28.3) 

Pa83-nSSR_123 17.10 60.80 47.3(5.1) 

Pa28-nSSR_124 15.20 60.33 84.7(24.8) 

Pa32-nSSR_125 17.74 59.94 53.9(6.7) 

Pa82-nSSR_126 15.60 57.76 39.3(3.5) 

Pa16-nSSR_127 10.52 60.09 87.5(29.2) 

Pa67-nSSR_128 9.88 61.19 59.4(8.2) 

Pa11-nSSR_129 8.91 61.09 52.6(6.4) 

Pa02-nSSR_130 8.11 60.36 31.8(2.4) 

Pa09-nSSR_131 7.42 59.30 60.5(8.6) 

Pa18-nSSR_132 8.30 58.78 73.5(14.2) 

Pa04-nSSR_133 5.76 60.82 9.9(0.5) 

Pa06-nSSR_134 6.34 59.45 33.9(2.7) 

Pa05-nSSR_135 6.54 60.60 48.6(5.4) 

Pa12-nSSR_136 7.34 61.26 - 
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F1-nSSR_137 6.94 48.07 66.6(10.7) 

CH17-nSSR_138 7.61 46.18 62.3(9.2) 

BOE-nSSR_139 8.84 46.98 95.2(47.9) 

A14-nSSR_140 10.59 47.30 32.6(2.5) 

IU950-nSSR_141 11.70 48.00 68.2(11.4) 

A7-nSSR_142 12.12 47.22 63.2(9.5) 

I1-nSSR_143 10.71 46.50 7.6(0.4) 

IU11-nSSR_144 12.50 47.00 58.3(7.9) 

A1-nSSR_145 13.88 47.17 93.7(43.4) 

IU22-nSSR_146 12.30 49.50 55.0(7.0) 

657-nSSR_147 13.40 48.90 80.1(19.5) 

235-nSSR_148 14.50 49.30 22.2(1.4) 

625-nSSR_149 15.50 48.60 31.3(2.4) 

863-nSSR_150 15.00 44.70 77.9(17.4) 

Jug7-nSSR_151 19.41 43.92 71.7(13.1) 

1002-nSSR_152 18.10 49.10 63.3(9.5) 

1017-nSSR_153 21.20 49.00 8.4(0.5) 

1062-nSSR_154 24.30 48.30 74.1(14.6) 

1056-nSSR_155 25.90 46.80 23.7(1.5) 

1031-nSSR_156 25.50 45.30 49.7(5.7) 

IU1005-nSSR_157 20.00 50.80 38.5(3.4) 

PL1-nSSR_158 22.96 50.59 26.9(1.9) 

Pa041-nSSR_159 5.76 60.82 9.9(0.5) 

Pa05-nSSR_160 6.54 60.60 48.6(5.4) 

Pa12_3-nSSR_161 7.34 61.26 - 

Pa67-nSSR_162 9.88 61.19 57.2(7.6) 

Pa320-nSSR_163 17.74 59.94 53.9(6.7) 

F-nSSR_164 12.85 61.55 66.9(10.9) 

Ho-nSSR_165 12.43 63.24 70.7(12.6) 

AS-nSSR_166 12.38 63.29 77.6(17.1) 

RT-nSSR_167 11.82 63.37 82.3(21.8) 

TN-nSSR_168 12.73 63.44 79.7(19.1) 

KL1-nSSR_169 12.49 63.49 75.7(15.7) 

MB-nSSR_170 12.28 63.57 68.8(11.7) 

MV-nSSR_171 10.96 63.78 51.3(6.1) 

43-nSSR_172 15.47 64.67 62.7(9.3) 

Pa34-nSSR_173 16.13 65.56 50.3(5.8) 

Pa29_9-nSSR_174 27.80 65.89 92.9(41.5) 

Pa300-nSSR_175 28.05 64.66 98.1(62.1) 

Pa81-nSSR_176 26.51 58.06 94.3(45.0) 

Rus4-nSSR_177 32.33 54.50 86.9(28.2) 

RUS50-nSSR_178 37.50 55.70 95.6(49.3) 

Pa78-nSSR_179 34.42 62.88 96.6(53.2) 

SUA-nSSR_180 40.00 59.33 98.5(65.9) 

Rus1-nSSR_181 52.17 56.25 98.5(65.9) 

SG14-nSSR_182 56.13 54.23 10.7(0.6) 

Rus2-nSSR_183 54.17 58.50 99.8(81.7) 
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KM1-nSSR_184 54.07 63.95 99.9(86.5) 

NM10-nSSR_185 49.88 67.27 77.6(17.1) 

72_RUS60-nSSR_186 59.87 67.82 84.9(25.1) 

70_RUS4-nSSR_187 59.37 61.82 99.8(81.7) 

SL-nSSR_188 60.59 56.84 96.0(50.7) 

68_RUS1-nSSR_189 58.00 55.00 86.3(27.2) 

69_RUS3-nSSR_190 58.87 54.55 99.0(71.1) 

SEIDA-nSSR_191 62.88 67.05 93.8(43.6) 

KK10-nSSR_192 65.76 66.91 84.2(24.1) 

69_RUS2-nSSR_193 65.75 66.90 95.4(48.6) 

71_RUS5-nSSR_194 66.47 66.67 99.7(79.4) 

Pit-nSSR_195 65.91 65.91 99.8(81.7) 

KAZ-nSSR_196 65.61 64.70 99.9(86.5) 

Bereva-nSSR_197 65.03 63.93 100.0(99.2) 

BER-nSSR_198 64.79 63.99 100.0(99.2) 

Oc-nSSR_199 66.09 62.45 99.9(86.5) 

XM-nSSR_200 69.25 61.05 - 

TOB-nSSR_201 68.37 58.17 - 

P01-cpSSR_01 5.33 45.11 0.0(0.0) 

P02-cpSSR_02 6.37 46.02 67.2(11.0) 

P07-cpSSR_03 10.30 51.40 23.4(1.5) 

P08-cpSSR_04 14.00 53.30 5.9(0.3) 

P09-cpSSR_05 14.10 51.54 1.9(0.2) 

P10-cpSSR_06 12.30 50.08 42.4(4.1) 

P11-cpSSR_07 10.41 50.42 3.6(0.2) 

P15-cpSSR_08 8.40 46.66 4.4(0.3) 

P19-cpSSR_09 11.20 49.54 9.6(0.5) 

P20-cpSSR_10 13.25 48.33 7.6(0.4) 

P23-cpSSR_11 10.49 47.50 73.2(14) 

P28-cpSSR_12 11.54 47.29 3.4(0.2) 

P32-cpSSR_13 15.21 47.10 57.0(7.6) 

P37-cpSSR_14 13.20 49.30 73.7(14.3) 

P38-cpSSR_15 14.20 50.65 78.5(17.9) 

P39-cpSSR_16 15.37 50.87 85.2(25.5) 

P40-cpSSR_17 14.05 49.22 34.8(2.8) 

P43-cpSSR_18 17.18 49.45 1.9(0.2) 

P48-cpSSR_19 20.09 49.13 97.9(60.6) 

P54-cpSSR_20 16.12 44.75 79.7(19.1) 

P55-cpSSR_21 20.52 42.02 0.0(0.0) 

P56-cpSSR_22 25.00 42.13 0.0(0.0) 

P57-cpSSR_23 25.17 45.36 11.8(0.7) 

P58-cpSSR_24 23.47 46.35 27.0(1.9) 

P59-cpSSR_25 25.00 47.20 57.0(7.6) 

P60-cpSSR_26 22.50 49.03 65.9(10.5) 

P61-cpSSR_27 21.15 51.15 18.4(1.1) 

P64-cpSSR_28 16.41 50.28 83.3(23.0) 

P65-cpSSR_29 16.10 52.00 1.2(0.1) 
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P66-cpSSR_30 15.45 54.00 2.6(0.2) 

P67-cpSSR_31 18.12 54.18 79.3(18.7) 

P69-cpSSR_32 23.25 53.52 40.3(3.7) 

P70-cpSSR_33 23.40 52.45 17.1(1.0) 

P71-cpSSR_34 25.10 55.32 48.1(5.3) 

P72-cpSSR_35 22.10 57.20 66.2(10.6) 

P73-cpSSR_36 24.90 57.20 84.0(23.9) 

P74-cpSSR_37 28.30 57.00 89.3(32.9) 

P75-cpSSR_38 28.00 53.50 43.6(4.3) 

P76-cpSSR_39 32.00 56.30 85.6(26.1) 

P77-cpSSR_40 33.82 61.18 98.3(63.8) 

P78-cpSSR_41 37.30 56.20 96.5(52.8) 

P82-cpSSR_42 9.21 54.54 24.5(1.6) 

P83-cpSSR_43 10.39 59.58 74.0(14.5) 

P84-cpSSR_44 11.53 60.38 91.4(38.2) 

P85-cpSSR_45 10.35 64.00 5.2(0.3) 

P86-cpSSR_46 13.57 55.43 8.4(0.5) 

P87-cpSSR_47 13.06 57.02 72.7(13.7) 

P88-cpSSR_48 13.61 59.55 54.3(6.9) 

P89-cpSSR_49 16.21 59.05 35.6(3.0) 

P90-cpSSR_50 12.37 58.58 45.2(4.6) 

P91-cpSSR_51 14.10 62.36 82.6(22.2) 

P92-cpSSR_52 16.40 63.01 82.7(22.3) 

P93-cpSSR_53 19.67 63.50 72.6(13.6) 

P94-cpSSR_54 24.03 60.14 71.3(12.9) 

P95-cpSSR_55 27.15 61.14 95.6(49.3) 

Acc-cpSSR_56 7.82 44.35 0.0(0.0) 

Ade-cpSSR_57 7.56 46.49 88.1(30.3) 

Ale-cpSSR_58 8.02 46.38 67.2(11.0) 

Aye-cpSSR_59 7.64 46.19 45.0(4.6) 

Bod-cpSSR_60 8.85 46.98 93.3(42.4) 

Bon-cpSSR_61 9.74 46.37 2.7(0.2) 

Brs-cpSSR_62 7.30 45.46 70.2(12.3) 

Bla-cpSSR_63 23.57 42.34 3.0(0.2) 

Blb-cpSSR_64 23.50 41.83 0.0(0.0) 

Blc-cpSSR_65 24.45 41.43 0.0(0.0) 

Cmp-cpSSR_66 11.27 44.18 0.2(0.0) 

Con-cpSSR_67 9.94 46.79 2.3(0.2) 

Gst-cpSSR_68 7.32 46.34 33.3(2.6) 

Ha-cpSSR_69 16.53 47.66 25.6(1.7) 

Hb-cpSSR_70 20.06 47.85 1.0(0.1) 

Hen-cpSSR_71 12.02 57.70 42.9(4.1) 

Hyy-cpSSR_72 24.68 62.00 82.5(22) 

Leb-cpSSR_73 6.40 46.66 73.4(14.1) 

Lek-cpSSR_74 12.87 59.92 77.8(17.3) 

Mon-cpSSR_75 7.01 46.49 80.4(19.8) 

Mgx-cpSSR_76 7.20 45.80 77.9(17.4) 
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Nor-cpSSR_77 15.55 56.77 32.8(2.6) 

Ors-cpSSR_78 7.23 46.07 38.2(3.3) 

Plb-cpSSR_79 23.18 52.91 20.5(1.3) 

Pos-cpSSR_80 10.19 46.33 38.5(3.4) 

Ra-cpSSR_81 25.77 46.66 54.0(6.8) 

Ron-cpSSR_82 9.76 46.63 53.8(6.7) 

Sax-cpSSR_83 7.80 46.63 86.7(27.8) 

Sbe-cpSSR_84 9.18 46.54 11.6(0.6) 

Sca-cpSSR_85 9.20 46.79 97.3(56.6) 

Sim-cpSSR_86 8.00 46.24 61.1(8.8) 

Sku-cpSSR_87 15.07 57.87 47.1(5.0) 

Slb-cpSSR_88 13.80 46.34 3.8(0.2) 

Sve-cpSSR_89 13.12 57.20 76.4(16.2) 

Tro-cpSSR_90 15.52 56.70 27.4(1.9) 

Vld-cpSSR_91 7.70 44.25 18.4(1.1) 

Vls-cpSSR_92 8.30 46.07 0.1(0.0) 

SIJM-IZO_1 13.99 46.33 88.6(31.4) 

SIJS-IZO_2 13.99 46.33 88.6(31.4) 

SI-TB-IZO_3 14.12 46.33 6.5(0.4) 

SI-LIP-IZO_4 13.93 46.37 87.1(28.5) 

SI-BG-IZO_5 14.07 46.28 87.8(29.7) 

SI-LED-IZO_6 14.11 46.25 90.2(35.1) 

SI-LP-IZO_7 14.17 46.31 83.3(23.0) 

SI-VV-IZO_8 14.44 46.40 89.3(32.9) 

SI-PP-IZO_9 14.36 46.42 88.0(30.1) 

SI-RK-IZO_10 14.67 46.37 92.2(40.0) 

SI-DP-IZO_11 14.71 46.32 37.6(3.2) 

SI-VP-IZO_12 14.66 46.29 79.9(19.3) 

SI-CJ-IZO_13 15.44 46.44 93.7(43.4) 

SI-TZ-IZO_14 15.41 46.47 93.1(42.0) 

SI-KOM-IZO_15 15.32 46.44 92.2(40.0) 

SI-SH-IZO_16 15.29 46.46 93.8(43.6) 

SI-SMR-IZO_17 13.82 45.95 83.7(23.5) 

SI-SD-IZO_18 13.87 45.97 87.7(29.5) 

SI-GD-IZO_19 14.42 45.57 89.9(34.4) 

SI-TR-IZO_20 14.42 45.54 90.0(34.6) 

SI-VPAD-IZO_21 14.44 45.54 89.9(34.4) 

SI-GRC-IZO_22 14.45 45.57 90.2(35.1) 

SI-GS-IZO_23 14.74 45.58 88.4(31.0) 

HR-SD-IZO_24 14.33 45.31 - 

HR-MP-IZO_25 14.89 45.27 80.1(19.5) 

HR-STI-IZO_26 15.06 44.68 75.1(15.3) 

HR-VL-IZO_27 15.09 44.77 77.4(17.0) 

BIH-GRM-IZO_28 16.62 44.66 35.4(2.9) 

BIH-PRE-IZO_29 16.56 44.16 78.2(17.7) 

BIH-BUS-IZO_30 16.82 44.03 67.3(11.0) 

BIH-RAS-IZO_31 17.29 44.06 80.9(20.3) 
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BIH-VLA-IZO_32 17.45 44.32 66.8(10.8) 

BIH-BIS-IZO_33 17.68 43.99 71.7(13.1) 

BIH-IGMA-IZO_34 18.27 43.74 79.2(18.6) 

BIH-IGMB-IZO_35 18.27 43.75 79.5(18.9) 

BIH-ZEL-IZO_36 18.62 43.66 75(15.2) 

BIH-BIJ-IZO_37 18.49 44.08 50.5(5.9) 

BIH-TIB-IZO_38 18.34 44.34 0.2(0.0) 

BIH-ROM-IZO_39 18.66 43.90 78.4(17.8) 

BIH-HK-IZO_40 18.89 44.04 63.1(9.4) 

D-OBA-IZO_41 10.97 47.60 82.4(21.9) 

D-OBB-IZO_42 10.98 47.61 82.4(21.9) 

D-OBC-IZO_43 10.97 47.61 82.4(21.9) 

D-KOA-IZO_44 12.96 47.80 25.9(1.8) 

D-KOB-IZO_45 12.96 47.81 25.9(1.8) 

F-BOA-IZO_47 6.27 45.11 7.6(0.4) 

F-BOB-IZO_48 6.30 45.11 3.8(0.2) 

F-NEB-IZO_49 6.64 45.01 63.4(9.5) 

F-NEC-IZO_50 6.63 45.01 55.9(7.3) 

F-SFTA-IZO_51 6.81 45.61 80.2(19.6) 

F-SFTB-IZO_52 6.79 45.60 80.6(20.0) 

F-SFTC-IZO_53 6.81 45.59 43.5(4.3) 

APS-1-IZO_54 22.77 46.60 79.0(18.4) 

APS-2-IZO_55 22.76 46.58 80.6(20.0) 

APS-3-IZO_56 22.75 46.61 86.0(26.7) 

PRG-1-IZO_57 23.64 45.41 47.7(5.2) 

PRG-2-IZO_58 23.62 45.41 67.8(11.2) 

PST-1-IZO_59 25.56 45.57 70.8(12.6) 

PST-2-IZO_60 25.54 45.61 43.2(4.2) 

MMS-1-IZO_61 24.62 47.76 60.9(8.7) 

MMS-2-IZO_62 24.62 47.75 60.9(8.7) 

NMR-IZO_63 26.35 46.15 64.0(9.7) 

PRS-IZO_64 22.52 45.72 63.8(9.7) 

 
 


