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Summary 

• Updates were given on six grants currently in-progress or recently completed. 

• Staff report was presented and discussed including year-to-date performance and upcoming 
events. 

• The Citizen Advisory Committee Report was delivered and discussed; items included early 
appearance of the Ips bark beetle and a Ponderosa pine tree replacement policy. 

• Angel presented a Research & Data Report which included metrics on the trees of Coeur 
d’Alene Park and two journal articles related to root systems in the urban environment. 

• Urban Forestry Financial Report was unavailable. 

 

 

 

 

 

  

Tree Committee Meeting of the City of 
Spokane Park Board 

Tuesday, March 31, 2015, 4:15 p.m. – 5:45 p.m. 
Willow Room, Woodland Center 

John A. Finch Arboretum 
Angel Spell – Urban Forester 

 



MINUTES 

The meeting was called to order at 4:20 p.m. by Chairperson, Lauren Pendergraft.  Introductions 
were made. 

Action Items: 
None 

Discussion Items: 
1. Grants Update – Angel Spell 

Angel reported on the current status of six various grants, of which two are complete. 

2. Staff Report – Angel Spell 
The progress-to-date of work done by Staff and upcoming events was presented and discussed.  
Also, the Utility Bill Donation Program has now been implemented online and funds have already 
been received.  Angel expressed her appreciation for the success of the Arboretum Educational 
Series thus far this season.  She also informed attendees of upcoming events. 
Inquiry concerning actions in response to past vandalism of neighborhood trees was discussed 
and the options provided by Spokane Municipal Code. 

Standing Report Items: 
3. Citizen Advisory Committee Report – Guy Gifford 

Ips bark beetles are already appearing on trees whereas historical appearance has been May.  
Ponderosa Pine replacement policy was discussed.  Interest was also expressed to promote the 
value and benefits of Ponderosa Pine trees to improve public perception. 
The date has been confirmed for the High Drive hike; June 30th. 

4. Research & Data Report – Angel Spell 
Coeur d’Alene Park has 373 trees having over $4 million in value.  Friends of Coeur d’Alene 
Park are satisfied with Ponderosa Pine population (63%) in the park and accept that the ones in 
very poor health may be removed. 
Two research reports on tree root systems in the urban environment were distributed to the 
group for review and possible future discussions. 

5. Urban Forestry Financial Report – Angel Spell 
No report available. 
Lauren provided information regarding the Letter of Understanding between the stormwater 
utility and Parks & Recreation.  The amount has been established, but the percentage 
designated to Urban Forestry still needs to be determined. 

 
Meeting adjourned at 5:24 p.m. 
 
The next regularly scheduled meeting is May 5, 2015, 4:15 p.m., at Finch Arboretum in the 
Woodland Center’s Willow Room. 



Arboriculture & Urban Forestry 40(4): July 2014

©2014 International Society of Arboriculture

193

Gary W. Watson, Angela M. Hewitt, Melissa Custic, and Marvin Lo

The Management of Tree Root Systems in  
Urban and Suburban Settings: A Review of Soil  

Influence on Root Growth

Arboriculture & Urban Forestry 2014. 40(4): 193–217

Abstract. The physical, chemical, and biological constraints of urban soils often pose limitations for the growth of tree roots. An under- 
standing of the interrelationships of soil properties is important for proper management. As a result of the interdependence of soil properties, 
the status of one soil factor can have an effect on all others. Preventing soil damage is most effective and preferred. Cultural practices, such as cul-
tivation and mulching, can be effective in improving soil properties. Soil additives, such as biostimulant products, have not proven to be consis-
tently effective through research. The management challenge is to provide an urban environment that functions like the natural environment.
 Key Words. Biostimulants; Bulk Density; Cation Exchange Capacity; Mechanical Resistance; pH; Soil Oxygen; Soil pH; Soil Salt; Soil 
Water; Temperature.

In urban and suburban areas, the soil environ-
ment often creates numerous challenges for tree 
root growth. Urban soil has been defined as, “a 
soil material having a non-agricultural, manmade 
surface layer more than 50 cm thick that has been 
produced by mixing, filling, or by contamina-
tion of land surface in urban and suburban areas” 
(Bockheim 1974). Urban soils are often highly 
altered from the natural state, and human activ-
ity is the primary agent of the disturbance. They 
generally have high vertical and spatial variabil-
ity, modified and compacted soil structure, an 
impermeable crust on the soil surface, restricted 
aeration and water drainage, interrupted nutrient 
cycling, altered soil organism activity, presence of 
anthropogenic materials and other contaminants, 
and altered temperatures (Craul 1985; Bullock and 
Gregory 1991; Scheyer and Hipple 2005). These 
physical, chemical, and biological constraints of 
urban soils pose limitations for the growth of tree 
roots. Early experience gained working with the 
urban soils in Washington, D.C., and other difficult 
urban sites, led to the projection that about 80% of 
urban tree problems can be attributed to a poor soil 
environment, leading to synergistic effects of other  

debilitating urban stress factors producing an over-
all decline in plant vigor (Patterson et al. 1980). 

The resources provided by the soil environment for 
root growth include adequate oxygen, water, and nutri-
ents, non-limiting penetration resistance, acceptable 
pH range, and robust biological activity. Presence of 
contaminants or pathogens can be harmful to roots. 
Any one of these factors can limit root growth and 
development, even if all others are in adequate supply.

Urban environments are quite different from the 
natural environment to which trees are adapted, 
yet they must provide the same resources for 
growth if trees are to maintain a healthy balance 
between the crown (supplier and user of energy, 
user of nutrients and water) and root system (sup-
plier of water and nutrients, user of energy). The 
management challenge is to provide an urban 
environment that functions like the natural envi-
ronment, though its appearance may be different. 

Recent reviews have described root architec-
ture and rhizosphere ecology in the urban envi-
ronment (Day et al. 2010a; Day et al. 2010b) 
and serve as a foundation for this review of 
research summarizing our current understand-
ing of soil management techniques for urban trees.
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SOILS INFLUENCE ROOT  
DEVELOPMENT

Water, oxygen, mechanical resistance, temperature, 
soil reaction, cation exchange capacity, contami-
nants, and biology are soil factors that directly affect 
root growth. Water absorbed by plants transports 
nutrients and cools leaves through evaporation. 
Soil oxygen is essential for respiration in plant 
roots. Mechanical resistance physically limits root 
exploration of the soil (Letey 1985). Tempera-
ture controls certain metabolic processes in roots. 

Water can be a dominant controlling factor, but 
all are interconnected. The influence of each factor 
on root growth will first be reviewed individually, 
followed by a review of their interactions. Because 
altering one factor does affect the quality of oth-
ers, management practices to improve root growth 
will consider the effects on all factors together.

Water
The amount of water held in the soil is related to tex-
ture and structure. Sandy soils contain less than 10% 
total water at field capacity. Clay soil can contain as 
much as 35% water, but more is unavailable to plant 
roots. The difference between the water content at 
field capacity and the water content at the perma-
nent wilting point is the amount of available water. 

Urban soils often have less structure and 
greater bulk density than most undisturbed natu-
ral soils. The resulting reduction in pore space 
reduces plant available water (Letey 1985; Craul 
1992). The loss of natural soil structure is one of 
the most important limitations to tree growth 
in urban areas (Stewart and Scullion 1989).

Measurement
Assessment of soil moisture status in the root zone 
is necessary to determine the need for site improve-
ments, such as improved drainage, or supplemen-
tal irrigation. Soil moisture can be measured by a 
variety of methods. The hand-feel method (Ross 
and Hardy 1997) is simple and fast. If the soil  
retains its shape after compression between the 
fingers, but is not sticky, the moisture content 
is favorable. This method can be prone to error 
since it requires experience and can be subjective.  
Determining gravimetric soil water is the most  
accurate, simple method not requiring special equip-
ment. Soil is weighed before and after oven drying. 

The most widely used and least-expensive water-
potential measuring device is the tensiometer. 
The tensiometer establishes a quasi-equilibrium 
condition with the soil water system through a 
porous ceramic cup. Electrical resistance blocks 
consist of electrodes encased in some type of 
porous material that reaches a quasi-equilib-
rium state with the soil. They are less sensitive in 
wet soils. Time-domain reflectometry and neu-
tron scatter methods can be very precise, but 
require expensive, specialized equipment, and 
their use in arboriculture is primarily limited to 
research (World Meteorological Association 2008).

Effect on Root Growth
Fine root growth is slowed up to 90% by low soil 
water content (Barnett 1986; Walmsley et al. 1991; 
Kätterer et al. 1995; Torreano and Morris 1998; Mei-
er and Leuschner 2008; Olesinski et al. 2011). Root 
growth decreases rapidly in most species when soil 
moisture is reduced to 10%–14% on an oven-dry 
basis (Newman 1966; Lyr and Hoffmann 1967) or 
-50 kPa soil moisture tension (Bevington and Castle  
1985). This can result in a significant decrease of 
the root/shoot ratio (Blake et al. 1979; Meier and 
Leuschner 2008), especially during periods of  
active root growth (McMillin and Wagner 1995). 

As soil begins to dry, the development of branch 
roots is inhibited more than the growth of pri-
mary roots (Wright et al. 1992). When roots are 
drought stressed, they mature rapidly toward the 
tip, decreasing absorption, and reducing future 
growth (Kaufmann 1968; Bilan 1974). As the effec-
tive absorbing surface is diminished, the roots do 
not regain their full capacity for water uptake until 
new root tips can be produced. When roots are re-
watered immediately after cessation of elongation, 
roots may not resume elongation for at least one 
week. Resumption of root growth can take up to 
five weeks if water is withheld longer (Bilan 1974). 

According to the optimal partitioning theory, 
plants should allocate relatively more carbon and 
nutrients to root growth than to aboveground 
growth when plant growth is limited by water short-
age (Bloom et al. 1985). However, some research 
reports have shown a decrease in root length den-
sity when water is withheld (Ruiz-Canales et al. 
2006; Abrisqueta et al. 2008). This decrease may 
be explained by increased fine-root turnover 
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—higher fine-root mortality concurrent with 
increased root growth (Meier and Leuschner 2008). 

In wet soils, the growth of roots tends to be con-
fined towards the soil surface. In dry soils, root 
growth can be shifted downward due to water 
depletion in surface soils (Torreano and Morris 
1998). When urban soils limit rooting depth, the 
ability of tree root systems to respond to periods of 
drought and high soil moisture may be very limited.

Flooding of soil usually leads to greatly 
reduced root growth, and death of many of the 
fine absorbing roots. The small root systems 
of flooded trees reflect the combined effect of 
reduction in root initiation and reduced growth 
of existing roots, as well as decay of the origi-
nal root system. Because root growth is usually 
decreased more than shoot growth by high soil 
moisture, drought tolerance of flooded trees is 
reduced after the flood waters recede. This change 
reflects the inability of the small root systems to 
supply enough water to meet the transpirational 
requirements of the crown (Kozlowski 1985). 

Responses of tree species to flooding vary widely 
(White 1973; Bell and Johnson 1974; Whitlow 
and Harris 1979). Tolerance can vary from only a 
few hours to many days or weeks, depending on 
the species, the organs directly affected, the stage 
of development, and external conditions, such as 
temperature. Roots are often more susceptible to 
oxygen deficiency than shoots (Vartapetian and 
Jackson 1997). Broadleaved trees as a group are 
much more flood-tolerant than conifers. Older 
trees usually tolerate flooding better than seed-
lings or saplings. Flooding during the dormant 
season is much less harmful than flooding during 
the growing season (Heinicke 1932). The greater 
injury and growth reduction by flooding dur-
ing the growing season are associated with high 
oxygen requirements of growing roots with high  
respiration rates (Yelenosky 1963; Koslowski 1985).

Aeration
Respiration by plant roots and other soil organisms 
consumes oxygen and produces carbon dioxide. In 
unsaturated soils, the soil air connects directly with 
the aboveground atmosphere, but diffusion of gasses 
through the soil is slowed by water and soil particles. 
Oxygen concentrations decline and carbon dioxide 
concentrations increase with depth due to the oxy-

gen demands of the roots, the soil fauna, fungi, and 
microbes. Oxygen deficiency in roots will be more 
likely to occur in warm soils than in cooler soils when 
reduced respiration is more balanced with diffusion 
rates (Yelenosky 1963; Armstrong and Drew 2002). 

For most species, approximately 10%–12% oxy-
gen in the soil atmosphere is needed for adequate 
root growth (Stolzy and Letey 1964; Tackett and 
Pearson 1964; Stolzy 1974; Valoras et al. 1964;  
Gilman et al. 1987; Mukhtar et al. 1996), and 
growth may cease at 5% oxygen (Stolzy 1974). Soil 
carbon dioxide concentration can be damaging to 
roots when it reaches 0.6% (Gaertig et al. 2002). 

For most species, root growth is reduced or 
stopped when the oxygen diffusion rate (ODR) drops 
below 0.2 µg/cm2/min. Most plants are severely 
stressed between 0.2 and 0.4 µg/cm2/min. Above 
0.4 µg/cm2/min, plants grow normally (Stolzey and 
Letey 1964; Valoras et al. 1964; Lunt et al. 1973; Stolzy 
1974; Erickson 1982; Blackwell and Wells 1983). 

Redox potential can also be used as a mea-
sure of the oxygen status of the soil. Soil redox 
potentials of 400–700 mV are generally consid-
ered well aerated. Root growth of most species is 
stopped at a soil redox potential of 350 mV, though 
roots of more water-tolerant species (e.g., Taxo-
dium distichum) are able to grow until the redox 
potential reaches 200 mV (Carter and Rouge 
1986; Pezeshki 1991; Stepniewski et al. 1991).

Soil aeration is impacted by urban landscape 
features. In undisturbed, well-drained soil, oxygen 
and carbon dioxide contents can be near atmo-
spheric levels close to the soil surface, decreasing 
most rapidly in the first 30 cm (Yelenosky 1963; 
Brady and Weil 1996). When not paved, vegetated 
and nonvegetated urban sites can be as well-aerated  
as forest stands (Gaertig et al. 2002). However, if 
topsoils are sealed or compacted, gas exchange 
between the soil and the atmosphere is inter-
rupted (Gaertig et al. 2002). Oxygen content was 
reduced to 14.5% and carbon dioxide content was 
increased to 6% at 15 cm depth under an unpaved 
parking lot. The same levels were not reached until 
90 cm depth in the adjacent undisturbed forest  
soil (Yelenosky 1963). In another study, there 
were minimal differences in soil oxygen between 
pavement and turf in the top 45 cm (Hodge and 
Boswell 1993). However, soil oxygen measure-
ments were made only 75 cm from the edge of the 
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pavement and oxygen could have diffused laterally 
from the nearby exposed soil. While it is commonly 
accepted that stone pavement with gaps allows 
for aeration of the soil, there was no difference in 
gas diffusivity between completely sealed surfaces 
(asphalt) and areas with flagstone or cobblestone 
with gaps in between (Weltecke and Gaertig 2012).

A water table less than 50 cm deep can reduce 
oxygen below levels considered sufficient to 
sustain vigorous root growth to within 5 cm 
of the soil surface (Callebaut et al. 1982). Ele-
vated berm soils can be more aerated than sur-
rounding soils at grade (Handel et al. 1997).

Measurement
Assessment of soil oxygen can be helpful in choosing  
the appropriate plant for the site, or under-
standing whether site modifications, such as  
improved drainage, may be necessary. However, 
measuring oxygen levels in the soil can be chal-
lenging: equipment can be expensive and suited 
primarily for research applications. Measurement  
at any moment in time may not reflect sustained 
conditions, and not all measurements provide 
the same information related to root growth. 

Oxygen content, expressed as a percentage, 
is the amount of oxygen in the soil gases (the 
aboveground atmosphere contains 21% oxygen). 
ODR measures the rate at which oxygen can 
move through the soil to replace oxygen that is 
used by the root. ODR can be a better indicator 
of soil aeration (i.e., oxygen availability to roots) 
than oxygen content because it is possible to have 
a high soil oxygen concentration, but very low 
diffusion rate (MacDonald et al. 1993). The oxy-
gen concentration in the soil atmosphere may 
not vary substantially at monitoring sites over 
time, or in response to changes in soil moisture. 
In contrast, ODR is strongly influenced by soil 
moisture and bulk density. Oxygen concentra-
tion was not consistently low enough to severely 
inhibit root function at sites where trees were 
declining. At the same time, ODR values within 
the root zones of declining trees were invariably 
in a range considered injurious to roots, while 
ODR values around vigorous trees were favor-
ably high (Stolzy 1974; MacDonald et al. 1993). 

Rusting pattern on steel rods can be used to 
assess soil anaerobism over an extended period 

(Carnell and Anderson 1986; Hodge and Knott 
1993; Hodge et al. 1993) and has been related to 
fine-root development of trees (Watson 2006a). 
Fine-root density in soils, where rust was present 
on over 60% of the steel rods, was generally three 
times greater than in soils with less than 25% rust-
ing. This method can provide an indication of soil 
aeration over a period of months and up to a depth 
of 60 cm without the use of expensive equipment.

Effect on Root Growth
Growing root tips have high oxygen requirements, 
and fine-root density is often reduced when oxy-
gen availability is low (Koslowski 1985; Gaertig et 
al. 2002; Weltecke and Gaertig 2012). In older parts 
of the root, the oxygen demand can be approxi-
mately half that of the tip (Armstrong and Drew 
2002). Root dysfunction as a result of inadequate 
oxygenation can modify plant growth and devel-
opment through interference in water relations, 
mineral nutrition, and hormone balance (Kramer 
and Kozlowski 1979; Armstrong and Drew 2002). 

Species vary in their root system tolerance to 
low soil aeration. For example, loblolly pine (Pinus 
taeda) grew better at low aeration conditions (either 
high compaction or high water content) than pon-
derosa pine (Pinus ponderosa var. scopulorum) or 
shortleaf pine (Pinus echinata) (Siegel-Issem et al. 
2005). Lists of species’ tolerance to flooding, which 
reduces soil aeration, are available (White 1973; 
Bell and Johnson 1974; Whitlow and Harris 1979). 

In some trees, such as willow (Salix), alder 
(Alnus), poplar (Populus), tupelo (Nyssa), ash  
(Fraxinus), baldcypress (Taxodium), and birch 
(Betula), oxygen can move down to the roots  
internally through intercellular spaces. This oxygen- 
transporting tissue within roots is called aeren-
chyma. It is not uncommon in the subapical parts of 
wetland plant roots for as much as 60% of the root 
volume to be gas space for diffusion of oxygen from 
the shoot (Drew 1997; Armstrong and Drew 2002). 
Enough oxygen can be transported so that some is 
released into the soil immediately surrounding the 
roots (Hook et al. 1971; Armstrong and Read 1972).

Mechanical Resistance
Bulk density is a measure of dry mass per unit  
volume and used to describe limits to root growth in 
compacted soil. Soil strength, expressed as penetra-
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tion resistance, is a broader indicator of constraints 
on root growth that accounts for soil moisture, as 
well as bulk density (Baver et al. 1972; Gerard et 
al. 1982; Ehlers et al. 1983; Taylor and Brar 1991).

Parent material is the deepest and densest layer 
in the soil profile. As soils develop, formation of 
structure in the overlying horizons reduces bulk 
density. Clay deposition in the B horizon tends to 
fill existing pore spaces, making it denser as clay 
content increases (Foth 1990). Roots compact the 
soil nearby as they increase in size, and they also 
transmit the weight of the tree and forces generated 
by the wind onto the soil (Greacen and Sands 1980). 

In urban and suburban settings, soil formation 
has been interrupted by removal, grading, mix-
ing, or other disturbances. Thus, urban soils can 
have high bulk densities (Yang et al. 2005; Feng 
et al. 2008). Urban soil mean bulk density values 
of 1.6 g cm-3 have been reported, with individual  
values as high as 2.63 g cm-3 (Patterson 1977; 
Short et al. 1986; Jim 1998a; Jim 1998b). These  
levels of compaction restrict root growth for many 
woody species, especially in finer-textured soils. 

Compaction occurs very quickly. On fine- to 
medium-textured soils, half of the increase in soil 
bulk density and soil strength occurred in the first 
two passes of traffic. Coarse soils were slightly more 
resistant to compaction (Brais and Camire 1998). 
Fine-textured soils are also slower to recover than 
coarse-textured soils (Page-Dumroese et al. 2006). 

Soil on construction sites was heavily compacted 
to depths of 0.3–0.8 m (Randrup 1997). In a sur-
vey of areas to be landscaped near new residential 
and commercial construction, mean soil bulk den-
sity was found to be 1.56 g cm-3, which represents a 
0.5 g cm-3 increase over adjacent undisturbed areas 
(Alberty et al. 1984). Bulk densities in fenced (undis-
turbed) areas ranged from 1.05 to 1.42 g cm-3, while 
in unfenced areas, bulk densities were 1.56 to 1.90 
g cm-3; often exceeding the 1.60 g cm-3 critical bulk 
density for the loam soils on the study site (Lichter 
and Lindsey 1994). In another study, the absence 
of differences between protected and unprotected 
areas was attributed to traffic occurring on areas 
not meant for traffic (Randrup and Dralle 1997). 

Measurement
To determine bulk density, a soil core of known 
volume is oven dried at 105°C and weighed. Care 

is exercised in the collection of cores so that the 
natural structure of the soil is preserved. Any 
change in structure is likely to alter pore space and 
bulk density. Excavation methods are better for a 
gravelly soil. A quantity of soil is excavated, dried, 
and weighed, along with determining the volume 
of the excavation by filling the hole with sand of 
which the volume per unit mass is known, or water  
in a rubber liner (Grossman and Reinsch 2002).

Penetrometers are used to measure soil strength. 
Type of equipment used and soil moisture con-
tent will affect measurement. Penetrometers with 
30-degree tips and diameter sizes of 12.8 and 20.3 
mm are standard. The smaller cone size is for use 
in harder (more resistant) soils (American Society 
of Engineers 1992; Lowery and Morrison 2002). 

Soil strength increases with bulk density and 
decreases with soil water content (Taylor and  
Burnett 1964; Eavis 1972; Blouin et al. 2008.) Fine-
textured soils are the most limiting (Gerard et al. 
1982), but penetration resistance can be affected 
more by water content than by texture. Penetra-
tion resistance in a dry soil (−1500 kPa) exhibited  
a maximum at clay content of 35%, while in a 
moist soil (−10 kPa) penetration resistance was 
minimally affected by texture (Vaz et al. 2011). 

Effect on Root Growth
The bulk density that limits root growth varies  
with soil texture (as reviewed in Daddow and  
Warrington 1983) and soil moisture (Day et al. 
2000). Greater development of structure in fine-
textured soils accounts for their lower bulk density 
as compared to coarse-textured soils. A bulk density 
of 1.60 g cm-3 would be limiting in a clay loam, but 
not in a sandy loam (Foth 1990). Summary tables 
(Jones 1983; Daddow and Warrington 1983; NRCS 
Soil Quality Institute 2000 (Table 1) are consistent 
with reports of root restriction in individual tree 
species (Minore et al. 1969; Chiapperini and Don-
nelly 1978; Webster 1978; Zisa et al. 1980; Heilman  
1981; Tworoski et al. 1983; Alberty et al. 1984; 
Pan and Bassuk 1985; Simmons and Pope 1985; 
Reisinger et al. 1988; Watson and Kelsey 2006). 

Reconstruction of soil profiles from six forest sites 
in greenhouse tests showed root and shoot growth 
in soil from lower horizons (10–30 cm) averaged 
only 41% of that in topsoil, a significantly greater 
restriction of growth than that achieved through 
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compaction of up to 0.17 g cm-3 greater than the 
undisturbed field sites (25%). Topsoil displacement 
and profile disturbance may be more damaging than 
soil compaction (Williamson and Neilsen 2003).

Soil strength, not bulk density, was found to 
be the critical impedance factor controlling root 
penetration (Taylor and Burnett 1964; Zisa 1980). 
Reduced survival and growth of sugar maple (Acer 
saccharum ‘Seneca Chief ’) and callery pear (Pyrus 
calleryana ‘Redspire’) in compacted soil were due 
to mechanical impedance, rather than limited 
aeration and drainage (Day et al. 1995). The criti-
cal limit of soil strength above which woody plant 
roots will likely be greatly restricted is 2.5 MPa 
when measured with a standard penetrometer 
(Taylor et al. 1966; Greacen and Sands 1980; Zisa 
et al. 1980; Ball and O’Sullivan 1982; Abercrombie 
1990; Day and Bassuk 1994; Blouin et al. 2008).

Root growth decreases as compaction and soil 
strength increase (Youngberg 1959; Taylor et al. 
1966; Sands et al. 1979; Bengough and Mullins 
1990; Jordan et al. 2003; Blouin et al. 2008). Both 
controlled studies (Minore et al. 1969) and field 
observations (Forristall and Gessel 1955) have 
shown that the capacity for root growth in com-
pacted soil often varies among plant species. For 
example, root growth of Siberian larch (Larix 
sibirica), English oak (Quercus robur), western red 
cedar (Thuja plicata), and Formosa acacia (Acacia 
confusa) were little affected by soil bulk density as 
high as 1.89 g cm-3, while Norway spruce (Picea 
abies), Douglas fir (Pseudotsuga menziezii), little-
leaf linden (Tilia cordata), and tallow lowrel (Litsea  
glutinosa) were the least capable of growing roots 
in compacted soil (Forristall and Gessel 1955; 
Korotaev 1992; Liang et al. 1999). As little as 0.14 
g cm-3 can make a difference (Minore et al. 1969). 

Soil compaction can affect root distribution. 
Root penetration depth can be restricted by soil 

bulk density (Halverson and Zisa 1982; Nambiar  
and Sands 1992; Laing et al. 1999). If not all 
parts of a root system are equally exposed to 
compaction, compensatory growth by unim-
peded parts of the root system may compensate, 
and the distribution but not the total length of 
roots may be altered (Unger and Kaspar 1994).

Individual root tips can penetrate only those 
soil pores that have a diameter greater than that 
of the root. Roots often grow into root channels  
from previous plants, worm channels, structural 
cracks, and cleavage planes, thereby tapping a 
larger reservoir of water and mineral nutrients. In 
very compacted soils, root growth may be confined 
almost entirely to these pores and cracks (Taylor 
et al. 1966; Eis 1974; Patterson 1976; Gerard et al. 
1982; Ehlers et al. 1983; Hullugalle and Lal 1986; 
Wang et al. 1986; Bennie 1991; van Noordwijk et al. 
1991). If not present, roots may undergo redirection  
of growth from deeper layers toward uncom-
pacted surface soil when downward growth is 
restricted by high bulk density (Waddington and 
Baker 1965; Heilman 1981; Gilman et al. 1987). 
The net result is the proliferation, if not concen-
tration, of roots at a shallow depth (Gilman et 
al. 1982; Weaver and Stipes 1988; Jim 1993a). 
Such a shallow root system will be more affected 
when surface soils dry during periods of drought.

There is a tendency to form more lateral roots 
with increasing soil strength (Gilman et al. 1987; 
Misra and Gibbons 1996). Length of primary and 
lateral roots of shining gum (Eucalyptus nitens) 
was reduced 71% and 31%, respectively, with an 
increase in penetrometer resistance from 0.4 to 
4.2 MPa. High mechanical resistance will also 
tend to increase the root diameter behind the 
root tip (Taylor et al. 1966; Eavis 1972; Russell  
1977; Bengough and Mullins 1990; Misra and 
Gigbons 1996), and the growth and shape of 

Table 1. General relationship of soil bulk density to root growth based on soil texture (adapted from NRCS Soil Quality 
Institute 2000).

Soil texture  Ideal bulk densities Bulk densities that may affect Bulk densities that restrict 
 (g cm-3) root growth (g cm-3) root growth (g cm-3) 
Sands, loamy sands  <1.60  1.69 >1.80
Sandy loams, loams  <1.40  1.63  >1.80
Sandy clay loams, clay loams <1.40 1.60  >1.75
Silts, silt loams  <1.30  1.60 >1.75
Silt loams, silty clay loams  <1.10  1.55  >1.65
Sandy clays, silty clays, some  <1.10  1.49  >1.58
clay loams (35%–45% clay) 
Clays (>45% clay)  <1.10  1.39  >1.47
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root cells are altered (Pearson 1965). Differences  
among species in their ability to penetrate 
strong soil layers appear to be due to differ-
ences in root diameter (Clark et al. 2003).

Temperature
Urban soils can be warmer due to surround-
ing pavements and lack of vegetation cover. 
Unvegetated playground soils in Central Park 
(New York City, New York, U.S.) were 3.13°C 
warmer than an adjacent wooded area (Mount 
et al. 1999). Maximum summer soil tempera-
tures under pavement in the northern United 
States were 32°C–34°C, and up to 10°C warm-
er than nearby unpaved areas (Halverson and 
Heisler 1981; Graves and Dana 1987). In Texas, 
U.S., summer soil temperatures under pave-
ment exceeded 48°C, 10°C warmer than unpaved  
areas, and remained above 35°C for all but a short 
time at night. Temperatures are highest under 
dark pavements (Arnold and McDonald 2009).

Effect on Root Growth
Biological activity in the soil, and therefore root 
growth, varies with temperature (Lloyd and Taylor  
1994). Root growth occurs over a wide range of 
temperatures, but is much slower at low and high 
temperatures. Reported minimum temperatures 
for root growth range from 2°C to 11°C (Lyr and 
Hoffmann 1967; Solfjeld and Pedersen 2006). 
Sugar maple (Acer saccharum) roots began to 
grow in spring as soils warmed to 5°C, but initial 
root growth may be quite slow at such low tem-
peratures. Active root growth has been reported 
to begin when soil temperatures reach 10°C–15°C 
(Nambiar et al. 1979; Carlson 1986; Harris et al. 
1995; Solfjeld and Pedersen 2006). Optimum tem-
peratures for root growth have been reported at 
18°C–32°C (Lyr and Hoffman 1967; Larson 1970; 
Nambiar et al. 1979; Struve and Moser 1985; Head-
ley and Bassuk 1991; Harris et al. 1995; Solfjeld 
and Pedersen 2006; Richardson-Calfee et al. 2007).

The high temperature at which root injury begins 
to occur is around 34°C (Graves and Wilkins 1991; 
Graves 1994; Graves 1998; Wright et al. 2007). Roots 
of most woody species are killed at 40°C–50°C 
(Wong et al. 1971). Maximum temperatures for 
active growth have been reported at 25°C–38°C, 
depending on the species (Proebsting 1943; Wong et 

al. 1971; Gur et al. 1972; Graves et al. 1989a; Graves 
et al. 1989b; Graves 1991; Martin and Ingram 1991; 
Graves and Aiello 1997; Arnold and McDonald 
2009). Direct heat injury of roots can occur when 
the soil remains above 32°C for extended periods of 
time (Graves 1998), and the longer the duration of 
high temperatures, the more root growth is reduced 
(Graves et al. 1989b; Graves and Wilkins 1991). Hon-
eylocust (Gleditsia triacanthos) is the only temperate 
tree species reported to sustain growth at root-zone 
temperatures above 32°C (Graves et al. 1991). 

The root tissues of most woody plants can be 
killed at soil temperatures of -5°C to -20°C (Havis 
1976; Studer et al. 1978; Santamour 1979; Pellett 
1981; Lindstrom 1986; Bigras and Dumais 2005), 
although roots of black spruce (Picea mariana) were 
not affected by temperatures as low as -30°C (Bigras 
and Margolis 1996). Young roots are less freeze-tol-
erant than mature roots (Bigras and Dumais 2005). 

Soil pH
Plant performance is strongly affected by nutrient  
availability, which in turn is influenced by soil pH 
(acidity or alkalinity). Most nutrients are available  
at optimal levels in slightly acid to neutral soils 
(pH between 5.5 and 7.2), and trees generally 
grow best in this pH range. Soil pH can be mea-
sured with electronic meters or colorimetric  
tests based on color of solutions or strips.

Urban soils tend to have higher soil pH than 
their natural counterparts. In Berlin, Germany, 
a pH of 8 was observed streetside, compared to a 
pH of less than 4 within a forest a short distance 
from the street (Chinnow 1975). Over half of soils 
sampled in Hong Kong, China, were rated strongly 
(pH 8.5–9) to very strongly (pH 9–9.5) alkaline, 
while surrounding soils were acidic at pH 4–5 (Jim 
1998b). Streetside soils of Syracuse, New York, 
U.S., had a pH range of 6.6 to 9.0 with an average 
of about 8.0 (Craul and Klein 1980). Urban soils 
of Philadelphia, Pennsylvania, U.S., ranged from 
3.7 to 9.0 with a mean of 7.6 (Bockheim 1974). 

Elevated pH values have been attributed to the 
application of calcium or sodium chloride as road and 
sidewalk deicing compounds in northern latitudes, 
irrigation with calcium-enriched water (Bockheim 
1974), and the surface weathering of concrete and 
limestone buildings and sidewalks (Bockheim 1974; 
Messenger 1986; Okamoto and Maenaka 2006). 
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Effect on Root Growth
The effects of pH on root growth are primarily  
related to nutrient availability. Some nutri-
ents, such as iron and manganese, become 
less available in alkaline soils (pH above 7.2) 
because of chemical changes caused by the 
alkalinity. Other nutrients, such as phospho-
rous, become less available in highly acid 
soils (pH less than 5.5). When the pH is 4.5 
or less, aluminum toxicity can restrict root 
growth (Foth 1990; Jim 1993b). In most plant 
systems, aluminum toxicity has a direct ef-
fect on root growth by inhibiting cell division 
in the root apical meristem (Kochian 1995). 

A nutrient deficiency caused by sub-optimum soil 
pH could actually stimulate root growth in order to 
explore larger volumes of soil to acquire additional 
nutrients and alleviate deficiency symptoms (Inges-
tad and Lund 1979; Ericssson and Ingestad 1988).

Cation Exchange Capacity 
Cation exchange capacity (CEC) is a measure 
of the nutrient-holding (adsorption) power of 
the soil. Once adsorbed, cationic minerals are 
not easily lost when the soil is leached by water  
and therefore provide a nutrient reserve for 
plant roots. CEC is highly dependent upon soil 
texture and organic matter content. In general, 
the more clay and organic matter in the soil, the 
higher the CEC. Small clay soil particles have a 
large, negatively charged surface area for their 
size and hold relatively large amounts of ions. 
Organic matter particles have even more nega-
tive surface charges on the surface than clay for 
nutrient exchange. Sandy soils have low CEC 
due to their low organic matter and clay content.

CEC is usually greatest at the surface 
where organic matter accumulates. Increas-
ing clay with depth can act to counterbalance 
the decrease in organic matter and reduction 
of CEC. The CEC of most soils increases with 
pH (Craul 1992; Brady and Weil 1996). 

CEC is determined by laboratory testing, 
and methods vary with the soil type. Reported 
urban soil CEC values have been 5–12 cmol/
kg (Short et al. 1986; Jim 1998b). Normal values  
vary, from 5 cmol/kg to 25 cmol/kg, depending  
on texture, organic matter content, and pH 
(Foth 1990; Landon 1991; Brady and Weil 1996).

Contaminants
Salt in soil inhibits plant water uptake by lowering  
the osmotic pressure of soil water (Prior and 
Berthouex 1967). This reduces the water uptake 
of trees and symptoms of decline mimic those 
of drought (Herrick 1988). Once salt enters the 
roots, it upsets the osmotic balance within root 
cells (Janz and Polle 2012) and is toxic to the  
endomycorrhizae (Guttay 1976). The increased 
sodium on the cation exchange sites also breaks 
down soil structure (Holmes 1961; Hutchinson 
and Olson 1967), decreasing the permeability and 
water-holding capacity of the soil. All of these  
factors may contribute to a decline in tree health.

Damage from salt-contaminated soil occurs fre-
quently in urban areas where large amounts of salt 
are used for deicing roads and pavements. Sodium 
chloride is the most common deicer applied. Park-
ways, street tree planter boxes, highway medians, 
and roadsides are locations where soil accumula-
tion of deicing salts is highest. Sodium levels were 
5.4 times higher and chloride was 15 times higher 
in the center of newly installed, narrow, raised 
medians along an urban highway after one winter, 
compared to the center of wide medians along the 
same roadway. The high levels were attributed to 
proximity to high speed traffic and its associated 
spray and splash (Hootman et al. 1994). Elevated 
levels of sodium have been reported in the soil 
up to 30 m from the highway and elevated levels  
of soil chlorine to a distance of 61 m (Langille 
1976; Hofstra et al. 1979; Simini and Leone 1986). 
In contrast, rural highway studies show salt levels 
decline rapidly with distance to pavement (Her-
rick 1988; Cunningham et al. 2008). The release 
of salts from rapid-release forms of fertilizer can 
also elevate soil salt levels (Jacobs et al. 2004). 

Reclaimed wastewater (RWW) and ground-
water used to irrigate urban plantings in arid 
climates can be highly saline. Sodium and chlo-
ride are the major chemical constituents in RWW 
that are potentially detrimental to plants (State 
of California 1978; Schaan et al. 2003). Com-
pared with sites irrigated with surface water, 
sites irrigated with RWW exhibited up to 187% 
higher electrical conductivity (EC) and 481% 
higher sodium adsorption ratio (SAR) (Qian 
and Mecham 2005; Schuch et al. 2012). Soil 
types play a role on soil salinization as much as 
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water quality. The highest salinity was found in 
clay and the lowest in sand (Miyamoto 2012). 

The best method for assessing soil salinity is to 
measure the electrical conductivity of soil solution 
extracts. Conductivity of 2 dS/m (deci-Siemens/
meter) is considered harmful to salt-sensitive plants 
(Foth 1990; Jacobs and Timmer 2005). All but 
very salt-tolerant plants will be affected at 4 dS/m. 
Czerniawska-Kusza et al. (2004) found necrosis and 
chlorosis in leaves at levels of 132 µg Na+/g of soil. 
Soil chloride ion concentrations of up to 200 µg/g 
are not considered harmful to plants (Jim 1998a). 

Deicing salt can cause the death of surface roots 
in roadside trees (Wester and Hohen 1968; Krap-
fenbauer et al. 1974; Guttay 1976; Jacobs et al. 2004; 
Madji and Persson 1989), though the risk of root 
damage associated with salt concentrations levels  
appears to be dependent on species, age of root  
system, and soil moisture availability (Jacobs and 
Timmer 2005). Damage may result from osmotic 
and/or specific ion effects (Dirr 1975). Root rot 
caused by Phytophthora sp. can increase with soil 
salinity as well (Blaker and MacDonald 1985; Blaker 
and MacDonald 1986). Indirect damage occurs 
when sodium displaces other ions from soil cation 
exchange sites reducing their availability, and breaks 
down soil structure leading to soil compaction 
(Herrick 1988; Dobson 1991; Hootman et al. 1994).

Trees growing in soils with high salt levels tended 
to have more twig dieback and less twig growth 
than those growing in soils with lower salt levels  
(Berrang et al. 1985). Sodium chloride and other 
salts accumulating in the root zone may instigate and 
exacerbate street tree decline (Hootman et al. 1994).

Heavy metals is a term generally used to describe a 
group of metallic elements that can be toxic to plants 
and animals. Some, such as copper, molybdenum,  
and zinc are essential trace elements, but exces-
sive levels can be toxic (Prasad 2004). Heavy metal 
contamination tends to be greater toward the city 
center and in areas of commercial and industrial 
land use (Carey et al. 1980; Blume 1989; Wang and 
Zhang 2004). City center and wasteland soils gen-
erally had enhanced heavy metal concentrations 
to at least 30 cm depth (Linde et al. 2001). Soils 
on the National Mall in Washington, D.C., U.S., 
had elevated levels of lead, zinc, nickel, copper,  
and cadmium (Short et al. 1986). Concentrations 
of heavy metals in roadside soils decrease with 

distance from traffic and depth in the soil profile. 
The contamination has been related to the com-
position of gasoline, motor oil, and car tires, and 
to roadside deposition of the residues of these 
materials (Lagerwerf and Specht 1970; Madji and 
Persson 1989). Long-term sewage sludge appli-
cation may result in the accumulation of Zn, Cu, 
and Ni in the soil and plant (Bozkurt et al. 2010).

Soil heavy-metal data has been published for 
several cities (Lagerwerf and Specht 1970; Carey 
1980; Blume 1989; Jim 1998a). Levels of many ele-
ments were higher on urban sites than suburban 
and rural sites up to 10 times or more. No plant 
damage was reported with these higher levels.

Soil Biology 
Soil organisms are an important component of a 
healthy soil that promotes root growth. The ratio 
of fungal to bacterial biomass is often near 1:1 in 
grass and agricultural soil ecosystems. With reduced 
disturbance, fungi become more plentiful, and 
the ratio of fungi to bacteria increases over time.  
Forests tend to have fungal-dominated microflora. 
The ratio of fungal to bacterial biomass may be 5:1 
to 10:1 in deciduous forests and 100:1 to 1000:1 in 
coniferous forests (Soil and Water Conservation 
Society 2000). Assessing abundance of soil bacteria  
and fungi and mycorrhizal colonization of roots 
requires extensive skill and laboratory equipment.

The zone of soil adjacent to plant roots with a 
high population of microorganisms is the rhizo-
sphere. Bacteria feed on sloughed-off plant cells 
and the proteins and sugars released by roots. The 
protozoa and nematodes that “graze” on bacteria  
are also concentrated near roots. Thus, much 
of the nutrient cycling and disease suppression 
needed by plants occurs immediately adjacent to 
roots (Soil and Water Conservation Society 2000).  
Rhizosphere pH can be up to two units different than 
the rest of the soil (Marschner and Römbeld 1996).

Mycorrhizae are symbiotic relationships that 
form between common soil fungi and plants. The 
benefits of mycorrhizal associations of tree roots are 
well established (Smith and Read 1997). The fungi 
colonize the root system of a host plant, providing 
increased nutrient absorption capabilities, while the 
plant provides the fungus with carbohydrates from 
photosynthesis. Mycorrhizae offer the host plant 
increased protection against certain pathogens. 
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Urban planting sites are often considered to be of 
poor soil quality, but mycorrhizal inoculum (spores) 
was more abundant in urban soil than in forest soil 
in one study (Wiseman and Wells 2005). Some 
mycorrhizal fungi colonizing littleleaf linden (Tilia 
cordata) roots were common to both street trees 
and forest trees. Others were not. Colonization lev-
els were high on both street and forest trees (Nielsen 
and Rasmussen 1999; Timonen and Kauppinen 
2008). Native desert trees had greater colonization 
by arbuscular mycorrhizal fungi (AMF) than resi-
dential landscape trees, and AMF species composi-
tion differed at the two site types (Stabler et al. 2001).

Interdependence of Soil Factors
As a result of the interdependence of soil proper-
ties, the status of one soil factor can have an effect 
on all others; an understanding of their interre-
lationships is important for proper management. 

Water and Air
Increasing soil moisture reduces soil aeration 
when water replaces the air normally held in the 
pores of the soil. Water slows the diffusion of  
oxygen to 1/10,000 of that in air, and it reduces  
its concentration to about 1/32 of that in air. The 
net result is an effective resistance to flow that 
is around 320,000 times greater in saturated soil 
than that of air (Armstrong and Drew 2002). 

Water and Compaction
Compaction can decrease the number of days of 
available water in clay-loam soil. However, compac-
tion can increase the number of days that water is 
available in a sandy loam soil (Gomez et al. 2002). 

Tree roots can grow successfully in significantly 
compacted soils provided soil moisture is readily 
available (Zisa et al. 1980; Pittenger and Stamen 
1990; Bulmer and Simpson 2005; Siegel-Issem et 
al. 2005). Resistance to penetration in a clay loam 
soil was found to decrease from 3.5 MPa (limiting)  
to 2.1 MPa (non-limiting) when volumetric soil 
moisture increased from approximately 27% 
to 40% (Day et al. 1995). Roots of spotted gum  
(Corymbia maculata) and red-flowering gum (C. 
ficifolia) were able to penetrate soil compacted to a 
bulk density of 1.6 g cm-3 at 7% soil moisture, but 
when moisture was increased to 10% roots could 
penetrate soils of 1.8 g cm-3 (Smith et al. 2001).

Species can vary in their ability to capitalize  
on reduced penetration resistance of wet soils.  
Silver maple (Acer saccharinum) roots can 
grow in moderately compacted soil when high 
soil water content decreases soil strength, even 
though aeration is low, whereas dogwood (Cornus  
florida) roots are unable to grow under the 
same low aeration conditions (Day et al. 2000).

Air and Compaction
One of the main effects of high bulk density is a  
restricted oxygen supply (Yelenosky 1963; Yelenosky  
1964; Rickman et al. 1966). Oxygen is less restricted  
when the soil is dry and less pore space is filled 
with water (Day 1995). Oxygen diffusion rate was 
lowest in soils with high bulk density (MacDonald 
et al. 1993). Compaction from a bulk density of 
1.04 g cm-3 to 1.54 g cm-3 reduced gas diffusion by 
38% when soil was dry. In wet soil, however, com-
paction reduced diffusion by 82% (Currie 1984).

Plant response to oxygen level has been shown to 
interact with mechanical impedance (Gill and Miller 
1956). In general, soil compaction can have a strong 
inhibitory effect on root penetration when the oxy-
gen level is high, but no significant effect at a low 
oxygen level because root growth is already reduced 
by lack of aeration (Tackett and Pearson 1964; 
Hopkins and Patrick 1969; da Silva and Kay 1997). 

Anaerobic conditions are likely to limit root 
growth in compacted fine-textured and poorly 
drained soils, whereas mechanical impedance is 
more likely to limit root growth in compacted coarse-
textured and well-drained soils (Webster 1978).

Soil Conditions and Root Disease
Poorly aerated and poorly drained soil can increase 
incidence of soil-borne diseases. Root diseases are 
favored when soils are water-saturated (Hansen et al. 
1979). Saturated soil and low oxygen supply causes 
a reduction in root initiation, growth of existing 
roots, and an increase in decay of roots, largely as a 
result of invasion of Phytophthora sp. Fungi, which 
tolerate low soil aeration (Stolzy et al. 1965; Sena 
Gomes and Kozlowski 1980; Blaker and McDon-
ald 1981; Benson et al. 1982; Stolzy and Sojka 1984; 
Benson 1986; Duniway and Gordon 1986; Gray 
and Pope 1986; Ownley and Benson 1991). Armil-
laria root disease, also known as shoestring root 
rot, causes most damage on trees that are stressed 
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by one or more abiotic or biotic factors. These may 
include drought, soil compaction, and other soil 
problems common on urban sites (Worall 2004).

Root Development and Nutrient Uptake
When soil factors limit root development there can 
be a direct impact on nutrient uptake. Nutrient  
deficiencies can occur when there is insuffi-
cient uptake by the roots and use by the crown. If  
improved soil conditions allow the root system 
to expand and explore a larger soil volume and  
supply of nutrients, the tree may overcome the 
deficiency and symptoms may dissipate (Inges-
tad and Lund 1979; Ericssson and Ingestad 1988).

MANAGEMENT PRACTICES TO  
IMPROVE THE SOIL ENVIRONMENT 
The effectiveness of management practices to en-
hance soil as a medium for root growth can affect 
all soil factors and is influenced by soil physical 
properties. Soils classified as having poor physi-
cal conditions are those that require very careful 
management to maintain conditions favorable for 
root growth. Soils with good physical conditions 
require less careful management (Letey 1985). 

Prevention 
Prevention of soil compaction is preferred. Treat-
ments to alleviate compaction can be expensive, 
difficult to apply, sometimes ineffective, and may 
injure roots (Howard et al. 1981). When only 
acted upon by natural forces, return to the initial, 
uncompacted state is slow (Hatchell et al. 1970; 
Froehlich and McNabb 1984; Froehlich et al. 1986; 
Corns and Maynard 1998; Stone and Elioff 1998; 
Blouin et al. 2005). Fine-textured soils are slower  
to recover than coarse-textured soils. Surface  
soils will recover most rapidly (Page-Dumroese 
et al. 2006). When compaction severely reduced 
soil aeration and root growth after a logging 
operation, after 14 years, recovery was limited 
to the top 4 cm of soil. After 18 years, recovery 
reached a depth of 18 cm. Only after 24 years was 
recovery detected throughout the rooting zone 
(von Wilpert and Schaffer 2006). Factors, such 
as a fluctuating water table, freeze–thaw cycles 
(Fleming et al. 1999; Stone and Kabzems 2002), 
and vegetation regrowth (Page Dumroese et al. 
2006), may accelerate a bulk density decrease. 

Mulch or gravel over geotextile can prevent 
soil compaction during construction. In contrast,  
plywood did not protect the underlying soil from 
compaction (Donnelly and Shane 1986; Lichter and 
Lindsey 1994). Fencing can be an effective way to pre-
vent soil compaction on a construction site (Lichter 
and Lindsey 1994), but must be monitored and main-
tained to be effective (Randrup and Dralle 1997).

Amendments
The use of organic amendments, such as bio-
solids, animal manure, or compost, generally  
reduces the bulk density of compacted soils (Cog-
ger 2005; Garcia-Orene et al. 2005), although 
this is not always the case (Patterson 1977). 
The proposed mechanisms for this phenome-
non are that the high density substrate is simply  
being diluted with a low-density material (the 
amendment) or that the amendment physically  
increases porosity (Clapp et al. 1986; Cogger 
2005). Organic amendments can increase root 
growth (Beeson and Keller 2001; Davis et al. 2006),  
microbial activity (van Schoor et al. 2008) and 
CEC. Composted organic matter is most effective,  
as the humus component has the greatest CEC. 
Incorporation of certain types of biochar can 
increase CEC (Chan et al. 2007; Laird et al. 
2010), but research on this topic is still limited.

Inorganic soil amendments have been used to 
improve soil properties and resist compaction.  
Sintered fly-ash and expanded slate amendments 
resulted in lower bulk densities and increased 
pore space after being incorporated into the soil 
(Patterson 1977). Amendment with mixtures  
of gravel, expanded clay, and lava rock improved 
the soil aeration and soil moisture in clay 
loam and silty loam soils (Braun and Fluckiger  
1998). These studies did not assess the effect 
of soil changes on root systems performance. 

Hydrophilic polymer gels (hydrogels) are some-
times added to the soil to increase available water. 
Research has not shown that the use of hydrogels  
can consistently increase root growth of trees 
(Hummel and Johnson 1985; Keever et al. 
1989; Tripepi et al. 1991; Walmsley et al. 1991;  
Winkelmann and Kendle 1996; Huttermann et 
al. 1999; Gilman 2004; Abbey and Rathier 2005). 
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Cultivation 
Cultivation has been used with mixed results to  
improve soil properties and promote tree root de-
velopment. Deep cultivation by ripping prior to 
planting decreased bulk density and soil penetration 
resistance (Rolf 1991; Rolf 1993; Moffat and Boswell 
1997; Lincoln et al. 2007) and increased both the 
maximum root depth and total number of roots 
compared with the untreated control for Italian  
alder (Alnus cordata), Japanese larch (Larix kaemp-
feri), Austrian pine (Pinus nigra), and European 
white birch (Betula pendula) (Sinnett et al. 2008). In 
other cases, ripping had no effect on rooting depth 
(Nieuwenhuis et al. 2003) or was reported to be ef-
fective for less than a year (Moffat and Boswell 1997).

There was no reduction in soil strength from 
surface soil cultivation with an air excavation 
tool after one year on three of four sites. Com-
post incorporation with air cultivation did 
result in a reduction of soil strength that per-
sisted for at least three years (Fite et al. 2011). 

Cultural techniques that improve soil tilth, aera-
tion, and drainage reduce conditions favorable to 
root disease (Juzwik et al. 1997), and also improve 
host resistance by reducing or avoiding stress asso-
ciated with anaerobic conditions (Sutherland 1984).

Mulch
The benefits of organic mulch are well estab-
lished (Chalker-Scott 2007) and continue to be 
reinforced. A review of published mulch research  
studies showed surface mulch improved soil 
physical properties and tree physiology, but 
there was no improvement in chemical or bio-
logical properties (Scharenbroch 2009). Improve-
ment of soil properties will enhance root growth.

Over time, organic mulches can reduce soil 
bulk density (Donnelly and Shane 1986; Cogger 
et al. 2008) and increase organic matter content 
(Watson et al. 1996; Johansson et al. 2006; Fite 
et al. 2011). Mulch can increase water infiltra-
tion (Donnelly and Shane 1986; Cogger et al. 
2008), reduce evaporation from the soil surface, 
and increase moisture availability (Litzow and 
Pellett 1983; Iles and Dosmann 1999; Arnold et 
al. 2005; Cogger et al. 2008; Singer and Martin  
2008; Fite et al. 2011). Mulch allowed a 50% 
reduction in irrigation while still maintaining 
acceptable growth and appearance (Montague 

et al. 2007). Mulch also insulates soil from tem-
perature extremes (Montague et al. 1998; Iles 
and Dosmann 1999; Singer and Martin 2008). 
In December, soil under mulch was 6°C warmer 
than exposed sod or bare soil (Shirazi and Vogel 
2007). In temperate climates, the soil may warm 
more slowly if new mulch is applied before the 
soil warms in spring (Myers and Harrison 1988). 

Organic surface mulch generally improves shoot 
and root growth (Kraus 1998; Ferrini et al. 2008; 
Arnold and McDonald 2009; Scharenbroch 2009). 
Adding wood chip mulch to the surface of red maple 
(Acer rubrum) and sugar maple (A. saccharum)  
grown in sandy loam and clay loam, respectively, 
increased growth above- and belowground (Frae-
drich and Ham 1982). Mulching with wood chips 
can result in a 30%–300% increase in fine-root 
development in the top 15 cm of soil (Fraedrich 
and Ham 1982; Green and Watson 1989; Himelick 
and Watson 1990). Mulches may not be beneficial 
for some desert plants (Singer and Martin 2009).

When a mulch layer is maintained for several 
years, a partially decomposed organic layer develops  
that holds moisture and minimizes evaporation 
from the soil beneath. A dense mat of roots can 
form in the layer of mulch as well as in the soil 
beneath it (Bechenbach and Gourley 1932; Watson  
1988). The roots in the mulch will not be at any 
greater risk of desiccation, since the well-established 
mulch layer can hold more water than the soil itself, 
without decreasing aeration to the soil beneath 
it (Watson 1988; Himelick and Watson 1990). 

Mulch reduces root competition for soil mois-
ture and nutrients from lawn grasses (Richardson  
1953; Gilman 1989; Kraus 1998). In addition  
to competition for water and nutrients, some 
lawn grasses may be able to reduce the growth 
of the trees through production of allelopathic 
chemicals. Root growth of forsythia (Forsythia  
intermedia) was suppressed by ryegrass and red  
fescue leachates (Fales and Wakefield 1981). Fes-
cues have also been shown to stunt the growth 
of southern magnolia (Magnolia grandiflora) 
(Harris et al.1977), river redgum (Eucalyptus 
camaldulensis) (Meskimen 1970), black wal-
nut (Juglans nigra) (Todhunter and Beineke 
1979), and sweetgum (Liquidambar styraciflua)  
(Walters and Gilmore 1976), but specific 
effects on root systems were not reported. 
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While mulching has many benefits for soil 
quality and root health, there are some potential  
drawbacks. One concern about mulching is that it 
creates conditions ideal for certain disease-causing  
fungi. Fraedrich and Ham (1982) did not find 
any enhancement of the soil-borne pathogenic  
fungi, Pythium spp. and Fusarium spp. during 
their one-year study. Austrian pine saplings that 
were mulched with fresh needles and shoot tips 
from Sphaeropsis tip blight diseased trees devel-
oped more than twice the percentage of blighted 
tips. There was no Botryosphaeria canker or Armil-
laria root rot disease development when redbud  
(Cercis canadensis) and red oak (Quercus rubra) 
saplings, respectively, were mulched with wood 
chips from diseased trees (Jacobs 2005). A decrease 
in growth the first year after mulching, and an 
increase in the second year has been attributed 
to nitrogen immobilization in the first year fol-
lowed by release the next (Hensley et al. 1988; 
Truax and Gagnon 1993; Erhart and Hartl 2003).

A layer of mulch can intercept rain water before 
it reaches the roots if the amount of water is small 
or the mulch is thick (Gilman and Grabosky 
2004; Arnold et al. 2005; Johansson et al. 2006). 
Although 25 cm or more of coarse textured organic 
mulch does not adversely affect soil oxygen or fine 
root development (Watson and Kupkowski 1991; 
Greenly and Rakow 1995), as little as 5 cm of fine-
textured organic mulch, or compost, can reduce 
soil oxygen to less than 10% under wet conditions, 
which can affect root function (Hanslin et al. 2005). 

Aeration
Compressed air soil injection treatments have 
generally been ineffective in relieving compac-
tion or increasing soil aeration (Yelenosky 1964; 
Smiley et al. 1990; Hodge 1991; MacDonald et al. 
1993; Rolf 1993). Soil texture may have a strong 
influence on the results. Reports of success in  
reducing bulk density or increasing porosity were 
in loamy soils (Rolf 1993; Lemaire et al. 1999). 

A traditional approach to aeration of compacted 
soil around trees is vertical mulching (i.e., drilling 
a pattern of holes in the root zone soil). Research 
on vertical mulching has provided mixed results. 
Holes 5 cm diameter, 45 cm deep, with or without  
sand-bark mix backfill, provided no benefit to  
Chinese wingnut trees (Pterocarya stenoptera)  

(Pittenger and Stamen 1990). Similar results were 
seen in sugar maple (Acer saccharum) when the 
holes were filled with perlite backfill (Kalisz et al. 
1994). However, roots of Monterey pine (Pinus 
radiata) were able to utilize 10 mm diameter  
vertical perforations to grow the same depth as 
uncompacted controls, while root growth of trees 
on compacted soil without perforations was sup-
pressed (Nambiar and Sands 1992; Sheriff and Nam-
biar 1995). Largeleaf linden (Tilia platyphyllos) and 
planetree (Platanus × Acerifolia) roots colonized the 
majority of the depth of 10 cm diameter, 60 cm deep 
holes filled with a mix of coarse sand, composted 
organic materials, and fertilizer, and grew deeper 
than in adjacent site soils (Watson et al. 1996).

Root growth in larger trenches filled with 
compost-amended soil was increased relative 
to undisturbed soil, but root growth was not 
increased in the soils adjacent to the trenches 
after 2, 4, and 14 years. Soil aeration was not 
measured and may not have been limiting in the 
undisturbed and not compacted soil adjacent to 
the trenches (Watson et al. 1996; Watson 2002). 

pH Adjustment
Neutral to slightly acid pH is optimum for most 
plants. Applications of lime are used to raise soil 
pH. Aluminum sulfate and sulfur can help to lower 
pH, although high rates of aluminum sulfate may 
cause injury to some plants, particularly in broad-
leaf evergreens. The injury is believed to be caused 
by excessive aluminum. Ammonium sulfate may 
be as effective as aluminum sulfate, but neither is 
as effective as granular sulfur (Messenger 1984). 
Ammonium sulfate is sometimes used if nitrogen 
application is needed along with pH reduction, 
but applying enough to lower the pH would likely 
apply a quick release form of nitrogen in excess of 
best management practices (Smiley et al. 2007).

Enhancing root development may improve 
uptake of available nutrients. Improving soil qual-
ity using methods such as cultivation, addition of 
organic amendments, and mulching can enhance 
root systems (see above). Basal drench applica-
tion of paclobutrazol, a tree growth regulator, 
increased fine-root development and relieved 
interveinal chlorosis commonly attributed to 
iron deficiency of pin oak (Quercus palustris) 
on alkaline soils (Watson and Himelick 2004). 
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Salt Mitigation
Soil salt accumulation can be reduced through 
design and engineering. Deicing salt accumula-
tion in road median planters can be prevented 
by using wider planters with higher walls set  
farther from high-speed roads. The raised planters 
did not receive salt-laden runoff, splash, plowed 
snow, or direct application from salt spreaders 
(Rich and Walton 1979; Hootman et al. 1994).

Leaching of sodium from deicing salt applica-
tion to roadways can be rapid in well-drained 
soils with adequate natural precipitation (Prior 
and Berthouex 1967; Cunningham et al. 2008). 
High soil salts and wet soils tended to occur 
together since poor drainage restricts the normal  
leaching of soil salts (Berrang et al. 1985). In arid 
regions, natural precipitation will not usually  
leach salt from the soil (Schuch et al 2008). Under 
low moisture conditions, moisture moves to the 
surface and evaporates and salt moves upward 
also to accumulate near the surface (Prior and 
Berthouex 1967). Flushing soil with water to 
remove salt and adding gypsum (CaSO4) and 
fertilizers appear to be the best treatments for 
salt contaminated urban soils (Dobson 1991). 

Selection of resistant species and cultivars 
can also minimize damage from salt in soils. 
The majority of published studies evaluate  
only shoot sensitivity, but growth of root  
systems of crapemyrtle (Lagerstroemia) cultivars 
varied in sensitivity to soil salt (Cabrera 2009).

Biostimulants
Application of commercial products to en-
hance root growth has been increasing. Soil 
application of mycorrhizal fungi have proven 
beneficial to trees in soils lacking the appropri-
ate fungi, such as on strip-mining reclamation  
sites and in sterilized nursery beds (Smith and 
Read 1997). Native mycorrhizal fungi levels 
can be low in arid regions (Dag et al. 2009). 
However, growth rate of urban trees has gen-
erally been unaffected when treated with com-
mercial inoculants at planting (Morrison et 
al. 1993; Martin and Stutz 1994; Roldan and  
Albaladejo 1994; Querejeta et al. 1998; Gilman 
2001; Ferrini and Nicese 2002; Appleton et al. 2003; 
Abbey and Rathier 2005; Corkidi et al. 2005; Bros-
chat and Elliot 2009; Wiseman and Wells 2009). 

Vigor of the natural mycorrhizal inoculum, as 
well as suitability of the introduced inoculum to 
the ecological conditions of the site, are important  
factors in the success or failure of the intro-
duced inoculum (LeTacon et al. 1992). Endemic 
fungi species may replace the inoculated species 
over time (Garbaye and Churin 1996). Mycor-
rhizae can develop without introduced inocula-
tion in a favorable soil environment if natural 
inoculum is present (Wiseman and Wells 2009). 

The quality of the inoculum may be a factor in 
success of inoculations. Mycorrhizal coloniza-
tion of roots rarely exceeded 5% after treatment 
with commercial inoculants, but was up to 74% 
when treated with a fresh, lab-cultured inocu-
lant (Wiseman et al. 2009; Fini et al. 2011). 

Paclobutrazol (PBZ), a growth regulator used 
primarily to reduce shoot growth of trees, can 
also increase root growth under certain cir-
cumstances. Mycorrhizal colonization of root 
tips was unaffected by PBZ treatment, show-
ing that mycorrhizae are not reduced by the 
fungicidal properties of PBZ (Watson 2006b).

Application of organic products, such as 
humates and plant extracts, have shown limited 
benefit to root growth of trees. Dose and species  
responses vary widely (Laiche 1991; Kelting et 
al. 1997; Kelting et al. 1998a; Kelting et al. 1998b; 
Ferrini and Nicese 2002; Fraser and Percival 
2003; Gilman 2004; Sammons and Struve 2004; 
Abbey and Rathier 2005; Barnes and Percival 
2006; Broschat and Elliot 2009; Percival 2013). 

Compost teas are liquids containing soluble 
nutrients and species of bacteria, fungi, protozoa, 
and nematodes extracted from compost. Com-
post teas are being used to enhance soil biology 
and provide nutrients, sometimes as an alterna-
tive to fertilization, but research support for their 
effectiveness is lacking (Scharenbroch et al. 2011). 

Sucrose can increase root:shoot ratios by down-
regulating genes used for photosynthesis (Percival  
and Fraser 2005). Applied as a root drench, it 
enhanced root vigor when applied at up to 70 g/L 
in some studies (Percival 2004; Percival and Fra-
ser 2005; Percival and Barnes 2007), but not others 
(Martinez-Trinidad et al. 2009). In most of these 
studies, the sugar was applied to the soil at least twice.

Healthy soils with favorable physical and 
chemical characteristics will support active soil 
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biology naturally. Improving soil conditions is 
preferred over addition of compost teas, bios-
timulants, mycorrhizal fungi, and other means.  

One of the most important soil functions is 
to serve as a medium for root growth. Physical, 
chemical, and biological soil characteristics all 
have an effect on tree roots. A thorough under-
standing of how these soil characteristics affect 
root growth is necessary to properly manage soils 
for optimum root growth. Although most urban 
soils are substantially altered from the natural 
state, or even completely manufactured, urban 
soils must still provide the necessary resources for 
root growth. Highly disturbed soils require very 
careful management to maintain conditions favor-
able for root growth. Management practices aimed 
at preventing soil damage or restoring aspects of 
the natural soil environment have the strongest 
research to support their effectiveness in improv-
ing root growth in urban and suburban settings.
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Zusammenfassung. Die physischen, chemischen und biolo-
gischen Zusammensetzungen von städtischen Böden enthalten 
oft Begrenzungen für das Wachstum von Wurzeln. Für ein gutes 
Management ist ein Verständnis für die Beziehungen der Bode-
nanteil sehr wichtig. Als ein Resultat dieser gegenseitigen Abhän-
gigkeiten kann der Status eines Bodenfaktors alle anderen beein-
flussen. Die Vermeidung von Bodenschäden ist sehr effektiv und 
erstrebenswert. Pflegemaßnahmen, wie Kultivierung und Mulchen 
können effektiv die Bodeneigenschaften verbessern. Zusätze für 
den Boden, wie Produkte zur Biostimulation, haben sich in der 
Forschung als nicht zuverlässig effektiv erwiesen. Die Herausfor-
derung an das Management ist, eine urbane Umwelt zu liefern, die 
nahezu wie eine natürliche Umgebung funktioniert.

Resumen. Las restricciones físicas, químicas y biológicas de los 
suelos urbanos suelen plantear limitaciones para el crecimiento de 
las raíces de los árboles. La comprensión de las interrelaciones de 
las propiedades del suelo es importante para un adecuado mane-
jo. Como resultado de la interdependencia de las propiedades del 
suelo, el estado de uno de los factores del suelo puede tener un 
efecto sobre todos los demás. La prevención de daños en el suelo 
es preferida; las prácticas culturales tales como el cultivo y el acol-
chado son apropiadas en la mejora de las propiedades del suelo. Los 
aditivos del suelo, tales como productos bioestimulantes, no han 
demostrado ser consistentemente eficaces a través de la investig-
ación. El desafío del manejo es proporcionar un entorno urbano 
que funcione como el medio ambiente natural.
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Abstract. Root systems of nearly all trees in the built environment are subject to impacts of human activities that can affect tree 
health and reduce longevity. These influences are present from early stages of nursery development and throughout the life of the 
tree. Reduced root systems from root loss or constriction can reduce stability and increase stress. Natural infection of urban tree 
roots after severing has not been shown to lead to extensive decay development. Roots often conflict with infrastructure in urban 
areas because of proximity. Strategies to provide root space under pavements and to reduce pavement heaving have been developed, 
but strategies for prevention of foundation and sewer pipe damage are limited to increasing separation or improved construction.
 Key Words. Ground-Penetrating Radar; Infrastructure Damage; Root Architecture; Root Decay; Root Defects; Rooting Space; Root 
Flare; Root Severing; Stability.

Tree root systems are generally shallow and wide-
spread (Day et al. 2010). Human activity around 
trees frequently impacts tree root systems, decreas-
ing tree health and reducing longevity compared to 
trees on natural sites. Construction and repair of  
infrastructure often severs tree roots. The presence 
of buildings and pavements can restrict root systems 
with detrimental effects on both the tree and the 
structure. Urban landscape design and maintenance 
can be very different than the natural environment 
to which the trees are adapted. Root architecture is 
altered by nursery production and transplanting, 
which can affect the tree throughout its life. The 
management challenge is to avoid or reduce these 
impacts through proper management, including 
minimizing injury to existing roots, speeding root 
regrowth after severing occurs, and maximizing 
the quality and quantity of root space in design.

ROOT ARCHITECTURE AND  
STABILITY

Tree stability depends heavily on both root system 
architecture and the anchorage of roots in the soil. 
Root/soil resistance gives rise to the characteris-

tic mass of roots and soil seen on uprooted trees, 
known as the root plate. The anchorage strength of 
a tree root system has four components: 1) the mass 
of the roots and soil levered out of the ground, 2) the 
strength of the soil and depth of root penetration 
under the root plate, 3) the resistance to failure in 
tension of tree roots on the windward side as the up-
ward movement of the root–soil plate causes roots 
to pull out of the soil with or without first break-
ing, and 4) the length of the lever arm (where the 
roots hinge) on the leeward side, which is affected 
by root diameter and resistance to bending of the 
tree roots (Coutts 1983; Coutts 1986; Blackwell et 
al. 1990; Kodrik and Kodrik 2002). A change in one 
feature can affect several others. Thus, an increase 
in root plate diameter will increase the weight com-
ponent, the length of lever arm between the trunk 
and the roots around the perimeter of the plate, 
and the area of root/soil contact under the plate. 
As each of these anchorage components increases, 
the greater the force needed to tip up the root plate. 
Uneven distribution (large sections without roots) 
reduces anchorage (Sundstrom and Keane 1999). 

Environmental factors influence root architec-
ture and stability. If roots penetrate deeper, as can 
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be the case in sandy soil, the tap root and deeper 
roots have more influence on overturning resis-
tance in sandy soil compared with clayey soil (Four-
caud et al. 2008). Wind loading appears to result in 
increased growth of lateral roots at the expense of 
the tap root. Development of the lateral root system 
may therefore ensure better anchorage of young 
trees subjected to wind loading (Tamasi et al. 2005). 

Root branching shortens the root plate lever 
arm and makes tipping easier. The roots of nearly 
all trees in urban areas have been severed during 
transplanting, which creates branching at the cut 
end and smaller regenerated roots. This branching 
may shorten the root plate fulcrum on the leeward 
side and reduce the diameter of the roots at the 
perimeter of the root plate, with the possible effect 
of rendering urban trees less stable than their forest 
counterparts with less-branched, larger roots. How-
ever, no direct research on urban trees is available.

ROOT INJURY 

Consequences of Root Severing
Analysis of published data on root spread of trees 
concluded that the radius of the root system is 
approximately equal to tree height (Day et al. 
2010), which is often greater than the radius of 
the branches (drip line). Given the close proxim-
ity of trees to structures, pavements, and utili-
ties in most urban and suburban landscapes, tree 
roots can be easily injured by soil excavation. 

Root loss from severing can be considered tem-
porary when roots are able to regenerate and even-
tually replace roots that were lost.  If the root space is 
permanently lost (e.g., resulting from construction 
of a structure or pavement in the root zone), then 
the root system will not be able to replace itself, and 
stress and stability concerns may never be overcome.

Root loss from trenching can affect both tree 
health and stability. Trenching through the root zone 
of parkway trees was considered to be responsible 
for substantial tree dieback and decline over the fol-
lowing 12 years, and was the basis for development 
of auguring specifications in common use (Morell 
1984). While generally accepted, the little research 
available has not been completely supportive. 

When trenches were dug for installation of new 
utilities 0.5 to 3.3 m from hackberry (Celtis occiden-
talis), sweetgum (Liquidambar styraciflua), sugar 

maple (Acer saccharum), and honeylocust (Gleditsia 
triacanthos), only on hackberry, where the trench 
was only 0.5 m from the trunk (approximately 1.5 
times the trunk diameter), was growth-reduced 
for all four growing seasons monitored following 
trenching. The trenching did not predispose the 
trees to readily evident disease or insect infestations 
(Miller and Neely 1993). If the trench was three times 
the trunk diameter away from the trunk, or more, 
no consistent growth reduction was measured. No 
growth reduction or dieback was reported when pin 
oak (Quercus palustris) trees were trenched on one 
or two sides at a distance of three times the trunk 
diameter. However, moderate dieback was noted 
on trees that were trenched on three sides (Watson 
1998). Street or sidewalk construction at a distance 
of five to seven times the trunk diameter from the 
tree resulted in only a 4% increase in mortality and a 
5% decrease in condition rating (Hauer et al. 1994). 

Root loss reduces the capacity of the root system 
to absorb water, most of which is transpired through 
the leaves. Compensatory pruning along with severe 
trenching reduced dieback from stress but was most 
beneficial after the most severe root loss (Watson 
1998). These trees did not receive any irrigation 
or special care, which could possibly have reduced 
dieback development even without pruning.

Hamilton (1988) suggested that some species 
may be more prone to uprooting after root pruning, 
based on observation. Stability of trees after the roots 
have been severed is a concern that has not been 
fully addressed by research. When trenches were cut 
alongside trees, tree anchorage was compromised by 
trenches only when closer than 2.5 times the diam-
eter of the trunk on the tension side (Bader 2000; 
Smiley 2008b; Ghani et al. 2009). The surprisingly 
high anchorage of the trees with such severe root loss 
was thought to be because rooting depth close to the 
trunk was a major component of anchorage. Cut-
ting roots on both sides of the tree reduced the force 
required to cause tree failure by two-thirds when 
trees were trenched simultaneously at five times the 
trunk diameter on the tension side and about half 
that distance on the compression side (approximate 
location of the root plate hinge point) (O’Sullivan and 
Ritchie 1993). Trees with asymmetrical or restricted 
root systems may be less stable after root severing. 

These studies suggest that vigorous trees less than 
30 cm diameter may be able to tolerate roots being 
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severed on one side as close as three times the trunk 
diameter without a major loss in stability or crown 
decline. Larger trees, such as those on which the 
specifications were based, may be less tolerant. As 
surprising as it might seem that root severing did 
not kill any trees or cause severe dieback in these 
studies, consider that when roots are cut to form 
a root ball to transplant a tree, roots are cut on all 
sides at a distance of three to five times the diam-
eter of the trunk (Anonymous 2004; Anonymous 
2010). The trees are stressed, but even very large 
trees recover if cared for properly. Comparison of 
trenched trees in the established landscape to trans-
planted trees may be fairly realistic (Hamilton 1988).

Root Decay
Principles of Compartmentalization of Decay 
in Trees (CODIT, Shigo 1977) apply to roots as 
well as stems, although roots have not been stud-
ied as extensively (Shigo 1972; Shigo 1979a; Tip-
pett and Shigo 1980; Tippett and Shigo 1981; 
White and Kile 1993; Robinson and Morrison 
2001). Because root injuries are common and in-
juries serve as infection courts for root-rotting or-
ganisms (Tippett et al. 1982), roots have evolved 
to be strong compartmentalizers (Shigo 1986). 

Average values of longitudinal extension of decay 
columns in roots of Sitka spruce (Picea sitchensis),  
white fir (Abies concolor), and Norway spruce 
(Picea abies) after artificial inoculation have been 
reported from 10 to 53 cm per year, (Morrison and 
Redfern 1994; Garbelotto et al. 1997; Piri 1998). 
Decay introduced experimentally through root 
wounds within a meter of the trunk can extend into 
the trunk (Redmond 1957; Garbelotto et al. 1997). 

In contrast, the natural infection of landscape tree 
roots 3 to 22 cm in diameter after severing has not 
led to extensive decay development. Five to seven 
years after severing, decay extended no more than 
10 cm from the severed end of roots of 7-year-old 
sweetgum (Liquidambar orientalis × L. styraciflua) 
and plane hybrids (Platanus occidentalis × P. orien-
talis)  (Santamour 1985), or 40-year-old honeylocust 
(Gleditsia triacanthos var. inermis), pin oak (Quercus 
palustris), tulip-tree (Liriodendron tulipifera), and 
green ash (Fraxinus pennsylvanica) trees (Watson 
2008). Trunk wood decay was observed only when 
the root cambium had died back to, or above, the soil 
surface and may have been the result of trunk injury 

(cambial death) rather than the root wounding 
(Santamour 1985). Although the number of research 
studies is limited, these results suggest that decay 
development as a result of severing roots is not an 
immediate threat to the health or stability of a tree.

Santamour (1985) also reported differences 
between species in their ability to resist trunk decay 
and discoloration after root severance. Four years 
after severing roots within 0.5 m of the trunk, there 
was no discoloration or decay in trunk tissues in red 
maples (Acer rubrum), and 6 cm maximum in the 
roots. Discoloration and decay was present in trunk 
tissues of 2 of 10 black oaks (Quercus velutina) and 4 
of 10 white oaks (Q. alba) after similar root severance. 

Root size and proximity to the trunk has been 
reported to affect decay development rate. Root 
decay increased as root size increased on hard-
woods (Whitney 1967; Santamour 1985; Balder 
et al. 1995; Balder 1999) and conifers (Piri 1998; 
Tian and Ostrofsky 2007). Injury to roots close 
to the trunk resulted in more extensive decay 
on hardwoods (Shigo 1979b; Balder et al. 1995; 
Balder 1999). Other studies do not support 
these conclusions (Shigo 1991; Watson 2008). 
Injury of roots in the dormant season may lead 
to poorer compartmentalization and increased 
decay development, but reports are inconsistent 
(Santamour 1985; Balder et al. 1995; Balder 1999).

Stressing and limiting the development of roots, 
particularly constriction of root diameter growth, 
as results from certain root defects, predispose the 
roots to Armillaria infection (Livingston 1990). The 
increased success of infection by Armillaria sp. as a 
result of root severance appears to be associated with 
changes in the nutrient status of the roots after they 
have been damaged, rather than simply an increase 
in sites for penetration (Popoola and Fox 1996).

Trees that fail due to root decay under non-
stormy conditions often have extensive decay in 
the root flare (roots forming the curvature between 
vertical trunk and the angled structural roots, also 
known as buttress roots). Decay can develop on 
the lower side of major flare roots, where it can 
remain undetected. Drilling is recommended to 
determine the amount of sound wood. Major flare 
roots are considered significantly decayed if the 
thickness of the sound wood on the root is less 
than 0.15 times the tree diameter (Fraedrich and 
Smiley 2002). Thermography can be effective in 
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approximating the decayed areas of the root col-
lar (Cellerino and Nicolotti 1998; Catena 2003). 

Locating Roots
Locating roots prior to construction to avoid dam-
aging them is time-consuming and expensive if 
done with hand digging. Introduction of air ex-
cavation tools has made the task considerably 
more efficient (Nadezhdina and Cermak 2003). 
Non-destructive, ground-penetrating radar can 
be used to map larger roots. Roots 1.0 cm diam-
eter and larger, and as deep as 2 m, can be detected 
(Hruska et al. 1999; Cermak et al. 2000; Butnor et 
al. 2001; Butnor et al. 2003; Nadezhdina and Cer-
mak 2003; Barton and Montagu 2004). Vertical 
roots and roots with less than 20% water content 
could not be detected by ground-penetrating radar 
(Stokes et al. 2002; Hirano et al. 2009). Two roots 
located closely together cannot be individually dis-
tinguished (Hirano et al. 2009; Bassuk et al. 2011).

Resolution of roots may be best in sandy, well-
drained soils, whereas soils with high soil water 
and clay contents may seriously degrade resolu-
tion and observation depth (Butnor et al. 2001). 
Interference from other objects present in the 
soil was sometimes found to be a problem in 
early ground-penetrating radar studies (Cellerino 
and Nicolotti 1998; Hruska et al. 1999). Ground-
penetrating radar was effective in structural soil, 
which is 80% stone (Bassuk et al. 2011). Roots 
could be mapped under concrete and asphalt 
(Nadezhdina and Cermak 2003; Bassuk et al. 
2011). Development of software to reconstruct 3D 
images of root system architecture from raw data 
may still need improvement (Stokes et al. 2002).

Root Regeneration
Root severing can increase the rate of root growth 
on one-year-old seedlings or rooted cuttings, but 
the more rapid root production merely compensates 
for the roots removed (Abod and Webster 1990). 
The potential for water uptake is proportional to 
the number of new roots produced (Carlson 1986). 

When woody roots are severed, numerous new 
roots are initiated at, or just behind, the cut (Wil-
cox 1955; Carlson 1974; Watson and Himelick 
1982a; Gilman et al. 2010). However, a portion of 
regenerated roots can originate from at least 10 
cm behind the cut, depending on species (Gilman 

and Yeager 1988). The ability of damaged roots to 
form new roots decreased with increasing diam-
eter (Balder et al. 1995; Balder 1999). When a root 
is severed, new roots that formed nearest to the cut 
surface will elongate in the same direction as the 
original root. New roots forming slightly behind 
the cut surface tend to grow at more perpendic-
ular angles to the original root (Horsley 1971). 

Initiation of new roots from severed palm 
roots varies with species and distance from the 
base of the trunk (Broschat and Donselman 
1984). Less than one percent of all cut cabbage 
palm (Sabal palmetto) roots regenerated root tips, 
whereas coconut palms (Cocos nucifera) regener-
ated root tips about 50% of the time regardless 
of root stub length. For other species of palms, 
such as queen palm (Syagrus romanzoffiana), 
royal palm (Roystonea regia), Mexican fan palm 
(Washingtonia robusta), and Senegal date palm 
(Phoenix reclinata) the percentage of roots sur-
viving increases with stub length (Broschat and 
Donselman 1984; Broschat and Donselman 
1990a). Cutting palm roots at least 30 cm from 
the trunk will ensure better survival of exist-
ing roots (Broschat and Donselman 1990a).

Auxins are commonly used to promote rooting  
in stem cuttings and can increase the number of 
new roots initiated near the cut ends of roots. 
Indole-3-butyric acid (IBA), indole-3-acetic acid  
and naphthaleneacetic acid applied to roots 
resulted in increased root initiation (Gossard 
1942; Verzilov 1970; Lumis 1982; Magley and 
Struve 1983; Prager and Lumis 1983; Struve and 
Moser 1984; Fuchs 1986; Watson 1987; Al-Mana 
and Beattie 1996; Percival and Gerritsen 1998; 
Percival and Barnes 2004), but may reduce root 
elongation (Struve and Moser 1984; Percival 
and Barnes 2004). Addition of 5% sucrose to 
the auxin solution enhanced the results (Fuchs 
1986). Verzilov (1970) reported increased root 
growth into the third season after application 
but was unsure if it was a residual effect of the 
auxin application or resulted from greater tree 
vigor after the initial increase in root growth. 
IBA treatment did not increase root initiation 
of palms (Broschat and Donselman 1990b).

The rate of new root initiation is affected by 
the environment. At near-optimum soil tempera-
tures, new root growth was detected in 4 to 43 
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days depending on species (Howland and Griffith 
1961; Arnold and Struve 1989). Intact root tips 
began to elongate before new roots were initiated 
(Arnold and Struve 1989). Total new root length 
was positively correlated with soil temperature 
with significantly more new root growth at 20ºC 
(Andersen et al. 1986). Tree fine-root growth 
was slowed by approximately half when soil tem-
peratures dropped from 20ºC to 10ºC (Tyron and 
Chapin 1983). When roots are severed late in 
autumn, after soils have cooled, substantial new 
root growth may not occur until the soils have 
warmed again in the spring. In warmer regions, 
active root growth may continue all winter. Plants 
that were slightly drought-stressed prior to sev-
ering roots had greater root regeneration (Abod 
and Sandi 1983), but decreased soil moisture after 
severing significantly reduced root regeneration 
(Witherspoon and Lumis 1986). Plants supplied 
with adequate (non-deficient) nutrients before 
transplanting had a high capacity to regener-
ate roots following root severing (Abod 1990).

Annual root extension depends on species and 
annual soil temperature regime. In the upper Mid-
western United States (USDA Hardiness Zone 5), 
with its moderate summers and frozen soils in win-
ter, roots grow at an average annual rate of approxi-
mately 50 cm (Watson 1985; Watson 2004). In one 
season under nursery conditions in Hardiness Zone 
6, red oak (Quercus rubra) roots grew 53–61 cm 
(Starbuck et al. 2005) and birch (Betula pendula) 
roots grew 89 cm (Solfjeld and Pedersen 2006). 
In the subtropical climate of north central Florida 
(Hardiness Zone 9), where the growing season is 
nearly year-round, annual root growth is up to 2 m 
or more for some oak (Quercus) and citrus species 
that have been studied (Castle 1983; Gilman 1990; 
Gilman and Beeson 1996). As the roots continue to 
increase in length, fine roots continue to increase in 
density for up to five years (Hutchings et al. 2006). 

Root growth for some species will be higher or 
lower than average figures. For example, black maple 
(Acer nigrum) roots grew 39 cm in a season in the 
midwestern United States, which is near the expected 
average. Under the same conditions, green ash (Frax-
inus pennsylvanica) grew nearly twice as much, 67 
cm (Watson 2004). In general, it may require many 
years to replace the roots lost when they are severed. 

Fine-Root Desiccation
There is sometimes concern that fine roots subject 
to drying by excavation will be damaged. Desicca-
tion of little-leaf linden (Tilia cordata), green ash 
(Fraxinus pennsylvanica), and sugar maple (Acer 
saccharum) fine roots had no effect on root regen-
eration (Witherspoon and Lumis 1986; Watson  
2009), though moisture content was reduced by 
as much as 80% (Watson 2009). In contrast, root 
growth of wild cherry (Prunus avium) and cherry 
plum (P. cerasifera), and of noble fir (Abies procera)  
seedlings, was reduced after desiccation treat-
ment (Symeonidou and Buckley 1997; Bronnum  
2005). Susceptibility of fine roots to damage 
from desiccation may be species dependent.

ALTERATION OF ROOT STRUCTURE 
Root structure and tree growth rate are closely  
related. For conifers (Picea sp., Abies sp., Pinus 
taeda) and hardwoods (Quercus sp., Liquidambar 
styraciflua, Juglans nigra) studied, when one-year-
old seedlings are sorted by root morphology, indi-
viduals with a high number of laterals consistent-
ly have greater growth after planting (Kormanik 
1986; Ruehle and Kormanik 1986; Kormanik 1988;  
Kormanik et al. 1989; Schultz and Thompson 1997; 
Kormanik et al. 1998; Gilman 1990; Ponder 2000). 
Little information is available on how long this  
increased growth persists, but large forest trees that 
have out-competed their weaker neighbors over 
a lifetime typically have many visible flare roots. 

Structural Root Depth 
The large woody roots giving characteristic form to 
the root system are commonly referred to as struc-
tural roots (Sutton and Tinus 1983). These roots 
can be too deep for many reasons. Roots of young 
trees can be too deep because nursery production 
systems can increase structural root depth. Prun-
ing the primary (tap) root of seedlings early in the 
production of field-grown nursery stock produces 
adventitious roots at the cut end of the primary root 
that grow rapidly (Johnson et al. 1984; Harris et al. 
2001; Hewitt and Watson 2009). Up to 60% of the 
natural lateral roots that would normally develop 
into flare roots located above the regenerated roots 
may be lost (Hewitt and Watson 2009). The vigor-
ously growing adventitious roots at the cut end, 
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and loss of natural lateral roots above them, often 
replace the natural root flare (swelling where roots 
join the trunk also known as the trunk flare) with 
an “adventitious root flare” deeper in the soil. The 
depth of the adventitious root flare is determined 
by the length of the primary root after pruning 
(root shank). Even if the tree is planted at the origi-
nal depth with the graft union visible aboveground, 
the adventitious root flare can be 30 cm or more 
below the soil surface. Other practices, such as 
burying the graft union below the soil surface and 
certain cultivation practices, can also contribute to 
root depth. Young trees can be more susceptible 
to being blown over by high winds when depth 
to the first root is excessive (Lyons et al. 1982). 

The structural roots can also be too deep in con-
tainer-grown nursery stock if trees are not planted 
carefully at each repotting. A dense mat of roots can 
fill the soil above the woody roots that form the root 
flare (Fare 2006; Gilman and Harchick 2008; Gil-
man et al. 2010b), and make it impossible to plant 
the woody roots at the correct depth without cutting 
away a substantial portion of the roots in the ball.

Though trees may grow well enough in the 
well-drained substrate of the container or high-
quality soil of the nursery field, they may struggle 
to survive when planted on difficult urban sites 
with heavy soils and poor drainage (Switzer 1960; 
McClure 1991; Day and Harris 2008). The conse-
quences may not be seen immediately. Regener-
ated roots can grow back to the surface (Day and 
Harris 2008), but the root collar will always be 
too deep. Dramatic improvements in tree condi-
tion have been attributed to root collar excavation 
in practice (Smiley 2006). In the only published 
research study, street trees failed to show any 
influence of root collar excavation on tree growth 
over a four-year period (Rathjens et al. 2009).

Root systems of established trees can become 
deeper when fill soil is added over them. Research 
has not been able to consistently show detrimen-
tal effects on trees, though reports from prac-
tice attribute poor performance and Armillaria 
and Phytophthora infections to deep roots and 
soil against the trunk (Smiley 2006). After three 
years, there was no consistent effect of 20 cm of C 
horizon fill on overall root density, growth, or soil 
respiration. Fill did disrupt normal soil moisture 
patterns (Day et al. 2001). After approximately ten 

years, the fill still had no effect on trunk diameter 
growth. Bark of some oak trees appeared to be 
decaying, but bark biopsies revealed only sapro-
phytic fungi (Day et al. 2006). A “collar rot” caused 
by a Phytophthora sp. and a “basal canker” caused 
by Fusarium spp. were associated with buttress 
roots of planted maples that were deeper than roots 
of natural, woodland maples (Drilias et al. 1982).

Installation of subterranean piping systems 
or core venting systems to counter the adverse 
impact of fills is sometimes recommended (Har-
ris et al. 1999). Studies of aeration pipes installed 
prior to addition of fill have been inconclusive. 
With or without pavement-like surface cover, 
conditions under fill were not severe enough for 
any “improved” effect to be measured from the 
use of an aeration system. Greater trunk growth 
in plots with aeration pipes was attributed to 
increased soil moisture in the plot with aera-
tion pipes (MacDonald et al. 2004; Townsend et 
al. 1997). These results underscore the need for 
further quantitative studies of conditions cre-
ated by various fill and paving procedures to 
better ascertain the usefulness of elaborate and 
expensive aeration systems. Other factors asso-
ciated with raising the grade, such as soil traf-
ficking and root severance, may be responsible 
for much of the tree decline attributed to fill. 

A layer of crushed rock over existing soil 
before filling with clay soil increased oxygen (per-
cent) and reduced carbon dioxide in the soil 
beneath it compared to a comparable area where 
no crushed rock was used before clay fill was 
placed over the soil surface (Yelenosky 1964). 

Circling Roots
Growing trees in nursery containers alters natural 
root structure (Halter et al. 1993). Reports are rare 
of adventitious roots developing above the circling, 
kinked, or twisted form found within the container 
root ball after planting (Gilman and Kane 1990). 

Circling roots on the surface of the container 
root ball are widely recognized as a defect and it is 
common practice to disrupt these by making sev-
eral vertical cuts, or “slashes,” on the outside of the 
root ball before planting (Ellyard 1984; Blessing 
and Dana 1987; Arnold 1996; Gilman et al. 1996). 
Methods that disrupt circling roots do not elimi-
nate descending, ascending, and kinked roots. Con-
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tainers designed to prevent circling often direct 
roots contacting the wall down to the bottom or 
up to the surface. Root deformities often become 
a permanent part of the root system (Grene 1978).

Root ball “shaving” is cutting off the outer surface 
of the root ball to remove all roots on the root ball 
surface. It results in a root system with roots grow-
ing more radially from the trunk (Burdett 1981; Gil-
man et al. 2010). Root growth after planting trees 
from containers without shaving was one-quarter 
of that of field-grown trees and resulted in reduced 
tree stability (Gilman and Masters 2010). Growing 
plants in CuCO3-treated containers resulted in the 
reduced defects after planting in the landscape (Bur-
dett 1978; Arnold and Struve 1989; Arnold 1996). 

Girdling Roots
Girdling roots have a different origin than circling 
roots caused by production containers and can be a 
significant problem for at least some species of trees 
planted as field-grown stock. Norway maples (Acer 
platanoides) frequently had severely girdling roots as 
mature trees (Watson et al. 1990; Wells et al. 2006). 
All 50-year-old Norway maples (Acer platanoides) 
had one to nine girdling roots. There was no grafting 
between girdling roots and trunks (Tate 1980). Gir-
dling roots and potentially girdling roots were more 
common on sugar maple (Acer saccharum) and red 
maple (Acer rubrum) than on green ash (Fraxinus 
pennsylvanica), honeylocust (Gleditsia triacanthos), 
littleleaf linden (Tilia cordata), and Yoshino cherry 
(Prunus × yedoensis) trees, 2 to 10 years after planting. 

The majority of the girdling roots can be either 
small, existing laterals when transplanted, or new 
laterals initiated during the first year after trans-
planting. Lateral roots at perpendicular angles, 
close to the base of the trunk, are naturally posi-
tioned to develop into girdling roots. Growth of 
these lateral roots is often slow while the root ter-
minal is intact, but can be stimulated when the ter-
minal is severed as the tree is dug from the nursery. 
Further evidence that girdling roots result from 
transplanting is provided by the low incidence of 
girdling roots found in nature (Watson et al. 1990).

Girdling roots have been associated with exces-
sive soil over the root system (d’Ambrosio 1990; Gib-
lin et al. 2005; Wells et al. 2006), though not always 
(Watson et al. 1990). One report hypothesized 
through observation that girdling roots are associ-

ated with low dense crowns creating cool and moist 
conditions at the base of the tree (d’Ambrosio 1990).

Cross-sectional area of vessels in stem xylem 
affected by the girdle was only 10% that of unaffected 
wood. Rays in stem wood were skewed and contained 
few pits. Bark on girdled stems was compressed 
from a normal thickness. The offending roots sus-
tained slight compression of cells where in contact 
with the stem and appeared to remain functional. 
Thus, girdling roots apparently cause tree decline 
by reducing stem conductivity and radial commu-
nication between tissues (Hudler and Beale 1981).

Girdling roots do not always cause rapid decline 
or death of trees. Aboveground decline symptoms of 
girdling roots include gradual shortening of termi-
nal growth, small leaves, early autumn color, dieback 
of branches in sections of the canopy, and partial or 
total absence of a root flare (Gouin 1983; Holmes 
1984). A survey of 416 urban Norway maples (Acer 
platanoides) found that although 336 had girdling 
roots, most girdling was minor and did not lead to 
visible decline of the trees (Tate 1981). Red (Acer 
rubrum) and sugar maples (Acer saccharum) artifi-
cially girdled with angle iron to simulate a girdling 
root on one side, remained alive for seven to eight 
years, but Norway maples engulfed the girdling 
devices and were alive after 17 years (Holmes 1984). 

Treatments consisting of cutting girdling roots, 
fertilizing, and pruning foliage were evaluated 
after two years and did not alleviate aboveground 
symptoms (Tate 1980). Removal of potential gir-
dling roots resulted in a detrimental effect on 
twig extension (Rathjens et al. 2009). Removal 
of girdling roots as an early corrective treatment 
on young Norway maple trees did not eliminate 
them. Multiple roots reformed from the wound 
site where a single girdling root had been removed. 
Despite this lack of validation by research, girdling 
root removal continues to be a common prac-
tice. The best hope for eliminating girdling root 
problems may be to develop root stock from trees 
without girdling roots (Watson and Clark 1993). 

Girdling by wires of the wire baskets used to 
support root balls during shipping and handling 
is a similar situation. Studies with wires girdling 
stems of young trees showed no detrimental effect 
of girdling (Goodwin and Lumis 1992). Examina-
tion of roots contacting wires 11 years after plant-
ing found that root tissues reunited after closing 
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around the wire and there was complete union of 
vascular tissue beyond the wire (Lumis and Struger 
1988). The small diameter of the wires may pose less 
of a threat than larger roots similarly positioned.

Root Grafts
Root grafting can be beneficial or detrimental to 
trees, depending on the circumstances. When root 
grafts between individuals of the same species  
occur, the grafts allow passage of solutes through 
the connecting xylem (Graham and Bormann 1966; 
Jane 1969). Girdled trees with no transport of car-
bohydrates from the crown to the root system can 
survive for years if their roots are supported through 
grafts to roots of neighboring trees (Stone 1974).

Root grafts among groups of elms were considered 
responsible for more than 50% of Dutch elm disease 
disease transmission when the disease was at its peak 
in U.S. cities (Cuthbert et al. 1975). Oak wilt is also 
commonly transmitted through root grafts (Gibbs 
and French 1980; Appel 1994). In both situations, 
disrupting root grafts is an important method of dis-
ease control. Both mechanical and chemical methods  
of severing roots have a long history (Himelick and 
Fox 1961; Neely and Himelick 1966), with more 
recent variations tested (Wilson and Lester 2002). 

INFRASTRUCTURE–ROOT CONFLICTS 

Pavement Conflicts
When pavements are laid on a compacted soil base, 
roots often grow in the gap between the pavement 
and the compacted soil under it. Moisture is high 
because the pavement prevents evaporation, and 
condensation can form beneath the pavement as 
it cools (Kopinga 1994a; Kopinga 1994b; Wagar 
and Franklin 1994). Aeration can be adequate,  
especially under narrow pedestrian sidewalks 
(Kopinga 1994a; D’Amato 2002a). Roots enlarge 
and can eventually lift and crack the pavement. 
Species that have a small number larger roots 
could cause considerably more damage than if the 
same biomass were allocated between larger num-
bers of smaller roots (Nicoll and Coutts 1997).

Potential for conflicts between trees and pave-
ment is high when one or more of the following 
factors are present: tree species that are large at 
maturity, fast growing trees, shallow rooting habit, 

trees planted in restricted soil volumes, shallow 
topsoil (hardpan underneath topsoil), limited or 
no base materials underneath the sidewalk, shal-
low irrigation, distances between the tree and 
sidewalk of less than two to three meters, or trees 
greater than 15 to 20 years old (Wong et al. 1988; 
Randrup et al. 2003). Large trees in restricted 
planting spaces is most commonly associated 
with pavement damage (Barker 1983; Wagar and 
Barker 1983; Wong et al. 1988; Francis et al. 1996; 
Achinelli et al. 1997; McPherson 2000; D’Amato 
et al. 2002b; Reichwein 2002; Reichwein 2003). 

Research has challenged the common assump-
tion that sidewalk pavement cracks near roots are 
always caused by the roots. Sidewalk damage can 
result from soil conditions and age of pavement as 
well as from tree roots. Older sidewalks failed more 
often. Sidewalks did not fail at higher rates where 
trees were present (Sydnor et al. 2000). With no 
roots present, 61% of all pavement expansion joints 
were also cracked (D’Amato et al. 2002a). Roots 
were more likely to be found under a cracked expan-
sion joint in the sidewalk than under an uncracked 
joint, but the cracks may actually be contribut-
ing to roots growing under sidewalk pavements. 
Sidewalks that fail may allow more root growth 
beneath the cracks due to increased oxygen in 
the soil (Sydnor et al. 2000; D’Amato et al. 2002a).

Barriers are sometimes installed to prevent 
root growth under pavement. Barriers have been 
constructed from plastic, metal screening, and 
geotextile impregnated with herbicide. Most 
are effective at blocking roots between the sur-
face and the bottom of the barrier if installed 
correctly. Differences in products have some-
times been reported in the first few years, but 
may not persist with time (Smiley et al. 2009).

Installation of root barriers reduces the num-
ber and diameter of roots and causes them to grow 
deeper for a limited distance on the far side. This 
has been reported consistently, and in both poorly 
drained (Wagar 1985) and well-drained and well-
aerated soils (Gilman 1996; Costello et al. 1997; 
Nicoll and Coutts 1998; Peper 1998; Peper and 
Mori 1999; Smiley 2005; Pittenger and Hodel 2009; 
Smiley et al. 2009). After they grow under the bar-
rier, roots do grow back toward the surface within 
a short distance from the barrier, but may remain 
deeper long enough to reduce pavement damage. 
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The effectiveness of barriers may not be permanent, 
since pavement damage by 30-year-old sweet cherry 
(Prunus avium) roots was associated with large 
roots as deep as 40 cm below the pavement (Nicoll 
and Armstrong 1997; Nicoll and Armstrong 1998). 

Depth and installation of the barrier is impor-
tant. A 45 cm deep barrier reduced roots under 
the pavement (Smiley 2008a) while a 30 cm barrier 
of similar design did not (Gilman 2006). Barriers 
need to be installed with the uppermost edge above 
grade. If roots are able to grow over the top of the 
barrier because of incorrect installation, deteriora-
tion of the exposed barrier material, or mulching 
over the barrier, can result in significant damage to 
pavements (Smiley 2008a; Tworkoski et al. 1996).

Barriers can reduce overall root development 
of trees (Wagar and Barker 1993; Barker 1995a; 
Gilman 1996; Smiley et al. 2009), but in most 
studies, no effect on trunk diameter growth was 
reported (Barker 1995a; Barker 1995b; Tworkoski 
et al. 1996; Costello et al. 1997; Peper 1998; Peper 
and Mori 1999; Gilman 2006; Smiley 2008a).

There is no evidence that root barriers will 
decrease stability. Slightly more force was required 
to pull over trees within root barriers. The increased 
stability was attributed to deeper roots (Smiley et 
al. 2000). The situation may be different if roots are 
not able to grow under the barrier, such as on sites 
with very poor soil aeration or very deep barriers. 
In such a situation, the limited root system on one 
or more sides could result in increased instability.

Other alternatives to root barriers have proven 
to be effective in preventing roots from grow-
ing beneath pavements and causing crack-
ing and lifting. Extruded polystyrene foam 10 
cm thick installed directly under poured con-
crete forced roots to grow under the foam. 
The expanding roots crushed the foam instead 
of heaving the pavement (Smiley 2008a).

When pavements were laid on a base of coarse 
gravel or brick rubble, the coarse material was 
apparently not a suitable environment for root 
growth between the stones, and the roots grew in 
the soil underneath it. Thicknesses of 15 cm and 
30 cm were somewhat more effective than 10 cm 
(Kopinga 1994a; Gilman 2006; Smiley 2008a).

A 10 cm thick layer of structural soil beneath 
the pavement is not the intended use of structural 
soil, but has been used in place of gravel in prac-

tice (Smiley 2008a). Whereas the use of gravel dis-
couraged root growth, a similar 10 cm deep layer 
of structural soil allowed vigorous root growth in 
the soil between the coarse stones, as it is designed 
to do. Roots in the stone layer resulted in extensive 
pavement cracking and lifting. When structural 
soils are used with a minimum depth of 60 cm, or 
a preferred depth of 90 cm, roots grew to the full 
depth of the structural soil and were not found 
exclusively at the surface (Grabosky et. al. 2001).

Certain root barrier products that are impregnated 
with herbicides to reduce root growth can be effec-
tive as root barriers, but raise concerns that mycor-
rhizae could be affected. Sweetgum (Liquidambar 
styraciflua, endomycorrhizal) and pin oak (Quercus 
palustris, ectomycorrhizal) root mycorrhizae col-
lected from within 1 cm of a chemically impreg-
nated barrier were unaffected in the only reported 
study (Jacobs et al. 2000). (For an extensive review 
of root barrier research, see Morgenroth 2008.)

Just as disease resistance is the preferred way 
to control a tree disease, developing trees with 
deeper root systems would be the best way to 
reduce pavement damage. Research has shown 
that root systems of certain tree species that often 
cause sidewalk damage [e.g., shamel ash (Fraxinus  
uhdei), zelkova (Zelkova serrata), Chinese pistache 
(Pistacia chinensis)] can be selected for deep rooting  
patterns. Unfortunately, when these trees were 
propagated by rooting cuttings; the propa-
gated trees did not exhibit the same deep-root-
ing characteristic (Burger and Prager 2008).

Sewer Pipe Intrusion
Tree root intrusion into sewer systems can be a sub-
stantial problem. Tree roots rarely damage pipes, 
but Mattheck and Bethge (2000) hypothesize that 
when a tree root encircles a pipe, wind loading 
may result in enough movement to break the pipe,  
especially when this occurs near material defects. 

Roots can enter pipes in breaks and loose joints 
and then proliferate rapidly once inside the moist, 
nutrient-rich environment. Older pipes have more 
root intrusions because of age and materials used. 
Clay and concrete pipes without rubber gaskets in 
the joints resist root intrusion the least. The most 
intrusions have been into the smaller dimension 
pipes, 22.5–40 cm, possibly because the larger pipes 
are usually deeper in the soil and the roots may not 
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reach them as easily. Sandy soils are more easily 
penetrated by roots reaching pipes. In poor growing 
conditions, the roots seek their way into the pipes 
relatively quickly, while in good growing conditions 
the process is considerably slower. In general terms, 
full-grown trees that have a large crown volume 
and thus a high requirement for water during the 
growing season have the greatest potential to cause 
large-scale damage to sewage systems by root intru-
sion. Certain tree species, such as poplar (Populus), 
willow (Salix), Melaleuca (Melaleuca), and Eucalyp-
tus (Eucalyptus) are more likely to cause root intru-
sion. Tree size and proximity to the sewer pipe are 
also factors (Stål 1992; Lidstrom 1994; Rolf and Stål 
1994; Stål 1995; Pohls et al. 2004; Ridgers et al. 2006).

Herbicides have been used to control root growth 
in sewer pipes. Metam-sodium and dichlobenil in 
combination is the most common. Metam-sodium is 
non-systemic and does not move throughout the root 
system, killing the whole plant. Dichlobenil is used 
with metam-sodium because it is an effective growth 
inhibitor. Air-aqueous foam is more effective than 
an aqueous mixture. The amount of chemical used 
in the foam application is small. Rapid breakdown 
of the metam-sodium and dilution of the product 
in the wastewater minimize environmental impacts, 
but use is still restricted in many areas (Ahrens et 
al. 1970; Leonard and Townley 1971; Leonard et al. 
1974; Prasad and Moody 1974; Pohls et al. 2004).

Strategies to combat root intrusion are lim-
ited. Tree roots are less likely to grow into sewer 
pipes if planted 6 m or more from existing 
pipes. Slower-growing species with less aggres-
sive root systems are best. Pipe construction 
can reduce intrusion by using longer pipe seg-
ments with fewer joints and proper installa-
tion (Rolf et al. 1995; Stål 1998; Randrup 2000).

Foundation Damage
Tree roots have been associated with interference 
with building foundations but rarely cause direct 
damage. Force from roots increasing in diameter 
is small, and damage only occurs to lightly loaded 
structures (Day 1991; Macleod and Cram 1996).

Roots in the vicinity of shallow foundations on 
soils with a high shrink-swell capacity can con-
tribute to soil moisture depletion during drought, 
causing the soil to shrink and the building foun-
dation to settle and crack (Day 1991). Records 

in England show that the incidence of failure of 
foundations on shrinkable clay soils is greater by 
a factor of ten than on other soils (Pryke 1979). 

Tree genera vary in the amount their root sys-
tems can spread and contribute to building subsid-
ence. [Roots cannot be reliably identified to species 
through anatomical features (Cutler et al. 1987).] 
The distance between damaged foundations and 
the tree with roots contributing to the damage was 
recorded for over 11,000 trees in the Kew Tree Root 
Survey. The average distance at which foundation 
damage was recorded varied from 2.5 m for cypress 
(Cupressus) to 11 m for poplar (Populus) with dam-
age from most species occurring between 5 m and 
7 m (Cutler and Richardson 1989). Depth of water 
extraction by roots may be restricted by soil condi-
tions. Sharp changes in water and air permeability 
retarded rooting and water extraction beyond the 
upper 0.5 m of soil (Misra and Sands 1993). Species 
such as ash (Fraxinus), with relatively poor stomatal  
control of water loss, may accelerate soil drying, 
and therefore shrinkage (Stewart and Sands 1996). 

Coutts (1979) suggests that since roots will 
grow where conditions are most favorable, 
and urban landscapes often have pavements 
and other features that restrict root growth in 
areas away from buildings, the most favorable 
soil may be between the tree and the building. 

Control of roots with barriers is not considered an 
acceptable solution. Roots can grow under or over 
the barrier if not properly installed (as previously 
stated), or through cracks that may develop over 
time (Marshall et al. 1997).  When roots are deflected 
laterally, there is a tendency to resume the original 
direction of growth once past the barrier (Wilson 
1967), unless the barrier is long (Riedacker 1978).

Pruning is ineffective in controlling water use. 
Crown thinning did not reduce total tree water use 
or soil drying. A crown reduction of over 70% by vol-
ume affected water use for only a single season (Hipps 
2004). The only way to ensure that there will not be 
a recurrence of the subsidence event after repair is 
to remove the tree (O’Callaghan and Kelly 2005).

Two solutions to the problem are to plant the 
tree well away from the structure or to use deep-
ened perimeter footings to restrict roots from 
gaining access beneath the foundation (Day 1991). 
A combination of these is employed in the Brit-
ish National House Building Council guidelines, 
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which provide recommendations based on shrink-
ability of the soils, the depth of the foundation, 
and the water demand and mature height of the 
tree. On a highly shrinkable soil, if a high water 
demand tree is located a distance equal to its height 
away from the foundation, the foundation should 
be 1.5 m deep. At half of that distance, a 2.5 m 
deep foundation is recommended (Biddle 1998). 

ROOT SPACE REQUIREMENTS
When trees are planted in paved areas, the limited 
root space available in planting pits will ultimately 
limit the size and longevity of the tree (Fluckiger and 
Braun 1999). Average tree life expectancy in a side-
walk pit can be as little as ten years (Kopinga 1991; 
Nowak et al. 2004). Root restriction can reduce shoot 
elongation and decrease root dry weight:leaf area  
ratio. Imbalanced root:shoot ratios caused the devel-
opment of internal water stress and plant senescence 
(Tschaplinski and Blake 1985; Vrecenak et al. 1989; 
Rieger and Marra 1994; Ismail and Noor 1996). 

Crown spread and trunk diameter of trees grow-
ing in parking lots is reduced as surface area of non-
paved surfaces is reduced (Grabosky and Gilman 
2004). Ninety-six percent of parking lot trees with at 
least 28 m3 of soil were in good condition, compared 
to only 60% in less than 14 m3 of soil. However, 
over 80% of the trees had been planted in the last 
12 years (Kent et al. 2006), and condition of trees 
is likely to deteriorate as the trees grow and reach 
the limits of even the most generous root space. 

Soil Volume and Quality 
Variables to consider when determining how much 
root space is needed includes the quality of the 
soil present (water and nutrient storage capacity), 
how much evaporation and transpiration is ex-
pected, and how often the tree will receive rainfall 
or irrigation. As a general guideline for temperate 
climates, if above- and belowground environmen-
tal extremes are not severe, the root space recom-
mendations vary from 0.15 to 0.7 m3 of soil for 
each square meter of crown projection area of the 
expected mature size of the tree (Kopinga 1985;  
Lindsey and Bassuk 1991; Lindsey and Bassuk 1992; 
Urban 1992; Urban 2008). Similar estimates have 
not been developed for arid and semi-arid climates.

A computer model has been developed that 
uses climatological data to estimate the soil vol-

ume necessary to provide moisture in growing 
conditions likely to be encountered for an area. 
The example used is New York City, New York, 
U.S., with a 6 m crown diameter tree and 17 m3 
of soil, as recommended by Lindsey and Bassuk 
(1991). The tree, without irrigation, would face 
a water deficit every other year. With 27.4 m3 of 
soil the tree would face a deficit only once in 10 
years, but with only 4.3 m3 of root space soil, the 
tree would need irrigation every fifth day to face 
a deficit only once in 10 years (DeGaetano 2000). 
Using a different method, Blunt (2008) calculated 
that under UK weather conditions, a mature tree 
(size and species not specified) would require at 
least 50 m3 of high-quality soil with soil moisture 
recharged by rainfall or irrigation ten times dur-
ing the growing season to avoid drought stress. 

When soil volume is restricted, soil quality 
becomes very important. High-quality soil and 
intensive maintenance can compensate for limited 
root space volume to a limited extent. When soil 
was amended with organic matter to 60 cm depth, 
root development was greater than when just the 
upper 15 cm was amended (Smith et al. 2010). 

It is generally accepted that when soil volumes 
are combined and shared by several trees, the per-
formance of the trees seems to be better than when 
trees are in several smaller, individual planting 
pits of the same total volume. Research to sup-
port this observation is limited. Condition of live 
oaks (Quercus virginiana) was better in shared 
planting spaces but not lacebark elm (Ulmus 
parvifolia) or red maple (Acer rubrum). Maples 
performed poorly in all root spaces, and other 
factors may have been more limiting than shared 
root space. The elms performed well even in very 
limited, non-shared root spaces and may be less 
sensitive to small root spaces (Kent et al. 2006). 

Expanding Root Space
Soils under pavements can be very difficult for 
root growth. The pavement itself can have mixed 
effects on the root environment beneath it. Soil 
moisture can be greater under pavement than 
surrounding unpaved areas because of reduced 
evaporation (Hodge and Boswell 1993; Arnold 
and McDonald 2009). Maximum summer soil 
temperatures under pavement exposed to sun 
can be up to 10ºC warmer than nearby unpaved 
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areas and exceed levels that injure tree roots 
(Halverson and Heisler 1981; Graves and Dana 
1987). The soil compaction necessary to support 
stable pavement often restricts root growth. Sev-
eral approaches have been used to provide suit-
able conditions for root growth under pavements 
without compromising stability of the pavement.

Pervious Paving
It has been suggested that pervious paving materials 
could improve the soil environment beneath pave-
ments for better tree growth, but research has not yet 
shown this to be consistently true. Soil oxygen was 
insufficient for root growth (less than 12% oxygen) 
for prolonged periods beneath two of five pervious 
paving products tested on park footpaths (Couen-
berg 2009). Differences in soil oxygen and moisture 
between impervious and pervious concrete pave-
ments are inconsistent (Morgenroth and Buchan 
2009; Viswanathan et al. 2011). Pervious concrete 
plots had greater soil moisture in deeper layers in 
some seasons, but not in summer when it would be 
most beneficial, and there was no difference in tree 
growth rates, leaf water potential, or gas exchange 
(Volder et al. 2009). The narrow pavements (less 
than 1.5 m wide) used in these studies may allow 
water and oxygen to diffuse under the pavement 
from the edges of the solid pavement, just as effec-
tively as through the pores of the pervious pavement.

To function correctly, pervious concrete pavement 
systems must have underlying soil that percolates 
well, which should also be beneficial for roots. If soil 
beneath the porous pavement is too compacted, the 
resulting poor soil aeration and penetration resis-
tance are more likely to factor in limiting tree perfor-
mance than the pavement (Viswanathan et al. 2011). 

Structural Soils
Soils designed to support pavement without settling 
are often called load-bearing, skeletal, or structural 
soils. To expand root space under pavement in this 
way, the soil must provide a favorable environment 
for root growth while supporting the pavement. 

The first soil of this type developed was called 
Amsterdam Tree Soil. Specifications call for 91%–
94% medium coarse sand, 4%–5% organic matter, 
and 2%–4% clay (by weight). Phosphorous and 
potassium are added as necessary. The organic mat-
ter provides a source of nitrogen (Couenberg 1993). 

The soil mix is carefully compacted to a 70%–80% 
Proctor density when installed, and aeration is pro-
vided through spaces in the pavers placed over the 
soil. Callery pear (Pyrus calleryana) trees grew almost 
twice as rapidly in Amsterdam Tree Soil compared 
to standard pavement construction, and 50% faster 
than those grown in grass (Rahman et al. 2011).

Stone–soil mix structural soils create a network  
of interconnected spaces between the stones 
that can be filled with soil for root growth. 
When mixed and installed properly, structural 
stone-soil mixes compacted to 1.85 g cm-3, and 
greater, and did not reduce macropore space or 
restrict root penetration in the soil between the 
stones (Grabosky and Bassuk 1996; Grabosky 
et al. 2009). In a container study, structural soil 
held 7%–11% moisture by volume, similar to a 
loamy sand, and had high infiltration and good 
drainage and aeration (Grabosky et al. 2009), 
but no field measurements have been reported.

Early tests of structural soil mixes in containers 
showed that stone–soil mixes could support better  
root and top growth than compacted soils or typical  
road base materials (Grabosky and Bassuk 1995; 
Kristoffersen 1999). Growth was limited by net 
soil volume rather than the total volume of the 
stone–soil mix (Loh et al. 2003). The root:crown 
ratio was greater in stone mixes than topsoil alone, 
indicating a larger root system was needed for 
absorption of water and nutrients when the soil 
was spread out in the mix (Kristoffersen 1999). 

Results of field studies have been mixed. At 
three and ten years after installation, growth (DBH, 
height, canopy width) of trees planted in structural 
soil under pavement was equal to trees planted 
at the same time in a lawn adjacent to the side-
walk (Grabosky et al. 2002; Grabosky and Bassuk 
2008). However, the trees planted in structural soil 
were within a few feet of an adjacent open-lawn 
area and the possibility that their roots may have 
grown into that soil volume was not addressed in 
the report. Other reports show that trees planted 
in non-compacted soils in open planters (Bühler  
et al. 2007) or covered by suspended pavement 
(Smiley et al. 2006) will outperform structural soil 
mixes. Stone–soil mixes can be a useful compromise  
in situations where high quality non-compacted 
soils cannot be used, but will not produce the 
same results in an equal volume of quality soil. 
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Structural soils may increase tree anchorage. Trees 
were more stable in structural soils than traditional 
tree pits due to greater root length in gravel-based 
skeletal soil (Bartens et al. 2010). This is supported by 
a computer model in which a 20% soil to 80% gran-
ite chip mix was optimum for withstanding wind 
forces required to uproot trees (Rahardjo et al. 2009).

Suspended Pavement
If the pavement is suspended above the soil, the soil 
does not have to be compacted to support it. Sus-
pended pavements range from elaborate designs con-
structed on-site to simpler and smaller precast con-
crete structures. Trees grew better in non-compacted 
soils under suspended pavement than in compacted 
soil or two structural soil types (Smiley et al. 2006). 
The study design did not include non-compacted 
soil without pavement over it, though experience has 
shown that trees will grow even better in open soil. 

Root Paths
Root paths are narrow trenches installed in a com-
pacted subgrade under pavement to provide a path 
for roots to grow from restricted planting pits to 
open spaces on the other side of the pavement. 
Commercially available strip-drain material is usu-
ally installed in the trench and then backfilled with 
loam soil (Costello and Jones 2003; Urban 2008). It 
could take several years for roots to grow through 
the root path and access the soil beyond. There is 
not yet any research to show that roots are able to 
effectively take advantage of the paths to access 
the soil beyond the pavement and improve tree 
growth and longevity, or that if roots do utilize  
the paths that they will not lift the pavement.

Soil conditions suitable for root growth under 
pavements also provide some level of stormwater  
storage (Day and Dickinson 2008). If signifi-
cant, this could be additional justification for 
the higher cost of the expanded root space. 

ENHANCING ROOT DEVELOPMENT

Irrigation 
Trees are not irrigated in their natural environment. 
Healthy, established urban trees with adequate root 
space of quality soil are not typically dependent 
on irrigation if they are adapted to the climate in 
which they are growing. Little research is available 

on irrigation needs of established urban trees. A 
greenhouse study of ponderosa pine (Pinus pon-
derosa) showed that when water stress occurred 
during active root growth, the root:shoot ratio was 
reduced. When water stress occurred during active 
shoot growth, the root:shoot ratio was increased 
(McMillin and Wagner 1985; Silva et al. 2012). 

Transpiration rates and pan evaporation are 
strongly correlated for woody species. Transpira-
tion of larger trees is approximately 20% of pan 
evaporation (Knox 1989; Lindsey and Bassuk 1991). 
Because of more direct sunlight on the south side 
of the tree there may be greater water stress on the 
south side of the tree (Watson and Himelick 1982b; 
von der Heide-Spravka and Watson 1990). Increased 
irrigation may be appropriate on the south side of 
larger trees to compensate. Trickle irrigation can 
concentrate root development within the wet zones 
near the emitters (Levin et al. 1979; Mitchell and 
Chalmers 1983; Fernandez et al. 1991; Watson et 
al. 2006; Sokalska et al. 2009). Less frequent irri-
gation with the same amount of water can result 
in a wider distribution of roots (Levin et al. 1979).

In the summer, soils moist from irrigation and 
drainage changes can be a major cause of oak (Quer-
cus) mortality in Mediterranean climates (Costello 
et al. 2011). The moisture and warm soil tempera-
tures create conditions favorable to the develop-
ment of root and crown rot diseases (Swiecki 1990).

Controlled studies of irrigation needs of large 
trees subject to root severing and loss are difficult 
to conduct, but studies on irrigation of transplanted 
trees with substantial root loss can provide informa-
tion. Newly planted trees have reduced growth if 
subjected to water stress after transplanting (Haase 
and Rose 1993). Applying excessive irrigation may 
reduce root growth and increase the time needed 
for the tree to develop enough of a root system to 
survive without irrigation (Gilman et al. 2009). 
Proper irrigation can reduce secondary stress-
related problems, such as bark cracks, sunscald, 
and injury from borers (Roppolo and Miller 2001). 

Fertilization
Total tree root system development is greater when 
soil nutrients are low (Kodrik and Kodrik 2002). 
Fertilization may not stimulate root growth unless 
low levels are already limiting root growth (Philip-
son and Coutts 1977). An increase in soil fertility  
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is commonly associated with a reduction in the 
root:shoot ratio; that is, shoot growth increases 
more than root growth (Ingestad 1960; Philip-
son and Coutts 1977; Coutts and Philipson 1980; 
Nambiar 1980; Yeager and Wright 1981; Glea-
son et al. 1990; Warren 1993; Lloret et al. 1999; 
Jose et al. 2003; Qu et al. 2003; Rytter et al. 2003).

Fertility can alter the distribution of roots. Fine 
roots will grow preferentially in pockets of nitro-
gen rich soil (Wahlenberg 1929), by stimulat-
ing the growth of lateral roots (May et al. 1964; 
Hackett 1972; Eissenstat and Caldwell 1988; Witt 
1997). Root growth may be increased even more 
when nitrogen availability is low outside the 
pocket (Krasowski et al. 1999). Application of 
nitrogen to a part of the root system has a strictly 
localized effect and does not increase overall root 
growth or alter the shoot:root ratio (Smith 1965; 
Drew et al. 1973; Drew and Saker 1975; Coutts and 
Philipson 1976; Carlson 1981; Carlson and Pre-
sig 1981; Friend et al. 1990; Sheriff and Nambiar 
1995). Enhanced growth of one part of the root 
system can reduce growth in the other (Weller 
1966; Phillipson and Coutts 1977). Severe soil 
compaction reduced nitrogen fertilizer uptake 
and was presumably related to the reduced uptake 
by a smaller root system (Jordan et al. 2003).

Fertilization may be necessary to maintain 
appropriate vigor and growth rates of urban trees if 
natural nutrient cycling is interrupted through the 
removal of fallen leaves and branches. In an Eastern 
deciduous hardwood forest, nitrogen in fallen litter 
was measured at 0.27–0.46 kg N/100 m2/yr (Wells 
et al. 1972; Larcher 1975). Arboricultural best man-
agement practices (Smiley et al. 2007; ANSI 2011) 
recommend 0.96–1.44 kg N/100 m2, but allow up 
to 2.88 kg N/100m2. These rates far exceed nutri-
ents lost through litter removal and may not be 
appropriate for slower growing mature trees. Lawn 
fertilization alone may more than replace nutrients 
lost by removal of litter (Osmond and Hardy 2004).

Root Stimulants
Paclobutrazol, uniconazole, and flurprimidol are 
gibberellin-inhibiting growth regulators used pri-
marily to reduce shoot growth of trees, but can 
also increase root growth under certain circum-
stances (Numbere et al. 1992). Paclobutrazol may 
promote root initiation (Davis et al. 1985). Pin 

oak (Quercus palustris) and white oak (Quercus  
alba) fine-root densities were increased signifi-
cantly throughout the root system by a basal soil 
drench of paclobutrazol. The treatment may be 
effective in stabilizing slowly declining trees 
with insufficient fine-root development (Wat-
son 1996; Watson and Himelick 2004). Fine-root 
density was not affected by paclobutrazol treat-
ment in a high quality soil environment from 
long-term mulched application where root den-
sity may have been high initially, limiting the 
ability of paclobutrazol to increase them further  
(Watson 2006). Species may differ in their  
response to paclobutrazol. Growth of green ash 
(Fraxinus pennsylvanica) roots was unaffected  
by paclobutrazol treatment (Watson 2004). 

The ability of paclobutrazol to increase root growth 
may depend on root–leaf area ratio. Paclobutrazol 
applied at planting doubled root growth on black 
maple (Acer nigrum) in the first season before 
crown growth was reduced by the paclobutrazol 
treatment, but not the second when crown growth 
was greatly reduced (Watson 2004). The large reduc-
tion in top growth may have been responsible for 
the lack of root stimulation in the second year. 
Gilman (2004) also reported that paclobutrazol 
had no effect on root growth of transplanted live 
oaks (Quercus virginiana) at a rate that reduced 
top growth. Root pruning can enhance the growth 
regulation effects of paclobutrazol treatment and 
slow root growth (Martinez-Trinidad et al. 2011).

Soil applications of sugar solutions have been 
tested to increase root growth. Root growth is 
often but not always increased and may depend 
on tree species, kinds of sugars, and application 
rates included in the trials (Percival 2004; Percival  
et al. 2004; Percival and Fraser 2005; Percival  
and Barnes 2007; Martinez-Trinidad et al. 
2009). Measurable increases in tree vitality are 
uncommon, even on small experimental plants.

There is extensive published research from a 
broad spectrum of plant sciences that can be applied 
to the prevention and mitigation of human impacts 
on urban tree root systems. The majority of litera-
ture available on structural soils, tree root archi-
tecture, root locating methods, and root defects 
has been produced in the last 25 years. At the same 
time, advances have been made in understanding 
topics such as infrastructure conflicts and fertiliza-
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tion practices, but these advances are still not fully 
understood. Arboricultural science is young and 
growing. There is hardly a topic that would not ben-
efit from extensive additional research. The wide 
variety of species and environmental circumstances 
in urban landscapes makes it especially challenging.
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Zusammenfassung. Das Wurzelsystem von nahezu allen Bäu-
men in bebauten Bereichen ist den Einflüssen von menschlichen 
Aktivitäten ausgesetzt, welche die Baumgesundheit beeinflussen 
und die Langlebigkeit reduzieren. Diese Einflüsse sind von der 
Frühphase der Baumschulentwicklung bis durch das ganze Leben 
der Bäume präsent. Durch Baumaßnahmen oder Wurzelverlust re-
duzierte Wurzelsysteme können die Stabilität beeinflussen und den 
Stress vergrößern. Natürliche Infektionen von Wurzeln bei Straßen-
bäumen durch Abtrennen führten nachweislich nicht zu extensiver 
Fäulnis. Wurzeln geraten wegen ihrer Nähe zur Infrastruktur in 
Konflikt mit der urbanen Umgebung. Strategien zur Bereitstellung 
von Wurzelraum unter den Pflasterflächen und zur Reduzierung 
von angehobenen Pflasterflächen wurden entwickelt, aber die Strat-
egien zum Schutz von Fundament- und Abwasserrohrschäden sind 
begrenzt auf wachsende Separation oder verbesserte Konstruktion.

Resumen. Los sistemas de raíces de casi todos los árboles en el 
entorno construido están sujetos a los impactos de las actividades 
humanas que pueden afectar su salud y reducir su longevidad. Estas 
influencias están presentes desde las primeras etapas de desarrollo 
en viveros y luego durante toda la vida del árbol. Sistemas de raíces 
reducidos, pérdida o constricción de las mismas pueden disminuir 
la estabilidad del árbol y aumentar el estrés. La infección natural 
de las raíces de los árboles urbanos después de su ruptura no se ha 
demostrado que conduzca a un extensivo decaimiento. Las raíces 
a menudo entran en conflicto con la infraestructura en las zonas 
urbanas debido a la proximidad. Se han desarrollado alternativas 
para proporcionar espacio para las raíces bajo las aceras y reducir la 
aglomeración, pero las estrategias para la prevención de daños por 
pavimentación y tubería de alcantarillado se limitan a aumentar la 
separación o la mejora de la construcción.
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