

International Journal of Basic and Applied Sciences, 4 (4) (2015) 381-394 www.sciencepubco.com/index.php/IJBAS ©Science Publishing Corporation doi: 10.14419/ijbas.v4i4.5147 Research Paper

Determination of allelopathic potentials in plant species in Sino-Japanese floristic region by sandwich method and dish pack method

Kwame Sarpong Appiah¹, Zhenhao Li¹, Ren-Sen Zeng^{2,3}, Shiming Luo², Yosei Oikawa¹, Yoshiharu Fujii¹*

¹ Department of International Environmental And Agricultural Science, Tokyo University of Agriculture and Technology, Japan ² Institute of Tropical and Subtropical Ecology, South China Agricultural University, China ³ College of Crop Science, Fujian Agriculture and Forestry University, China

*Corresponding author E-mail: yfujii@cc.tuat.ac.jp

Copyright © 2015 Kwame Sarpong Appiah et al. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The Sino-Japanese Floristic Region appears as one of the major centers of development of higher plants. This region have been relevant for the study of evolution and systematics of many flowering plants. The taxonomic richness of endemic plant species in this region have survived several years of extreme climate conditions. Endemic mountainous plant species that have survived extreme climate conditions are of allelopathic and medicinal interest. For this reason, 251 plant species collected from the Sino-Japanese Floristic Region were screened for allelopathic plant species. Sandwich method and dish pack method were respectively used to screen plant leaf leachates and volatile materials with lettuce (*Lactuca sativa* CV. Great Lakes 366) as receptor plant. Among the 84 species that showed inhibitory effect on lettuce radicle elongation in our sandwich bioassay, *Photinia glabra* showed complete inhibition of lettuce radicle elongation (0% radicle elongation). In the dish pack bioassay, *Photinia glabra*, *Liquidambar styraciflua*, and *Cinnamonum camphora* (90.6%, 61.4%, and 50.2% respectively) were among the nine species promoted lettuce radicle growth when compared to the control. *Aesculus turbinata* and *Quercus gilva* were the species with the highest growth stimulatory effect (33.0% and 16.1% respectively). We hereby present *Photinia glabra* as an allelopathic candidate species for both leachate and volatile compounds.

Keywords: Allelochemicals; Dish Pack Method; Elongation; Leaf Leachates; Sandwich Method; Sino-Japanese Floristic Region.

1. Introduction

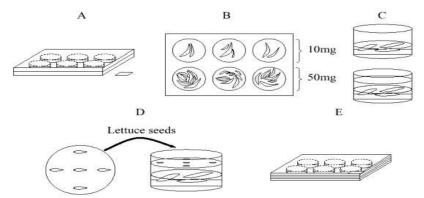
Some living organisms especially plants, have the inherent ability to interfere with biological activities of other organism(s) in their immediate vicinity by releasing certain compounds, this phenomenon is termed as allelopathy. The term allelopathy describes beneficial and mostly harmful natural interactions between organisms due to the release of bioactive secondary metabolites from the donor organism. These secondary metabolites associated with this phenomenon are called allelochemicals which are mostly introduced into the environment through volatilization, leaching, root exudation, and/or by the decomposition of plant residues [1]. Majority of allelochemicals are products of secondary metabolism with a few resulting from primary metabolism [2]. From an ecological perspective, allelopathy may play an important role in the process of biological invasion. Some invasive plant species are perceived to be successful because they possess novel compounds that function as allelopathic agents or as mediators of the new plant-plant interactions [3]. Some effects of allelochemicals on the growth and development of susceptible plants include; reduced radicle and shoot extension, darkened and/or swollen seeds, curling of root axis, discoloration of seeds, lack of root hairs, necrosis, increased number of seminal roots, and reduced dry weight accumulation among others [4]. Modern agricultural practices have succeeded due to the discovery and adoption of agrochemicals for pest control. However, there have been 452 unique cases of herbicide resistant/tolerant weeds among 245 species [5]. Nonetheless, it is difficult

to estimate the cost associated with yield losses due to only herbicide-resistant/tolerant weeds [6]. Due to the increasing number of herbicide-resistant/tolerant weeds and environmental concerns about the inappropriate use of synthetic herbicides, efforts have been made towards developing alternate sustainable weed management strategies. Plants that are able to suppress and/or eliminate competing plant species have received much attention, and the possibilities of using compounds from such plants as selective natural herbicides have increased [7, 8]. Isolated bioactive substances (allelochemicals) from plants are therefore important sources for alternate agrochemicals which could help reduce some of the problems arising from poor cultural practices and excessive use of synthetic pesticides [9]. These natural agrochemicals, compared to their synthetic counterparts are expected to have shorter half-lives in the environment and hence considered to be more environmentally friendly [10]. Over the last decade, there have been a growing market for products from organic farming [11]. Consequently, current researches in weed management have focused much attention on the use of natural products (allelochemicals) as natural pesticides in order to reduce the effects of synthetic pesticides on environment and human health, and to promote sustainable agriculture [12]. These have called for the screening for growth inhibitory plants and the subsequent isolation of their active compounds. This study focused on plants in the Sino-Japanese Floristic Region in East Asia which have one of the most diverse temperate floras in the world. The flora of this region holds special interest for the study of the history of temperate floras of the northern hemisphere. Several plant species of different genera have been reported to be endemic in this region [13]. Qian, [14] reported that the taxonomic richness of seed plants of East Asia is significantly more diverse compared to North America with approximately twice as many plant species as eastern North America, which holds similar size and environment. High physiographical heterogeneity is considered to be of major influence on the extremely high floral diversity within the Sino-Japanese Floristic Region [15]. During the exceptionally cold periods of climate change, the series of mountains (usually with elevations of about 2000 m) in this region provided diverse habitats allowing for species survival. Cool environments at higher elevations are suitable for survival of relict populations in modern subtropics. These relict population may however had allowed for the divergence between extant populations [16]. Recently, the allelopathic potential of certain plant species especially those with medicinal properties have been reported. In this study, we present the comprehensive screening of allelopathic activity of some plants in this region using the sandwich and dish pack methods. The basis of current weed control researches towards identifying potent bioactive compound(s) for weed control is the screening of large quantities of plants. Potential allelopathic candidate species would be identified from the screening process to pave way for further researches. We examined 256 plant samples from 251 different plant species for their allelopathic potentials under laboratory conditions. This report only focused on identifying and introducing allelopathic potentials in some plant species of Sino-Japanese region, while another report will focus on the identification of allelopathic compounds in species that exhibited strong allelopathic potentials for growth inhibitors.

2. Materials and methods

2.1. Plant samples and preparation

The collection of plant samples focused on a part of Japan and China called the Sino-Japanese Floristic Region. A total of 256 plant samples were collected from seven different locations; including the campus of Tokyo University of Agriculture and Technology (TUAT), Tsukuba Botanical Gardens (TKBG), Tokyo Medicinal Botanical Garden (TMBG), Wuhan Botanical Garden (WHBG), Kunming Botanical Garden (KMBG), South China Botanical Garden, (SCBG), and South China University of Agriculture (SCUA). The leaves and other parts of each plant species were freshly collected, placed in separate paper bags and oven-dried (60°C for 24 hours). The samples were then kept in an air-tight box until further use. The oven-dried samples were used for laboratory studies in the Laboratory of International Agro-Biological Resources and Allelopathy at Tokyo University of Agriculture and Technology, Japan.


2.2. Sandwich method

The sandwich method adopted from Fujii et al., [17] was used to determine the allelopathic activity of leachates from selected donor plant leaves. This method have been used [18, 19, 20] to screen large quantity of plants and is effective in determining allelopathic activities by plant leachates under laboratory conditions. Using this method, 251 plant samples (245 species) were screened. Using multi-well plastic dish, the sandwich method was set up as shown in Fig. 1. Treatments were replicated three times and data presented as the mean of the three replicates. Agar with no plant material was set as the untreated control. The multi-well plastic plates were completely randomized in an incubator (NTS Model MI-25S) at 25°C for three days after which radicle and hypocotyl lengths were measured.

2.3. Dish pack method

Fujii et al., [21] adopted this approach to screen for the presence of volatile allelochemicals from plant species. This method is widely used [22] because it determines the presence of volatile allelochemicals in plants very quickly. Using

this method, 69 plant species were screened for possible volatile substances that can influence (promote or inhibit) the growth of lettuce. Multi-well plastic dishes with 6 wells ($36 \text{ mm} \times 18 \text{ mm}$ each) were used in this experiment. The distances from the center of the source well (where plant sample was placed) to the center of other wells were 41, 58, 82, and 92 mm (Fig. 2). The source well was filled with 200 mg of oven-dried plant material, while filter papers were laid in the other wells and 0.75 ml of distilled water was added to each of the wells containing filter paper. The control treatment did not contain any plant sample at the source well. Seven lettuce seeds (*Lactuca sativa* var. Great Lakes 366) were placed on the filter paper in each well. The multi-well dishes were tightly sealed using cellophane tape to avoid desiccation and loss of volatile compounds. To exclude light, aluminum foils were wrapped around the dishes and placed in an incubator (NTS Model MI-25S) at 25°C for three days. The radicle and hypocotyl lengths were measured and recorded after 3 days of incubation and compared to that of the control. The degree of inhibition were estimated by the relationship between lettuce seedling growth inhibition and its distance from the source well.

Fig. 1: Sandwich Method: (A) Multi-well plastic plate with six wells; (B) 10 Or 50 mg dried plant material placed in each well of the multi-well plastic plate; (C) Addition of 5 mL plus 5 mL agar (Nacalai Tesque Agar Powder, 0.75% w/v autoclaved for 20 minutes at 120°C) in two layers on the oven-dried plant material; (D) Five seeds (*Lactuca Sativa* Var. Great Lakes 366) Lettuce seeds vertically placed; (E) Covered with plastic tape and appropriately labelled the multi-well plastic plates for incubation in dark conditions [17].

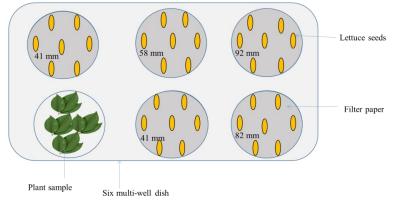


Fig. 2: View from top of Multi-well plastic plate used to test for plant allelopathy through volatile substances.

2.4. Statistical analysis

The experimental set-up was arranged in a complete randomized design with three replicates. In the statistical analysis, evaluation of the means, standard deviation (SD), and SD variance (SDV) were done using Microsoft Excel 2007.

3. Results

3.1. Allelopathic effects of leachates from oven-dried plant materials on lettuce

The percentage elongation of radicle and hypocotyl of lettuce seedlings (1) as affected by leachates from 245 plant species based on sandwich method is shown in Table 1. In this study, the radicle elongations percentages of lettuce

seedlings were in the range 0-123% and 0-105% of the untreated control when respectively treated with 10 mg and 50 mg of oven-dried leaves. In both 10 mg and 50 mg of oven-dried leaf treatment, lettuce radicle elongations were inhibited more than hypocotyl elongations. With respect to 10 mg oven dried leaves treatment, it was observed that 84 species caused significant inhibition on lettuce radicle as evaluated using standard deviation variance (SDV). The families with the highest number of different plant species examined were Magnoliaceae (16 species), Rosaceae, and Fabaceae (11 species each), Fagaceae (8 species) with Oleaceae, Moraceae, and Araliaceae have 7 species each. Only the Rosaceae and Amaryllidaceae families had two species that had lettuce radicle elongation less than 29% of control with Anacardiaceae and Malvaceae having one species each. Further, Boraginaceae, Alistolochiaceae, Euphorbiaceae, Berberidiaceae, Taxaceae, Magnoliaceae, Hemerocallidaceae, and Rutaceae (one species each) showed lettuce radicle elongation in the range 29.5-39.8% of control. It was also found that the oven-dried leaves of six species showed the strongest inhibitory activity on lettuce seedling, showing radicle elongation in the range of 0-29% of the untreated control for 10 mg treatment. These species include; Photinia glabra, Dracontomelon duperreanum, Hibiscus syriacus, Amygdalus persica, Lycoris aurea, and Lycoris radiata. Eight other species (Cordia dichotoma, Asarum nipponicum, Bischofia polycarpa, Mahonia lomariifolia, Taxus wallichiana, Magnolia liliiflora, Hemerocallis fulva, and Acronychia pedunculata) showed strong inhibitory activity on lettuce seedling with radicle elongation in the range of 29.5-39.8% of the untreated control for 10 mg treatment. In lettuce radicle elongation of 38.9-50.2% of the untreated control, 18 different species were observed when treated with 10 mg oven-dried leaves. The lowest inhibitory activity in this study was observed in 52 plant species with lettuce radicle elongation for 10 mg treatment in the range of 50.3-60.6% of the untreated control. In terms of inhibition on lettuce hypocotyl elongation, only two species P. glabra and A. persica (both Rosaceae) could cause the strongest reduction (<29.5%) in this study. Among the 251 plant samples evaluated, only *P. glabra* could completely reduce both lettuce radicle and hypocotyl elongations to 0% for both 10 mg and 50 mg oven-dried leaves treatment. Photinia glabra (Rosaceae) was ranked the strongest inhibitory plant species among the evaluated species using the sandwich method.

3.2. Effects of volatiles compounds from plant species on lettuce seedlings in dish pack method

Table 2 shows the effects (inhibition or promotion) on radicle and hypocotyl of lettuce seedlings that were grown in dish packs containing oven-dried leaves from 69 different plant species. The effects of the plant leaves on growth of lettuce radicle and hypocotyl (2) were presented either as promotion or inhibition. Lettuce radicle growth values indicated negative represent promotional effect when compared to the corresponding control. Our results indicate that among the 69 plant species tested, lettuce radicle growth was either inhibited or stimulated by 9 different species each when compared to the control. Strongest inhibitory effects were shown in seven families, including Rosaceae (two), Taxadiaceae (two), with Altingiaceae, Lauraceae, Pinaceae, Rubiaceae, and Juglandaceae having one species each for different plant species. Only Photinia glabra was observed among the 69 plant species tested to have inhibited lettuce radicle growth more than 90%. It was also observed that two other species (Liquidambar styraciflua and Cinnamomum camphora) showed lettuce radicle growth inhibition in the range of 50-62%. Six other species including, Metasequoia glyptostroboides, Sciadopitys verticillata, Amygdalus persica, Pinus parviflora, Platycarya strobilacea, and Gardenia sootepensis demonstrated lettuce radicle inhibitory effect in the region of 31-39%. Moreover, Aesculus turbinata showed stimulatory effect on lettuce growth more than 25%, whereas Quercus gilva, Diospyros kaki, Prunus buergeriana, Cephalotaxus fortunei, and Fraxinus longicuspis demonstrated lettuce growth stimulation in the range of 10-24%. Polyalthia longifolia, Magnolia obovata, and Acer mono, showed the least stimulatory effect (6.0-9.8%) on lettuce radicle growth.

4. Discussion

Our study indicated that among 251 plant species studied, 10 species showed very strong inhibitory activity on radicle and hypocotyl lengths of lettuce seedling. Currently, there have been no allelopathic reports on six of these species (Photinia glabra, Liquidambar styraciflua, Hibiscus syriacus, Lycoris aurea, Cordia dichotoma, and Asarum nipponicum). Nonetheless, these plants contain some phytochemicals that are linked to phytotoxicity and the inhibition effects observed in these plant species may be due to these compounds or some unknown chemical constituents. We however introduce these compounds in this report. Another report will focus on the identification of bioactive compounds with allelopathic capabilities associated with some of these plant species. Among the species of the Rosaceae family in this study, Photinia glabra had the greatest inhibition on lettuce radicle growth in both sandwich and dish pack methods. P. glabra is native to Japan and have been widely planted for its attractive bright-red new leaf growth and grows 15 to 20 feet in height [23]. The leaves of P. glabra produced two biphenyl compounds when inoculated with fungal spores and treated with HgCl₂. These two biphenyl compounds (2'-methoxyaucuparin and 4'methoxyaucuparin) are reasoned to be produced in response to microbial attack [24]. These phytoalexins from P. glabra and other plant species from the Rosaceae family can inhibit several pathogens especially fungi but their usefulness are however still limited [25]. Hirai et al., [26] reported that plants in the Rosaceae family contain sorbitol which is synthesized from glucose-6-phosphate during photosynthesis in the leaves of these plants. Ishikura, [27] reported that the fruits of *P. glabra* contain anthocyanin identified as cyaniding 3-monoglucoside.

 Table 1: Radicle and hypocotyl elongation percentages of lettuce seedlings grown on agar gel containing oven-dried plant materials tested using the sandwich method.

Plant families	POC	Scientific Name	Dry leaf 10 1	content (mg^{-1}	Criteri
Fiant families	FUC	Scientific Name	 	H%	R%	H%	Cillen
Acanthaceae	WHUN	Adhatoda vasica Nees	55.6	115	24.2	91.2	*
ricultulecue	WHUN	Gendarussa vulgaris Nees	62.2	145	22.9	80.0	
Aceraceae	TUAT	Acer pictum Thunb.	55.2	92.6	26.1	83.3	*
liceraceae	TUAT	Acer buergerianum Miq.	59.5	105	22.2	70.8	*
	TUAT	Acer cissifolium K. Koch	61.5	88.2	16.2	43.2	
	TUAT	Acer palmatum Thunb.	67.4	87.5	27.2	85.8	
	TUAT	Acer diabolicum Blume ex K. Koch	83.9	120	26.8	81.1	
Acoraceae	WHUN	Acorus gramineus Aiton	59.3	126	20.0	67.7	*
Actinidiaceae	TSUK	Actinidia arguta Franch. & Sav.	65.6	83.8	46.7	123	
Actimulaceae	TSUK	Actinidia rufa Franch. & Sav.	88.1	111	35.0	87.1	
Aristolochiaceae	TSUK	Asarum nipponicum F. Maek.	33.6	82.9	16.7	76.3	***
Altingiaceae	TUAT	Liquidambar styraciflua L.	83.5	114	59.1	95.8	
Amaryllidaceae	WHUN	Liquidambar styracijua L. Lycoris radiata Herb.	83.3 26.3	92.0	8.70	95.8 35.2	****
Amaiymuaceae	SCBG	Lycoris aurea Herb.	20.3	92.0 72.5	0.0	0.0	****
Anoondiooooo	WHUN					73.0	
Anacardiaceae		Spondias lakonensis Pierre	72.8	101	50.0	73.0 44.8	****
A	SCBG	Dracontomelon duperreanum Pierre	13.1	40.4	12.6		****
Annonaceae	SCBG	Artabotrys hexapetalus (L. f.) Bhandari	58.1	84.2	28.3	69.0	Ŧ
	SCAU	Polyalthia longifolia (Sonn.) Thwaites	76.0	123	31.1	118	
Apiaceae	KUMN	Peucedanum decumbens Maxim.	64.4	91.4	41.6	78.5	
Apocynaceae	SCBG	Alstonia scholaris (L.) R. Br.	52.1	91.9	29.9	87.6	*
	SCBG	<i>Tabernaemontana divaricata</i> (L.) R. Br. ex Roem. & Schult.	58.1	91.2	31.3	65.5	*
	SCBG	Wrightia pubescens R. Br.	73.2	109	49.5	97.1	
Aquifoliaceae	SCBG	Ilex ferruginea HandMazz.	56.2	110	35.5	84.9	*
	TUAT	Ilex crenata Thunb.	76.3	127	75.4	124	
	SCBG	Ilex rotunda Thunb.	96.3	175	51.2	111	
	TUAT	Ilex integra Thunb.	98.6	120	78.2	122	
Arecaceae	SCBG	<i>Livistona fengkaiensis</i> X. W. Wei & M. Y. Xiao	56.0	97.5	42.3	80.4	*
Araceae	SCBG	Alocasia macrorrhizos (L.) G. Don	60.6	122	52.0	115	*
	WHUN	Pothos chinensis (Raf.) Merr.	47.6	107	19.5	51.3	**
Araliaceae	WHUN	Acanthopanax sessiliflorus Seem.	46.4	116	24.4	75.4	**
	SCAU	Schefflera octophylla Harms	65.9	130	21.9	59.6	
	TUAT	Hedera rhombea Siebold & Zucc.	67.2	109	36.3	86.8	
	TSUK	Aralia cordata Thunb.	107	165	48.0	151	
	KUMN	Acanthopanax simonii C. K. Schneid	73.2	91.4	48.0 59.8	81.5	
	TSUK	Aralia elata (Miq.) Seem.	86.5	109	27.1	86.5	
	WHUN	Hedera nepalensis K. Koch	60.3	109	27.1	105	*
A #22222222							
Arecaceae	SCBG	Rhapis excelsa (Thunb.) A. Henry	61.1	94.7	30.8	72.4	
	SCBG	Arenga tremula Becc.	82.9	109	64.1	111	
	SCBG	Caryota urens L.	95.3	129	91.7	149	
	SCAU	Areca triandra Roxb. ex BuchHam.	114	123	94.0	125	
	SCBG	Arenga pinnata Merr.	71.2	94.7	43.9	75.9	.11.
Asparagaceae	TSUK	Hosta sieboldiana (Hook.) Engl.	43.3	59.2	34.4	58.8	**
	WHUN	Asparagus albus L.	105.3	134	89.0	135	
Asteraceae	TSUK	Ligularia fischeri Turcz.	50.2	88.3	26.7	64.9	*
	TSUK	<i>Chrysanthemum japonicum</i> (Maxim.) Makino	71.8	106	24.0	51.5	
	TSUK	Aster ageratoides Turcz.	85.3	110	65.2	103	
	TSUK	Chrysanthemum pacificum Nakai	50.9	102	73.3	104	*
	TSUK	Stevia rebaudiana Bertoni.	111	113	53.3	113	
Berberidaceae	KUMN	Mahonia lomariifolia Takeda	35.1	67.2	26.8	53.8	***
	TSUK	Nandina domestica Thunb.	47.3	68.9	26.2	47.4	**
	SCBG	Mahonia fortunei hort. ex Dippel	54.8	76.6	29.9	81.4	*
Betulaceae	TUAT	Betula platyphylla Sukaczev	83.7	104	65.2	108	
Doraracoac	IUAI	Denna praryphyria Bakaczev	05.7	10-	28.0	100	

Plant families	POC	Scientific Name	Dry leaf	content (gar ⁻¹) mg	Criteria	
I failt failines	100	Selentine Name	R% H%		R% H%		_ Chieri	
Bignoniaceae	WHUN	Tacomaria canongia (Thunh) Spech	62.8	112	38.0	120		
Dignomaceae		<i>Tecomaria capensis</i> (Thunb.) Spach <i>Dolichandrone cauda-felina</i> Benth. &						
	SCBG	Hook. f.	82.4	106	35.2	87.6		
Bombacaceae	SCBG	Bombax malabaricum DC.	59.1	114	49.0	79.3	*	
	WHUN	<i>Ceiba speciosa</i> (A. StHil., A. Juss. & Cambess.) Ravenna	68.0	107	26.8	90.8		
Boraginaceae	SCBG	Cordia dichotoma G. Forst.	30.7	75.7	17.8	73.5	***	
	SCAU	<i>Ehretia thyrsiflora</i> Nakai	58.1	109	40.4	96.5	*	
Brassicaceae	SCBG	Isatis indigotica Fortune	53.5	123	32.8	74.1	*	
Buxaceae	WHUN	<i>Buxus sinica</i> (Rehder & E. H. Wilson) M. Cheng	55.2	81.0	31.6	75.4	*	
Caprifoliaceae	TUAT	Viburnum odoratissimum Ker Gawl.	78.1	99.2	65.5	124		
Celastraceae	SCBG	Euonymus bungeanus Maxim.	45.9	84.2	47.5	129	**	
Celustraceae	WHUN	Perrottetia racemosa (Oliv.) Loes.	65.1	129	39.1	99.4		
	TUAT	Microtropis japonica Hallier f.	83.8	115	74.6	116		
	TSUK	Euonymus japonicus L. f.	95.2	117	51.2	96.8		
Cephalotaxaceae	WHUN	Cephalotaxus fortunei Hook.	93.2 87.9	138	68.6	124		
Cephalotaxaceae			07.9	130	08.0	124		
Cercidiphyllaceae	TUAT	<i>Cercidiphyllum japonicum</i> Siebold & Zucc.	67.3	109	47.0	102		
Chloranthaceae	WHUN	Sarcandra hainanensis (C. Pei) Swamy & I. W. Bailey	76.5	142	35.6	108		
Clusiaceae	TSUK	Hypericum ascyron L.	94.7	92.2	47.1	87.6		
Convallariaceae	KUMN	Aspidistra elatior Blume	62.9	90.0	42.6	79.4		
Coriariaceae	TSUK	Coriaria japonica A. Gray	79.7	104	46.3	90.7		
Cornaceae	TUAT	Benthamidia japonica (Siebold & Zucc.) H. Hara	91.3	99.0	44.9	110		
Corylaceae	TUAT	Carpinus tschonoskii Maxim.	81.3	118	78.0	121		
	TUAT	Juniperus chinensis L.	88.7	102	75.1	105		
Cupressaceae	TSUK	Sequoia sempervirens (D. Don) Endl.	90.0	102	57.0	119		
	KUMN	Sabina pingii (W. C. Cheng ex Ferre) W. C. Cheng & W. T. Wang	100	121	91.4	117		
	TUAT	Chamaecyparis pisifera (Siebold &	116	127	94.9	135		
		Zucc.) Endl. Sphaeropteris lepifera (Hook.) R. M.						
Cyatheaceae	SCBG	Tryon	103	126	76.0	117		
Cyperaceae	TSUK	Carex oahuensis Hillebr. Daphniphyllum longeracemosum	57.6	60.2	57.9	75.3	*	
Daphniphyllaceae	KUMN	Rosenth.	79.4	91.4	68.4	93.8		
Dilleniaceae	SCBG	Dillenia turbinata Finet & Gagnep.	60.2	113	26.7	69.9	*	
Dipterocarpaceae	SCBG	Hopea chinensis (Merr.) HandMazz.	59.4	56.8	26.3	54.9	*	
	SCAU	Hopea hainanensis Merr. & Chun	119	136	60.1	107		
Dryopteridaceae	WHUN	Cyrtomium yamamotoi Tagawa	94.3	133	59.8	90.8		
Ebenaceae	TUAT	Diospyros kaki L. f.	108	119	69.5	89.9		
Elaeocarpaceae	SCAU	Elaeocarpus apiculatus Mast.	94.6	117	23.5	43.9		
1	KUMN	<i>Sloanea hemsleyana</i> Rehder & E. H. Wilson	96.9	98.3	48.3	41.5		
Ericaceae	TUAT	Rhododendron kaempferi Planch.	61.6	85.9	31.0	65.3		
Liteaceae	TSUK	Pieris japonica D. Don ex G. Don	114	148	105	154		
Escalloniaceae	KUMN	Itea yunnanensis Franch.	86.2	124	64.1	110		
		Bischofia polycarpa (H.Lév.) Airy						
Euphorbiaceae	SCBG	Shaw	34.8	80.6	12.2	31.1	***	
	SCBG	Sapium biglandulosum Müll.Arg.	44.4	52.6	17.8	27.5	**	
	WHUN	Excoecaria acerifolia Didr.	45.1	91.0	16.8	45.2	**	
	WHUN	Excoecaria cochinchinensis Lour.	73.7	129	63.1	97.6		
	SCAU	Bridelia tomentosa Blume	86.2	179	20.8	82.5		
Fabaceae	SCBG	Cassia siamea Lam.	40.6	66.7	14.6	63.7	**	
	SCBG	Erythrophleum fordii Oliv.	42.4	56.1	37.9	100	**	
	TSUK	Crotalaria sessiliflora L.	53.6	88.9	20.8	55.9	*	

Diana Canadilian	DOC	G. Loud'C. Manual		content (C it i
Plant families	POC	Scientific Name	10 I			mg	Criteria
F .1	CODO	\mathbf{D} \mathbf{C} \mathbf{C} \mathbf{D}	<u>R%</u>	H%	R%	H%	*
Fabaceae	SCBG	Pongamia pinnata (L.) Pierre	55.4	98.2	32.3	100	*
	WHUN	Wisteria sinensis (Sims) DC.	56.5	82.7	67.0	87.9	
	TUAT	Styphnolobium japonicum (L.) Schott	59.7	115	26.5	84.6	*
	SCBG	Sindora tonkinensis A. Chev.	73.2	114	54.8	115	
	SCBG	Saraca dives Pierre	60.6	111	49.5	107	*
	SCBG	Pithecellobium lucidum Benth.	64.6	135	47.5	143	
	SCBG	Bauhinia blakeana Dunn	65.1	74.8	33.5	85.0	
	TSUK	Macroptilium atropurpureum (L.) Urb.	99.5	107	34.2	100	
Fagaceae	TUAT	Quercus myrsinifolia Blume	75.4	106	93.6	122	
	TUAT	Quercus glauca Thunb.	80.6	109	45.2	95.9	
	TUAT	Lithocarpus glaber Nakai	81.1	108	62.3	131	
	TUAT	Quercus gilva Blume	82.4	90.1	68.5	81.1	
	TUAT	$\tilde{Lithocarpus}$ edulis Nakai	84.9	105	61.4	114	
	TUAT	Quercus serrata Murray	86.3	104	54.8	107	
	SCAU	Lithocarpus glaber Nakai	111	153	74.3	132	
	TUAT	Quercus acutissima Carruth.	95.1	133	64.0	132	
Ginkgoaceae	TUAT	Ginkgo biloba L.	80.8	108	25.6	79.2	
Ullikguaceae		0					
** ***	TUAT	Ginkgo biloba L. (Fruit)	83.5	106	30.1	69.4	
Hamamelidaceae	KUMN	Loropetalum chinense Oliv.	61.6	98.7	31.1	66.7	
	SCBG	Altingia chinensis Oliv. ex Hance	73.7	105	57.1	119	
	TUAT	Hamamelis japonica Siebold & Zucc.	76.9	115	57.4	103	
Hemerocallidaceae	TSUK	Hemerocallis fulva L.	35.5	69.9	36.2	73.2	***
Hippocastanaceae	TUAT	Aesculus turbinata Blume	71.0	96.3	61.7	109	
Hydrangeaceae	TSUK	Hydrangea macrophylla (Thunb.) Ser.	65.9	80.1	55.9	100	
Iridaceae	SCBG	Iris japonica Thunb.	52.5	89.2	23.5	63.7	*
Juglandaceae	TUAT	Platycarya strobilacea Siebold & Zucc.	67.6	117	38.9	86.8	
Lamiaceae	SCBG	Vitex quinata F. N. Williams	60.2	88.3	23.1	65.5	*
	TSUK	<i>Callicarpa japonica</i> Thunb.	60.4	76.7	48.0	92.8	*
	SCBG	<i>Epimeredi indica</i> (L.) Rothm.	69.2	119	44.4	81.0	
	TSUK	Scutellaria baicalensis Georgi	72.2	108	41.9	97.7	
	KUMN	Callicarpa macrophylla Vahl	87.4	113	62.6	99.1	
	TSUK	<i>Keiskea japonica</i> Miq.	107	159	41.8	123	
Lardizabalaceae	TSUK	<i>Akebia quinata</i> (Thumb. ex Houtt.) Decne.	65.7	104	55.2	86.4	
	TSUK	Stauntonia hexaphylla Decne.	94.7	120	66.1	147	
Lauraceae	WHUN	Lindera fragrans Oliv.	62.2	95.3	41.7	87.3	
Lauraceae	SCBG	Machilus oculodracontis Chun	69.2	107	30.3	68.9	
	WHUN	Cinnamomum osmophloeum Keneh.	76.0	110	42.7	62.6	
		Cinnamomum burmannii (Nees & T.					
	SCAU	Nees) Blume	88.6	108	45.9	91.2	
	TUAT	Laurus nobilis L.	68.7	118	42.3	77.1	
	SCBG	Cinnamomum porrectum (Roxb.)	73.2	96.5	70.7	112	
		Kosterm.					
	TUAT	Cinnamomum camphora (L.) J. Presl	82.2	108	54.7	121	
	SCBG	Litsea verticillata Hance	74.3	107	52.0	96.5	
Liliaceae	SCBG	Tupistra glandistigma Wang et Tang	65.7	92.1	35.3	72.5	
Davalliaceae	KUMN	Nephrolepis cordifolia (L.) K. Presl	88.3	122	65.1	120	
Lythraceae	SCBG	Lagerstroemia speciosa (L.) Pers.	81.7	125	17.5	63.9	
	TUAT	Lagerstroemia indica L.	85.8	117	36.7	91.0	
Magnoliaceae	SCBG	Magnolia liliiflora Desr.	35.4	64.9	26.3	56.9	***
C	SCBG	Manglietia lucida B. L. Chen & S. C.	64.8	82.0	35.9	95.6	
	5656	Yang	01.0	02.0	55.7	15.0	
	SCBG	Magnolia sirindhorniae Noot. &	69.7	100	23.8	45.1	
		Chalermglin					
	SCBG	Manglietia insignis Blume	71.3	123	37.6	97.1	
		Magnolia obovata Thunb.	73.1	105	44.0	73.4	

Magnolia grandiflora L.

84.7

100

81.3 121

TUAT

Plant families	POC	Scientific Name	Dry leaf	content (gar ⁻¹) mg	Criteria
i fant fammes	roc	Scientific Name	-			-	Cinena
N 1'		X · · 1 1 1· · C X	<u>R%</u>	H%	R%	H%	
Magnoliaceae	TUAT	Liriodendron tulipifera L.	85.8	106	45.3	92.2	
	SCAU	Michelia balansae Dandy	102	145	61.7	147	
	SCAU	<i>Michelia sphaerantha</i> C.Y. Wu ex Z.S. Yue	88.0	104	61.2	94.7	
	SCAU	Michelia fadouensis D. X. Li & Y. W.	104	172	76.5	121	
	TUAT	Law Magnalia Kabua DC	105	164	61.0	113	
	TUAT KUMN	Magnolia Kobus DC.	103 59.3	164	61.9 31.1	64.6	*
	KUMN	Michelia figo (Lour.) Spreng. Michelia yunnanensis Franch. ex Finet	39.3 80.1	96.6 88.8	60.3	73.0	·
	COALL	& Gagnep.	70 0	00 7	75 1	70 /	
	SCAU	Michelia alba DC.	78.2	80.7	75.4	78.4	
	SCAU	Manglietia fordiana Oliv.	102	160	50.3	130	
N 1	SCAU	Tsoongiodendron odorum Chun	123	149	84.7	147	*****
Malvaceae	SCBG	Hibiscus syriacus L.	14.6	75.4	5.6	32.8	* * * * *
M.1.	SCBG	Hibiscus mutabilis L.	61.6	146	24.2	75.9	
Meliaceae	SCBG	Aglaia odorata Lour.	92.4	118	51.2	96.5	**
Moraceae	TUAT	Morus bombycis Koidz.	49.1	106	15.3	70.8	**
	SCBG	Ficus drupacea Thunb.	49.5	96.5	23.2	87.9	**
	SCBG	<i>Ficus fistulosa</i> Reinw. ex Blume	59.0	91.9	32.4	96.5	*
	SCBG	Ficus benjamina L.	72.4	128	31.0	66.4	
	SCAU	Ficus lacor BuchHam.	86.2	127	27.9	86.0	
	SCBG	Ficus annulata Blume	92.4	184	49.5	160	
	WHUN	Ficus microcarpa L. f.	72.8	117	40.4	111	
Myricaceae	TSUK	Myrica rubra (Lour.) Siebold & Zucc.	84.5	116	67.0	110	
Myrsinaceae	TSUK	Ardisia crenata Roxb.	60.1	84.7	35.6	62.7	*
	WHUN	<i>Rapanea neriifolia</i> (Siebold & Zucc.) Mez	84.6	166	43.1	104	
Myrtaceae	SCBG	<i>Eugenia javanica</i> Lam.	83.3	112	45.5	106	
Oleaceae	SCBG	Osmanthus matsumuranus Hayata	52.0	104	27.8	89.7	*
	TUAT	Ligustrum lucidum W. T. Aiton	80.2	103	47.3	103	
	KUMN	<i>Ligustrum compactum</i> (Wall. ex G. Don) Hook. f. & Thomson ex Brandis	83.3	97.8	72.9	83.5	
	SCBG	Osmanthus fragrans Lour.	84.6	149	65.4	121	
	TUAT	Fraxinus longicuspis Siebold & Zucc.	86.1	90.9	81.5	125	
	TUAT	Osmanthus fragrans Lour.	88.7	103	89.6	128	
	WHUN	Olea europaea L.	86.6	93.3	82.4	71.3	
Orchidaceae	TSUK	Epipactis thunbergii A. Gray	61.1	78.9	67.7	71.0	
Oxalidaceae	SCBG	Averrhoa carambola L.	67.0	115	22.8	73.5	
Papaveraceae	KUMN	Corydalis taliensis Franch.	55.9	70.0	26.3	37.6	*
Pinaceae	TUAT	Pinus parviflora Siebold & Zucc.	73.2	104	46.2	88.4	
1 maccac	TUAT	Pinus thunbergii Parl.	82.5	81.5	39.6	57.5	
Piperaceae	WHUN	Piper sarmentosum Roxb.	39.9	94.8	14.5	65.8	**
riperaceae	SCBG	Piper sarmentosum Roxb.	59.9 64.6	105	49.5	95.6	
Platanaceae	TUAT	Platanus orientalis L.	90.2	105	49.5 71.9	95.0 127	
Poaceae	WHUN	Indocalamus tessellatus (Munro)	56.2	91.3	34.0	89.7	*
1 Jaccal		Keng f.					
	TSUK	Miscanthus condensatus Hack.	57.9	82.2	46.2	88.2	*
Podocarpaceae	SCAU	Nageia nagi Britton & P.Wilson	102	143	77.6	89.5	
	SCAU	Podocarpus fleuryi Hickel	115	117	55.2	68.4	
Primulaceae	TSUK	Lysimachia daphnoides Hillebr.	74.3	101	16.3	47.4	
Ranunculaceae	KUMN	Anemone vitifolia BuchHam. ex DC.	54.1	80.9	38.9	59.1	*
	TSUK	Caltha palustris L.	60.5	111	37.4	104	*
Rhamnaceae	TSUK	Ziziphus jujuba Mill.	59.5	94.4	23.1	59.1	*
	SCBG	Sageretia thea (Osbeck) M. C. Johnst.	80.8	124	48.4	104	
Rosaceae	KUMN	Photinia glabra (Thunb.) Maxim.	0.0	0.0	0.0	0.0	*****
	TSUK	Amygdalus persica L.	17.1	29.1	13.1	26.8	*****
	TUAT	Prunus buergeriana Miq.	51.2	112	17.2	81.8	*
	TUAT	Cerasus jamasakura (Koidz.) H. Ohba	57.2	89.0	57.3	88.1	*

Dland familias	DOC	Spientifie Norme		content (Cuitoui
Plant families	POC	Scientific Name	<u>10</u>			mg	Criteria
D			<u>R%</u>	H%	R%	H%	
Rosaceae	TUAT	Prunus yedoensis Matsum.	77.1	113	56.4	109	
	KUMN	<i>Laurocerasus undulata</i> (BuchHam. ex D. Don) M. Roem.	59.0	82.0	33.7	60.0	*
	KUMN	Prinsepia utilis Royle	77.6	94.4	61.0	82.6	
	TUAT	Eriobotrya japonica (Thunb.) Lindl.	87.6	134	72.0	135	
	TUAT	Prunus lannesiana E. H. Wilson	88.0	103	50.2	89.0	
	TSUK	Spiraea japonica L. f.	111	166	66.2	149	
	TUAT	Cerasus speciosa (Koidz.) H. Ohba	75.9	99.2	41.3	97.6	
Rubiaceae	SCBG	Gardenia sootepensis Hutch.	70.1	91.0	35.9	79.6	
	SCBG	Psychotria rubra Poir.	77.3	118	37.9	89.7	
Rutaceae	SCBG	Acronychia pedunculata Miq.	39.4	84.2	28.8	75.9	***
	SCBG	Atalantia buxifolia (Poir.) Oliv.	46.0	97.5	49.0	119	**
	TSUK	Phellodendron amurense Rupr.	53.1	88.3	20.7	67.8	*
	SCBG	Clausena lansium Skeels	66.3	118	25.1	86.4	
	TUAT	<i>Citrus junos</i> Siebold ex Tanaka	84.0	109	49.8	114	
Contralogous	SCBG	<i>v</i>					*
Sapindaceae		Dimocarpus longan Lour.	52.9	108	23.8	95.6	*
	TUAT	Sapindus mukorossi Gaertn.	60.0	104	25.6	53.4	^
	WHUN	Litchi chinensis Sonn.	83.8	117	58.0	109	
Sapotaceae	SCBG	<i>Madhuca pasquieri</i> H. J. Lam	41.8	74.8	18.5	81.4	**
Saxifragaceae	TSUK	Astilbe microphylla Knoll	70.6	108	36.5	92.5	
Schisandraceae	SCBG	Kadsura coccinea (Lem.) A. C. Sm.	44.8	90.1	15.7	47.8	**
Solanaceae	KUMN	Anisodus acutangulus C. Y. Wu & C. Chen	44.9	116	25.5	106	**
	SCBG	Datura metel L.	63.0	122	39.2	133	
Sterculiaceae	SCAU	Pterospermum heterophyllum Hance	113	153	65.6	133	
Styracaceae	TUAT	Styrax japonica Siebold & Zucc.	66.9	91.4	49.4	80.3	
Symplocaceae	SCBG	Symplocos cochinchinensis (Lour.) S.	47.9	91.4 94.2	49.4 18.5	41.7	**
• •		Moore					
Гахасеае	KUMN	Taxus wallichiana Zucc.	35.1	98.2	36.0	54.8	***
	WHUN	Taxus chinensis Roxb.	56.2	128	35.4	102	*
	TUAT	Torreya nucifera Siebold & Zucc.	98.5	128	73.9	104	
Taxodiaceae	TUAT	<i>Metasequoia glyptostroboides</i> Hu & W. C. Cheng	53.7	116	14.8	92.4	*
	TSUK	<i>Metasequoia glyptostroboides</i> Hu & W. C. Cheng	56.7	78.6	29.4	66.0	*
	TUAT	Taxodium distichum (L.) Rich.	82.9	117	33.0	78.5	
	TUAT		107	121	88.9	117	
Theorem		<i>Cryptomeria japonica</i> D. Don					*
Theaceae	SCBG	Camellia oleifera C. Abel	50.4	80.7	14.1	45.8	
	TSUK	Camellia sasanqua Thunb.	71.0	75.6	26.5	32.3	
	TUAT	<i>Ternstroemia gymnanthera</i> (Wight & Am.) Bedd.	75.6	107	69.6	115	
	SCAU	Schima spp	77.2	166	35.5	119	
	TUAT	<i>Camellia sasanqua</i> Thunb.	83.6	110	56.1	78.0	
Thymelaeaceae	KUMN	Daphne papyracea Wall. ex Steud.	41.5	110	24.8	66.1	**
•	TSUK						*
Tropaeolaceae		Tropaeolum majus L.	60.0	116	31.2	73.2	
Ulmaceae	TUAT	Aphananthe aspera Planch.	65.2	119	38.4	97.2	
r 71	TUAT	Zelkova serrata (Thunb.) Makino	71.8	138	35.4	129	
Ulmaceae	TUAT	Celtis sinensis Pers.	88.3	112	45.6	113	
Urticaceae	TSUK	Boehmeria tenuifolia Satake	70.2	113	30.4	108	
Valerianaceae	TSUK	Patrinia villosa Juss.	86.9	118	57.0	112	
Verbenaceae	KUMN	Duranta erecta L.	43.3	77.6	7.7	26.2	**
Zingiberaceae	WHUN	<i>Hedychium coccineum</i> BuchHam. ex Sm.	66.0	100	31.1	80.0	
	WHUN	Alpinia oxyphylla Miq.	54.3	109	24.7	70.9	*
	WHUN	Amomum tsaoko Crevost & Lemarie	67.9	149	21.8	90.4	

* Criteria Indicates stronger inhibitory activity of test sample on the radicle elongation of lettuce by standard deviation variance (SDV) where: * = M - 0.5(SD), ** = M - 1.0(SD), *** = M - 1.5(SD), *** = M - 2.0(SD), and ***** = M - 2.5(SD). Thus SDV of 61, 50, 40, 29, and 19 respectively. Plant species with more * indicates increasing inhibitory activity. M: mean of radicle elongation, SD: standard deviation of radicle length, R: Radicle, H: Hypocotyl, %: elongation percentage of control. Values close to 0% indicate strong inhibitory activity in that plant species. POC; Place of collection.

Plant families	POC	Scientific name	Avera	Inhibition ge for wells	Aver	age at mm	Criteria
			R%	H%	R%	H%	-
Aceraceae	TUAT	Acer cissifolium K. Koch	22.9	33.6	33.0	35.7	
Tieeraeeae	TUAT	Acer palmatum Thunb.	12.7	8.0	23.5	21.1	
	TUAT	Acer diabolicum Blume ex K. Koch	11.9	-0.8	13.1	-8.4	
	TUAT	Acer buergerianum Miq.	-2.8	-9.2	3.4	-14.6	
	TUAT	Acer mono Maxim.	-9.8	-6.6	14.3	-0.4	+
Amaryllidaceae	WHBG	Lycoris radiata Herb.	23.1	20.2	32.6	-0.4 31.5	Т
Annonaceae	SCAU	Polyalthia longifolia (Soon.) Thwaites	-7.6	0.5	-18.6	-6.6	+
Altingiaceae	TUAT	Liquidambar styraciflua L.	-7.0 61.4	2.8	-18.0 61	-0.0	+ ***
Arecaceae	SCAU	Areca triandra Roxb. ex BuchHam.	21.4	2.8 21.7	30.8	29.9	
	TKBG		21.4		24.5		
Asparagaceae		Hosta sieboldiana (Hook.) Engl.		11.3		13.3	
Asteraceae	TKBG	Ligularia fischeri Turcz.	10.3	8.9	11.0	10.1	
Berberidaceae	TKBG	Nandina domestica Thunb.	22.1	13.1	26.2	25.4	
Betulaceae	TUAT	Betula platyphylla Sukaczev	-2.3	-10.9	-1.8	-12.4	
Bombacaceae	SCBG	Bombax malabaricum DC.	-3.3	-15.3	-3.9	-25.7	
Caprifoliaceae	TUAT	Viburnum odoratissimum Ker Gawl.	2.1	-2.7	3.5	-1.7	
Cephalotaxaceae	WHBG	Cephalotaxus fortunei Hook.	-10.3	-12.9	-1.9	-1.1	++
Cercidiphyllaceae	TUAT	<i>Cercidiphyllum japonicum</i> Siebold & Zucc.	27.0	9.1	31.8	6.7	
Cornaceae	TUAT	<i>Benthamidia japonica</i> (Siebold & Zucc.) H. Hara	13.9	-24.6	6.7	-37.7	
Cupressaceae	TUAT	Juniperus chinensis L.	24.5	18.5	34.0	15.1	
Daphniphyllaceae	KMBG	Daphniphyllum longeracemosum Rosenth.	3.5	-6.8	8.2	2.6	
Dipterocarpaceae	SCAU	Hopea hainanensis Merr. & Chun	3.9	1.5	8.1	2.2	
Ebenaceae	TUAT	Diospyros kaki L. f.	-11.0	-10.9	-15.7	-17	+
Elaeocarpaceae	SCAU	Elaeocarpus apiculatus Mast.	20.0	21.1	23.2	21.1	
Fabaceae	SCBG	Saraca dives Pierre	2.4	4.2	5.4	5.6	
I dodeede	WHBG	Wisteria sinensis (Sims) DC.	0.4	-1.1	4.5	0.3	
Fagaceae	TUAT	<i>Lithocarpus edulis</i> Nakai	22.7	1.9	27.0	13.9	
1 agueede	TUAT	Quercus serrata Murray	4.5	-5.3	8.9	5.5	
	TUAT	Quercus gilva Blume	-16.1	-5.5 -6.4	-11.3	-5.7	
Cinkgoagaa	TUAT	Ginkgo biloba L.	12.9	-0.4 -9.2	-11.5	-12.9	++
Ginkgoaceae							
Hamamelidaceae	TUAT	Hamamelis japonica Siebold & Zucc.	11.3	7.8	4.0	3.2	
Hippocastanaceae	TUAT	Aesculus turbinata Blume	-33.0	-7.9	-23.1	-7.0	+++ *
Juglandaceae	TUAT	Platycarya strobilacea Siebold & Zucc.	34.9	17.9	45.0	9.7	*
Lamiaceae	KMBG	Callicarpa macrophylla Vahl.	1.3	1.6	5.1	1.9	
Lauraceae	TUAT	Cinnamomum camphora (L.) J. Presl	50.2	59.9	43.7	63.0	***
	TUAT	Laurus nobilis L.	3.6	5.0	7.0	6.6	
Liliaceae	SCBG	Tupistra glandistigma Wang et Tang	1.8	1.6	4.1	3.0	
Lythraceae	SCBG	Lagerstroemia speciosa (L.) Pers.	3.6	0.9	5.2	1.6	
Magnoliaceae	TUAT	Liriodendron tulipifera L.	19.1	7.8	16.1	13.6	
-	SCAU	Michelia balansae Dandy	12.8	-40.5	21.6	-32.9	
	SCBG	Magnolia liliiflora Ders.	10.7	1.6	21.1	7.9	
	SCAU	Manglietia fordiana Oliv.	10.1	0.0	19.1	-1.3	
	SCAU	Tsoongiodendron odorum Chun	7.2	0.8	9.2	-0.7	
	TUAT	Magnolia grandiflora L.	4.8	-2.2	2.0	-12.3	
	SCAU	Magnolia megaphylla (Hu & W. C. Cheng) V. S. Kumar	1.4	2.6	4.1	0.0	
	TUAT	Magnolia kobus DC.	-3.1	2.1	2.8	8.7	
	TUAT	Magnolia obovata Thunb.	-3.1	-6.8	0.3	-1.1	+
Moracana		Magnolla obovala Thunb. Morus alba L.	-8.2 27.1		0.5 29.7		+
Moraceae	TKBG			17.0		19.3	
Myrtaceae	SCBG	Eugenia javanica Lam.	12.0	9.0	23.6	18.0	
Oleaceae	TUAT	Fraxinus longicuspis Siebold & Zucc.	-10.0	-4.1	-4.9	2.3	+
	TUAT	Ligustrum lucidum W. T. Aiton	10.9	6.7	12.5	7.9	4.
Pinaceae	TUAT	Pinus parviflora Siebold & Zucc.	35.5	29.9	35.7	29.8	*

Table 2: Determination of allelopathic activity by volatile compounds in some plant species in the Sino-Japanese Region using the dish pack method

			Inhibition activity				
Plant families	POC	Scientific name	Avera	ge for	Avera	age at	Criteria
Flaint fainines	FUC	Scientific fiame	whole	wells	41 :	mm	Cinterna
			R%	H%	R%	H%	-
Platanaceae	TUAT	Platanus orientalis L.	1.8	-4.1	-1.1	-2.5	
Podocarpaceae	SCAU	Podocarpus fleuryi Hickel	4.9	8.5	10.4	15.3	
Rosaceae	TUAT	Cerasus speciosa (Koidz.) H. Ohba	4.6	-10.3	18.2	-11.2	
	TKBG	Amygdalus persica L.	36.2	28.9	41.0	44.1	*
	KMBG	Photinia glabra (Thunb.) Maxim.	90.6	86.1	95.2	90.2	***
	TUAT	Prunus yedoensis Matsum.	13.1	-1.4	24.0	-3.3	
	TUAT	Prunus jamasakura Siebold ex Koidz.	11.8	9.1	13.0	14.9	
	TUAT	Prunus lannesiana E. H. Wilson	4.3	-4.3	7.3	7.6	
	TUAT	Prunus buergeriana Miq.	-10.8	-2.6	-2.4	7.2	+
Rubiaceae	SCBG	Gardenia sootepensis Hutch.	32.0	24.3	41.4	31.2	*
Sapindaceae	TUAT	Sapindus mukorossi Gaertn.	17.9	7.1	22.1	12.9	
	WHBG	Litchi chinensis Sonn.	12.0	0.5	21.1	7.9	
Schisandraceae	SCBG	Kadsura coccinea (Lem.) A. C. Sm.	17.1	3.7	26.7	8.7	
Styracaceae	TUAT	Styrax japonica Siebold & Zucc.	13.9	12.2	27.7	17.3	
Taxodiaceae	TUAT	<i>Metasequoia glyptostroboides</i> Hu & W. C. Cheng	42.0	22.5	47.3	20.5	**
	TUAT	Sciadopitys verticillata Siebold & Zucc.	38.4	37.3	42.0	49.3	*
Ulmaceae	TUAT	Zelkova serrata (Thunb.) Makino	12.9	2.3	14.4	12.4	
Zingiberaceae	WHBG	Alpinia oxyphylla Miq.	29.0	26.4	34.5	39.6	

* Criteria (*), (**), and (***) refer to radicle elongation shorter than the mean value plus 1.0(SD), 1.5(SD) and 2(SD), that is, SDV = 31, 40, and 50, respectively. + Criteria (+), (++), and (+++) refer to radicle elongation longer than the mean value minus 1.0(SD), 1.5(SD) and 2(SD), that is, SDV = -6, -10, and -25, respectively. POC; Place of Collection. TUAT; Tokyo University of Agriculture and Technology, TKBG; Tsukuba Botanical Garden, TMBG; Tokyo Medicinal Botanical Garden, WHBG Wuhan Botanical Garden, KMBG; Kunming Botanical Garden, SCBG; South China Botanical Garden, SCUA; South China University of Agriculture.

Another species of interest in this family is Amygdalus persica which is a fruit of ornamental importance. A. persica is native to China where it have been cultivated for centuries [28]. Dried seeds of A. persica have been used in combination with other herbal plants to overcome stroke-induced disability [29], [30]. A. persica have been reported as a non-food biodiesel plant resources based on grey relation analysis with extremely complicated genetic diversity [31]. Glucosid amygdalin and hydrocyanic acid are the principal constituents of A. persica [32]. In the Malvaceae family, species that showed strong inhibition on lettuce radicle elongation was Hibiscus syriacus. Hibiscus syriacus is native to tropical climates, but are grown around the world for medicinal use and aesthetic value. H. syriacus have been used to treat ailments like gastrointestinal disorders, fevers, respiratory disorder as cough, used as emollient [33]. Sporopollenin observed from pollen of *H. syriacus* have a simple aliphatic polymer containing aromatic or conjugated side chains as the main structure [34]. In a screening for lipid peroxidation inhibitors, Yoo et al., [35] isolated three naphthalene 2,7-dihydroxy-6-methyl-8-methoxy-1-naphthalenecarboxaldehyde, 2-hydroxy-6-hydroxymethyl-7,8compounds: dimethoxy-1-naphthalene-carboxaldehyde, and 1-carboxy-2,8-dihydroxy-6- methyl-7-methoxynaphthalenecarbolactone, designed as syriacusins A-C, from the chloroform extract of the root bark of H. syriacus. All the three compounds inhibited lipid peroxidation. Novel cyclic peptide Hibispeptin a $(C_{39}H_{50}N_60_8)$ and Hibispeptin B $(C_{36}H_{52}N_6O_8)$ have been isolated from the root bark of H. syriacus [36], [37].

In the Boraginaceous family, *Cordia dichotoma* had the highest inhibition on lettuce radicle elongation. *Cordia dichotoma* have been listed as non-consensus invasive woody plant in the coastal and dry lowlands in Mauritius [38]. This species have been used traditionally in India to treat ulcerative colitis (UC) and colic pain. Ganjare et al., [39] showed that apigenin isolated from the bark of *Cordia dichotoma* was responsible for the treatment of UC since it showed significant healing and reduction in inflammation enzymes when screened against UC. Polysaccharide in fruit of *Cordia dichotoma* is a potential candidate for use as herbal excipient in the formulation of orodispersible tablets [40]. The leaves and bark of *Cordia dichotoma* have shown high antioxidant, antimicrobial and ant implantation activities [41], [42], and [43]. The leaves have been found to contain querecetin and quecitrin whereas arabinoglucan, L-arabinose and D-glucose have been found in the fruits [44].

Another species that showed strong inhibitory potential through the volatiles released is *Liquidambar styraciflua* (also known as sweetgum) of the family Altingiaceae. The major components of the leaf oil were reported to be styrene, d-limonene, α -pinene and β -pinene, and that of the stem oil were germacrine D, α -cadinol, d-limonene, α -pinene, and β -pinene [45], [46]. These essential oils showed anti-inflammatory activity with low cytotoxicity thus backing its traditional use in treating inflammation. The emission of isoprene from sweetgum has been shown to be dependent on light and severe drought conditions [47], [48]. Some influenza viruses and the virus responsible for H1N1 are susceptible to the antiviral Tamiflu®. Shikimic acid is a precursor of oseltamivir phosphate which is the key ingredient

in Tamiflu®. However, much of the shikimic acid manufactured are generated by an *Escherichia coli* that produces shikimic acid [49], [50], [51]. *Liquidambar styraciflua* were found to contain shikimic acid in the bark and seeds [52], [53] and can potentially produce commercial quantities. 25-Acetoxy-3 α -en-28-oic acid and 3 β , 25-epoxy-3 α -hydroxylup-20(29)-en-28-oic acid isolated from the cones of *Liquidambar styraciflua* showed moderate anti-tumor promoter [54].

In the Amaryllidaceae family, leachates from *L. radiata* and *L. aurea* all highly inhibited the lettuce radicle elongation. The Amaryllidaceae family are mostly cultivated as ornamental plants and some are used as folk medicines for the treatment of some ailments [55]. The genus Lycoris comprises about 20 species that are wildly distributed in eastern Asia wood-lands, China and Japan in particular [56]. The allelochemical in *L. radiata* has been identified as lycorine [57]. However, allelopathy of *L. aurea* have not been reported. The bulb of *L. aurea* have been used in China to heal fractured bones [58]. Lycosinine A & B have been isolated from the bark of this species [59]. New alkaloids such as 2α -hydroxy-6-O-n-buty-loduline, O-n-butyllycorenine and (-)-N-(Chloromethyl) lycoramine have been isolated from the bulb of *L. aurea*. All the compounds exhibited significant neuro-protective effects against CoCl₂ and H₂O₂-induced Sh-SY5Y cell death [55]. Pi et al., [60] reported that some alkaloids 3-0-ethyltazettinol 2α -methoxy-6-O-ethyloduline have also been isolated from the bulb of *L. aurea* [61], [62].

5. Conclusion

The results from this study hereby provide brief insight on the allelopathic potentials of some plants in the Sino-Japanese Floristic Region. Further research can be conducted on the identification and characterization of allelochemicals using this data as benchmark information. Information as such could aid in the development of bioactive compounds from plant species into natural herbicides and also the utilization of these plants in sustainable weed control. We will present in our subsequent report the allelochemical(s) responsible for the inhibitory activity in *Photinia glabra* which was the strongest allelopathic species in this study.

Acknowledgements

This research was supported by the grant-in-aid for research work on Agriculture and Food Science (25029AB) from the Ministry of Agriculture, Forestry and Fisheries of Japan. This work was also supported by JSPS KAKENHI Grant Number 26304024.

Conflict of interest

The authors declare that there is no conflict of interest associated with this publication.

References

- [1] Fujii, Y., Hiradate, S. (2007). Allelopathy: New Concepts and Methodology. Enfield, USA. Science Publishers.
- [2] de Albuquerque, M. B., Dos Santos, R. C., Lima, L. M., Melo- Filho, P. A., Nogueira, R. J. M. C., da C^amara, C. A. G. *et al.* (2011). Allelopathy, an alternative tool to improve cropping system. A review. *Agronomy for Sustainable Development.* 31, 379-395. <u>http://dx.doi.org/10.1051/agro/2010031</u>.
- [3] Callaway, R. M., Ridenour, W. M. (2004). Novel Weapons: Invasive Success and the Evolution of Increased Competitive Ability. Frontiers in Ecology Environment. 2(8), 436-443. http://dx.doi.org/10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2.
- Bhadoria, P. B. S. (2011). Allelopathy: A Natural Way towards Weed Management. *American Journal of Experimental Agriculture*. 1(1), 7-20.
 Heap, I. (2014). The International Survey of Herbicide Resistant Weeds. Online. Internet. Available www.weedscience.org Accessed on
- [6] Hall, J. C., Van Eerd, L. L., Miller, S. D., Owen, M. D. K., Prather, T. S., Shaner, D. L., Singh, M., Vaughn, K. C., Weller, S. C. (2000).
- Future Research Directions for Weed Science. Weed Technology 14, 647-658. <u>http://dx.doi.org/10.1614/0890-037X(2000)014[0647:FRDFWS]2.0.CO;2</u>.
- [7] Duke, S. O. (2010). Allelopathy: Current status of research and future of the discipline: A commentary. *Allelopathy Journal*. 2(1), 17-30.
- [8] Vyvyan, J. R. (2002). Allelochemicals as leads for new herbicides and agrochemicals. *Tetrahedron*. 58, 1631-1646. http://dx.doi.org/10.1016/S0040-4020(02)00052-2.
- Macias, F. A., Marin, D., Oliceros-Bastidas, A. et al. (2003). Allelopathy as a new strategy for sustainable ecosystems development. Biological Sciences in Space. 17(1), 18-23. <u>http://dx.doi.org/10.2187/bss.17.18</u>.
- [10] Duke, S. O., Dayan, F. E., Romagni, J. G., Rimando, A. M. (2000). Natural products as sources of herbicides: Current status and future trends. Weed Research 40 99-111. <u>http://dx.doi.org/10.1046/j.1365-3180.2000.00161.x</u>.
- [11] Willer, H., Lukas, K. (Eds.) (2009). The World of Organic Agriculture. Statistics and Emerging Trends 2009. FIBL-IFOAM Report. IFOAM, Bonn; FiBL, Frick; ITC, Geneva.
- [12] Kropff, M. J., Walter, H. (2000). EWRS and the challenges for weed research at the start of a new millennium. Weed research 40, 7-10. http://dx.doi.org/10.1046/j.1365-3180.2000.00166.x.
- [13] Wu, C. Y. (1998). Delineation and Unique Features of the Sino-Japanese Floristic Region. David E. Boufford and Hideaki Ohba (eds.), University of Tokyo Bulletin 37: Sino-Japanese Flora - Its Characteristics and Diversification (1998). Tokyo: University of Tokyo. http://www.um.u-tokyo.ac.jp/publish_db/Bulletin/no37/no37002.html. Accessed on July 15, 2015.

- [14] Qian, H. 2002. A comparison of the taxonomic richness of temperate plants in East Asia and North America. Am. J. Bot. 89, 1818–1825. http://dx.doi.org/10.3732/ajb.89.11.1818.
- [15] Qian, H., R. E. Ricklefs. (2000). Large-scale processes and the Asian bias in species diversity of temperate plants. *Nature* 407, 180–182. http://dx.doi.org/10.1038/35025052.
- [16] Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Sciences 58 247-276.
- [17] Fujii, Y., Shibuya, T., Nakata, K., Itani, T., Hiradate, S., Parvez, M. M. (2004). Assessment Method for the Allelopathic Effect from Leaf Leachate. Weed Biology Management 4, 19-23. <u>http://dx.doi.org/10.1111/j.1445-6664.2003.00113.x</u>.
- [18] Fujii, Y., Parvez, S. S., Parvez, M. M., Ohmae, Y., Iida, O. (2003). Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management 3, 233-241. <u>http://dx.doi.org/10.1046/j.1444-6162.2003.00111.x</u>.
- [19] Shiraishi, S., Watanabe, I., Kuno, K., Fujii, Y. (2002). Allelopathic activity of leaching from dry leaves and exudate from roots of ground cover plants assayed on agar. Weed Biology Management 2, 133-142. <u>http://dx.doi.org/10.1046/j.1445-6664.2002.00063.x</u>.
- [20] Morikawa, C. I. O., Miyaura, R., Segovia, G. V., Salgado, E. L. R., Fujii, Y. (2012). Evaluation of Allelopathic Activity from Peruvian plant species by sandwich method. *Pak. J. Weed Sci. Res.* 18, 829-834.
- [21] Fujii, Y., Minoru, M., Syuntaro, H., Hideki, S. (2005). Dish pack method: A new bioassay for volatile allelopathy, Proceedings of the 4th World Congress on Allelopathy, 4: 493-497.
- [22] Amini, S., Azizi, M., Joharchi, M. R., Shafei, M. N., Moradinezhad, F., Fujii, Y. (2014). Determination of allelopathic potential in some medicinal and wild plant species of Iran by dish pack method. *Theoretical and Experimental Plant Physiology* 26(2), 189-199. http://dx.doi.org/10.1007/s40626-014-0017-z.
- [23] Gilman, E. F., Watson, D. G. (2011). *Photinia glabra*: Red-Photinia Environmental Horticulture, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date November 1993. Revised March 2007. Reviewed May 2011. Visit the EDIS website at http://edis.ifas.ufl.edu/st442. Assessed on June 23, 2015.
- [24] Widyastuti, S. M., Nonaka, F., Watanabe, K., Sako, N., Tanaka, K. (1992). Isolation and Characterization of Two Aucuparin-Related Phytoalexins from *Photinia glabra* Maxim Ann. *Phytopath. Soc. Japan* 58, 228-233. <u>http://dx.doi.org/10.3186/ijphytopath.58.228</u>.
- [25] Widyastuti, S. M. (2001). Sensitivity among *Pestalotiopsis* spp. against the Phytoalexins of Three Rosaceae Plants. *Pakistan Journal of Biological Sciences* 4(5), 511-513. <u>http://dx.doi.org/10.3923/pjbs.2001.511.513</u>.
- [26] Hirai, M. (1981). Purification and Characteristics of Sorbitol-6-phosphate Dehydrogenase from Loquat Leaves. Plant Physiol. 67, 221-224. http://dx.doi.org/10.1104/pp.67.2.221.
- [27] Ishikura, N. (1975). A Survey of Anthocyanins in Fruits of Some Angiosperms. Bot. Mag. Tokyo 88, 41-45. http://dx.doi.org/10.1007/BF02498879.
- [28] Marble, C. C. (2013). Birds and All Nature in Natural Colors: A Monthly Serial (Vol. 6). London: Forgotten Books. pp. 187-188 (Original work published on 1900).
- [29] Shaw, L. H., Chen, W. M., Tsai, T. H. (2013). Identification of Multiple Ingredients for a Traditional Chinese Medicine Preparation (Bu-yang-huan-wu-tang) by Liquid Chromatography Coupled with Tandem Mass Spectrometry. *Molecules* 18, 11281-11298. http://dx.doi.org/10.3390/molecules180911281.
- [30] Cheng, Z. P., Chen, Z. W., Hu, C. G., Deng, X. X. (2002). Study on Genetic Diversity of Amygdalus persica based on RAPID Markers. Journal of Wuhan Botanical Research 20(2), 89-99 (In Chinese with English abstract).
- [31] Qin, S., Xue, S., Liang, Z. X., Li, G. Y., Xie, G. H. (2013) Assessment and screening of non-food biodiesel plant resources in Shaanxi and Gansu Provinces based on grey relation analysis. *Journal of China Agricultural University* 18(6), 6-17 (In Chinese with English abstract).
- [32] Moore, M. (2001). Individual Drugs. Monographs extracted from The Eclectic Materia Medica, Pharmacology and Therapeutics by Harvey Wickes Felter, M.D. (1922).
- [33] Kim, K. Y. 2005. Hibiscus. In J. L. Longe. The Gale Encyclopedia of Alternative Medicine. Farmington Hills, MI: Thomson/Gale. ISBN 0787693960.
- [34] Kawase, M., Takahashi, M. (1995). Chemical Composition of Sporopollenin in Magnolia grandiflora (Magnoliaceae) and Hibiscus syriacus (Malvaceae). Grana, 34(4), 242-245. <u>http://dx.doi.org/10.1080/00173139509429052</u>.
- [35] Yoo, I. D., Yun, B. S., Lee, I. K., Ryoo, I. J., Choung, D. H., Han, K. H. (1998) Three Naphthalenes from root bark of *Hibiscus syriacus*. *Phytochemistry* 47(5), 799-802. <u>http://dx.doi.org/10.1016/S0031-9422(97)00674-2</u>.
- [36] Yun, B. S., Ryoo, I. J., Lee, I. K., Yoo, I. D. (1998a). Hibispeptin A, a Novel Cyclic Peptide from *Hibiscus syriacus*. *Tetrahedron* 39, 993-996. http://dx.doi.org/10.1016/S0040-4039(97)10797-3.
- [37] Yun, B. S., Ryoo, I. J., Lee. I. K., Yoo, I. D. (1998b). Hibispeptin B, a Novel Cyclic Peptide from *Hibiscus syriacus*. *Tetrahedron* 54:15155-15160 <u>http://dx.doi.org/10.1016/S0040-4020(98)00967-3</u>.
- [38] Kueffer, C., Mauremootoo, J. (2004). Case Studies on the Status of invasive Woody Plant Species in the Western Indian Ocean. 3. Mauritius (Islands of Mauritius and Rodrigues). Forest Health & Biosecurity Working Papers FBS/4-3E. Forestry Department, Food and Agriculture Organization of the United Nations, Rome, Italy.
- [39] Ganjare, A. B., Nirmal, S. A., Patil, A. N. (2011). Use of apigenin from Cordia dichotoma in the treatment of colitis. Fitoterapia 82, 1052-1056 <u>http://dx.doi.org/10.1016/j.fitote.2011.06.008</u>.
- [40] Pawar, H. A., Jadhav, P. (2015). Isolation, characterization and investigation of *Cordia dichotoma* fruit polysaccharide as an herbal excipient. *International Journal of Biological Macromolecules* 72, 1228-1236 <u>http://dx.doi.org/10.1016/j.ijbiomac.2014.10.048</u>.
- [41] Singh, R, Lawania, R. D., Mishra, A., Gupta, R. (2010). Role of Cordia dichotoma seeds and leaves extract in degenerative disorders. International Journal of Pharmaceutical Sciences Review and Research 2(1), 21-24.
- [42] Ahmad, I., Beg, A. Z. (2001). Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. *Journal of Ethnopharmacology* 74, 113-123. <u>http://dx.doi.org/10.1016/S0378-8741(00)00335-4</u>.
- [43] Katolkar, P. P., Wanjari, B. E., Nimbekar, T. P., Duragkar, N. J. (2012). Antiimplantation activity of the methanolic extract of *Cordia dichotoma* Lam. Bark in rats. *International Journal of Biomedical and Advance Research* 3(3), 202-204.
- [44] Thirupathi, K., Kumar, S. S., Raju, V. S., Ravikumar, B., Krishma, D. R., Mohan, G. K. (2008). A review of medicinal plants of the genus Cordia: Their chemistry and pharmacological uses. Journal of Natural Remedies 8(1), 1-10.
- [45] Fernandez, X., Lizzani-Cuvelier, L., Loiseau, A. M., Perichet, C., Delbecque, C., Amaudo, J. F. (2005). Chemical composition of the essential oils from Turkish and Honduras Styrax. *Flavour Fragr. J.* 20, 70-73. <u>http://dx.doi.org/10.1002/ffj.1370</u>.
- [46] El-Readi, M. Z., Eid, H. H., Ashour, M. L., Eid, S. Y., Labib, R. M., Sporer, F., Wink., M. (2013). Variations of the chemical composition and bioactivity of essential oils from leaves and stems of *Liquidambar styraciflua* (Altingiaceae). *Journal of Pharmacy and Pharmacology* 65, 1653-1663. 543 <u>http://dx.doi.org/10.1111/jphp.12142</u>.
- [47] Rasmussen, R. A. (1972). What Do the Hydrocarbons from Trees Contribute to Air Pollution? Journal of the Air Pollution Control Association, 22(7), 537-543 <u>http://dx.doi.org/10.1080/00022470.1972.10469676</u>.
- [48] Fang, C. W., Monson, R. K., Cowling, E. B. (1996). Isoprene emission, photosynthesis, and growth in sweetgum (*Liquidambar styraciflua*) seedlings exposed to short- and long-term drying cycles. *Tree Physiology* 16, 441-446. <u>http://dx.doi.org/10.1093/treephys/16.4.441</u>.
- [49] Bradley, D. (2005). Star role for bacteria in controlling flu pandemic? Nature Reviews Drug Discovery 4, 45-46. <u>http://dx.doi.org/10.1038/nrd1917</u>.

- [50] Krämer, M., Bongaerts, J., Bovenberg, R., Kremer, S., Muller, U., Orf, S., Wubbolts, M., Raeven, L. (2003). Metabolic engineering for microbial production of shikimic acid. *Metabolic Engineering* 5, 277-283. <u>http://dx.doi.org/10.1016/j.ymben.2003.09.001</u>.
- [51] Johansson, L., Lindskog, A., Silfversparre, G., Cimander, C., Nielsen, K. F., Liden, G. (2005). Shikimic Acid Production by a Modified Strain of *E. coli* (W3110.shik1) Under Phosphate-Limited and Carbon-Limited Conditions. *Biotechnology and Bioengineering* 92(5), 541-552 http://dx.doi.org/10.1002/bit.20546.
- [52] Martin, E., Duke, J., Pelkki, M., Clausen, E. C., Carrier, D. J. (2010). Sweetgum (*Liquidambar styraciflua* L.): Extraction of Shikimic Acid Coupled to Dilute Acid Pretreatment. *Appl. Biochem. Biotechnol.* 162, 1660-1668. <u>http://dx.doi.org/10.1007/s12010-010-8947-7</u>.
- [53] Enrich, L. B., Scheuermann, M. L., Mohadjer, A., et al (2008). Liquidambar styraciflua: a renewable source of shikimic acid. Tetrahedron Letters 49, 2513-2515. <u>http://dx.doi.org/10.1016/j.tetlet.2008.02.140</u>.
- [54] Fukuda, Y., Sakai, K., Matsunaga, S., Tokuda, H., Tamaka, R. (2005). Cancer Chemo preventive Acidity of Lupane- and Oleanane-Type Triterpenoids from the cones of *Liquidambar styraciflua*. *Chemistry & Biodiversity* 2, 421-428. <u>http://dx.doi.org/10.1002/cbdv.200590021</u>.
- [55] Jin, A., Li, X., Zhu, Y. Y., Yu, H. Y., Pi, H. F., Zhang, P., Ruan, H. L. (2014). Four new compounds from the bulbs of *Lycoris aurea* with neuroprotective effects against CoCl₂ and H₂O₂-induced SH-SY5Y cell injuries. *Arch. Pharm. Res.* 37 315-323 http://dx.doi.org/10.1007/s12272-013-0188-1.
- [56] Hayashi, A., Saito, T., Mukai, Y., Kurita, S., Hori, T. A. (2005). Genetic variations in Lycoris radiata var. radiata in Japan. Genes Genet. Syst. 80, 199-212. <u>http://dx.doi.org/10.1266/ggs.80.199</u>.
- [57] Iqbal, Z., Zasir, H., Hiradate, S., Fujii, Y. (2006). Plant growth inhibitory activity of *Lycoris radiata* Herb. and the possible involvement of lycorine as an allelochemical. *Weed Biology and Management* 6, 221-227. <u>http://dx.doi.org/10.1111/j.1445-6664.2006.00217.x</u>.
- [58] Yang, Y., Huang, S. X., Zhao, Y. M., Zhao, Q. S., Sun, H. D. (2005). Alkaloids from the Bulbs of Lycoris radiata. Helvetica Chimica Acta 88, 2550-2553. <u>http://dx.doi.org/10.1002/hlca.200590193</u>.
- [59] Lee, S., Xiao, C., Pei, S. (2008). Ethnobotanical survey of medicinal plants at periodic markets of Honghe Prefecture in Yunnan Province, SW China. Journal of Ethnopharmacology 117, 362-377. <u>http://dx.doi.org/10.1016/j.jep.2008.02.001</u>.
- [60] Song, J. H., Zhang, L., Song, Y. (2014). Alkaloids from *Lycoris aurea* and their cytotoxicities against the head and neck squamous cell carcinoma. *Fitoterapia* 95, 121-126. <u>http://dx.doi.org/10.1016/j.fitote.2014.03.006</u>.
- [61] Pi, H. F., Zhang, P., Ruan, H. L., Zhang, Y. H., Sun, H. D., Wu, J. Z. (2009). A new alkaloid from Lycoris aurea. Chinese Chemical Letters 20, 1319-1320. http://dx.doi.org/10.1016/j.cclet.2009.06.003.
- [62] Huang, S. D., Zhang, Y., He, H. P. et al., (2013). A new Amaryllidaceae alkaloid from the bulbs of Lycoris radiata. Chinese Journal of Natural Medicine 11(4), 406-410. <u>http://dx.doi.org/10.1016/S1875-5364(13)60060-6</u>.