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Abstract 

 

Pyrenophora teres is the causal agent of net blotches, which are important foliar diseases of 

barley (Hordeum vulgare) worldwide. Pyrenophora teres has two forms, P. teres f. teres (Ptt) 

and P. teres f. maculata (Ptm), which causes the net and spot forms respectively based on the 

symptoms that they induce on barley. The life cycles of both forms are almost identical in 

which they can undergo both sexual and asexual reproduction. Sexual reproduction contributes 

to genetic and pathogenic evolution and provides challenges for development of commercial 

resistant cultivars. It is necessary to understand the genetic and pathogenic diversity of P. teres 

to effectively breed commercial barley cultivars with resistance. This will improve productivity 

for barley growers and industry and help reduce reliance on chemical fungicides.  

 The two forms of P. teres consist of different virulence genes. Sexual recombination 

between two forms of P. teres provides a potential threat to breeding for resistance as it may 

result in combination of virulences from the two forms. Hybrids have been reported 

occasionally in the field. This study was conducted to investigate the frequency of Ptt x Ptm 

hybrid development in the field where both forms of P. teres co-exist. For this purpose, three 

field trial sites were established for three successive years and Ptt and Ptm of opposite mating 

types were inoculated to facilitate hybridisation. In addition, samples collected from barley 

growing regions in Australia during 1976–2015 were analysed. To identify hybrids between 

the two forms, twelve Ptt and Ptm specific markers were developed using a whole genome 

comparative approach. These markers provided a more efficient and robust method than 

previously developed markers for identification of hybrids. No Ptt x Ptm hybrids were 

identified in the collected samples. This indicates that sexual recombination between the two 

forms of P. teres was rare, even where conditions were conducive. Further, pre- and post-

mating barriers which may be responsible for reproductive isolation between Ptt and Ptm were 

reviewed.   

 A thorough knowledge of the degree of genetic variation in the pathogen is important 

for successful deployment of resistance genes in barley breeding. Genetic changes occurring 

in Ptt populations during a three year period was investigated using diversity array technology 

markers. In the field new genotypes were identified together with the original inoculated 

isolates in the first year of the cropping season. This indicated clonal reproduction and 

migration event. In two subsequent years, high number of recombinant genotypes were 
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identified which indicated that gene flow combined with sexual recombination plays a 

prominent role in rapidly changing the structure of Ptt populations.  

Barley grass (H. leporinum) is an alternative host to P. teres and can harbour virulent 

pathotypes of P. teres which can infect barley cultivars. Genetic diversity between P. teres 

collected from barley grass and barley showed that P. teres from the respective host were 

distinct, which suggested genetic isolation. Pathogenicity assay result showed that virulent P. 

teres from barley grass were avirulent on barley. This indicated that barley grass contributes 

little to the genetics of the P. teres population and negligible risk to commercial barley cultivars 

although the two hosts are often grown in close proximity.  

 In summary, this study investigated several areas of research to better understand and 

manage net blotch resistance in future. Further research to investigate mating barriers 

responsible for reproductive isolation between two forms of P. teres is important to understand 

the evolution of the pathogen. In addition, identification of virulent/avirulent genes is required 

to understand virulence mechanism of the pathogen and its interaction with the barley host.  
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Chapter 1 

Literature Review 

 

1.1  Pyrenophora teres  

Pyrenophora teres Drechsler (anamorph Drechslera teres [Sacc.] Shoem.) is the fungal pathogen 

that causes net blotch, a foliar disease of barley. The pathogen belongs to the phylum Ascomycota 

within the class Dothideomycetes and order Pleosporales. The pathogen is classified in two forms, 

Pyrenophora teres f. teres (Ptt) and Pyrenophora teres f. maculata (Ptm), based on the symptoms 

incited in barley. Both Ptt and Ptm are morphologically similar but genetically distinct (Crous et 

al. 1995; Ellwood et al. 2012; Rau et al. 2005; Smedegård-Petersen 1971).   

Net form of net blotch (NFNB) caused by Ptt appears as elongated, dark brown netted lesions 

(net form) and was first described by Atanasoff and Johnson (1920). The spot form of net blotch 

(SFNB) caused by Ptm appears as dark brown spots (spot form) accompanied by chlorosis of the 

surrounding tissue in susceptible barley cultivars (Smedegård-Petersen 1971). Two other 

Pyrenophora species, P. japonica Ito & Kurib. [anamorph Drechslera japonica (Ito & Kurib.) 

Shoem. = Drechslera tuberosa (Atk.) Shoem.] and P. hordei Wallwork, Lichon & Sivanesan 

(anamorph Drechslera Shoem) are morphologically very similar to SFNB and also cause foliar 

disease on cultivated barley. They are considered as different species based on the small 

differences in morphology (size and shape) conidia and ascospores (Ito & Kuribayashi 1931; 

Wallwork et al. 1992). Pyrenophora teres f. maculata when first identified by McDonald (1967) 

was considered as the mutant strain of P. teres as he was able to cross the isolates of spot form 

with the net form of P. teres. Later, Smedegård-Petersen (1971) renamed the spot type fungus as 

a new form of P. teres and proposed the name P. teres f. maculata for isolates producing spot-type 

symptoms and P. teres f. teres for those producing net-type symptoms. This finding was validated 

by Crous et al. (1995) using an AT rich DNA polymorphism marker, in which banding patterns of 

isolates of net and spot form showed high similarity with one another.  

Net blotches caused by Ptt have been reported since the 1920s in Denmark (Shipton 1966) and  

have been reported in Australia, Canada, the United States of America, Argentina, Britain, Turkey, 

Ethiopia, Israel, South Africa and in many Asian countries (Jordan 1981; Shipton et al. 1973; 
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Steffenson et al. 1996; Tekauz & Mills 1974) . The first two spot form isolates identified were 

from Canada and Israel and later it was reported to occur in Denmark, Canada, Morocco, Tunisia, 

Turkey, the USA (Bockelman et al. 1983; Liu et al. 2011; McDonald 1967; Smedegård-Petersen 

1971). In Australia, spot form of net blotch was first reported at Nawaba in Western Australia in 

1977 (Khan & Tekauz 1982) and is now prevalent in many barley growing regions (McLean et al. 

2009). Reduced or zero tillage practices have drastically increased the incidence of SFNB since 

the early 1990s (McLean et al. 2009) and they are now common throughout the barley growing 

regions of Australia. The two forms of net blotch have a different global distribution pattern, 

mainly due to cultivation of different barley cultivars, stubble retention practices and climatic 

conditions across the globe.  

Net blotches can cause yield loss of 10-40% and reduce grain quality attributes such as 

plumpness, weight, protein and carbohydrate content, lowering brewing quality (Khan 1987; 

Mathre 1982; McLean et al. 2009; Shipton 1966; Shipton et al. 1973). Yield and quality loss is 

variable depending on the severity of the disease in response to environmental conditions and 

susceptibility of cultivars (Liu et al. 2011; Mathre 1982; McLean et al. 2016). Complete yield loss 

can occur if susceptible cultivars are planted under conditions favourable for disease (Mathre 1982; 

Murray & Brennan 2010), causing devastating economic losses to barley growers and downstream 

industries.  

 

1.2  Hosts 

1.2.1  Barley  

Barley (Hordeum vulgare) was originally domesticated in the Fertile Crescent approximately 

10,000 years ago from the wild progenitor H. spontaneum (Badr et al. 2000). It is now an important 

crop worldwide, used to produce malt for beer brewing and as animal feed (Mathre 1982). Barley 

cultivars have both spring and winter growth habits, while spike morphology is classified as either 

two or six-row depending on the number of fertile spikelets.  

Barley is an important commodity with global production of 146 million tonnes per year  (The 

Food and Agriculture Organization 2014). In Australia, barley is second to wheat in grain 

cultivation and is grown from Southern Queensland to Western Australia. Australia produces 

around 8.6 million tonnes annually with the total agricultural land under cultivation of 
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approximately 3.9 million hectares (Australian Bureau of Statistics 2015-2016). On a commodity 

basis, barley contributes a gross value production of AUD $2.2 billion to the Australian economy.  

Barley in Australia can be affected by 41 different foliar, root or crown diseases that can cause 

estimated average annual losses of AUD $252 million to barley industries (Murray & Brennan 

2010). Of these diseases, net blotches caused by P. teres cause the greatest loss, averaging an 

estimated AUD $62 million annually (Murray & Brennan 2010).  

 

1.2.2  Barley grass and other ancillary hosts  

Barley grass (H. leporinum) is a subspecies of H. murinum and is an ancillary host to P. teres 

(McLean et al. 2009). It is an annual weed which germinates during autumn and grows alongside 

barley in the cereal growing regions of Australia. Barley grass can act as an inoculum source of P. 

teres. Barley grass can be controlled by burning stubble, early hay production, grazing and 

collecting seeds at harvest or by applying herbicides. However, management is difficult due to 

seed dormancy and  prolific seed set (Moore et al. 2014). Other volunteer plants and grasses 

infected by P. teres includes wheat (Triticum aestivum), oat (Avena sativa), Agropyron, Bromus, 

Elymus, Hordelymus, Stipa, and other Hordeum spp. (Brown et al. 1993; van den Berg 1988). The 

contribution of volunteer plants and these grass species as an inoculum source is largely unknown.   

 Genetic studies of P. teres collected from barley grass have not been undertaken. Previous 

studies have shown low virulence on barley cultivars and suggested host specialisation (Brown et 

al. 1993; Khan 1973). However, in a recent study by Fowler et al. (2017), one barley grass isolate 

was shown to be virulent on a number of barley cultivars. This suggests that a new source of 

virulence could be transferred from barley grass to barley. A similar example has been observed 

in a study by Linde et al. (2016), where virulent strains of Rhynchosporium commune (causal agent 

of barley scald) collected from barley grass were capable of infecting barley cultivars. In that study, 

more pathotypes and higher virulence diversity of R. commune was found in barley grass as 

compared to barley, which suggests that barley grass poses a greater threat to the barley industry 

if not managed properly. Future studies are necessary to assess the importance of ancillary hosts 

in P. teres evolution and its implication on management strategies.  
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1.3 Life Cycle 

Pyrenophora teres is a stubble-borne pathogen. The life cycles of both forms of P. teres are almost 

identical and involve both sexual and asexual stages (Figure 1). The sexual stage consists of 

pseudothecia on the surface of stubble. Pseudothecia are 1–2 mm in diameter and are covered with 

dark setae. Each pseudothecia contains asci with ascospores. Asci are club-shaped, rounded at the 

apex, bitunicate with a short stalk at the base and 30–61 x 180–274 µm in size. Ascospores are 

light brown and ellipsoidal with three transverse septa and one or two longitudinal septa in the 

median cells and measure up to 18–28 x 43–61 µm in size (Mathre 1982). Ascospores are 

forcefully ejected into the air as far as 35 cm during favourable conditions and can travel long 

distances and are responsible for initial crop infection (van den Berg 1988).  

 

 

Figure 1: Life cycle of Pyrenophora teres (Photo Courtesy: Agriculture Victoria; modified to include 

life cycles of both Ptt and Ptm) 
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The asexual, or anamorph, stage of P. teres produces conidia. Conidia are 15–23 x 30–175 

µm in size and develop at the tip of olive to brown coloured conidiophores, which occur singly or 

in groups of two to three. Conidia are straight and cylindrical with rounded ends, sub-hyaline to 

yellowish brown in colour and have 1–14 pseudosetae (Liu et al. 2011; Mathre 1982; McLean et 

al. 2009). Spores produced on infected stubble serve as primary inoculum and those produced on 

the surface of lesions are responsible for secondary inoculum. The formation and dispersal of 

conidia occurs within 14–20 days after primary infection. Conidia are dispersed by winds up to 

about 7 m or by rain splash with cycles of infection repeated throughout the growing season during 

favourable climatic conditions (Mathre 1982).   

The infection process begins with ascospores or conidia landing on the leaves of barley. 

Spores germinate within a few hours under optimal temperatures of 15–25°C and relative humidity 

of about 100% (Mathre 1982). The infection rate is higher when humid conditions continue for 

10–30 or longer hours (Liu et al. 2011; Mathre 1982). The fungus can survive over winter on the 

surface of stubble, grass weeds and as seed borne mycelium in the case of Ptt (McLean et al. 2009) 

and act as a source of inoculum for the next growing season.  

 

1.4 Symptoms 

Symptoms of NFNB and SFNB are initially very similar. The lesions appear as small circular or 

elliptical spots on susceptible barley cultivars but develop into two distinct types of lesions. In the 

case of net-form, the lesions elongate and form dark brown, longitudinal or transverse streaks 

creating characteristic net-like patterns (Figure 2a) (Smedegård-Petersen 1971). The lesions can 

extend up to 25 mm in length (Shipton et al. 1973). In contrast, the spot-form symptoms develop 

into dark brown elliptical or fusiform lesions (Figure 2b) which measure up to 3x6 mm in size ( 

Smedegård-Petersen 1976). Symptoms can occur on the lamina and sheaths of the leaves and 

occasionally on the head (Smedegård-Petersen 1971). Symptoms appear within 24 hours of 

infection and secondary spore development can occur within a week (Liu et al. 2011).  

Net and spot form lesions can be surrounded by a chlorotic zone of varying width which 

can eventually extend to kill the entire leaf. Symptoms produced by isolates of P. teres are partially 

caused by the secretion of proteinaceous metabolites and phytotoxic low molecular weight 

compounds (LMWC) (Ismail et al. 2014; Sarpeleh et al. 2007; Weiergang et al. 2002). The severity 
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of the disease is a result of the extent of necrosis and chlorosis and can be significantly inhibited 

by host resistance. Resistant barley cultivars generally show small pin-point sized lesions that do 

not increase in size and normal growth of the leaves occurs (McLean et al. 2009; Smedegård-

Petersen 1971).    

    

          

       

Figure 2: Typical symptoms of net (a) and spot (b) form of net blotch on leaf of barley cultivar. 

 

1.5 Molecular Characterisation  

Molecular markers can differentiate between the two forms of P. teres without symptoms analysis. 

This is important as it can be difficult to distinguish the forms using symptom expression due to 

pinpoint lesion on resistant host genotypes and/or environmental factors (Liu et al. 2011; 

Smedegård-Petersen 1971; Williams et al. 2001). In addition, the spot-type symptom produced by 

Ptm is very often confused with barley spot blotch caused by Bipolaris sorokiniana, and 

examination of the spore type is necessary to characterize the pathogen. Thus, molecular markers 

can be used to more reliably identify the two forms especially where symptom expression is not 

conclusive.  

Specific primer sets have been identified and designed for Ptt and Ptm isolates. Williams et al. 

(2001) developed a specific primer set that amplifies a 378 bp sized DNA fragment from Ptt 

isolates, and a 411 bp sized fragment from Ptm isolates. Similarly, nine diagnostic simple sequence 

repeat (SSR) markers that amplify DNA of different sizes in each form have been developed 

(Keiper et al. 2008). Two specific mating type markers for net form (PttMAT1-1-1 and PttMAT1-

2-1) and two specific to spot form (PtmMAT1-1-1 and PtmMAT1-2-1) can also be used for this 

purpose (Akhavan et al. 2015; Lu et al. 2010; Rau et al. 2007; Rau et al. 2005). A polymerase 

chain reaction (PCR) based form-specific marker has been developed from an amplified fragment 

length polymorphism (AFLP) fragment of P. teres (Leisova et al. 2005(b)) and a real time PCR 

based assay has been developed to identify and quantify the occurrence of the two forms of P. 

teres from infected barley leaves (Leisova et al. 2006). All of these markers are specifically 

a b 
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designed to differentiate between the two forms of P. teres and have not been assessed to 

distinguish hybrids from Ptt and Ptm isolates. 

AFLPs and Random Amplified Polymorphisms DNA (RAPD) techniques can be used to 

identify hybrids between the two forms of P. teres (Campbell et al. 1999; Campbell et al. 2002). 

AFLPs have some advantages over RAPDs in that they are highly reproducible and can better 

distinguish closely related isolates (Purwantara et al. 2000; Serenius et al. 2005). The AFLP 

procedure is based on the selective amplification of genomic restriction fragments. AFLPs can 

amplify DNA fragments without previous knowledge of the sequence using a limited set of 

universal primers followed by PCR-based amplification (Vos et al. 1995).  However, both of these 

methods depend on gel electrophoresis resulting in low throughput.  

Diversity Arrays Technology (DArT) markers have been developed for fungal species (Sharma 

et al. 2014; Wittenberg et al. 2009). This method may also be applicable for the detection of Ptt x 

Ptm hybrids. Diversity Arrays Technology (DArT) is a genotyping method that uses array 

hybridisations technology to score hundreds of polymorphic markers across a whole genome in a 

single assay (Jaccoud et al. 2001). DArT is a microarray-based genotyping platform and requires 

no previous sequencing information. DArT polymorphism results from nucleotide polymorphisms 

within restriction enzymes recognition sites and indels and polymorphisms are scored based on 

presence/absence of hybridisation.  

 

1.6 Recombination in Pyrenophora teres 

Sexual reproduction in P. teres is regulated by mating type genes. Pyrenophora teres has a single 

mating type locus (MAT) with two alternate forms (idiomorphs) designated as MAT1-1 and 

MAT1-2 (McDonald 1963). Each gene within an idiomorph consists of an open reading frame 

(ORF) encoding a protein with an alpha box motif (MAT1-1) or a high mobility group (HMG) 

motif (MAT1-2). The gene is indicated by the idiomorph symbol followed by a dash and a number 

i.e. MAT1-1-1 or MAT1-2-1 (Kronstad & Staben 1997; Rau et al. 2007; Turgeon & Yoder 2000). 

These genes encode transcriptional factors which regulate mating type specific pheromone genes. 

Each haploid cell secretes pheromones and cells of one mating type that will bind with pheromones 

of the opposite type (Kronstad & Staben 1997). The two compatible haploid cells will then fuse 

but not the nuclei within them, resulting in a dikaryotic stage. This stage is followed by nuclear 
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fusion forming a diploid nucleus which undergoes two meiotic divisions to form four haploid 

nuclei. These four nuclei then divide mitotically to produce eight haploid ascospores (Fincham 

1971). Meiosis results in recombination of the parental genotypes to produce offspring with 

recombinant genotypes. Recombination plays an important role in increasing the level of 

divergence of pathogens and also alters the virulence profile of the disease (Milgroom 1996).  

 

1.6.1  In vitro Recombination 

Recombination within and between forms of P. teres has been observed in culture (Afanasenko et 

al. 2007; Campbell et al. 1999; Crous et al. 1995; Jalli 2011; Lai et al. 2007; McDonald 1963; 

Shjerve et al. 2014; Smedegård-Petersen 1971) indicating genetic compatibility. Symptoms 

produced by Ptt x Ptm hybrids are similar to those induced by either of the parents i.e. Ptt or Ptm 

or alternatively, intermediate symptoms (Figure 3) (Campbell et al. 1999; Jalli 2011; Smedegaard-

Petersen 1976; Smedegård-Petersen 1971). Out of 80 Ptt x Ptm laboratory produced hybrids, 67% 

isolates had spot-type, 16% had net-type symptoms while the remaining were inconclusive (ElMor 

2016).   

 

Figure 3: Spot like lesion produced by field collected hybrid WAC10721 on leaf of barley. 

 

The virulence patterns of hybrid isolates have been shown to differ when compared to the 

parent isolates, with some isolates being highly virulent on some of the genotypes tested (ElMor 

2016; Jalli 2011). Campbell et al. (1999) found reduced sensitivity to triazole fungicides in hybrids 

as compared to the parents. Hybrids appear to retain their virulence and fertility over generations 

and to be genetically stable (Campbell & Crous 2003). This indicates that if hybridisation between 

the two forms occurs in the field, the resulting hybrids could potentially overcome established host 

resistance and exhibit increased insensitivity to fungicides, thereby making disease control more 

difficult. 
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1.6.2  In vivo Recombination  

 A number of studies have used different molecular markers to investigate the genetic variation of 

P. teres populations from Australia, South Africa, Italy, Finland, America, and Russia 

(Lehmensiek et al. 2010; Rau et al. 2003; Serenius et al. 2005). A ratio of almost 1:1 of each mating 

type has been reported in Ptt and Ptm populations collected from barley fields in Australia 

suggesting the possibility of sexual recombination (Bogacki et al. 2010; McLean et al. 2010; 

Serenius et al. 2007; Serenius et al. 2005). High levels of genetic variation have been observed 

within individuals of Ptt or Ptm field populations indicating frequent sexual recombination within 

the two types (Bogacki et al. 2010; McLean et al. 2014; Rau et al. 2003; Serenius et al. 2005).  

Recombination between Ptt and Ptm and the development of hybrids is rare in the field and 

the two appear to be genetically isolated (Ellwood et al. 2012; Rau et al. 2003; Serenius et al. 

2007). To date four hybrids have been identified with one in South Africa (Campbell et al. 2002), 

two in the Czech Republic (PTM-15 and PTM-16) (Leisova et al. 2005) and one in Australia 

(WAC10721) (McLean et al., 2014). This suggests that hybrids could be in the field and perhaps 

have not been reported due to lesion based identification of pathogen. During the regular disease 

diagnosis, Ptt and Ptm pathogen is differentiated based on the symptoms, which could be 

misleading in case of Ptt x Ptm hybrids as they resemble those of either of the parents. Therefore, 

molecular characterisation of field collected P. teres pathogens is required to identify hybrids in 

the field.  

 

1.7 Genetic Variation 

Genetic variation refers to the naturally occurring genetic differences between individuals of the 

same species. The pattern of this genetic variation defines population structures (Milgroom 1996). 

Sexual recombination has a profound effect on the pattern of genetic variation in populations. 

During sexual recombination, independent assortment and recombination within chromosomes 

occurs which produce recombinant genotypes that can adapt to changing environmental 

conditions, increasing the level of genotypic diversity within populations (Fincham 1971). When 

a pathogen exhibits both sexual and asexual reproduction modes, as in the case of P. teres, adapted 

novel recombinant genotypes may be rapidly multiplied during asexual reproduction. Asexual 
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reproduction on its own results in offspring that are genetically identical leading to clonal 

population structures (Milgroom 1996). 

In recent decades, molecular markers such as RAPD, AFLP and SSR have been extensively 

used to characterise genetic variability to understand the contribution of sexual and asexual modes 

of reproduction in P. teres populations (Bogacki et al. 2010; Jonsson et al. 2000; Lehmensiek et 

al. 2010; Leisova et al. 2005; McLean et al. 2010; Peever & Milgroom 1994; Peltonen et al. 1996; 

Rau et al. 2003; Serenius et al. 2007; Wu et al. 2003). Studies have shown that Ptt and Ptm 

populations are separated into two distinct divergent genetic groups. A high level of genetic 

variability is observed within P. teres populations indicating a significant level of sexual 

reproduction occurring in the field within each form of P. teres. This analysis of genetic structure 

in P. teres populations has been conducted in a wide range of geographical locations worldwide, 

including Canada, Germany, USA (Akhavan et al. 2015; Liu et al. 2012; Peever & Milgroom 

1994), Finland (Peltonen et al. 1996; Serenius et al. 2005), Sweden (Jonsson et al. 2000), Italy 

(Rau et al. 2003), the Czech and Slovak Republic (Leišová-Svobodová et al. 2014; Leisova et al. 

2005(a)), South Africa (Campbell et al. 2002; Lehmensiek et al. 2010) and Australia (Bogacki et 

al. 2010; Lehmensiek et al. 2010; McLean et al. 2010; McLean et al. 2014; Serenius et al. 2007). 

Genetic differentiation was shown to be strongly associated with geographical distances. Low 

genetic variation was observed between closely located areas suggesting that genetic exchange is 

very likely to occur at field or regional level  (Bogacki et al. 2010; Jonsson et al. 2000; Serenius 

et al. 2005). However, the variation level increased between widely separated geographical areas 

(between different states, countries and continents) (Lehmensiek et al. 2010; Serenius et al. 2007) 

suggesting limited gene flow at this level. Sexual reproduction has shown to be an important factor 

in many P. teres populations and relatively few sexually derived individuals per generation is 

enough to generate high genetic diversity in a population (Rau et al. 2003).   

 

1.8 Pathogenic Variation  

The ability of an organism to produce disease can be assessed as pathogenicity or virulence.  

Characterising the variation in virulence in the pathogen population is essential in understanding 

the host/pathogen interaction. Pathogenic variations are determined by inoculating an isolate on a 
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series of host cultivars (differentials) possessing defined resistance genes and observing disease 

phenotype.  

Phenotypic methods such as  seedling assays and detached leaf assays (DLA) have been 

used to study pathotype diversity in P. teres (Afanasenko et al. 2007; Afanasenko et al. 2009; 

ElMor et al. 2018; Khan & Boyd 1969a; Steffenson & Webster 1992). In the seedling assays fungal 

inoculum is sprayed onto the leaves of barley seedlings (Khan & Boyd 1969b; Steffenson & 

Webster 1992). Seedling assays are mostly used for pathotype screening and require the use of 

large controlled environment cabinets which mimic field conditions of temperature, humidity and 

light (Arraiano et al. 2001). In the DLA-droplet method, a drop of conidial suspension is placed 

onto detached barley leaf segments of approximately 2 cm length and a tray containing the leaf is 

covered with glass plate and incubated under optimum light and temperature conditions 

(Afanasenko et al. 2007; Afanasenko et al. 2009). The DLA-droplet method is useful where a 

biosecure environment is required or when space is limited. However, the leaf material used in this 

method is only 2 cm in length and doesnot produce distinct lesions making it difficult to distinguish 

between Ptt and Ptm. Recently, the improved DLA method was developed in which detached 

whole leaves are sprayed with inoculum (ElMor et al. 2018) . Using this method, symptoms of Ptt 

and Ptm can be clearly distinguished.  

The host response to the pathogen is scored using the Tekauz (1985) scale (For Ptt 1–10 

Figure 4a and for Ptm 1–9 Figure 4b) or percentage of leaf area damaged (Steffenson & Webster 

1992). Based on relative lesion size and lesion type (presence of chlorosis and necrosis) observed 

while screening disease severity on barley leaves (Figure 4b), it was not possible to capture all the 

lesion variations without including score 4 and 6 in the Tekauz (1985) scale for Ptm.. Isolates were 

grouped into two classes avirulent when score is 1–5 and virulent when score 6–10. Based on the 

score, pathogenic variation seen in the P. teres populations can be assessed.  
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Figure 4: The infection response of  barley genotypes eight days after inoculation on second seedling 

leaves scored following Tekauz (1985) scoring scale. a) 10-point scale for net form of net blotch and 

b) 9-point scale for spot form of net blotch.  
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Pathogenic variation in populations of P. teres have been studied globally (Bockelman et al. 

1983; Khan & Boyd 1969b; Khan & Tekauz 1982; Steffenson & Webster 1992; Tekauz 1990; 

Tuohy et al. 2006). In Ptt populations: three pathotypes have been identified among 17 Ptt isolates 

from Western Australia (Khan & Boyd 1969b), 13 pathotypes among 91 Ptt isolates from 

California (Steffenson & Webster 1992), five pathotypes among 29 isolates of Ptt from France and 

Syria (Arabi et al. 2003), 11 pathotypes among the 29 Ptt isolates from New Zealand (Cromey & 

Parkes 2003) and 16 pathotypes from 39 isolates collected from Western Canada (Akhavan et al. 

2016). Similarly,  for Ptm populations: 20 pathotypes were identified among 39 Ptm in Western 

Australia (Tekauz 1990), 13 pathotypes from 27 isolates collected from Western Canada (Akhavan 

et al. 2016). In addition, Wu et al. (2003) collected 23 Ptt and eight Ptm isolates from 12 different 

barley growing regions of the world and identified 15 and four pathotypes respectively. Although 

these studies have identified distinct pathotypes and high variability in the pathogenicity of P. teres 

populations, the number of pathotypes or level of virulence is highly dependent on the sets and 

number of differential barley genotypes used. Furthermore, different studies have used different 

sets and numbers of genotypes, making it difficult to compare pathotypes among different studies.  

Therefore, a set of barley differential lines as a standard for international use have been identified 

(Afanasenko et al. 2009; Fowler et al. 2017; McLean et al. 2014) and is now available for use in 

future pathogenic studies.  

 

1.9 Management of the disease 

Net blotches can be managed using crop rotation, stubble management, application of fungicides 

and growing resistant barley cultivars (McLean et al. 2009; Shipton et al. 1973). Seed and foliar 

fungicides can be used for control of net blotches when adequate host resistance is not available. 

Fungicide seed treatments reduce primary inoculum and can be effective during the emergence 

and tillering stages of crop development (Liu et al. 2011; Walters et al. 2012). Foliar fungicides 

applied at stem elongation and head emergence can delay disease development and maintain green 

leaf thus reducing yield loss caused by the disease but may require repeat applications during key 

stages (Entz et al. 1990; McLean et al. 2016; Sutton & Steele 1983; Walters et al. 2012).The most 

effective and sustainable method is to grow resistant barleycultivars. This provides less reliance 

on fungicides, making barley more profitable for growers (McLean et al. 2009). 
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1.9.1  Breeding for disease resistance 

Resistance breeding that incorporates resistance genes into new barley cultivars is an effective and 

sustainable method to control net blotches (Liu et al. 2011; McLean et al. 2009). A major objective 

of barley breeding programs is to develop disease resistance to net blotch while maintaining or 

improving yield, grain quality and other agronomic traits in commercially grown barley cultivars.  

Genes or quantitative trait loci (QTL) associated with net blotch resistance are localised on 

different barley chromosomes. Resistance can be effective at the seedling and/or adult stages. 

Resistance against NFNB has been reported on all seven barley chromosomes with QTL of large 

effect identified on 6H in many barley lines (Cakir et al. 2011; Cakir et al. 2003; Friesen et al. 

2006; Gupta et al. 2010; Lehmensiek et al. 2008; Manninen et al. 2006; Raman et al. 2003; St. 

Pierre et al. 2010). For SFNB, seedling resistance has been reported on chromosome 2H, 4H and 

7H while adult resistance has been mapped to chromosomes 4H, 5H, 6H, and 7H (Friesen et al. 

2006; Grewal et al. 2008; Molnar et al. 2000; Williams et al. 2003). The Rpt4 gene located in 

chromosome 7HL region has been associated with seedling resistance to SFNB (Williams et al. 

2003). Identification of these genomic regions will be useful in marker assisted selection programs 

seeking to introgress stable NFNB resistance.  

 A major challenge for the deployment of durable resistance is the rapid evolution of the 

pathogen in response to selection pressure. Pyrenophora teres is able to overcome resistances 

(McDonald & Linde 2002) and such instances have been documented. Barley cultivar Gilbert, 

which was resistant to net blotch when released in Queensland in 1992, was susceptible a year 

later suggesting variation in the population (Platz et al. 2000). Similarly, a major shift in the 

pathogen population has been shown in Western Australia, where resistance in the cultivar Beecher 

was overcome by the emergence of virulent pathotypes within a decade (Khan & Tekauz 1982). 

Recently, in South Australia, cultivars Skiff, Keel and Maritime which were originally shown to 

be resistant or moderately resistant to NFNB showed moderate to severe symptoms indicating 

emergence of new pathotypes in the field (Wallwork et al. 2016). 

 Knowledge of the genetic and pathogenic structure of P. teres populations has important 

implication for resistance breeding. The genetic structure will indicate how rapidly a pathogen is 

evolving and profiling the pathogenic structure will determine new pathotypes which can 
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overcome the major sources of resistance present in current commercial barleycultivars. This 

information is necessary for assessing the effectiveness and durability of resistance sources present 

in the current and future cultivars. 

 

1.10 Objectives of study 

The occurrence of sexual recombination in P. teres can combine the pathogenic traits of the two 

parental genomes causing new virulences in the offspring. The occurrence of new virulent 

pathotypes is a threat to the effectiveness of current resistance sources and disease management 

strategies. Therefore, this study focused on better understanding the genetic diversity, pathogenic 

structure and evolutionary potential of P. teres. The results of the studies undertaken in this thesis 

will be useful in providing recommendations to better manage deployed resistances for net blotch 

and to improve management strategies. 

 

The objectives of this study were to:  

 

1. Develop markers for accurate characterisation of Ptt x Ptm hybrids (Chapter 2) 

The lesions produced by the majority of progeny of crosses between Ptt and Ptm resemble 

those of the parental isolates making visual identification of hybrids challenging. Currently 

available form specific and mating type markers were mainly developed for the identification 

of either form of P. teres and are not suitable for identification of hybrids. Hybrids have been 

identified using RAPD and AFLP techniques, but they are either difficult to reproduce between 

laboratories and/or are technically challenging to use as a regular diagnostic tool. Therefore, 

sequences specific to Ptt and Ptm were identified using a whole genome comparative approach 

to develop PCR based markers for characterisation of hybrids.  

 

2. Determine the occurrence of hybrids in a field (Chapter 3) 

Although recombination between Ptt and Ptm is possible, it is believed to be rare in the field. 

To date studies have not been undertaken to determine whether hybrids will be produced in an 

ideal field situation where both forms of P. teres co-exist. Three field trials were conducted 
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annually for three years where susceptible barley cultivars were infected with both Ptt and Ptm 

isolates of opposite mating type. Sequence specific markers were amplified across DNA 

extracted from single spore isolates and ascospores obtained from the leaf samples and stubble 

to establish the presence of hybrids.  

 

3. Determine whether hybrids are present in Australian cultural collections of P. teres (Chapter 

3) 

The original identification of the isolates collected from barley growing region of Australia 

was based on lesion appearance. Considering that the lesions produced on hybrids are similar 

to those of one of their parents, hybrids could have been misidentified as Ptt or Ptm. Thus, the 

sequence specific markers were amplified across isolates of P. teres collected from major 

barley growing regions of Australia during 1967–2015 to verify previous identifications and 

to determine if any of these isolates were hybrids.   

 

4. Investigate the genetic changes occurring in Ptt population in a field across three successive 

years (Chapter 4) 

No studies have been conducted in Australia to determine the change in genetic structure of 

Ptt populations that may occur over time. A field experiment was conducted in the years 2013–

2015 where barley was inoculated with a Ptt isolate. Samples collected from each year were 

genotyped using DArT markers to investigate possible changes in the genetic composition of 

the population in the field across three cropping seasons.  

 

5. Determine the genetic and pathogenic variation between P. teres collected from barley grass 

and barley (Chapter 5) 

As barley grass can be found growing alongside barley fields, virulent strains of P. teres of 

barley grass have the potential to introduce new pathotypes into barley fields. The genetic 

structure of P. teres collected from barley grass is unknown. Using DArT markers, genetic 

differences between P. teres collected from barley grass and barley were examined and the 

pathogenicity of P. teres obtained from barley grass on barley was assessed.  

 

16



References 

Afanasenko, O, Mironenko, N, Filatova, O, Kopahnke, D, Krämer, I & Ordon, F 2007, 'Genetics 

of host-pathogen interactions in the Pyrenophora teres f. teres (net form) – barley (Hordeum 

vulgare) pathosystem', European Journal of Plant Pathology, vol. 117, no. 3, pp. 267-80. 

Afanasenko, OS, Jalli, M, Pinnschmidt, HO, Filatova, O & Platz, GJ 2009, 'Development of an 

international standard set of barley differential genotypes for Pyrenophora teres f. teres', Plant 

Pathology, vol. 58, no. 4, pp. 665-76. 

Akhavan, A, Turkington, TK, Askarian, H, Tekauz, A, Xi, K, Tucker, JR, Kutcher, HR & Strelkov, 

SE 2016, 'Virulence of Pyrenophora teres populations in Western Canada', Canadian Journal of 

Plant Pathology, vol. 38, no. 2, pp. 183-96. 

Akhavan, A, Turkington, TK, Kebede, B, Tekauz, A, Kutcher, HR, Kirkham, C, Xi, KQ, Kumar, 

K, Tucker, JR & Strelkov, SE 2015, 'Prevalence of mating type idiomorphs in Pyrenophora teres 

f. teres and P. teres f. maculata populations from the Canadian prairies', Canadian Journal of 

Plant Pathology, vol. 37, no. 1, pp. 52-60. 

Arabi, M, Al‐Safadi, B & Charbaji, T 2003, 'Pathogenic variation among isolates of Pyrenophora 

teres, the causal agent of barley net blotch', Journal of Phytopathology, vol. 151, no. 7‐8, pp. 376-

82. 

Arraiano, LS, Brading, PA & Brown, JKM 2001, 'A detached seedling leaf technique to study 

resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat', Plant Pathology, 

vol. 50, no. 3, pp. 339-46. 

Atanasoff, D & Johnson, AG 1920, 'Treatment of cereal seeds by dry heat. ', Journal of 

Agricultural Research, vol. XVIII, no. 7, pp. 379-90. 

Australian Bureau of Statistics 2015-2016, 7121.0 - Agricultural Commodities, Australia, 2015-

2016. , Australian Government, viewed 11 November 2017, <http://www.abs.gov.au/>. 

Badr, A, Sch, R, Rabey, HE, Effgen, S, Ibrahim, H, Pozzi, C, Rohde, W & Salamini, F 2000, 'On 

the origin and domestication history of barley (Hordeum vulgare)', Molecular Biology and 

Evolution, vol. 17, no. 4, pp. 499-510. 

Bockelman, HE, Sharp, EL & Bjarko, M, E. 1983, 'Isolates of Pyrenophora teres from Montana 

and the Mediterranean region that produce spot-type lesions on barley.', Plant Disease, vol. 67, 

pp. 696-7. 

Bogacki, P, Keiper, FJ & Oldach, KH 2010, 'Genetic structure of South Australian Pyrenophora 

teres populations as revealed by microsatellite analyses', Fungal Biology, vol. 114, no. 10, pp. 834-

41. 

Brown, M, Steffenson, B & Webster, R 1993, 'Host range of Pyrenophora teres f. teres isolates 

from California', Plant Disease, vol. 77, no. 9, pp. 942-7. 

Cakir, M, Gupta, S, Platz, G, Ablett, GA, Loughman, R, Emebiri, L, Poulsen, D, Li, C, Lance, R 

& Galwey, N 2003, 'Mapping and validation of the genes for resistance to Pyrenophora teres f. 

teres in barley (Hordeum vulgare L.)', Australian Journal of Agricultural Research, vol. 54, no. 

12, pp. 1369-77. 

17

http://www.abs.gov.au/


Cakir, M, Gupta, S, Li, C, Hayden, M, Mather, DE, Ablett, GA, Platz, GJ, Broughton, S, Chalmers, 

KJ & Loughman, R 2011, 'Genetic mapping and QTL analysis of disease resistance traits in the 

barley population Baudin× AC Metcalfe', Crop and Pasture Science, vol. 62, no. 2, pp. 152-61. 

Campbell, GF & Crous, PW 2003, 'Genetic stability of net x spot hybrid progeny of the barley 

pathogen Pyrenophora teres', Australasian Plant Pathology, vol. 32, no. 2, pp. 283-7. 

Campbell, GF, Crous, PW & Lucas, JA 1999, 'Pyrenophora teres f. maculata, the cause of 

Pyrenophora leaf spot of barley in South Africa', Mycological Research, vol. 103, no. 3, pp. 257-

67. 

Campbell, GF, Lucas, JA & Crous, PW 2002, 'Evidence of recombination between net- and spot-

type populations of Pyrenophora teres as determined by RAPD analysis', Mycological Research, 

vol. 106, no. 5, pp. 602-8. 

Cromey, M & Parkes, R 2003, 'Pathogenic variation in Drechslera teres in New Zealand', New 

Zealand Plant Protection, pp. 251-6. 

Crous, PW, Janse, BJH, Tunbridge, J & Holz, G 1995, 'DNA homology between P. japonica and 

P. teres', Mycological Research, vol. 99, no. 9, pp. 1098-102. 

Ellwood, SR, Syme, RA, Moffat, CS & Oliver, RP 2012, 'Evolution of three Pyrenophora cereal 

pathogens: recent divergence, speciation and evolution of non-coding DNA', Fungal Genetics and 

Biology, vol. 49, no. 10, pp. 825-9. 

ElMor, IM 2016, 'Investigating the virulence of isolates produced by sexual recombination 

between different Pyrenophora teres isolates', Traditional thesis, University of Southern 

Queensland, Australia. 

ElMor, IM, Fowler, RA, Platz, GJ, Sutherland, MW & Martin, A 2018, 'An improved detached-

leaf assay for phenotyping net blotch of barley caused by Pyrenophora teres', Plant Disease, pp. 

PDIS-07. 

Entz, MH, Berg, CGJVD, Stobbe, EH, Rossnagel, BG, Lafond, GP & Austenson, HM 1990, 'Effect 

of late-season fungicide application on grain yield and seed size distribution in wheat and barley', 

Canadian Journal of Plant Science, vol. 70, no. 3, pp. 699-706. 

Fincham, JRS 1971, Using fungi to study genetic recombination. , Oxford biology readers, Oxford 

University Press, London. 

Fowler, RA, Platz, GJ, Bell, KL, Fletcher, SEH, Franckowiak, JD & Hickey, LT 2017, 'Pathogenic 

variation of Pyrenophora teres f. teres in Australia', Australasian Plant Pathology, vol. 46, no. 2, 

pp. 115-28. 

Friesen, T, Faris, J, Lai, Z & Steffenson, B 2006, 'Identification and chromosomal location of 

major genes for resistance to Pyrenophora teres in a doubled-haploid barley population', Genome, 

vol. 49, no. 7, pp. 855-9. 

Grewal, T, Rossnagel, B, Pozniak, C & Scoles, G 2008, 'Mapping quantitative trait loci associated 

with barley net blotch resistance', Theoretical and Applied Genetics, vol. 116, no. 4, pp. 529-39. 

Gupta, S, Li, C, Loughman, R, Cakir, M, Platz, G, Westcott, S, Bradley, J, Broughton, S & Lance, 

R 2010, 'Quantitative trait loci and epistatic interactions in barley conferring resistance to net type 

net blotch (Pyrenophora teres f. teres) isolates', Plant breeding, vol. 129, no. 4, pp. 362-8. 

18



Ismail, I, Godfrey, D & Able, A 2014, 'Fungal growth, proteinaceous toxins and virulence of 

Pyrenophora teres f. teres on barley', Australasian Plant Pathology, vol. 43, no. 5, pp. 535-46. 

Ito, S & Kuribayashi, K 1931, 'The ascigerous forms of some graminicolous species of 

Helminthosporium in Japan', Journal of the Faculty of Agriculture, Hokkaido Imperial University, 

vol. 29, no. 3, pp. 85-125. 

Jaccoud, D, Peng, K, Feinstein, D & Kilian, A 2001, 'Diversity arrays: a solid state technology for 

sequence information independent genotyping', Nucleic Acids Research, vol. 29, no. 4, pp. e25-e. 

Jalli, M 2011, 'Sexual reproduction and soil tillage effects on virulence of Pyrenophora teres in 

Finland', Annals of Applied Biology, vol. 158, no. 1, pp. 95-105. 

Jonsson, R, Sail, T & Bryngelsson, T 2000, 'Genetic diversity for random amplified polymorphic 

DNA (RAPD) markers in two Swedish populations of Pyrenophora teres', Canadian Journal of 

Plant Pathology, vol. 22, no. 3, pp. 258-64. 

Jordan, V 1981, 'Aetiology of barley net blotch caused by Pyrenophom teres and some effects on 

yield', Plant Pathology, vol. 30, no. 2, pp. 77-87. 

Keiper, FJ, Grcic, M, Capio, E & Wallwork, H 2008, 'Diagnostic microsatellite markers for the 

barley net blotch pathogens, Pyrenophora teres f. maculata and Pyrenophora teres f. teres', 

Australasian Plant Pathology, vol. 37, no. 4, pp. 428-30. 

Khan, T 1973, 'Host specialization by Western Australian isolates causing net blotch symptoms 

on Hordeum', Transactions of the British Mycological Society, vol. 61, no. 2, pp. 215-20. 

Khan, T & Boyd, W 1969a, 'Environmentally induced variability in the host reaction of barley to 

net blotch', Australian Journal of Biological Sciences, vol. 22, no. 5, pp. 1237-44. 

Khan, T & Boyd, W 1969b, 'Physiologic specialization in Drechslera teres', Australian Journal of 

Biological Sciences, vol. 22, no. 5, pp. 1229-36. 

Khan, TN 1987, 'Relationship between net blotch (Drechslera teres) and losses in grain-yield of 

barley in Western Australia', Australian Journal of Agricultural Research, vol. 38, no. 4, pp. 671-

9. 

Khan, TN & Tekauz, A 1982, 'Occurrence and pathogenicity of Drechslera teres Isolates causing 

spot-type symptoms on barley in Western Australia', Plant Disease, vol. 66, pp. 423-5. 

Kronstad, JW & Staben, C 1997, 'Mating type in filamentous fungi', Annual Review of Genetics, 

vol. 31, pp. 245-76. 

Lai, Z, Faris, JD, Weiland, JJ, Steffenson, BJ & Friesen, TL 2007, 'Genetic mapping of 

Pyrenophora teres f. teres genes conferring avirulence on barley', Fungal Genetics and Biology, 

vol. 44, no. 5, pp. 323-9. 

Lehmensiek, A, Platz, G, Mace, E, Poulsen, D & Sutherland, M 2008, 'Mapping of adult plant 

resistance to net form of net blotch in three Australian barley populations', Australian Journal of 

Agricultural Research, vol. 58, no. 12, pp. 1191-7. 

Lehmensiek, A, Bester-van der Merwe, AE, Sutherland, MW, Platz, G, Kriel, WM, Potgieter, GF 

& Prins, R 2010, 'Population structure of South African and Australian Pyrenophora teres isolates', 

Plant Pathology, vol. 59, no. 3, pp. 504-15. 

19



Leišová-Svobodová, L, Minaříková, V, Matušinsky, P, Hudcovicová, M, Ondreičková, K & 

Gubiš, J 2014, 'Genetic structure of Pyrenophora teres net and spot populations as revealed by 

microsatellite analysis', Fungal Biology, vol. 118, no. 2, pp. 180-92. 

Leisova, L, Minarikova, V, Kucera, L & Ovesna, J 2005, 'Genetic diversity of Pyrenophora teres 

isolates as detected by AFLP analysis', Journal of Phytopathology, vol. 153, no. 10, pp. 569-78. 

Leisova, L, Minarikova, V, Kucera, L & Ovesna, J 2005(a), 'Genetic diversity of Pyrenophora 

teres isolates as detected by AFLP analysis', Journal of Phytopathology, vol. 153, no. 10, pp. 569-

78. 

Leisova, L, Kucera, L, Minarikova, V & Ovesna, J 2005(b), 'AFLP-based PCR markers that 

differentiate spot and net forms of Pyrenophora teres', Plant Pathology, vol. 54, no. 1, pp. 66-73. 

Leisova, L, Minarikova, V, Kucera, L & Ovesna, J 2006, 'Quantification of Pyrenophora teres in 

infected barley leaves using real-time PCR', J Microbiol Methods, vol. 67, no. 3, pp. 446-55. 

Linde, CC, Smith, LM & Peakall, R 2016, 'Weeds, as ancillary hosts, pose disproportionate risk 

for virulent pathogen transfer to crops', BMC Evolutionary Biology, vol. 16. 

Liu, Z, Ellwood, SR, Oliver, RP & Friesen, TL 2011, 'Pyrenophora teres: profile of an increasingly 

damaging barley pathogen', Molecular Plant Pathology, vol. 12, no. 1, pp. 1-19. 

Liu, Z, Zhong, S, Stasko, A, Edwards, M & Friesen, T 2012, 'Virulence profile and genetic 

structure of a North Dakota population of Pyrenophora teres f. teres, the causal agent of net form 

net blotch of barley', Phytopathology, vol. 102, no. 5, pp. 539-46. 

Lu, S, Platz, GJ, Edwards, MC & Friesen, TL 2010, 'Mating type locus-specific polymerase chain 

reaction markers for differentiation of Pyrenophora teres f. teres and P. teres f. maculata, the 

causal agents of barley net blotch', Phytopathology, vol. 100, no. 12, pp. 1298-306. 

Manninen, O, Jalli, M, Kalendar, R, Schulman, A, Afanasenko, O & Robinson, J 2006, 'Mapping 

of major spot-type and net-type net-blotch resistance genes in the Ethiopian barley line CI 9819', 

Genome, vol. 49, no. 12, pp. 1564-71. 

Mathre, DE 1982, Compendium of barley diseases, The disease compendia series., American 

Phytopathological Society in cooperation with the Department of Plant Pathology Montana State 

University, St. Paul, Minn. 

McDonald, BA & Linde, C 2002, 'Pathogen population genetics, evolutionary potential, and 

durable resistance', Annual Review of Phytopathology, vol. 40, pp. 349-+. 

McDonald, WC 1963, 'Heterothallism in Pyrenophora teres', Phytopathology, vol. 53, no. 121, 

pp. 771-3. 

McDonald, WC 1967, 'Variability and inheritance of morphological mutants in Pyrenophora 

teres', Phytopathology, vol. 57, no. 7, pp. 747-&. 

McLean, MS, Howlett, BJ & Hollaway, GJ 2009, 'Epidemiology and control of spot form of net 

blotch (Pyrenophora teres f. maculata) of barley: a review', Crop & Pasture Science, vol. 60, no. 

4, pp. 303-15. 

McLean, MS, Keiper, FJ & Hollaway, GJ 2010, 'Genetic and pathogenic diversity in Pyrenophora 

teres f. maculata in barley crops of Victoria, Australia', Australasian Plant Pathology, vol. 39, no. 

4, pp. 319-25. 

20



McLean, MS, Weppler, R, Howlett, BJ & Hollaway, GJ 2016, 'Spot form of net blotch suppression 

and yield of barley in response to fungicide application in the Wimmera region of Victoria, 

Australia', Australasian Plant Pathology, vol. 45, no. 1, pp. 37-43. 

McLean, MS, Martin, A, Gupta, S, Sutherland, MW, Hollaway, GJ & Platz, GJ 2014, 'Validation 

of a new spot form of net blotch differential set and evidence for hybridisation between the spot 

and net forms of net blotch in Australia', Australasian Plant Pathology, vol. 43, no. 3, pp. 223-33. 

Milgroom, MG 1996, 'Recombination and the multilocus structure of fungal populations', Annual 

Review of Phytopathology, vol. 34, pp. 457-77. 

Molnar, S, James, L & Kasha, K 2000, 'Inheritance and RAPD tagging of multiple genes for 

resistance to net blotch in barley', Genome, vol. 43, no. 2, pp. 224-31. 

Moore, J, Sutherland, S, Verbeek, B & Fleet, B 2014, Integrated weed management in Australian 

cropping systems, Australia, 978-1-921779-61-9. 

Murray, GM & Brennan, JP 2010, 'Estimating disease losses to the Australian barley industry', 

Australasian Plant Pathology, vol. 39, no. 1, pp. 85-96. 

Peever, TL & Milgroom, MG 1994, 'Genetic structure of Pyrenophora teres populations 

determined with random amplified polymorphic DNA markers', Canadian Journal of Botany, vol. 

72, no. 7, pp. 915-23. 

Peltonen, S, Jalli, M, Kammiovirta, K & Karjalainen, R 1996, 'Genetic variation in Drechslera 

teres populations as indicated by RAPD markers', Annals of Applied Biology, vol. 128, no. 3, pp. 

465-77. 

Platz, G, Bell, KL, Rees, RG & Galea, VJ 2000, 'Pathotype variation of the Australian net blotch 

population', in 8th International Barley Genetics Symposium, Waite Campus, Adelaide University, 

Adelaide Convention Centre, pp. 160-2. 

Purwantara, A, Barrins, JM, Cozijnsen, AJ, Ades, PK & Howle, BJ 2000, 'Genetic diversity of 

isolates of the Leptosphaeria maculans species complex from Australia, Europe and North 

America using amplified fragment length polymorphism analysis', Mycological Research, vol. 

104, pp. 772-81. 

Raman, H, Platz, G, Chalmers, K, Raman, R, Read, B, Barr, A & Moody, D 2003, 'Mapping of 

genomic regions associated with net form of net blotch resistance in barley', Australian Journal of 

Agricultural Research, vol. 54, no. 12, pp. 1359-67. 

Rau, D, Brown, AHD, Brubaker, CL, Attene, G, Balmas, V, Saba, E & Papa, R 2003, 'Population 

genetic structure of Pyrenophora teres Drechs. the causal agent of net blotch in Sardinian landraces 

of barley (Hordeum vulgare L.)', Theoretical and Applied Genetics, vol. 106, no. 5, pp. 947-59. 

Rau, D, Maier, FJ, Papa, R, Brown, AHD, Balmas, V, Saba, E, Schaefer, W & Attene, G 2005, 

'Isolation and characterization of the mating-type locus of the barley pathogen Pyrenophora teres 

and frequencies of mating-type idiomorphs within and among fungal populations collected from 

barley landraces', Genome, vol. 48, no. 5, pp. 855-69. 

Rau, D, Attene, G, Brown, AH, Nanni, L, Maier, FJ, Balmas, V, Saba, E, Schafer, W & Papa, R 

2007, 'Phylogeny and evolution of mating-type genes from Pyrenophora teres, the causal agent of 

barley "net blotch" disease', Current Genetics, vol. 51, no. 6, pp. 377-92. 

21



Sarpeleh, A, Wallwork, H, Catcheside, DEA, Tate, ME & Able, AJ 2007, 'Proteinaceous 

metabolites from Pyrenophora teres contribute to symptom development of barley net blotch', 

Phytopathology, vol. 97, no. 8, pp. 907-15. 

Serenius, M, Mironenko, N & Manninen, O 2005, 'Genetic variation, occurrence of mating types 

and different forms of Pyrenophora teres causing net blotch of barley in Finland', Mycological 

Research, vol. 109, no. 7, pp. 809-17. 

Serenius, M, Manninen, O, Wallwork, H & Williams, K 2007, 'Genetic differentiation in 

Pyrenophora teres populations measured with AFLP markers', Mycological Research, vol. 111, 

no. 2, pp. 213-23. 

Sharma, M, Nagavardhini, A, Thudi, M, Ghosh, R, Pande, S & Varshney, RK 2014, 'Development 

of DArT markers and assessment of diversity in Fusarium oxysporum f. sp. ciceris, wilt pathogen 

of chickpea (Cicer arietinum L.)', BMC genomics, vol. 15, no. 1, p. 454. 

Shipton, WA 1966, 'Effect of net blotch infection of barley on grain yield and quality', Australian 

Journal of Experimental Agriculture and Animal Husbandry, vol. 6, no. 23, pp. 437-40. 

Shipton, WA, Khan, TN & Boyd, WJR 1973, 'Net blotch of barley', Review of plant pathology, 

vol. 52, no. 5. 

Shjerve, RA, Faris, JD, Brueggeman, RS, Yan, C, Zhu, Y, Koladia, V & Friesen, TL 2014, 

'Evaluation of a Pyrenophora teres f. teres mapping population reveals multiple independent 

interactions with a region of barley chromosome 6H', Fungal Genetics and Biology, vol. 70, pp. 

104-12. 

Smedegaard-Petersen, V 1976, Pathogenesis and genetics of net-spot blotch and leaf stripe of 

barley caused by Pyrenophora teres and Pyrenophora graminea. , DSR forlag Copenhagen. 

Smedegård-Petersen, V 1971, 'Pyrenophora teres f. maculata f. nov. and Pyrenophora teres f. teres 

on barley in Denmark', in Yearbook of the Royal Veterinary and Agricultural University, 

Copenhagen, pp. 124-44. 

Smedegård-Petersen, V 1976, 'Pathogenesis and genetics of net-spot blotch and leaf stripe of 

barley caused by Pyrenophora teres and Pyrenophora graminea.', pp. 95-141. 

St. Pierre, S, Gustus, C, Steffenson, B, Dill-Macky, R & Smith, K 2010, 'Mapping net form net 

blotch and Septoria speckled leaf blotch resistance loci in barley', Phytopathology, vol. 100, no. 1, 

pp. 80-4. 

Steffenson, B, Hayes, P & Kleinhofs, A 1996, 'Genetics of seedling and adult plant resistance to 

net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley', 

Theoretical and Applied Genetics, vol. 92, no. 5, pp. 552-8. 

Steffenson, BJ & Webster, RK 1992, 'Pathotype diversity of Pyrenophora teres f. teres on barley', 

Phytopathology, vol. 82, no. 2, pp. 170-7. 

Sutton, J & Steele, P 1983, 'Effects of seed and foliar fungicides on progress of net blotch and 

yield in barley', Canadian Journal of Plant Science, vol. 63, no. 3, pp. 631-9. 

Tekauz, A 1985, 'A numerical scale to classify reactions of barley to Pyrenophora teres', Canadian 

Journal of Plant Pathology, vol. 7, no. 2, pp. 181-3. 

22



Tekauz, A 1990, 'Characterization and distribution of pathogenic variation in Pyrenophora teres 

f. teres and P. teres f. maculata from Western Canada', Canadian Journal of Plant Pathology, vol. 

12, no. 2, pp. 141-8. 

Tekauz, A & Mills, J 1974, 'New types of virulence in Pyrenophora teres in Canada', Canadian 

Journal of Plant Science, vol. 54, no. 4, pp. 731-4. 

The Food and Agriculture Organization 2014, FAOSTAT, UN, <http://www.fao.org/home/en/>. 

Tuohy, JM, Jalli, M, Cooke, BM & O’ Sullivan, E 2006, 'Pathogenic variation in populations of 

Drechslera teres f. teres and D. teres f. maculata and differences in host cultivar responses', 

European Journal of Plant Pathology, vol. 116, no. 3, pp. 177-85. 

Turgeon, BG & Yoder, OC 2000, 'Proposed nomenclature for mating type genes of filamentous 

ascomycetes', Fungal Genetics and Biology, vol. 31, no. 1, pp. 1-5. 

van den Berg, CGJ 1988, 'Epidemiology of Pyrenophora teres and its effect on grain yield of 

Hordeum vulgare.', University of Saskatchewan, Saskatoon, Canada. . 

Vos, P, Hogers, R, Bleeker, M, Reijans, M, Vandelee, T, Hornes, M, Frijters, A, Pot, J, Peleman, 

J, Kuiper, M & Zabeau, M 1995, 'AFLP - a new technique for DNA fingerprinting', Nucleic Acids 

Research, vol. 23, no. 21, pp. 4407-14. 

Wallwork, H, Lichon, A & Sivanesan, A 1992, 'Pyrenophora hordei—a new ascomycete with 

Drechslera anamorph affecting barley in Australia', Mycological Research, vol. 96, no. 12, pp. 

1068-70. 

Wallwork, H, Butt, M & Capio, E 2016, 'Pathogen diversity and screening for minor gene 

resistance to Pyrenophora teres f. teres in barley and its use for plant breeding', Australasian Plant 

Pathology, vol. 45, no. 5, pp. 527-31. 

Walters, DR, Avrova, A, Bingham, IJ, Burnett, FJ, Fountaine, J, Havis, ND, Hoad, SP, Hughes, 

G, Looseley, M, Oxley, SJP, Renwick, A, Topp, CFE & Newton, AC 2012, 'Control of foliar 

diseases in barley: towards an integrated approach', European Journal of Plant Pathology, vol. 

133, no. 1, pp. 33-73. 

Weiergang, I, Jorgensen, HJL, Moller, IM, Friis, P & Smedegaard-Petersen, V 2002, 'Correlation 

between sensitivity of barley to Pyrenophora teres toxins and susceptibility to the fungus', 

Physiological and Molecular Plant Pathology, vol. 60, no. 3, pp. 121-9. 

Williams, K, Platz, G, Barr, A, Cheong, J, Willsmore, K, Cakir, M & Wallwork, H 2003, 'A 

comparison of the genetics of seedling and adult plant resistance to the spot form of net blotch 

(Pyrenophora teres f. maculata)', Australian Journal of Agricultural Research, vol. 54, no. 12, pp. 

1387-94. 

Williams, KJ, Smyl, C, Lichon, A, Wong, KY & Wallwork, H 2001, 'Development and use of an 

assay based on the polymerase chain reaction that differentiates the pathogens causing spot form 

and net form of net blotch of barley', Australasian Plant Pathology, vol. 30, no. 1, pp. 37-44. 

Wittenberg, AH, van der Lee, TA, M'Barek, SB, Ware, SB, Goodwin, SB, Kilian, A, Visser, RG, 

Kema, GH & Schouten, HJ 2009, 'Meiosis drives extraordinary genome plasticity in the haploid 

fungal plant pathogen Mycosphaerella graminicola', Plos One, vol. 4, no. 6, p. e5863. 

23

http://www.fao.org/home/en/


Wu, H-L, Steffenson, B, Zhong, S, Li, Y & Oleson, A 2003, 'Genetic variation for virulence and 

RFLP markers in Pyrenophora teres', Canadian Journal of Plant Pathology, vol. 25, no. 1, pp. 82-

90. 

24



Chapter 2 

Pyrenophora teres hybridization events revealed by development of sequence-specific PCR 

markers 

 

In this study, using whole-genome comparisons unique Ptt and Ptm expressed regions were 

identified to develop unambiguous PCR-based markers specific to each form. The form specificity 

of the developed markers was validated using characterised field collected isolates from Australia 

and South Africa. The markers were then screened across putative field hybrids and laboratory-

produced hybrids to demonstrate the use of the markers to categorically identify Ptt x Ptm hybrids. 

In additional, P. teres isolates collected from barley grass were characterised using the markers.   

 

Poudel B, Ellwood SR, Testa AC, McLean M, Sutherland MW, and Martin A. Rare Pyrenophora 

teres hybridization events revealed by development of sequence-specific PCR markers. 

Phytopathology, DOI: 10.1094/PHYTO-11-16-0396-R 

Note: Supplementary data associated with this chapter are given in the appendix 
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ABSTRACT

Pyrenophora teres f. teres and P. teres f. maculata cause net form and
spot form, respectively, of net blotch on barley (Hordeum vulgare). The
two forms reproduce sexually, producing hybrids with genetic and
pathogenic variability. Phenotypic identification of hybrids is challenging
because lesions induced by hybrids on host plants resemble lesions
induced by either P. teres f. teres or P. teres f. maculata. In this study, 12
sequence-specific polymerase chain reaction markers were developed
based on expressed regions spread across the genome. The primers were
validated using 210 P. teres isolates, 2 putative field hybrids (WAC10721

and SNB172), 50 laboratory-produced hybrids, and 7 isolates collected
from barley grass (H. leporinum). The sequence-specific markers
confirmed isolate WAC10721 as a hybrid. Only four P. teres f. teres
markers amplified on DNA of barley grass isolates. Amplified fragment
length polymorphism markers suggested that P. teres barley grass isolates
are genetically different from P. teres barley isolates and that the second
putative hybrid (SNB172) is a barley grass isolate. We developed a suite
of markers which clearly distinguish the two forms of P. teres and enable
unambiguous identification of hybrids.

Net formof net blotch and spot formof net blotch (SFNB), caused by
Pyrenophora teres f. teres andP. teres f.maculata, respectively, are two
major foliar diseases of barley (Hordeum vulgare) (Liu et al. 2011;
McLean et al. 2009). Net blotches have a worldwide distribution and,
because theyare stubbleborne, theyare importantwherebarley isgrown
intensively, stubble retentionpractices areused, andsusceptiblevarieties
are grown (Liu et al. 2011; Mathre 1982; McLean et al. 2009; Shipton
et al. 1973). Net blotches can also infect barley grass (H. leporinum),
which can become a source of inoculum to barley (van den Berg 1988).
The two forms ofP. teres are categorized by the different symptoms

they induce on barley leaves. P. teres f. teres induces narrow, dark-
brown netted lesions (net form), whereas P. teres f. maculata induces
circular to elliptical dark brown lesions (spot form) (Smedegård-
Petersen 1971). At times, P. teres f. teres and f. maculata can be
difficult to differentiate, mainly due to similarity in symptoms
expression caused by host genotype or environmental factors
(Liu et al. 2011; Smedegård-Petersen 1971; Williams et al. 2001).
Additionally, spot form symptoms caused by P. teres f. maculata are
difficult to distinguish from those caused by the pathogen Bipolaris
sorokiniana, which causes spot blotch. Examination of the conidia is
necessary to distinguish the two pathogens (Lehmensiek et al. 2010;
McLean et al. 2009; Smedegård-Petersen 1971).
P. teres f. teres and f. maculata are morphologically similar but

genetically distinct (Smedegård-Petersen 1971). Population and
phylogenetic studies carried out usingmolecular techniques such as
random amplified polymorphic DNA (RAPD), amplified fragment
length polymorphism (AFLP), or simple sequence repeat (SSR)
markers have demonstrated genetic differences between P. teres
f. teres and f.maculata (Bakonyi and Justesen 2007; Campbell et al.
2002; Keiper et al. 2008; Lehmensiek et al. 2010; Rau et al. 2003;

Williams et al. 2001). Studies have also suggested that P. teres
f. teres and f. maculata are genetically isolated and should be
considered as two different species (Ellwood et al. 2012; Rau et al.
2007). Complete genome assemblies and comparative genomics
approaches can provide further insight into genetic relationships,
divergence, and evolution of these two pathogens (Ellwood et al.
2012).
P. teres is heterothallic in nature and can undergo sexual

reproduction when two haploid cells of opposite mating types
come together (McDonald 1963) to produce genetically recombi-
nant haploid progeny (Fincham 1971). Genetic variation has been ob-
served within P. teres f. teres × P. teres f. teres or P. teres f. maculata
× P. teres f. maculata field populations, indicating frequent sexual
recombination within each form (Lehmensiek et al. 2010; Rau et al.
2003; Serenius et al. 2005). It has also been suggested that sexual
recombination may occur between opposite mating types of P. teres
f. teres and f. maculata (progeny referred to as hybrids) in the field,
albeit at low frequency (Rau et al. 2003; Serenius et al. 2007). The
virulence profiles of hybrids artificially produced by Jalli (2011)
showed that virulence patterns were different when compared
with either of the parent isolates, with some hybrids being virulent
on barley lines to which both parents were avirulent. These new
pathotypes may have the potential to overcome sources of resistance
deployed in barley cultivars (Campbell and Crous 2003; Jalli 2011).
Although potentially epidemiologically significant,P. teres hybrids

appear to be relatively rare in nature. To date, one putative hybrid has
been detected in the southwestern Cape of South Africa (Campbell
et al. 2002); two (PTM-15 and PTM-16) in Tovacov, Czech Republic
(Leisova et al. 2005b); and two (SNB172 andWAC10721) inWestern
Australia (Lehmensiek et al. 2010;McLean et al. 2014). Based on the
lesion appearance, the hybrid from South Africa was characterized as
P. teres f. teres and all the other hybrids asP. teres f.maculata isolates.
These isolates were identified as hybrids only when RAPD or AFLP
markers were deployed across field-collectedP. teres isolates to study
genetic diversity and population structure.
Numerous studies have successfully produced hybrids in

laboratory culture (Campbell et al. 1999; Crous et al. 1995; Jalli
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2011; Smedegård-Petersen 1971). The symptoms produced in barley
by P. teres hybrids are generally similar to those induced by either
their net form or spot form parent, making phenotypic identification
based on visible lesions difficult (Campbell et al. 2002; Smedegård-
Petersen 1971, 1976). Several polymerase chain reaction (PCR)-
based markers have been developed to assist with accurate
identification of bothP. teres forms.Williams et al. (2001) developed
a specific primer set based on RAPD bands of P. teres f. teres and
f.maculata.Nine diagnostic SSRmarkers were developed byKeiper
et al. (2008). Lu et al. (2010) developed mating-type-specific single-
nucleotide polymorphic primers. These markers were specifically
designed to differentiate P. teres f. teres and f.maculata isolates and
have not been assessed for identification of hybrids. P. teres hybrids
have also been identified using RAPD and AFLP techniques
(Campbell et al. 1999, 2002; McLean et al. 2014). However, RAPD
markers cannot always be reproduced between laboratories (Penner
et al. 1993), and it is technically demanding and time consuming to
perform and interpret results from the AFLP technique (Pereira et al.
2008). Conversion ofAFLPorRAPDmarkers into sequence-specific
primers is possible by cloning and sequencing for validation of the
polymorphic bands (Leisova et al. 2005a).
In this study, we have (i) examined the possibility of using existing

markers to assessP. tereshybrids, (ii) identified uniqueP. teres f. teres
and f.maculata expressed regions usingwhole-genome comparisons
to develop unambiguous PCR-based markers specific to each
form, (iii) validated the form specificity of the developed markers
using characterized field-collected isolates fromAustralia and South
Africa, (iv) screened putative field hybrids and laboratory-produced
hybrids todemonstrate the use of themarkers tocategorically identify
P. teres f. teres × P. teres f. maculata hybrids, and (v) characterized
P. teres isolates collected from barley grass.

MATERIALS AND METHODS

P. teres isolates. Isolates characterized in previous studies using
AFLP markers (Lehmensiek et al. 2010; McLean et al. 2014) were
used to validate themarkers developed and used in this study. These
included 86 P. teres f. teres and f. maculata isolates collected from
different barley-growing regions ofAustralia, 22P. teres f. teres and
24 P. teres f.maculata from South Africa, and 2 putative Australian
field hybrids (WAC1072 and SNB172). In addition, 78 isolates
obtained from Hermitage Research Station (HRS), Queensland,
Australia were included. Also, 50 laboratory-produced hybrid
isolates were tested, consisting of 10 randomly selected hybrids
from each of the following P. teres f. teres × P. teres f. maculata
crosses: NB053 × SNB74S, NB053 × SNB171, NB073 × SNB171,
NB090 × SNBHRS07033, and NB063 × SNBHRS07033 (Supple-
mentary Table S1).
Seven P. teres isolates (CLG692, CLG693, CLG694, CLG741,

CLG759, CLG781, and CLG947) collected from barley grass
(H. leporinum) in New South Wales (NSW), Australia were used to
determinewhether thesemarkers couldalso be used to identifyP. teres
f. teres, P. teres f. maculata, and hybrids originating from this host.
SixB. sorokiniana isolatesused in the studybyKnight et al. (2010),

one Exserohilum rostratum isolate, and one P. tritici-repentis isolate
were also included to test the specificity of the markers. Information
on the origin, year of collection, and host source of each isolate used
in this study is listed in Supplementary Table S1.
Crossing P. teres isolates. Single conidia of isolates NB063,

NB053, NB073, NB090, SNBHRS07033, SNB74S, and SNB171
(Lehmensiek et al. 2010) were grown for 10 days on potato dextrose
agar (PDA) (20 g/liter; Merck Darmstadt, Germany). A 3-mm agar
plugwithmycelium fromeach of two isolateswas placedonopposite
sides of Sach’s nutrient agar plates containing sterilized wheat or
barley stems (Smedegård-Petersen 1971). The plates were sealed in
plastic bags to prevent desiccation of the agar and incubated at 15�C
with a photoperiod of 12 h of light and 12 h of darkness until
pseudothecia formed containing asci with ascospores. Cultures were

incubated topseudotheciamaturation for 3 to6months, dependingon
the cross. To collect ascospores, the lid of the platewas replacedwith
a 2%water agar plate, sealedwithParafilm, and incubated at the same
conditions as above until the ascospores were ejected into the water
agar plate. Plates were checked daily and single ascospores were
transferred to a PDA plate with a glass needle.
DNA extraction. Cultures were grown on PDA at 25�C in the

dark for 10 days.Myceliumwas harvested andDNAextracted using
the Wizard Genomic DNA Extraction Kit (Promega Corporation,
Sydney, NSW, Australia) as per the manufacturer’s instruction.
Extracted DNA was quantified using an Implen NanoPhotometer
(Integrated Sciences, Chatswood, NSW, Australia).
Evaluation of available PCR-based markers. The two form-

specific markers of Williams et al. (2001) and six SSR markers
(hSPT2_4agac, hSPT2_4tcac, hSPT2_3agtg, hSPT2_6tcac,
hSPT2_13tcac, and hSPT2_13agtg) of Keiper et al. (2008) were
evaluated for characterization of P. teres hybrids.

Identification of unique P. teres f. teres and f. maculata
regions. The identification of unique P. teres f. teres and f. maculata
regions utilized whole-genome assemblies and RNA-seq-derived
assembled and aligned transcripts. The following Western Australia
isolates were used in the genome assemblies: P. teres f. teresWon1-1
and Stir9-2 and P. teres f. maculata SG1-1, Cad64, and Mur2. In
addition, DNA reads from a U.S. P. teres f. teres isolate, 0-1, were
incorporated (Ellwoodet al. 2010).Genomeassembliesweregenerated
from Illumina HiSeq 100-bp paired-end genomic reads (Macrogen
Inc., Seoul,Republic ofKorea) by first-quality trimming (with aquality
value of Q30 or better) and cleaning the reads using Cutadapt v 1.10
(Martin 2011), followed by assembly using Velvet v 1.2 (Zerbino and
Birney 2008).P. teres f. teres isolate 1-0 andP. teres f.maculata isolate
SG1-1assemblieswere reportedpreviously (Ellwoodet al. 2010, 2012)
but were assembled in this study using the more recent Velvet v 1.2.
RNA forP. teres f. teres isolateWon1-1 andP. teres f.maculata isolate
SG1-1 was prepared from samples grown in in vitro in Fries 2 liquid
medium and on V8PDA plates with tissue from germinating spores,
exponential growth, and sporulation (forV8PDAplates only). Illumina
paired-end RNA-seq reads were aligned to their respective genomes
using TopHat v.2.0.12 (Kim et al. 2013; Trapnell et al. 2009) and
assembled using Cufflinks v 2.2.1 (Trapnell et al. 2010).
TheP. teres f. teresWon1-1 andP. teres f.maculata SG1-1 genomes

were examined for unique regions sharedwith respectiveP. teres isolate
assemblies, focusing on transcribed regions, with the view of avoiding
intergenic regions likely tovarybetween isolates.P. teres f. teresWon1-1
genomic short reads were aligned to the P. teres f. maculata SG1-1
genome assembly and P. teres f. maculata SG1-1 short reads were
aligned to the P. teres f. teres Won1-1 assembly using Bowtie
(Langmead and Salzberg 2012). Regions with evidence of transcrip-
tion (that is, genomic regions covered by a Cufflinks transcript) were
assessed for short-read coverage using BEDTools coverageBed
(Quinlan and Hall 2010), and the nucleotide sequences of regions with
zero coverage relative to the other form were extracted as candidate
regions suitable for distinguishing P. teres f. teres and f. maculata.
Putatively unique P. teres f. teres and f. maculata regions identified

in isolates Won1-1 and SG1-1, respectively, were then compared with
the other assembled P. teres f. teres and f.maculata isolates. This was
done to verify that the regions were consistently present within one
formandabsentwithin theother.Blastn fromBLAST+ (Camachoet al.
2009) was used to compare the regions to Blast databases of the other
P. teres genome assemblies. Presence in another isolate of the same
formwas stringentlydefined as³95%nucleotide level identity over the
full length of the putatively unique region. Absence in isolates of the
otherP. teres formwas stringently defined by only considering regions
with no Blast hit with a percentage nucleotide identity greater than
10%. Twelve regions from each of the P. teres forms meeting these
criteria and exceeding 200 nucleotides in length were selected for use
in differentiating P. teres f. maculata and f. teres. These sequences have
been deposited at the National Center for Biotechnology Information
nucleotide database under the accessions KX909552 to KX909563.
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Design and optimization of sequence-specific PCR-based
markers. Primer pairs were designed using the default setting of
Primer3 software (http://bioinfo.ut.ee/primer3/). Twelve primer
pairswere generated:PttQ1,PttQ2,PttQ3,PttQ4,PttQ5, andPttQ6
specific to P. teres f. teres isolates and PtmQ7, PtmQ8, PtmQ9,
PtmQ10, PtmQ11, and PtmQ12 specific to P. teres f. maculata
isolates (Table 1). The primers were designed to produce DNA
bands in the size range of 70 to 190 and 140 to 280 bp for P. teres
f. teres and f.maculata, respectively. The primers were designed to
have an annealing temperature of approximately 60�C and were
synthesized by Integrated DNATechnologies, Singapore.
Each of the primer pairs was optimized by altering MgCl2, dNTP,

and Taq concentrations and annealing temperature in uniplex or
duplex PCR.Multiplexing PCRwithmore than three primer sets was
also attempted but spurious and inconsistent amplification products
were obtained. The specificity of the primer pairs was tested against
P. teres f. teres,P. teres f.maculata, and hybrid isolates.DNAextracts
from each of the isolates were diluted to 30 ng/µl. PCR mixtures for
the different primer combinations are given in Table 1. To the dNTP,
MgCl2, and Immolase DNA polymerase (Bioline Pty. Ltd., Sydney,
NSW,Australia)mixture given inTable 1, 1 µl of 10× reaction buffer,
2.5 µM each primer pair, and 1 µl of genomic DNAwas added to a
final volume of 10 µl. The initial denaturationwas performed at 95�C
for 7 min; followed by 35 cycles of denaturation at 95�C for 30 s,
annealing at 60�C or 62�C (depending on primer) for 30 s, and
extension at 72�C for 20 s; with a final extension at 72�C for 7 min.
The amplified PCR products were loaded onto a 6% polyacrylamide
gel stained with ethidium bromide and visualized using a Gel-Scan
2000 DNA fragment analyzer (Corbett Life Sciences, Australia).
AFLP analysis. AFLPanalysiswas carriedout to further validate

the P. teres isolates collected from barley grass. The AFLP analysis
was performed according to a modified protocol from Vos et al.
(1995). Genomic DNA (15 µl = approximately 150 ng) was added to
the digestion mixture consisting of 5 µl of NEB4 buffer and 10 U of
EcoRI and MseI restriction enzymes in a total volume of 35 µl. The

digestion reaction was incubated for an hour at 37�C before 10 µl of
ligation mixture, consisting of 1 µl each of T4 ligase buffer, EcoRI
(5 µM), andMseI (50 µM) and 1 U of T4 ligase, was added and then
incubated at 37�C overnight. After adaptor ligation, 70 µl of Tris-
EDTA buffer was added to 10 µl of restricted-ligated DNA mixture.
Each preselective amplification reaction contained 5 µl of the

diluted restricted-ligated DNA, 0.5 U of GoTaq Flexi DNA
Polymerase (Promega Corporation Sydney, NSW, Australia), 4 µl of
5× reaction buffer, 1.5 mM MgCl2, 200 µM dNTP, and 1 µl each of
75 ng of EcoRI (E-A or E-G) and 75 ng ofMseI (M-A) primers with
one selective nucleotide in a total volume of 20 µl. The following
preselective amplification cycling conditions were used: 20 cycles of
94�C for 30 s, 56�C for 1 min, and 72�C for 1 min.
The selective PCR contained 2 µl of preselective amplified DNA,

0.5 U of GoTaq Flexi DNA Polymerase, 3 µl of 5× reaction buffer,
1.5 mMMgCl2, 200 µM dNTP, and 1 µl each of 30 ng of EcoRI and
30 ng of MseI primers with two selective nucleotides (M-AC with
E-AA,E-GC labeledwith IRDye 700, andE-GGwith IRDye800), in
a total volumeof 15µl.The selective amplification cyclingconditions
were 12 cycles of 94�C for 30 s, 65�C for 30 s, and 72�C for 1 min;
followed by 23 cycles of 94�C for 30 s, 56�C for 30 s, and 72�C for
1 min. Two microliters of 100% formamide/bromophenol blue
loading bufferwas added to the amplified samples. The sampleswere
denatured for 4 min at 95�C and were visualized on a 4300 DNA
Analyzer (Li-Cor Biosciences, Lincoln, NE). Gelswere run for 6 h at
2,500 V. Amplified fragments that showed clear polymorphism
between the P. teres f. teres and f. maculata parents were identified.

RESULTS

Evaluation of available PCR-based markers. PCR-based
markers previously developed to differentiate P. teres f. teres and
f. maculata isolates (Keiper et al. 2008; Rau et al. 2005; Williams
et al. 2001) were assessed on eight randomly selected laboratory-
produced hybrid isolates. The markers developed byWilliams et al.

TABLE 1. Primer sequences and conditions used to amplify Pyrenophora teres-specific markersa

PCR mixtureb

Primerc Sequences (59–39)d Size (bp) Assaye T (�C) MgCl2 (mM) dNTP (µl) Taq (U)

PttQ1 GGATGATGACCTCGCCAGAT-F 70 Duplex 62 2.0 0.3 0.15
GCGATGGTATGTTCTGCGAA-R … … … … … …

PttQ2 AACACTCTGAACGTGGTTGC-F 110 … … … … …
TTCAGTTGTAAGCTGCGTGG-R … … … … … …

PttQ3 CCTCGTCCTAAGTTGACTCGA-F 130 Duplex 60 1.5 0.3 0.15
TTACACGGGTTCCCTCCATC-R … … … … … …

PttQ5 GCATTGTCTAGCACTCGTCG-F 173 … … … … …
CGCGGACTCAGAAGACATTG-R … … … … … …

PttQ4 CGTCCCGCCGAAATTTTGTA-F 150 Uniplex 60 2.5 0.2 0.10
CAAGGACTTACGCGCTCAAA-R … … … … … …

PttQ6 TCAGAATACTCCGCGGACTC-F 188 Uniplex 60 2.5 0.2 0.10
GTCCGCATTGTCTAGCACTC-R … … … … … …

PtmQ8 ACGCTAAGACCACCTCGTTT-F 161 Uniplex 60 2.5 0.2 0.10
TCGACCAGAGAGAGCACAAA-R … … … … … …

PtmQ9 AATGCTCAATTCTGGTGGCG-F 201 Uniplex 62 2.5 0.2 0.10
TGTTCGAGTGCAAACTTGGG-R … … … … … …

PtmQ10 TGCTGTGGACTTAGACGAGG-F 220 Uniplex 62 2.5 0.2 0.10
TGGGGATCCTTGACCAACTC-R … … … … … …

PtmQ11 GATTAGACCATTACCACACTAGCG-F 260 Uniplex 62 2.5 0.2 0.10
ACCACCACATCTTTCCTACTAACT-R … … … … … …

PtmQ7 GTAGAGGCTGTAGGAGATGTGATT-F 140 Duplex 62 2.0 0.2 0.15
CATGGCAAATTGTTCGTAATCCTG-R … … … … … …

PtmQ12 CTAACCAAAGAACTTCACAGACGA-F 279 … … … … …
CCTTATTAGCCAATTCCATGTCGA-R … … … … … …

a Expected DNA band sizes are given in base pairs, together with the annealing temperature (T), MgCl2 concentrations, and 200 µM dNTP and Taq DNA
polymerase volume.

b PCR = polymerase chain reaction mixture.
c Primer names: Ptt indicates P. teres f. teres-specific markers and Ptm indicates P. teres f. maculata-specific markers.
d F = forward and R = reverse.
e PCR assay.
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(2001) did not produce clear bands with DNA from the artificial
hybrids and, therefore, were not evaluated further. Six of the
SSR markers developed by Keiper et al. (2008) (hSPT2_4agac,
hSPT2_4tcac, hSPT2_3agtg, hSPT2_6tcac, hSPT2_13tcac, and
hSPT2_13agtg) were tested on eight P. teres hybrids but distinct
amplifiedbands frombothparentswere not present in thehybrids.The
hybrids either had bands specific to only one parent or the differences
in the base pair sizeswere too small to score accurately.A further three
SSR markers did not produce clear bands.
Design and optimization of sequence-specific primers.

Key features of the genome assemblies used to detect sequence-
specific markers are given in Supplementary Table S2. The
assemblies ranged in size from 33.6 to 42 Mbp. Descriptions of
genome assemblies and transcriptomes in this study will be
reported in future manuscripts, with read and assembly data to be
hosted under an umbrella project, PRJEB18107, at the European
Bioinformatics Institute.
To distinguish between P. teres f. teres and f. maculata and to

identify hybrids from these two forms, 12 expressed regions, 6
specific to each form,were identified and used to design primers (Fig.
1). Multiplexing of all 12 primer pairs was subjected to trials but
consistent clear bands could not be obtained. Thus, of the six primer
pairs chosen for the detection of P. teres f. teres bands, four could be
amplified using duplex reactions (PttQ1 with PttQ2 and PttQ3 with
PttQ5)whereas the remaining two (PttQ4 andPttQ6)were amplified
in uniplex. Twoof the sixP. teres f.maculataprimer pair sets could be
amplified in duplex reactions (PtmQ7 and PtmQ12) whereas the
remaining primers (PtmQ8, PtmQ9, PtmQ10, and PtmQ11) pro-
duced clearer bands in uniplex reactions. Consistent amplification
results were produced using the PCR concentrations indicated in
Table 1 at annealing temperatures of 60 and 62�C.

Validation of sequence-specific primers. Markers were
validated across DNA of 86 genetically characterized Australian
P. teres isolates, 78 isolates obtained from HRS, and 22 P. teres

f. teres and 24P. teres f.maculata isolates fromSouthAfrica.All six
P. teres f. teres-specific primers amplified on DNA of the 117
P. teres f. teres isolates, and no amplification was detected in the 93
P. teres f. maculata isolates. All six P. teres f. maculata-specific
markers amplified across the 93P. teres f.maculata isolates, with no
amplification of theP. teres f. teres isolates (Fig. 1). Primer pairs did
not amplify PCR products from the DNA of B. sorokiniana,
E. rostratum, and P. tritici-repentis isolates (data not shown).
Characterization of artificial and field-collected P. teres

hybrids. Fifty randomly selected artificial hybrids fromfivedifferent
P. teres f. teres × P. teres f. maculata crosses possessed at least one
P. teres f. teres- and one P. teres f.maculata-specific marker (Table 2;
Fig. 1), which clearly distinguished them from the two forms of
P. teres. Thenumber ofP. teres f. teresand f.maculatamarkers present
in each hybrid varied between 2 and 11 (Table 2).
The twoputative field isolates (WAC10721andSNB172)possessed

both P. teres f. teres- and f. maculata-specific markers amplified
within these two isolates. Eight markers (PttQ1, PttQ3, PttQ5, PttQ6,
PtmQ8, PtmQ9, PtmQ11, and PtmQ12) were present in WAC10721
and three (PttQ1, PttQ4, and PtmQ8) in SNB172 (Table 2; Fig. 1).
Characterization of P. teres isolates from barley grass.

Four P. teres f. teres-specific primers (PttQ1, PttQ4, PttQ5, and
PttQ6) and none of theP. teres f.maculata-specific primers amplified
across DNA of seven barley grass P. teres isolates (CLG692,
CLG693, CLG694, CLG741, CLG759, CLG781, and CLG947).
The marker-specific sequences were aligned with a scaffold of a

P. teres isolate collected from a barley grass (unpublished data).
Preliminary data analysis indicated that the sequences used to design
the PttQ2, PttQ3, and all P. teres f. maculata-specific sequences,
except for PtmQ9, were absent in the scaffolds of the barley grass
isolate. A portion of the PtmQ9 sequence (approximately 2,000 bp)
was aligned with the barley grass isolate with approximately 94%
similarity but the corresponding sequence did not fall within the
primer pairs.

Fig. 1. Amplification with Pyrenophora teres f. teres-specific (PttQ1 to PttQ6) and P. teres f. maculata-specific (PtmQ7 to PtmQ12) markers on DNA of three
P. teres f. teres (lanes 1 to 3), three P. teres f. maculata (lanes 4 to 6), five laboratory-produced P. teres hybrids (lanes 7 to 11), field-collected WAC10721 (lane 12)
and SNB172 (lane 13) isolates, two barley grass P. teres isolates (lanes 14 and 15), and negative control (lane 16) respectively using 12 P. teres f. teres and
f. maculata sequence-specific markers. Ladder (lane M) band sizes are indicated.
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AFLP analysis of barley grass P. teres isolates. Because the
barley grass isolates showed patterns different from those observed
in either the barley P. teres isolates or P. teres f. teres × P. teres f.
maculata hybrids, they were further investigated using AFLP
markers. AFLP analysis was conducted on DNA of seven barley
grass isolates (CLG692, CLG693, CLG694, CLG741, CLG759,
CLG781, and CLG947) along with three P. teres f. teres and three
P. teres f. maculata isolates, five artificial hybrids, and the two
field-collected hybrids (SNB172 and WAC10721). Three primer
combinationswere used and 33 polymorphic loci detected, ofwhich
14 loci were specific toP. teres f. teres and 19 toP. teres f.maculata.
The seven barley grass isolates yielded profiles clearly distinguish-
able from the P. teres f. teres and f. maculata isolates and their
hybrids (Fig. 2). Among 33 polymorphic markers, barley grass
isolates shared AFLP bands of the same size with 5 P. teres f. teres-
and 4 P. teres f. maculata-specific loci, along with 11 distinct loci
not present in the P. teres f. teres, P. teres f. maculata, or hybrid
isolates. Isolate SNB172 showed a banding pattern clearly distinct
from the P. teres isolates, including the hybrids, but very similar to
the barley grass isolates. In contrast, the field-collected hybrid
WAC10721 yielded a profile similar to those of the artificially
produced hybrids.

DISCUSSION

Unique sequence-specific markers were developed to provide
diagnostic tools for distinguishing the net and spot forms of P. teres.
These markers also enable the unambiguous identification of
hybrids between the two forms, overcoming the inability to reliably
distinguish hybrids based on the phenotypic appearance of disease
lesions, which generally resemble those of one of the parents. These
provide a more efficient and accurate technique than previous AFLP
or RAPD marker methods (Campbell et al. 1999, 2002). The success
of this approach was validated, in that all 12 sequence-specific
markers reliably identified the two forms of P. teres and their hybrids.
PCR-based markers previously developed for identification of

P. teres f. teres and f. maculata (Keiper et al. 2008; Williams et al.
2001) were not successful for characterizing P. teres hybrids. The
mating type markers developed by Lu et al. (2010) are not suitable
to distinguish P. teres hybrids because only a single mating-type
gene is inherited from either parent. The sequence-specific markers
developed in the present study have the advantage of both
differentiating P. teres f. teres and f. maculata isolates and
identifying P. teres hybrids. In addition, these markers are easy to
score due to their dominant nature and high reproducibility.
Furthermore, the markers also help to distinguish DNA of P. teres
f. maculata from B. sorokiniana, which shares similar foliar
symptoms to SFNB; E. rostratum, a species causing leaf spots in
grasses; and the closely related P. tritici-repentis, causing yellow
spot of wheat. Because the markers did not amplify PCR products
from these species, they can be used to identify the P. teres forms

and could be applied in field-based detection kits; for example, by
loop-mediated isothermal amplification of DNA assays (Notomi
et al. 2000).
The markers used in this study were able to identify hybrids based

on the presence of amplified markers from both forms of P. teres.
The 50 laboratory-generated hybrids exhibited 2 to 11 bands. The

TABLE 2. Pyrenophora teres f. teres- and Pyrenophora teres f. maculata-specific markers observed in selected P. teres hybrids and barley grass isolates, where
1 refers to the presence and 0 the absence of a band

P. teres f. teres P. teres f. maculata
Hybrids

Barley grass

Markers NB050 NB053 NB26 SNB74S SNB331 SNB113
NB053

×SNB74S
NB053

×SNB171
NB073

×SNB171
NB090

×SNBHRS07033
NB063

×SNBHRS07033 WAC10721 SNB172 CLG741 CLG947

PttQ1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1
PttQ2 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
PttQ3 1 1 1 0 0 0 1 1 1 0 0 1 0 0 0
PttQ5 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1
PttQ4 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1
PttQ6 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1
PtmQ8 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0
PtmQ9 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0
PtmQ10 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0
PtmQ11 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0
PtmQ7 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0
PtmQ12 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0

Fig. 2. Amplified fragment length polymorphism bands for the primer com-
bination Mse-AC with Eco-GC labeled with IRDye 700. Lane M is the ladder.
Three Pyrenophora teres f. teres (lanes 1 to 3), three P. teres f. maculata (lanes
4 to 6), five hybrids (lanes 7 to 11), WAC10721 (lane 12), SNB172 (lane 13),
two barley grass (barley grass) isolates (lanes 14 and 15), and negative control
(lane 16). Arrows indicate specific P. teres f. teres and f. maculata loci and
distinct barley grass loci present in isolates of barley grass.
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differences in the total numbers of amplifiedmarkers between parents
and hybrids and among individual hybrids could be due to crossing
over of the homologous chromosomes during meiosis, which
combines parental genotypes to produce offspring with recombinant
genotypes (Fincham 1971; Stahl 1979). For most of its life cycle,
P. teres is a haploid pathogenwith a single allele for each gene.During
meiosis, crossing over allows recombination of genes between
homologous chromosomes ofP. teres f. teres and f.maculata, thereby
producing chromosomes composed of segments from P. teres f. teres
alternating with sections from P. teres f. maculata in haploids (Stahl
1979). This may result in the loss of the specific regions from each
form, together with loss of sites complementary to the primers; thus,
markers are present in the parents but not the hybrids. A similar result
was obtained in a study by Campbell et al. (1999), in which 23
laboratory-produced P. teres f. teres × P. teres f. maculata (Pt90-8a ×
MP4) hybrids were amplified using four different RAPD primers,
which yielded uniquemarker bands in each parent. Hybrids possessed
markers from both parents but parental bands present among hybrids
varied from two to five.
Isolate WAC10721 collected from the field in Western Australia

had previously been identified as a hybrid using AFLP analysis
(McLean et al. 2014). In our study, this isolate exhibited four bands
from each of P. teres f. teres and f. maculata, thus confirming
identification as a hybrid. WAC10721 also had a pattern similar to
that of laboratory-produced hybrids when compared by AFLP
analysis. To date, only a small number of field isolates have been
identified as hybrids (Campbell et al. 2002; Lehmensiek et al. 2010;
Leisova et al. 2005b; McLean et al. 2014). One reason for this may
be the limited use of form-specificmarkers in characterizingP. teres
isolates. A second may involve preference of hybridization among
opposite mating types of the same form (i.e., mating of P. teres
f. teres × P. teres f. teres and P. teres f. maculata × P. teres
f.maculata).A third reason is the survival of field hybrids.Although
the two forms of P. teres coexist, they appear to remain genetically
isolated (Bakonyi and Justesen 2007; Bogacki et al. 2010; Ellwood
et al. 2010; Lehmensiek et al. 2010; Rau et al. 2003, 2007). This
suggests that, under natural conditions, hybridization carries a
fitness penalty, possibly through pleiotropic effects of unsuitable
parental gene combinations. Recent long-read PacBio genome
sequencing indicates that both forms carry large complements of
transposable elements (unpublished data) and large (>10 Mbp)
differences in genome size that may lead to unequal crossing over
during meiosis and the loss or gain of key genes. Whole-genome
sequencing of hybridsmay shed light on their genetic complements.
However, although field isolates appear to be uncommon, this study
confirms that viable natural recombinants occur.
AlthoughAFLPanalysis indicated that the putative hybrid isolate

SNB 172 and the seven barley grass P. teres isolates exhibited the
nonpolymorphic loci with bothP. teres f. teres and f.maculata, they
also produced bands which could clearly distinguish them from
P. teres and all other hybrids collected from barley. Further
investigation of isolate SNB172, classified initially as an isolate
from barley in the Lehmensiek et al. (2010) study, has indicated that
this isolate was originally collected from barley grass and then
transferred to barley (G. Platz, Queensland Department of
Agriculture and Fisheries, personal communication). This is the
first study in which barley grass isolates have been genetically
compared with the field isolates from barley and the results show
that they are genetically distinct. In a previous study on host
specialization of P. teres by Khan (1973), seven isolates from
barley grass failed to infect nine barley cultivars. Similarly, in a
later study by Brown et al. (1993), an isolate from barley grass
exhibited low virulence on barley cultivars compared with its
virulence on barley grass. Alignment of marker-specific se-
quences with the scaffolds of the barley grass isolate explained
why two (PttQ2 and PttQ3) and all of the P. teres f. maculata-
specific markers did not amplify across the seven barley grass
isolates. This also suggests that sequences of barley grass P. teres

are different from barley P. teres isolates. However, SNB172,
identified as a barley grass isolate, had the PtmQ8 marker
amplified, whose corresponding sequences could not be identified
in scaffold of barley grass isolate. Thus, SNB172 needs to be
further investigated. Moreover, because only seven barley grass
isolates were analyzed in this study, further investigations will be
undertaken to provide insight into genetic differences and host
specialization of P. teres isolates.
In conclusion, the comparative whole-genome approach used in

this study to identify unique expressed regions has proven useful for
developing diagnostic markers to differentiate P. teres isolates.
The sequence-specific markers have an advantage over other previ-
ously produced P. teres form-specific markers because they can
accurately characterize both forms of P. teres as well as hybrids
collected from barley. Diagnostic markers to distinguish hybrids
from P. teres f. teres or P. teres f. maculata isolates will ensure the
monitoring of hybrids, which will assist in identification of new
virulences.
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Chapter 3 

Investigating hybridisation between the forms of Pyrenophora teres based on Australian 

barley field experiments and cultural collections 

 

This study was conducted to detect the occurrence and estimate the frequency of hybridisation 

between Ptt and Ptm in the field. Field experiments were established across three successive years 

at three sites in Australia where Ptt and Ptm of opposite mating types were inoculated to facilitate 

hybridisation. In addition, molecular characterisation was performed using DNA of P. teres 

isolates collected during 1976-2015 from different barley growing regions in Australia to examine 

if Ptt x Ptm hybrids were misidentified due to symptoms similarity with the parents.  

 

Poudel B, McLean MS, Platz GJ, Mcilroy JA, Sutherland MW, and Martin A. Investigating 

hybridisation between the forms of Pyrenophora teres based on Australian barley field 

experiments and cultural collections. Submitted to European Journal of Plant Pathology. 

 

Note: Supplementary data associated with this chapter are given in the appendix 
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Abstract 10 

Pyrenophora teres f. teres (Ptt) and P. teres f. maculata (Ptm) cause net and spot form of net 11 

blotch of barley (Hordeum vulgare), respectively. Both pathogens co-exist in barley fields and 12 

can reproduce sexually, resulting in hybridisation and potential generation of novel virulences 13 

that could overcome barley host resistances. In this study, three field experiments were 14 

conducted during three successive years to investigate the occurrence of hybridisation. 15 

Susceptible barley was sown and inoculated with Ptt and Ptm. Form-specific PCR markers 16 

were used to analyse 822 conidia and 223 ascospores sampled from infected leaf tissue and 17 

317 P. teres isolates collected across Australia during 1976–2015. None of the isolates were 18 

hybrids. Investigation of ascospores indicated that hybridisation had taken place within the 19 

forms, demonstrating preference for recombination within forms. Possible contributions of 20 

reproductive barriers have been appraised but further investigation is required to explore the 21 

rare hybridisation between the forms.   22 
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 25 

Introduction 26 

Net form of net blotch (NFNB) caused by Pyrenophora teres f. teres and spot form of net 27 

blotch (SFNB) caused by P. teres f. maculata are economically important foliar diseases of 28 

barley (Hordeum vulgare) globally. These pathogens are morphologically similar but 29 

genetically distinct and co-exist in the same field (McLean et al. 2009; Liu et al. 2011). They 30 

are stubble borne and reproduce both asexually and sexually. The asexual stage consists of 31 

conidia that form clonal genotypes. The sexual stage produces pseudothecia which contain 32 

asci with ascospores. Two opposite mating types (MAT1-1 and MAT1-2) are required for 33 

sexual reproduction that will fuse to produce recombinant genotypes, which increases the 34 

genetic variation of the offspring relative to the parents (McDonald 1963; McLean et al. 2010; 35 

Liu et al. 2011). Sexual reproduction within each form (i.e. Ptt x Ptt and Ptm x Ptm) has been 36 

frequently reported in the field across the world (Lehmensiek et al. 2010; Serenius et al. 2007; 37 

Rau et al. 2003).  38 

  39 

Sexual reproduction between Ptt and Ptm is inducible in the laboratory (Campbell et al. 1999; 40 

Jalli 2011; Smedegård-Petersen 1971). The resulting interform hybrids have unique virulence 41 

patterns compared to the parental isolates, with some hybrids being highly virulent (Jalli 42 

2011). In the laboratory, hybrids retain their virulence, fertility and genetic stability over time 43 

(Campbell and Crous 2003). This implies that if stable hybridisations between the two forms 44 

occurs in the field, the resulting hybrids could potentially overcome host resistance.   45 

 46 

Several international phylogenetic studies have shown that Ptt x Ptm hybrids are rare or 47 

absent in the field (Rau et al. 2003; Serenius et al. 2005; Bakonyi and Justesen 2007; Akhavan 48 
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et al. 2015). Based on the divergence of the mating type genes (Rau et al. 2007) and 49 

orthologous intergenic regions (Ellwood et al. 2012), the two forms of P. teres were suggested 50 

to be genetically isolated and should be treated separately when studying pathogen virulence 51 

and hosts. Nevertheless, the existence of Ptt x Ptm hybrids in the field has been reported in a 52 

study conducted in South Africa and in the Czech Republic, where three isolates shared 53 

unique Ptt and Ptm alleles (Campbell et al. 2002; Leisova et al. 2005(a)). In a recent study 54 

conducted in Australia, one hybrid (WAC10721) was identified among 60 Ptm isolates 55 

(McLean et al. 2014).  56 

 57 

The occasional occurrence of hybridisation in the field is of concern as it might be sufficient 58 

to introduce new pathotypes into field populations. The recently-identified hybrid from an 59 

Australian field suggests that hybridisation could occur under field conditions but are not 60 

reported frequently due to the infrequent use of genetic markers or small samples sizes being 61 

evaluated by molecular analysis. During regular disease diagnosis, Ptt and Ptm pathogens are 62 

identified by the symptoms they induce on barley leaves, but symptoms of hybrids can 63 

resemble those of either of the parents, such that hybrids fail to be detected by visual 64 

inspection of infected plants. Furthermore, in the studies where molecular markers have been 65 

used to determine the presence of hybrids, only low sample numbers were evaluated 66 

(Serenius et al. 2007; McLean et al. 2014; Lehmensiek et al. 2010). If hybrids occur at a low 67 

frequency, quite large numbers of isolates need to be sampled to identify hybrids, especially 68 

at sites where both Ptt and Ptm are found to be present.  69 

 70 

This study aimed to detect the occurrence and estimate the frequency of hybridisation 71 

between Ptt and Ptm in the field. For this purpose, field experiments were established across 72 
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three successive years at three sites in Australia to facilitate hybridisation. In addition, 73 

molecular characterisation was performed using DNA of P. teres isolates collected during 74 

1976-2015 from different barley growing regions in Australia.  75 

 76 

Methods 77 

Field experiment locations 78 

Three field experiments were established to investigate the occurrence of Ptt x Ptm hybrids 79 

in the field: two sites were located at the Hermitage Research Facility (HRF; 28o12’40.0"S 80 

150o06’06.0"E) Queensland Department of Agriculture and Fisheries, near Warwick, 81 

Queensland and one at Longerenong Agricultural College (36°40'23.0"S 142°17'37.3"E), 82 

Agriculture Victoria, near Horsham, Victoria. Monthly temperature and rainfall data for 83 

Hermitage and Horsham were obtained from nearby Australian Bureau of Meteorology 84 

stations, 2016 (Supplementary Table 1). The maximum average daily temperature between 85 

April–November ranged from 17–32oC and 13–29oC and the minimum average daily 86 

temperature ranged from 0–16oC and 1–13oC, at Hermitage and Horsham, respectively. The 87 

total rainfall measured each year throughout the growing season was in the range of 165–88 

515 mm at Hermitage and 155–390 mm at Horsham.  89 

 90 

Hermitage Research Facility Site 1: The experiment was conducted in 2013, 2014 and 2015. 91 

A field area of 0.05 ha containing a black Vertosol soil was mainly rain-fed except for May and 92 

July 2013 when the field was irrigated for 2 h day-1 for four consecutive days at a rate of 4 93 

mmhr-1. The land was fertilised using 140 to 170 kgha-1 urea prior to sowing. Weeds were 94 

managed by using Hotshot (0.7 Lha-1), Roundup CT® (2 Lha-1), Starane (0.7 Lha-1) or 2-methyl-95 

4-chlorophenoxyacetic acid (MCPA; 0.6 Lha-1) as required.  96 
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Each year, barley cultivar Henley (susceptible to both Ptt and Ptm) was planted at a 97 

rate of 60 kgha-1 during June in 2013 and July in 2014 and 2015. The site was inoculated with 98 

straw (barley cv Shepherd, susceptible to both Ptt and Ptm) that was infected with Ptt isolate 99 

NB050 (MAT 1-1) and Ptm isolate SNB320 (MAT 1-2) 4–6 weeks after sowing. For inoculum 100 

used to produce a source of infested straw, isolate NB050 and SNB320 were placed in 101 

separate Potato Dextrose Agar (PDA) plates for five days under 12 h light at 19oC. Five 9 mm2 102 

agar plugs of mycelium were suspended in 100 mL of Potato Dextrose Broth which was shaken 103 

for 4 days to increase mycelium growth. The mycelium collected from 37 bottles of each 104 

isolate was blended together and a total volume of 8.5 Lof inoculum was sprayed onto the 105 

barley cv Shepherd via knapsack sprayer in a glass house. Infected stubble was retained during 106 

summer to facilitate infection in the following season.  107 

 108 

Hermitage Research Facility Site 2: The experiment was conducted in 2014, 2015 and 2016. 109 

The field comprised a 0.3 ha area, contained black Vertosol soil and was rain-fed. Urea was 110 

applied at 140 to 150 kgha-1 prior to sowing and Roundup CT® (2 L ha-1), Gran Am (160 kgha-111 

1), Starane Advanced (~0.7 L ha-1) and MCPA (0.6 Lha-1) were applied for weed management.  112 

The site was planted with a 50:50 mix of Ptt and Ptm susceptible barley cvs Grimmett 113 

and Oxford at 60 kgha-1 each year. In the first-year field experiment, seeds were planted in 114 

June 2014. In August, irrigation was applied for an hour prior to inoculation. The field was 115 

inoculated with mycelium of Ptt isolate NB053 (MAT1-2) and Ptm isolate SNB74S (MAT1-1). 116 

Inoculum was produced in the same method as described above and sprayed in five different 117 

spots within the field via a knapsack sprayer. The inoculated areas were covered with large 118 

plastic tubs (1.8 m x 1.2 m) for 12 h to create a moist environment. For the second and third 119 
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year, seeds were planted in July and the infected straw from the previous year was applied as 120 

the source of the inoculum. The field was left uncultivated during the summer season.  121 

 122 

Longerenong Site: The experiment was conducted in 2013 and 2014. A field area of 0.14 ha 123 

area had grey Vertosol soil and was rain-fed. The site was fertilised with 100 kgha-1 Urea and 124 

70 kgha-1 Mono ammonium phosphate at sowing. Weeds were managed by using Glyphosate 125 

(450gL-1), triallate (500g  L-1), liquid hydrocarbon (471g L-1), prosulfocarb (800gL-1), S-126 

metolachlor (120gL-1), pinoxaden (100gL-1), cloquintocet-mexyl (25gL-1), MCPA (280gL-1), 127 

bromoxynil (140gL-1), dicamba (40gL-1), iodosulfuron-methyl-sodium (50gKg-1), trifluralin 128 

(480gL-1) as required.  129 

Each year, barley cv Bass (susceptible to both forms) was planted at 60 kgha-1 in June 130 

2013 and July 2014. Stubble residue naturally infected with Ptt and Ptm was spread over the 131 

area 4–6 weeks after sowing to generate infection. The field was left uncultivated during 132 

summer.  133 

 134 

Collection of leaf samples and stubble  135 

Leaf samples were collected arbitrarily throughout the fields during September to November 136 

each year at all sites. First year samples were collected to confirm the presence of the original 137 

parental isolates in the field and second and third year samples were used to investigate the 138 

presence of hybrids. In the second year, stubble samples were collected during October and 139 

November from all the three sites. In addition, stubble samples were collected from the HRF 140 

experiment at Sites 1 and 2 in July 2015 and 2016, respectively.  141 

 142 
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From the HRF and Longerenong field sites, 1045 P. teres isolates were collected from infected 143 

barley leaf samples during 2013 to 2016. These included 285 conidia collected from HRF 144 

experiment Site 1, 403 conidia collected from HRF experiment Site 2, and 134 conidia 145 

collected during 2013 and 2014 from the Longerenong plus 6 ascospores obtained from 146 

pseudothecia on a piece of stubble collected from HRF Site 1 and 217 ascospores obtained 147 

from pseudothecia on a single piece of stubble collected from HRF Site 2.  148 

 149 

Collection of conidia from leaf samples 150 

Infected leaf samples were cut into 3 cm pieces and surface sterilised in 70 % ethanol for 10s, 151 

followed by 5 % bleach for 30 s and rinsed thrice with distilled water. The samples were placed 152 

on moist filter paper inside petri plates and kept on a window sill under natural light 153 

conditions at approximately 22oC. Conidia emerged within 2–7 days (observed through a 154 

dissecting microscope) and single conidia were transferred to PDA plates using a glass needle.  155 

 156 

Collection of ascospores from stubble 157 

Stems containing mature pseudothecia were cut longitudinally into two halves and were 158 

soaked in sterile water for 2 h. To collect ascospores, the stem was fixed to the lid of a petri 159 

plate using Vaseline White Petroleum Jelly and the lid was placed on top of a plate containing 160 

2% water agar. The plate was incubated at 15oC with a 12 h diurnal fluorescent light providing 161 

~200 μmoles/m2/sec photoperiod: 12 h dark until the ascospores were ejected onto the water 162 

agar plate. Plates were checked daily up to 5 days and single ascospores were transferred to 163 

a PDA plate with a glass needle. 164 

 165 

Collection of Pyrenophora teres cultures from Australian barley growing regions: 166 
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Three hundred and nineteen freeze-dried cultures or leaf samples of Ptt and Ptm were 167 

sourced from long-term storage at Agriculture Victoria and HRF. These were collected from 168 

different barley growing regions of Australia during 1976 and 2014. This set also included 169 

isolates obtained from 25 infected leaf samples collected in 2015 in Western Australia. 170 

Isolates are listed in Figure 1 and Supplementary Table 2.  171 

 172 

DNA extraction 173 

Mycelium was harvested after growing single-spore derived cultures for 10 days on PDA at 174 

25oC in the dark. DNA extraction was carried out using the Wizard Genomic DNA Extraction 175 

Kit (Promega Corporation) as per the manufacturer’s instruction. Extracted DNA was 176 

quantified using an Implen NanoPhotometer (Integrated Sciences). 177 

 178 

Identification of hybrids 179 

Twelve primer pairs, six specific to Ptt and six to Ptm were used to identify hybrids (Poudel et 180 

al. 2017). PCR amplification was carried out as described earlier by Poudel et al. (2017). 181 

 182 

Mating type markers  183 

Isolates collected from field experiment sites were amplified using the primer sequences of 184 

mating type markers MAT1-1 and MAT1-2 for Ptt and Ptm (Lu et al. 2010) to determine the 185 

distribution of mating types of Ptt and Ptm within the field. The PCR reaction was carried out 186 

with few modifications. The reaction mixture consisted of 1x buffer, 1.5 mM MgCl2, 100 µM 187 

of each dNTP, 0.5 U GoTaq® FlexiDNA Polymerase (Promega Corporation) with 5 µM of each 188 

primer and 20 ng of DNA in a total volume of 10 µL. The polymerase chain reaction (PCR) cycle 189 

was carried out for 7 min at 95°C, followed by 35 cycles at 94°C for the 30 s, 55°C for 30 s and 190 
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72°C for 30 s and one final cycle at 72°C for 10 min. PCR products were run on a 1% agarose 191 

gel following staining with Ethidium bromide (0.5 µg/ml). Gel electrophoresis was carried out 192 

using 1x Tris-borate-EDTA buffer for 20 min at 100 V. The DNA fragments were visualised 193 

using Fusion Fx Vilber Lourmat (Fisher Biotech, Australia).  194 

 195 

Results 196 

Molecular characterisation of isolates from Hermitage Research Facilities Site 1  197 

In total, 285 isolates were collected during the three years of field experiments (Table 1). In 198 

the first year of the field experiment, form-specific markers identified 23 Ptt and 2 Ptm 199 

isolates. Of 23 Ptt isolates collected, 10 had MAT1-1 and 13 had MAT1-2 loci while the two 200 

Ptm isolates had MAT1-2 loci (Table 1).  201 

Of the 80 isolates sampled in the second year, all were Ptt isolates. Forty-nine of the 202 

isolates had the PttMAT1-1 mating type and 31 had PttMAT1-2.  After sowing in 2015, stubble 203 

infected with SNB320 was dispersed into the field to increase the Ptm inoculum. However, 204 

only 13 isolates of a total of 180 isolates collected from this site were Ptm isolates.  Among 205 

the 180 isolates screened, mating type markers identified 102 as PttMAT1-1, 65 as PttMAT1-206 

2, 5 as PtmMAT1-1 and 8 as PtmMAT1-2. None of the collected isolates were hybrids.  207 

Stubble collected in second year during November did not have mature pseudothecia 208 

and thus ascospores could not be obtained. From the third year (i.e. July 2015) stubble 209 

collection, six ascospores were collected that identified as Ptt isolates using the form-specific 210 

markers. Mating type markers analysis indicated that two ascospores had the PttMAT1-1 211 

locus and four had the PttMAT1-2 locus. 212 

 213 

Molecular characterisation of isolates from Hermitage Research Facilities Site 2  214 
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During the three years of field trials, 403 single conidia isolates were obtained (Table 1). In 215 

the first year, 25 Ptt and 9 Ptm isolates were identified (Table 1) of which 12 had the PttMAT1-216 

1, 13 had the PttMAT1-2, six had the PtmMAT1-1 and three PtmMAT1-2 loci, respectively.   217 

In the second year, 153 Ptt and 46 Ptm isolates were identified. In the third year, 155 isolates 218 

were Ptt while 15 were Ptm isolates. MAT1-1 and MAT1-2 loci of both Ptt and Ptm forms were 219 

identified in the second and third year of the field experiment (Table 1). There were no hybrids 220 

in the collection.  221 

Stubble collected in second year (i.e. November 2014) contained immature 222 

pseudothecia and produced no ascospores. Of the stubble collected in third year (i.e. July 223 

2016), 217 ascospores were obtained. Genotyping of these ascospores using the form-specific 224 

makers indicated that they were all Ptm isolates. Of the 217 Ptm ascospores collected, 119 225 

and 98 had the PtmMAT1-1 and PtmMAT1-2 loci, respectively.  226 

 227 

Molecular characterisation of isolates from Longerenong field site:  228 

In total, 134 isolates were collected. In the first year proportions of Ptt and Ptm isolates were 229 

similar and all mating types were observed (Table 1). In the second year, eight Ptt isolates and 230 

85 Ptm isolates were collected. Both MAT1-1 and MAT1-2 were found equally proportioned 231 

(Table 1). There were no hybrids in the collection.  232 

Stubble collected in second year (i.e October 2014) did not have mature pseudothecia and 233 

produced no ascospores.   234 

 235 

Molecular characterisation of Australian P. teres.  236 

Of 317 isolates collected from barley growing regions in Australia, the markers confirmed 110 237 

isolates as Ptt and 207 isolates as Ptm (Supplementary Table 2). Four isolates (Ptt13-170, 238 
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Ptt13-174, Ptt13-178 and WA18) previously identified as Ptt according to lesion phenotype 239 

were identified as Ptm using the form-specific markers. Four isolates previously identified as 240 

Ptm (Ptm13-226, WA19, WA20 and WA35) were identified as Ptt.  No hybrids were identified 241 

in this set.   242 

 243 

Discussion 244 

This is the first field-based study designed to specifically investigate sexual hybridisation 245 

between Ptt and Ptm. Our results identified no hybrids despite establishing ideal conditions 246 

for it to occur. Isolates other than those used in the inoculation of the field trials were also 247 

present in the field. This presented the opportunity for both within and between form 248 

hybridisation to occur at these sites. Results from this study indicate that sexual hybridisation 249 

within the two forms was far more likely than hybridisation between the two forms. As similar 250 

ratios of both mating types within the forms are normally present in a field situation (Rau et 251 

al. 2005; Serenius et al. 2005; McLean et al. 2014), sexual preference for within form 252 

recombination would greatly reduce the likelihood of hybridisation between the two forms.  253 

 254 

While a few studies have reported sexual hybridisation between the two forms of P. teres 255 

under field conditions (Campbell et al. 2002; McLean et al. 2014; Leisova et al. 2005(a)), others 256 

have indicated that hybridisations are rare or absent (Bakonyi and Justesen 2007; Rau et al. 257 

2003; Serenius et al. 2007; Akhavan et al. 2015). In our study, no hybrids were identified in 258 

the samples collected from the field experiment sites. In addition, 317 isolates collected from 259 

barley growing regions in Australia during 1976-2016 underwent molecular analysis to ensure 260 

that no hybrids were overlooked due to lesion appearance being the same as those of the 261 

parents. The marker results mostly concurred with phenotypic identifications, except for 262 
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eight isolates in which the molecular analysis suggested that they had been misidentified 263 

when originally collected and catalogued. None of the isolates analysed were hybrids. Our 264 

results confirm that hybridisation between the two forms of P. teres is rare under field 265 

conditions and supports phylogenetic evidence for genetic isolation between the two forms 266 

(Ellwood et al. 2012; Rau et al. 2007).  267 

 268 

The field assessments suggest that Ptt and Ptm are reproductively isolated. Reproductive 269 

isolation provides a barrier to genetic exchange between two divergent populations (Giraud 270 

et al. 2008). The factors restricting the hybridisation between two forms of P. teres under field 271 

conditions have not been identified. The reproductive isolation inferred through this study 272 

could arise due to pre- and post-mating barriers. Pre-mating reproductive barriers such as 273 

sexual selection and temporal differences prevent the mating of two individuals while post-274 

mating reproductive barriers occur due to gametic incompatibility causing unfit or non-viable 275 

hybrids (Giraud et al. 2008; Kohn 2005) or as suggested by Serenius et al. (2005) unsuccessful 276 

meiosis in crosses of the two forms.  277 

 278 

Sexual selection arises from competition or mate preference that can lead to differential 279 

mating success among individuals (Giraud et al. 2008). In our study, the field was inoculated 280 

with only one Ptt and one Ptm isolate and recombinant offspring within the same form of P. 281 

teres were observed. Stubble collected from the HRF field experiment sites 1 and 2, produced 282 

asci with mature ascospores. Form-specific markers identified these ascospores as Ptt or Ptm 283 

and mating type markers confirmed that both MAT1-1 or MAT1-2 loci were present, 284 

indicating that the collected ascospores were recombinants of Ptt x Ptt (HRF Site 1), and Ptm 285 

x Ptm (HRF Site 2). Recombinants from both sites were derived either from crosses between 286 
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inoculated isolates and those dispersed from nearby fields or from crosses between 287 

immigrants. The migrated isolates were confirmed when mating type markers from opposite 288 

mating types of Ptt and Ptm isolates were identified in the first-year field experiments. This 289 

indicated that hybridisation within the same forms of isolates occurs readily under field 290 

conditions. Moreover, Ptt and Ptm isolates mate with the compatible mating type of the same 291 

form rather than between the two forms. This could occur due to pheromone production 292 

induced during the mating response. Although the theory has not been established in P. teres 293 

isolates, experiments conducted in Saccharomyces cerevisiae have shown that preferences 294 

occur for the partner that produces the highest level of pheromone (Jackson and Hartwell 295 

1990). To observe competition in mating within and between forms and to understand sexual 296 

selection and the mechanism involved, competition mating assays involving individuals of 297 

both Ptt and Ptm of opposite mating types need to be conducted under laboratory conditions 298 

and further investigated.   299 

 300 

The other pre-mating factor limiting inter-form hybridisation is temporal isolation, which 301 

occurs when there is a difference in reproduction time (Giraud et al. 2008). Under laboratory 302 

conditions, hybridisation occurs at 15oC under 12 h day/night conditions. This condition is 303 

maintained until hybrids are produced. In the field, climatic conditions fluctuate. At our field 304 

sites, the temperature recorded was 0–32oC during the barley growing seasons and moisture 305 

levels varied depending on rainfall during that year. This may influence the life cycle of Ptt 306 

and Ptm such that no overlapping reproductive cycle may occur between Ptt and Ptm, causing 307 

a premating barrier for hybridisation between the two forms. However, this does not seem 308 

to be the case in our study as stubble samples collected in July from both HRF field sites had 309 

mature pseudothecia which produced ascospores of each form of P. teres. This suggests that 310 
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sexual reproduction within each form had occurred at a similar time. Nevertheless, in our 311 

study, differences in the frequency of Ptt and Ptm in the field were observed. We identified 312 

either form of P. teres to be dominant at the experimental sites. In the second and third year 313 

of the field experiments, about 80% of collected isolates from the HRF sites were Ptt isolates. 314 

Similarly, in Agriculture Victoria, we identified 80% of the isolates as Ptm. The differences in 315 

the distribution patterns between the regions depend on the barley cultivars grown, cultural 316 

practises and climatic conditions (McLean et al. 2009).  This deviation in the distribution of 317 

one form over the other could have interfered with hybridisation between the forms but 318 

estimating the negative effect of distribution on the hybridisation under the field conditions 319 

is challenging.   320 

 321 

Post-mating barriers could occur due to genetic incompatibilities between the two parental 322 

genomes, leading to unequal crossing over during meiosis causing loss or gain of key genes 323 

(Stukenbrock 2013; Kohn 2005), which may lead to unfit or inviable hybrids. However, studies 324 

have shown that laboratory produced P. teres hybrids retain their pathogenicity, fertility and 325 

genetic stability over time (Campbell and Crous 2003; Jalli 2011; Smedegård‐Petersen 1977).  326 

Two isolates, NB053 and SNB74 inoculated at HRF Site 2 were shown to have produced hybrid 327 

progeny in vitro and the resulting hybrids had infected most of the barley genotypes tested 328 

in the glasshouse conditions (ElMor 2016). This indicates that there is no genetic 329 

incompatibility between the two forms and that the hybrids are fit enough to induce infection 330 

and to be virulent on some of barley genotypes. Although hybrids are viable and fertile under 331 

in vitro conditions, extrinsic factors may be responsible for post-mating isolation (Kohn 2005). 332 

Intermediate traits of hybrids could have reduced fitness and may be out-competed by their 333 

parents, when co-existing under the same environmental conditions. Comparative whole 334 
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genome sequence analyses would help to identify allele combinations contributing to fitness 335 

in hybrids. 336 

 337 

In conclusion, this was a unique study that facilitated the potential formation of Ptt x Ptm 338 

hybrids across three successive years. Our results suggest that sexual reproduction between 339 

Ptt and Ptm is rare under field conditions in Australian barley growing regions, while sexual 340 

reproduction within forms of P. teres could occur readily. Sexual preference for the same form 341 

or low hybrid fitness in parental habitat could contribute to reproductive isolation between 342 

the two forms of P. teres. Further investigations are needed to provide insights into 343 

mechanisms conferring reproductive isolation. Although reproductive barriers exist, these are 344 

occasionally breached in the field, allowing formation of Ptt x Ptm hybrids that are fit under 345 

particular field conditions. Therefore, conducting future experiments in confined, more 346 

tightly managed field environments may shed further light on the conditions which allow 347 

hybridisation between Ptt and Ptm in the field.  348 
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Figures and Tables:  

 

Figure 1: Location of Pyrenophora teres collections from Australian barley growing regions 

from 1976–2015. Base layer of the Australian map obtained from Naturalearth.com 

 

Table 1: Distribution of mating type loci in  Pyrenophora teres f. teres and P.teres f. maculata 

isolates. Isolates were obtained from leaf samples collected at the Hermitage Reseach Facility 

(HRF) and Longerenong Agriculture College field sites from 2013 to 2016.  

 

Supplementary Table 1: Monthly mean minimum and maximum temperature and total 

rainfall at the Hermitage Research Facility (Station: Warwick, site number: 041525, 

Latitude: 28.21°S, Longitude: 152.10°E; Elevation: 475 m) and Horsham (Station: 

Longerenong; Number: 079028; Latitude: 36.67° Longitude: 142.30° Elevation: 133 m) 

 

 

Supplementary Table 2: List of isolates used in this study with molecular characterisation, 

geographical origin and year of collection.  
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Figure 1 Click here to download colour figure Figure 1_Poudel et al_EJPP.tiff 
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Table 1: Distribution of mating type loci in  Pyrenophora teres f. teres and P.teres f. maculata 

isolates. Isolates were obtained from leaf samples collected at the Hermitage Reseach Facility 

(HRF) and Longerenong Agriculture College field sites from 2013 to 2016.  

 

 

 

 

Experiment site Year Pyrenophora teres f. teres Pyrenophora teres f. maculata 

   MAT1-1 MAT1-2 Total MAT1-1 MAT1-2 Total 

HRF Site 1 

2013 10 13 23 0 2 2 

2014 49 31 80 0 0 0 

2015 102 65 167 5 8 13 

All Years 161 109 270 5 10 15 

HRF Site 2 

2014 12 13 25 6 3 9 

2015 98 55 153 24 22 46 

2016 87 68 155 8 7 15 

All Years 197 136 333 38 32 70 

Longerenong 

2013 14 11 25 12 4 16 

2014 5 3 8 46 39 85 

All Years 19 14 33 58 43 101 

Table 1 Click here to download table Table 1_Poudel et al_EJPP.docx 
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Chapter 4 

Investigating the genetic structure of Pyrenophora teres f. teres populations over time in an 

Australian barley field 

 

This study used diversity array technology markers to investigate the change in Ptt population 

structure in a single field during three successive years. For this purpose, a field experiment was 

conducted where susceptible barley cultivar was inoculated with a single Ptt isolate and leaf 

samples were collected during 2013–2015. Population genetic analysis were used to determine 

possible changes in the genetic composition of the population.  

 

Poudel B, Vaghefi N, McLean MS, Platz GJ, Sutherland MW, and Martin A. Investigating the 

genetic structure of Pyrenophora teres f. teres populations over time in an Australian barley field. 

This chapter was prepared according to the instructions to authors given by the Australasian Plant 

Pathology.   

Note: Supplementary data associated with this chapter are given in the appendix 
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 10 

Abstract  11 

Net form of net blotch caused by Pyrenophora teres f. teres (Ptt) is a major foliar disease of 12 

barley (Hordeum vulgare) worldwide. In breeding for resistance to disease, it is important to 13 

have thorough knowledge of genetic variation in the pathogen. This study was  conducted to 14 

investigate the degree of change in the genetic structure of a Ptt population during a period of 15 

three cropping seasons within a field. The susceptible barley cultivar ‘Henley’ was inoculated 16 

with Ptt isolate NB050. Leaf samples were collected during the 2013–2015 seasons and 174 17 

Ptt isolates collected were genotyped using Diversity Array Technology markers. Twenty five 18 

percent of the isolates sampled during three years represented clones of the inoculated isolate. 19 

The remaining isolates had multi-locus genotypes (MLGs) differing from the original 20 

inoculated genotype, which have originated from wind borne spores from neighbouring fields 21 

or infected seeds and from sexual recombination in situ. The rapid change in the genotypic 22 

composition of the Ptt population in this study emphasises the need for constant monitoring of 23 

barley fields for novel genotypes with higher virulence or adaptive potential.  24 

 25 
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Keywords: Pyrenophora teres f. teres, population genetics, temporal changes, sexual 26 

recombination, gene flow, barley breeding  27 

 28 

Introduction 29 

Net form of net blotch (NFNB), caused by the fungus Pyrenophora teres f. teres (Ptt), is an 30 

economically important foliar disease of barley worldwide. In Australia, NFNB is present in 31 

all barley growing areas and can cause grain yield losses of up to 26% and reduction in grain 32 

quality (Shipton 1966; Shipton et al. 1973; Liu et al. 2011). Average annual production losses 33 

from NFNB are estimated to be AUD $19 million (Murray and Brennan 2010).  34 

Pyrenophora teres f. teres can reproduce both asexually and sexually (Mathre 1982; Liu et al. 35 

2011). The sexual cycle occurs on infected straw residue left in the field between cropping 36 

seasons. Sexually produced ascospores are the primary inoculum of the disease, which are 37 

ejected from asci present in pseudothecia during the commencement of the growing season 38 

following wet weather. They can travel long distances via air turbulence (Liu et al. 2011) before 39 

infecting a new barley crop. Seed-borne mycelium can also serve as primary inoculum for early 40 

season infection (Liu et al. 2011). Migration allows genotypic diversity of local populations to 41 

increase and spread through the introduction of novel alleles from other populations (Zhan et 42 

al. 1998). As a result of sexual reproduction, genotypic variation in populations is also 43 

increased by generating new combinations of alleles (Milgroom 1996). The combination of 44 

gene flow and increased genetic variation through sexual reproduction may allow pathogens to 45 

evolve and adapt to a changing environment (McDonald and Linde 2002). This can allow 46 

genetic resistance of the host to be overcome which can be devastating to the barley industry.  47 

Studies have extensively used molecular markers such as random amplified polymorphic DNA, 48 

amplified fragment length polymorphisms, and simple sequence repeats (SSR) to study genetic 49 
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variability in Ptt populations (Peever and Milgroom 1994; Peltonen et al. 1996; Jonsson et al. 50 

2000; Rau et al. 2003; Wu et al. 2003; Leisova et al. 2005; Serenius et al. 2007; Bogacki et al. 51 

2010; Lehmensiek et al. 2010; McLean et al. 2010). These markers have contributed to 52 

knowledge of genetic diversity of the pathogen, but were dependent on gel electrophoresis, low 53 

throughput, ascertainment bias in the case of SSR markers and can be difficult to reproduce 54 

between laboratories (Jaccoud et al. 2001).  Diversity Arrays Technology (DArT) markers have 55 

been developed for a number of fungal species (Wittenberg et al. 2009; Sharma et al. 2014) 56 

and is a hybridisation-based assay developed for DNA polymorphism analysis providing whole 57 

genome coverage (Jaccoud et al. 2001). It is low-cost, high-throughput which can 58 

simultaneously generate several thousands of loci in a single assay by scoring the presence 59 

versus absence of DNA fragments in genomic representations without prior sequence 60 

information for the fungus (Jaccoud et al. 2001).   61 

A thorough understanding of the genetic structure of the Ptt pathogen population is useful for 62 

developing effective disease control strategies. The genetic structure of Ptt populations have 63 

been investigated worldwide, including Canada, Germany, USA, Finland, Sweden, Italy, the 64 

Czech Republic, South Africa and Australia (Peever and Milgroom 1994; Peltonen et al. 1996; 65 

Jonsson et al. 2000; Rau et al. 2003; Wu et al. 2003; Leisova et al. 2005; Serenius et al. 2007; 66 

Bogacki et al. 2010; Lehmensiek et al. 2010; McLean et al. 2010; Liu et al. 2012; Akhavan et 67 

al. 2015). These investigations have reported high levels of genetic diversity among Ptt 68 

populations collected from different geographical regions but lower diversity among Ptt 69 

populations from closely located fields indicating that genetic exchange occurs most likely at 70 

regional or field level. Genetic analysis has indicated that both sexual and asexual reproduction 71 

occurs in field populations and the relative contributions are highly dependent on 72 

environmental conditions and cultural practices at that region (Rau et al. 2003; Serenius et al. 73 

2007; Liu et al. 2012). 74 
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Many studies have examined the genetic variation of P. teres populations in Australia to 75 

determine genetic diversity of isolates collected from different locations across years or from 76 

a single field for one cropping season (Serenius et al. 2007; Bogacki et al. 2010; McLean et al. 77 

2010; McLean et al. 2014). Little is known about the temporal changes in genetic structure and 78 

composition of these populations over time within a field. Such information is vital for breeders 79 

and industries to make decision about resistance sources and manage the disease. This study 80 

used DArT markers to investigate the change in Ptt population structure in a single field during 81 

three successive years. The objectives were to i) determine whether the population consists of 82 

the inoculated genotype or a wide range of novel genotypes ii) test for genetic differences 83 

between populations sampled during the 2013–2015 cropping seasons and iii) evaluate the 84 

impact of migration, sexual and asexual reproduction in the field population.  85 

 86 

Materials and methods 87 

A field experiment site of 25 x 20 m was established at the Hermitage Research Facility, (HRF; 88 

28o12’40.0"S 150o06’06.0"E) Queensland Department of Agriculture and Fisheries, near 89 

Warwick, Queensland, Australia.  This site was chosen as it had no barley grown during the 90 

preceding years of 2005 – 2012, which ensured that no barley stubble was present. The land 91 

was fertilised using 140 to 170 kgha-1 urea prior to sowing and weeds were controlled using 92 

Hotshot (0.7 Lha-1), Roundup CT® (2 Lha-1), Starane (0.7Lha-1) or 2-methyl-4-93 

chlorophenoxyacetic acid (MCPA; 0.6Lha-1) as required.  94 

The site was replanted to susceptible barley cultivar ‘Henley’ at a rate of 60 kgha-1 during June 95 

in 2013 and July in 2014 and 2015. The field was inoculated in June 2013 using straw from a 96 

glass house which was infected with single spore derived Ptt isolate NB050, originally 97 

collected from diseased barley at Gatton, Queensland in 1994 and SNB320 collected from 98 
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Warwick, Queensland in 2012Infected stubble from the previous season’s crop was retained 99 

during summer to facilitate infection in 2014 and 2015.  100 

Symptomatic leaves were collected during the cropping season from September to November 101 

each year. In 2013 and 2015, leaf samples were collected arbitrarily throughout the field. In 102 

October 2014, leaf samples were collected from infected barley plants at 2 m intervals to cover 103 

the entire field area. In 2015, as the disease was not well established, thus samples were 104 

collected only from those areas where barley plants were infected. In addition, stubble samples 105 

were also collected in July 2015. Single conidia from the leaves and single ascospore from 106 

stubble were collected. Conidia isolation was conducted by placing symptomatic leaf segments 107 

in petri plates lined with moistened filter paper, and then transferring single conidia with a 108 

sterile needle to potato dextrose agar (PDA; 20 g/L; Merck, Australia) plates. To collect 109 

ascospores, stems with mature pseudothecia were soaked in sterile water for 2 h, then was fixed 110 

to the lid of a petri plate using Vaseline White Petroleum Jelly and the lid was placed on top of 111 

a plate containing 2% water agar. The plate was incubated at 15oC with a 12 h diurnal light of 112 

~200 μmoles/m2/sec light and 12 h of dark until the ascospores were ejected onto the water 113 

agar plate and single ascospores were transferred to a PDA plate with a glass needle.  114 

A total of 174 Ptt isolates; 26 conidia collected in 2013, 78 conidia plus 6 ascospores in 2014 115 

and 64 conidia collected from the 2015 field site were included in this study. These isolates 116 

were characterised in a previous study (Chapter 3) using sequence-specific PCR markers 117 

developed by Poudel et al. (2017). As only 3 Ptm isolates were collected in 2013 from the field 118 

and none in 2014, Ptm isolates were not included for further study.  119 

 120 

DArT analysis 121 
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Genomic DNA was extracted from mycelia from single-conidium or ascospore cultures grown 122 

on PDA plates at 22oC for 10 days. A Wizard® Genomic DNA Purification kit (Promega 123 

Corporation, Sydney, Australia) was used for extraction. The quality of the DNA was 124 

determined by agarose gel electrophoresis using a 1% agarose gel and was quantified with an 125 

Implen Nanophotometer (Integrated Sciences, Sydney, Australia). The DNA was normalised 126 

to 50 ng/μL and sent to DArT Pty Ltd, Canberra, Australia for DArTseq™ analysis. The P. 127 

teres array was used as the marker source and the sequencing was performed using the Illumina 128 

HiSeq2000 platform following the manufacturer protocol.  129 

 130 

Data Refinement 131 

DArT markers were scored based on the presence/absence of specific DNA fragments. The 132 

data was curated by removing markers with greater than 10% missing data, removing non-133 

polymorphic markers and removing markers with less than 90% of call rates and 95% of 134 

reproducibility values. Isolates with 10% or more missing values were also removed from the 135 

final data set.  136 

 137 

Population structure 138 

Individuals were assigned to potential subpopulations without a priori assumption of 139 

populations by using the program STRUCTURE version 2.3.4 (Pritchard et al. 2000). This 140 

model-based clustering software uses a Bayesian approach to cluster the individuals based on 141 

their genotypes at multiple loci (Pritchard et al. 2000; Pritchard et al. 2010). The default setting 142 

of the admixture model was used to explore the number of genetic clusters (K) occurring in the 143 

sample. For K = 1–10, the analysis was performed with a burning of 10,000 iterations and 144 

Markov Chain Monte Carlo of 100,000 iterations for the best fixed value of K. The optimal 145 
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number of clusters was chosen by computing Evanno's ΔK (Evanno et al. 2005) across multiple 146 

values of K through the web-based program STRUCTURE HARVESTER v.0.6.94 (Earl and 147 

vonHoldt 2012). The 10 replicated runs for the optimal K were combined using CLUMPAK 148 

(Kopelman et al. 2015) and a single graphical output was generated. 149 

 150 

Multi-locus genotype analyses 151 

Isolates with the same combination of DArT alleles at all loci were considered as clones or 152 

multi-locus genotypes (MLGs). Genotyping errors and/or missing values can assign 153 

individuals belonging to the same clone to separate MLGs (Arnaud-Haond et al. 2007). These 154 

errors were corrected through similarity based Provesti’s distance (Prevosti et al. 1975) 155 

“farthest neighbour algorithm” in R v. 3.4.0 package poppr v. 2.0 (Kamvar et al. 2014). The 156 

maximum distance values between replicated DNA samples was estimated as 0.03. All 157 

genotypes with a distance smaller than or equal to the estimated distance threshold of 0.03 were 158 

collapsed into the same multi-locus or clonal group. Replicated isolates were removed from 159 

the data set. All subsequent analyses were conducted on the collapsed data set.  160 

Using the R package poppr, the number of MLGs and the expected number of MLGs at the 161 

smallest sample size among the populations (eMLG) was obtained for each year. Recurrent 162 

MLGs and their frequencies were obtained to quantify genotypic diversity. Furthermore, 163 

Simpson’s complement index of genotypic diversity (λ; the probability that two randomly 164 

selected genotypes are different) was calculated in poppr, and was corrected for sample size by 165 

multiplying by N/(N-1) (Arnaud-Haond et al. 2007). 166 

 167 

Test for recombination 168 
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To detect evidence of recombination within the isolates collected in 2014 and 2015, a clone-169 

corrected data set, i.e. a data set in which only one representative of each repeated MLG is 170 

included, was used. Samples collected in 2013 were not included in this test because the 171 

Bayesian clustering method showed the presence of three clonal lineages in this year. As 172 

ascospores are the result of sexual recombination, six ascospores were removed from 2014 173 

samples as well. Recombination in the population was estimated by calculating the proportion 174 

of compatible pairs of loci (PrCP) (Estabrook and Landrum 1975) using software MultiLocus 175 

1.3 (Agapow and Burt 2001). This method is based on the principle of compatibility among 176 

sites/loci and PrCP less than one implies that sexual recombination has occurred at the 177 

population level. The statistical significance for the PrCP test was inferred by comparing the 178 

values for the observed data set with the values for 1000 artificially recombining data sets 179 

(Vaghefi et al. 2017).  180 

 181 

Results 182 

A total of 21,305 DArT markers were scored. After removing 1241 markers with >10% missing 183 

data, 19,263 non-polymorphic markers and 32 markers with call rate <90%, 769 polymorphic 184 

markers i.e. 4% of total markers were retained for further analysis. Eighteen isolates with >10% 185 

missing markers were removed from 174 isolates, resulting in a total of 156 isolates for 186 

subsequent analysis. The new dataset consisted of 24, 82 (including 6 ascospores) and 50 187 

isolates from 2013, 2014 and 2015, respectively.  188 

 189 

Model-based clustering analysis 190 
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Bayesian clustering using STRUCTURE on the 156 isolates resulted in the population being 191 

grouped into five clusters. The individuals were assigned into a specific group based on the 192 

highest percentage of membership or co-ancestry. The rate of variation in the log probability 193 

values between successive K values (ΔK)  was highest for K = 5. Although the field was 194 

inoculated with only one isolate, NB050, when detecting clustering patterns, three clonal 195 

lineages were identified in 2013. In 2014 and 2015 population samples, both clonal and 196 

admixed populations were identified (Figure 1). In admixed populations, isolates shared the 197 

alleles of isolate NB050 (orange in Figure 1) and other isolates (blue and purple in Figure 1) 198 

present in the field in 2013.   199 

 200 

Multi-locus genotype diversity  201 

In total, 79 unique multi-locus genotypes (MLGs) were identified in 156 isolates collected from 202 

2013–2015. The inoculated genotype NB050 (MLG 1 in Figure 2) occurred with the highest 203 

frequency (n = 40) across the three seasons. The remaining 116 isolates had MLGs differing 204 

from NB050. Of these, 43 (MLGs 1, 2, 67, 68, 69, 70) were isolated more than once and the 205 

remaining 73 were isolated only once in the three years of field experiment (Figure 2).  206 

In comparison to the 2013 population, the 2014 and 2015 populations had a higher number of 207 

MLGs (Table 1; Figure 2). In 2013, only three unique MLGs (MLGs 1, 2 and 3) including 208 

MLG 1 of inoculated NB050 were identified in 24 sampled isolates. In 2014, two recurrent 209 

MLGs (MLG 1 and MLG 2) that matched with MLGs of the previous year collection and 63 210 

novel MLGs were identified in a total of 82 isolates including six ascospores. In 2015, one 211 

MLG (MLG 1) matched with the previous year and the remaining 13 were novel MLGs. Of 212 

these, four MLGs (MLGs 67, 68, 69 and 70) recovered in 2015 were represented by two or 213 

more isolates. The number of MLGs, however, could not provide appropriate comparison 214 
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between populations of different years due to differences in sample sizes. Thus, eMLG value 215 

which approximates the number of genotypes that would be expected at the minimum sample 216 

size i.e. 24 was estimated. The eMLG was also higher (eMLG2013 = 3, eMLG2014 = 20 and 217 

eMLG2015 = 9) for the 2014 population than the 2013 and 2015 populations (Table 1). 218 

Genotypic diversity (λ) was high (λ > 0.80) in the 2014 and 2015 populations and moderate (λ 219 

= 0.55) in the 2013 population (Table 1).   220 

 221 

Detecting Recombination 222 

The phylogenetic incompatibility test identified evidence of recombination in the 2014 and 223 

2015 sample sets. The proportion of compatible loci (PrCP) was less than one and significant 224 

in both the populations (Table 1).  225 

 226 

Discussion 227 

This is the first study to use DArT markers in Ptt populations to evaluate genetic structure over 228 

time. In this study, a field was inoculated with a single isolate of Ptt and field isolates were 229 

collected for three consecutive years. Marker analysis revealed clear differences between Ptt 230 

populations in each year. The result suggested that the Ptt populations changed during three 231 

year period with two new genotypes detected in 2013  and 76 additional new genotypes were 232 

collected during the 2014 and 2015 seasons. These novel MLGs are likely to have originated 233 

from wind borne spores from neighbouring fields or infected seeds and from sexual 234 

recombination in situ.  235 
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Our findings indicate that airborne ascospores or infected seeds can provide important sources 236 

of inoculum in the field. Only 25% of the isolates collected during 2013–2015 were clonally 237 

derived from the inoculated isolate NB050. In 2013, there were two additional groups of Ptt 238 

isolates with unique genotypes. In 2015, four new clonal groups of isolates with unique MLGs 239 

were identified. These results were also confirmed using the Bayesian clustering approach, 240 

which identified novel clonal clusters in the 2013 and 2015 collections. Because our field 241 

experiment site had not been planted with barley or other hosts of Ptt for several years, new 242 

genotypes were most likely introduced into the experimental plot from outside or originated 243 

from infected seeds. Similar result have been observed in P. nodorum, where <20 % of the 244 

novel isolates identified in the noninoculated plots originated via airborne ascospores from 245 

surrounding experimental plots (Sommerhalder et al. 2010).  246 

Another important source of novel genotypes was sexual recombination. In a study by Poudel 247 

et al. (2018; Chapter 3), mating type markers of these isolates were examined, which showed 248 

that Ptt isolates with both MAT1-1 and MAT1-2 loci were present in the field, providing the 249 

opportunity for reproduction between these isolates. In Ptt samples collected in 2014 and 2015, 250 

a high number of unique MLGs showing high genotypic diversity was detected. However, the 251 

number of unique MLGs decreased from 65 in 2014 to 14 in 2015, most probably due to 252 

environmental conditions being less favorable for disease establishment in 2015. The novel 253 

isolates present in our field experiment could have originated through mutation but it is unlikely 254 

that mutation alone could generate such a large number of unique genotypes within a year 255 

(Sommerhalder et al. 2010). This finding was further validated using STRUCTURE software 256 

which can be used to identify clonality, admixture or descent from the multiple population 257 

sources (Pritchard et al. 2000). The program algorithm is based on the assumptions that loci 258 

are unlinked and according to observed allele frequencies assign isolates to identify those 259 

which have descendants from each source of a population. STRUCTURE detected isolates 260 

68



which were derived from crosses between the three genotypes present in the field in 2013. 261 

Furthermore, the proportion of compatible pairs of loci (PrCP), which is one of the most 262 

powerful methods to detect recombination (Posada and Crandall 2001) supports that isolates 263 

collected in 2014 and 2015 originated from sexual recombination among the isolates exisiting 264 

within the field experiment site. High levels of genotypic diversity have also been observed in 265 

Ptt populations collected within a single field in South Australia and North Dakota, USA 266 

(Bogacki et al. 2010; Liu et al. 2012) suggesting that sexual reproduction is predominant among 267 

these populations. In the South Australian Ptt population, 84% of isolates collected in a single 268 

growing season exhibited unique MLGs. Similarly in North Dakota, two field experiments 269 

were conducted for four years, where up to 60% of MLGs were unique and not shared among 270 

the years. Our results suggests that when both mating types are available and stubble is retained 271 

between growing seasons, sexual recombination within Ptt populations occurs regularly in the 272 

field causing rapid change in the genetic structure of the population over time.   273 

The finding of 83 isolates (53%) with MLGs matching more than two isolates suggests that 274 

asexual reproduction also contributes to the epidemic, however, the limited clonal resampling 275 

suggests a limited survival of Ptt genotypes via asexual pathways between seasons. The 276 

recovery of recurrent MLGs between 2013–2015 indicates that Ptt isolates have the potential 277 

to persist on crop residue between seasons. The frequencies of the asexually produced isolates 278 

decreased over the three years of cropping seasons. The inoculated isolate was established in 279 

the field across the three years but was collected at low frequency in 2014 and 2015. Another 280 

clonal group identified in 2013 was detected in 2014 but was not present in the field in 2015.   281 

Our results demonstrate that the population within a field can substantially change over one 282 

cropping season. Although inoculated with one isolate, two more isolates were identified in the 283 

field in 2013 and additional novel genotypes of Ptt were detected in the field in 2014 and 2015. 284 
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This indicates that genetics of the field can be influenced by distant population and sexual 285 

recombination which could potentially lead to emergence of new virulences into the field. This 286 

highlights the need for constant field monitoring to determine novel genotypes with potential 287 

new virulences and to locally manage barley resistance to the disease.  288 

In conclusion, this study has demonstrated the potential for using DArT markers to analyse the 289 

genetic structure of P.teres populations. It has also shed light on the change in the genetic 290 

structure of a Ptt population over time. Our results suggest that Ptt populations in the field are 291 

likely to differ between years mainly due to the sexual reproduction combined with migration 292 

events. While clonal populations persist between seasons, they are unlikely to survive over 293 

many years. This study provides insights in understanding the genetic structure required to 294 

better manage deployed resistances against net blotch. Further work is required to determine 295 

the virulence of newly detected genotypes in the field and to investigate the possible correlation 296 

between Ptt populations and virulence profiles.  297 
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Table and Figures 407 

Table 1: Indices of genetic diversity for Pyrenophora teres f. teres populations collected in 408 

2013, 2014 and 2015 from field experiment.  409 

*P-value < 0.01 410 

Year No of 

collected 

isolates 

Unique Multi-

locus genotype 

(MLG) 

Expected Multi-

locus genotype 

(eMLG) 

Corrected 

Simpson’s 

complement index 

(λ) 

Proportion of 

phylogenetically 

compatible pairs of loci 

(PrCP) 

2013 24 3 3 0.55 - 

2014 82 65 20  0.97 0.4* 

2015 50 14 9 0.81 0.6* 

75



 411 

Figure 1: Assignment of Pyrenophora teres isolates collected from 2013–2015 into different clusters using Bayesian method. Bar graph shows 412 

genetic composition where each bar represents one individual and the bar height indicates estimated membership fraction of each individual in the 413 

inferred clusters. Bar with single colour represent clonal groups and mix colours represent admix population. 414 
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      415 

Figure 2: Multi-locus genotypes (MLGs) and their frequency in Pyrenophora teres f. teres population from 2013–2015 field experiment site.   416 
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Chapter 5 

Genetic diversity and virulence of Pyrenophora teres isolates collected from barley grass, 

Hordeum leporinum. 

 

In this study, we have examined the genetic diversity of P. teres collected from barley grass and 

barley cultivars. In total 30 isolates were genotyped using diversity array technology markers and 

distance based clustering method were employed for phylogenetic analysis among the pathogens. 

In addition, pathogenicity of P. teres from barley grass were assessed on 11 barley cultivars using 

seedling assay.  

 

Poudel B, McLean MS, Sutherland MW, and Martin A. Genetic diversity and virulence of 

Pyrenophora teres isolates collected from barley grass, Hordeum leporinum. This chapter was 

prepared according to the instructions to authors given by the Plant Pathology. 
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 8 

Abstract 9 

Pyrenophora teres is a fungal pathogen causing net blotches which are major foliar diseases of 10 

barley (Hordeum vulgare). This pathogen also infects barley grass (H. leporinum), which 11 

commonly grows in grassy areas adjacent to commercial barley crops and may act as a source of 12 

P. teres spores which disperse across the barley crop. Previous research has indicated that P. teres 13 

isolates from both hosts are morphologically similar and incite similar lesions on the leaves of both 14 

species. In this study, over 10,000 Diversity Array Technology markers were used to investigate 15 

the genetic variability between P. teres isolates obtained from barley grass and barley. Results 16 

demonstrate that P. teres isolates from the two hosts are genetically distinct. Virulence tests 17 

indicate that P. teres isolates from barley grass exhibit low virulence on barley. This suggests that 18 

the presence of P. teres-infected barley grass near commercial crops of H. vulgare may be a lesser 19 

threat to barley production. 20 

 21 

Keywords: Pyrenophora teres, barley grass, genetic diversity, pathogenicity assay, host specificity 22 

 23 
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Introduction 24 

Pyrenophora teres is the causal agent of net blotches, which are important foliar diseases of barley 25 

(Hordeum vulgare) in most cereal growing regions worldwide. These diseases typically cause 26 

yield losses of 10–40% and can cause complete yield loss where susceptible varieties are grown 27 

in favourable environmental conditions (Mathre, 1982, McLean et al., 2009, Murray & Brennan, 28 

2010). The pathogen is classified into two forms based on the symptoms produced on barley leaves 29 

(Smedegård-Petersen, 1971). Pyrenophora teres f. teres (Ptt) produces net-like lesions and P. teres 30 

f. maculata (Ptm) produces spot-like lesions. Based on amplified fragment length polymorphism 31 

(AFLP) and mating-type marker analyses, Ptt and Ptm can be clearly distinguished as two distinct 32 

forms (Rau et al., 2003, Rau et al., 2005, Lehmensiek et al., 2010).  33 

Barley grass (Hordeum leporinum), a subspecies of H. murinum, acts as an ancillary host for P. 34 

teres (Khan, 1973, McLean et al., 2009). It is an annual weed that commonly grows along fence 35 

lines of barley fields, making it difficult to control using herbicides. Barley grass predominantly 36 

grows in the southern cereal growing regions of Australia (Linde et al., 2016) and could be an 37 

inoculum source for barley (Shipton et al., 1973, McLean et al., 2009). The presence of barley 38 

grass around barley fields could be an important source of disease inoculum if it harbours P. teres 39 

isolates which are virulent pathotypes on commercial barley varieties. A recent study by Linde et 40 

al. (2016) has indicated that highly virulent strains of Rhyncosporium commune, a causal agent of 41 

scald on barley, found on barley grass were capable of infecting cultivated barley.  42 

The first comparison of P. teres isolates collected from barley grass and barley was conducted by 43 

Khan (1973), indicating that the disease symptoms and conidia morphology were similar. 44 

Numerous studies have investigated the genetics and virulence of P. teres isolates of barley, but 45 

there has been only few studies of P. teres collected from barley grass. The study by Khan (1973) 46 
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compared the virulence of seven and 14 P. teres isolates collected from barley grass and barley 47 

respectively on nine barley grass accessions and 14 barley cultivars. A study by Brown et al. 48 

(1993), compared virulence of one and five P. teres isolates from barley grass and barley, 49 

respectively on two each of barley grass and barley cultivars. In both studies, no cross-host 50 

pathogenicity was observed indicating host specificity. In contrast, a study by Fowler et al. (2017), 51 

showed that barley grass isolate HRS#10128 was virulent on 10 of the 31 barley genotypes tested 52 

indicating that P. teres from barley grass could be a potential source of new virulences.  53 

In a study by Poudel et al. (2017), genetic differences between P. teres collected from barley grass 54 

and barley were compared using amplified fragment length polymorphism (AFLP) markers. 55 

Although, P. teres isolates from barley grass shared many same sized DNA bands in common with 56 

P. teres isolates collected from barley, they also possessed unique DNA bands not present in Ptt, 57 

Ptm or hybrids from barley butthe differences between barley grass and barley P. teres isolates 58 

were based on only 33 polymorphic AFLP markers. Therefore, we have further investigated the 59 

genetic diversity of P.teres isolates collected from barley grass and barley using Diversity Arrays 60 

Technology (DArTseq™) markers. In addition, pathogenicity of P. teres from barley grass on 61 

barley differential cultivars using seedling assay were assessed. 62 

 63 

Methods 64 

Pyrenophora teres isolates 65 

Thirty P. teres isolates were used in this study, including 11 isolates collected from barley grass 66 

and 11 Ptt and seven Ptm isolates collected from barley. A field collected Ptt x Ptm hybrid from 67 

barley was also included to determine whether any of the P. teres isolates from barley grass are 68 
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genetically closer to the hybrid isolate. The original field identifications based on lesion 69 

appearance, geographical location and date of collection of the P. teres isolates collected from 70 

barley grass and barley are listed in Table 1. Isolates collected from barley were characterised in 71 

the previous studies using AFLP (Lehmensiek et al., 2010, McLean et al., 2014) or sequence-72 

specific PCR (Poudel et al., 2017)markers.  73 

 74 

Mating type markers 75 

To validate the original field identification, Ptt and Ptm specific mating type markers developed 76 

by Lu et al. (2010) were amplified across eleven barley grass isolates. The modified procedure as 77 

described by Poudel et al. (2017) was followed.  78 

 79 

DArTSeq analysis 80 

Isolates were cultured on Potato Dextrose Agar (PDA) (20 g/L; Merck, Australia) plates and were 81 

incubated at 22oC for 10 days to produce sufficient mycelium for DNA extraction. Fungal DNA 82 

was extracted using a Wizard® Genomic DNA Purification kit (Promega Corporation, Sydney, 83 

Australia). The DNA quality was determined by gel electrophoresis using a 1% agarose gel and 84 

quantified with an Implen Nanophotometer (Integrated Sciences, Sydney, Australia). The DNA 85 

was normalised to 50 ng/μL and sent to DArT Pty Ltd, Canberra, Australia for DArTseq™ 86 

analysis.  87 

Diversity Arrays Technology is used for analysis of DNA polymorphisms using a microarray 88 

technology platform that provides comprehensive genome coverage (Jaccoud et al., 2001). The 89 
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Pyrenophora teres array was used as the marker source and the sequencing was performed using 90 

the Illumina HiSeq2000 platform following the manufacturer protocol. SilicoDArT and DArT 91 

SNP markers were recorded as binary data.  92 

 93 

Genetic Diversity Analysis 94 

Analyses of P. teres isolates from barley grass and barley were carried out to test whether they 95 

were genetically different. Both SilicoDArT and SNP-based monomorphic and polymorphic 96 

markers were used. Markers having missing values of 10% or more were removed. Principle 97 

coordinates analysis (PCoA) was performed using pairwise distance matrix in GenAlEx v6.502 98 

(Peakall & Smouse, 2012) to produce a two-dimensional visual summary of the overall diversity 99 

of P. teres from barley grass and barley. To show the  relationships among the P. teres isolates, a 100 

similarity matrix was constructed using the DICE coefficient (Dice, 1945)  in the qualitative data 101 

program of the NTSYS-pc version 2.20f software package (Rohlf, 1992). A dendrogram was 102 

computed by using the hierarchical clustering method called unweighted pair group method with 103 

arithmetic mean (UPGMA; Sneath & Sokal, 1973).   104 

 105 

Analysis of molecular variance (AMOVA) 106 

Transformer-4 version 2.0.1 (Caujapé-Castells et al., 2013) was used to convert the format of the 107 

DArT data from the Microsoft Excel file format to the ARLEQUIN file format. Analysis of 108 

molecular variance was computed using the software ARLEQUIN version 3.5 (Excoffier & 109 

Lischer, 2010) with 1000 permutations using both mono and polymorphic markers. Genotypic data 110 

was divided into distinct groups to test for genetic variation between P. teres of barley grass and 111 
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i) P. teres of barley ii) Ptt of barley and iii) Ptm of barley. Furthermore, P. teres of barley grass 112 

was divided into a Ptt and Ptm group based on the lesion characterisation to determine if genotypic 113 

differences between the two are statistically significant.  As only one hybrid was present, AMOVA 114 

was not applied for the hybrid isolate.  115 

 116 

Pathogenicity assay 117 

The pathogenicity of 11 P. teres isolates collected from barley grass was attempted using 11 barley 118 

cultivars and one barley grass (Table 3). The differentially resistant and susceptible barley cultivars 119 

were selected based on virulence results from previous studies (McLean et al., 2014, Fowler et al., 120 

2017).  The differential resistance of each cultivar selected is listed in Table 3.  121 

Two replicates of each cultivar were randomly sown into 15 cm pots containing Searles Premium 122 

Potting Mix. Four seeds of four barley cultivars were sown into each pot. Pots were placed in 123 

random order on a bench in a glass house and grown under natural light at an average of 20 ± 5oC 124 

for 12–14 days (2–3-leaf stage).  125 

Inoculum cultured from each isolate was grown on PDA plates and incubated at 22oC with 12 h 126 

fluorescent photoperiod for 5-7 days. Five mycelium plugs of approximately 9 mm2 were sub-127 

cultured onto 1% water agar containing sterile barley or sorghum leaves. The plates were placed 128 

on a window sill at room temperature for six days and transferred to an incubator at 15°C under 129 

12 h of white fluorescent lights of ~200 μmoles/m2/sec and 12 h of dark conditions for a further 130 

six days. Spores were collected by adding 10 mL of distilled water, scraping plates with a paint 131 

brush and filtering the spore suspension through a 500-μm sieve. The spores were counted using 132 

a haemocytometer and adjusted to 10,000 spores per ml.  133 
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To inoculate the barley seedlings, 3 mL of inoculum was sprayed on the plants in each pot using 134 

an aerosol-based spray system (Preval Sprayer, Chicago, US).  Once inoculated, the seedlings were 135 

incubated in darkness at 95–100% relative humidity at a temperature of 19oC for 24 h. The two 136 

replicates were arranged randomly inside the chamber. After 24 h, the pots were transferred to the 137 

glasshouse under natural light at an average of 20 ± 5oC for eight more days to allow symptoms to 138 

develop.  139 

On the ninth day after inoculation, the second leaves of the barley seedlings were assessed for 140 

lesion appearance and severity. Lesion severity was based on the scale developed by Tekauz 141 

(1985). An infection type score threshold of ≥ 5.5 was selected to denote virulence/susceptibility.  142 

 143 

Results 144 

Mating type markers  145 

The lesion based classification of barley grass isolates as Ptt and Ptm was verified using mating 146 

type markers. The eleven barley grass isolates produced the amplicon corresponding to either 147 

PttMAT1-1 (1143 bp) or PttMAT1-2 (1421bp). This indicated that the four isolates 148 

morphologically identified as Ptm (SNB172, BG14-011, Sf07-026ss, Ptm14-015) had Ptt mating 149 

type markers. This result was confirmed by DArT markers (see next section).  150 

 151 

Genetic Diversity 152 

In total 11697 (8236 silicoDArT and 3461 DArTSNP markers) mono and polymorphic DArT 153 

markers were used for genetic diversity after removing 5255 markers with missing values greater 154 
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than 10%.  In total, 76% of markers were polymorphic. There were no specific polymorphic DArT 155 

markers that could distinguish Ptt from putative Ptm isolates of barley grass. Out of 11697 156 

markers, P. teres from barley grass shared 45% and 46% of same size alleles with Ptt and Ptm 157 

isolates of barley, respectively.  158 

Using PCoA, four groups of isolates could be distinguished, with the barley grass, Ptt and Ptm 159 

isolates each forming a separate group and the hybrid isolate located on its own (Figure 1). Axis 1 160 

and Axis 2 of the PCoA accounted for 78 and 36 % of the total genetic variability, respectively.  161 

Within the hierarchical based clustering, UPGMA supported the results of the PCoA and divided 162 

the 30 isolates into the same four distinct groups (Figure 2). Pyrenophora teres isolates from barley 163 

grass clustered separately and only showed 50% similarity with P. teres isolates from barley. There 164 

was 58% similarity between Ptt and Ptm isolates from barley. Hybrid WAC10721 was 83% similar 165 

to Ptm isolates. Within the P. teres isolates from barley grass, the similarity between individuals 166 

was 94% or more.  167 

 168 

AMOVA 169 

The hierarchical distribution of molecular variance by AMOVA revealed highly significant genetic 170 

differences between the groups (Table 2). P. teres isolates collected from barley grass and barley 171 

contributed 63.32% (P < 0.001) of the total variation and 36.67% was ascribed within these two 172 

groups. When comparing barley grass P. teres with Ptt and Ptm isolates of barley, 85.40% (P < 173 

0.001) and 89.64% of the total variation was observed with Ptt and Ptm of barley, respectively. Ptt 174 

and Ptm collected from barley had variation of 85% and 15% between and among the isolates, 175 
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respectively. No significant difference (P > 0.001) was observed between Ptt and Ptm of barley 176 

grass, which was differentiated based on lesion appearance (Table 2).  177 

 178 

Virulence study  179 

Only 5 of 11 isolates produced enough spores. The phenotypic responses of the five barley grass 180 

isolates across 11 barley genotypes and one barley grass are presented in Table 3. Five barley grass 181 

isolates were virulent on the barley grass genotype with scores of seven to nine. However, P. teres 182 

isolates from barley grass were avirulent on the 11 barley cultivars tested (scores of 1 to 5.5 were 183 

recorded).  184 

 185 

Discussion 186 

In this study we determined the genetic variability between P. teres collected from barley grass 187 

and barley using DArT markers. A previous study by Poudel et al. (2017) indicated that there were 188 

genetic differences between P. teres from barley grass and barley, however only limited numbers 189 

of molecular markers were used, and cluster analysis was not conducted. In addition, this study 190 

also assessed the pathogenicity of P. teres isolates collected from barley grass across 11 genotypes 191 

of barley.  192 

Although isolates from barley grass were differentiated as Ptt and Ptm based on lesion appearance, 193 

mating type markers and DArT markers were not able to distinguish them into two forms. This 194 

indicated that four putative Ptm barley grass isolates had been misclassified when sampled and all 195 

the isolates analysed in our study were Ptt isolates. The difficulty with field identification based 196 
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on symptoms has been reported in other studies conducted on P. teres of barley (Williams et al., 197 

2001, Rau et al., 2003, Leisova et al., 2005, Lehmensiek et al., 2010). This suggests that diagnostic 198 

markers should be used frequently to classify foliar diseases.  199 

Both the PCoA plot and UPGMA dendrogram grouped the P. teres isolates collected from barley 200 

grass and barley into four major groups. Isolates collected from barley grass all clustered into a 201 

group separate from isolates of barley. High similarity (i.e. 94%) was observed within the isolates 202 

from barley grass. There was 50% similarity between P. teres isolates collected from barley grass 203 

and barley. Isolates collected from barley were further divided into a cluster of Ptt isolates, Ptm 204 

isolates and one Ptt x Ptm hybrid. The similarity observed between Ptt and Ptm clusters of barley 205 

isolates was 58%, thus clearly separating the two forms. Comparable results were observed in 206 

several other studies for P. teres isolates from barley, which indicated that Ptt and Ptm retrieved 207 

from barley are genetically different (Rau et al., 2003, Leisova et al., 2005, Serenius et al., 2007, 208 

Lehmensiek et al., 2010) 209 

AMOVA results statistically confirmed the distinction between P. teres isolates collected from 210 

barley grass and barley with highly significant genetic differences observed between the groups 211 

despite geographical co-existence. This is comparable to another major pathogen of barley, R. 212 

commune, a causative agent of leaf scald, where a significant difference was found between Swiss 213 

populations originating from rye and barley (Zaffarano et al., 2006). This suggests that P. teres 214 

collected from barley grass and barley are genetically isolated. The percentage of variation 215 

observed among P. teres from barley to that with Ptt (85.40 %) and Ptm (89.64 %) of barley was 216 

significantly higher. Similarly, highly significant differences (84.80 %) were observed among the 217 

Ptt and Ptm groups of barley. This suggests that despite the morphological similarity, sexual 218 

recombination between P. teres of barley grass with Ptt or Ptm of barley or between the two forms 219 
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of P. teres is rare or absent under field conditions. Infrequent hybridisation between two forms of 220 

P. teres has been suggested by several studies conducted in different countries (Rau et al., 2003, 221 

Bakonyi & Justesen, 2007, Bogacki et al., 2010, Lehmensiek et al., 2010, Leišová-Svobodová et 222 

al., 2014) 223 

The virulence study showed that P. teres isolates of barley grass were virulent on barley grass but 224 

not on barley cultivars. This result is similar to that of Brown et al. (1993), who found that an 225 

isolate from barley grass was avirulent on two barley cultivars tested. In a study by Fowler et al. 226 

(2017) the barley grass isolate HRS#10128 was observed to be virulent (score >= 7.5) on barley 227 

cultivars Grimmett, Keel and Commander. On the contrary, our study showed that the isolate 228 

HRS#10128 was not virulent on these cultivars or on any other cultivars tested. Our study suggests 229 

that virulent P. teres isolates specific to barley grass are in general avirulent on commercial barley.  230 

Our genetic and virulence study of P. teres isolates indicates genetic specificity, host range 231 

differences and host specialisation. Domestication of plant hosts can be a factor driving host 232 

specialisation and subsequent fungal speciation (Kohn, 2005, Zaffarano et al., 2006). In a study by 233 

Ellwood et al. (2012), orthologous intergenic regions analyses of Ptt and Ptm isolates obtained 234 

from barley indicated that the Ptt and Ptm forms existed before domestication of barley. Our result 235 

suggests that P. teres of barley could have evolved from P. teres of barley grass through divergence 236 

when the pathogen transferred from a barley grass species onto barley during domestication. 237 

Pyrenophora teres could however also have evolved from barley’s wild progenitor, H. 238 

spontaneum. Further analysis needs to be undertaken to shed light on the evolution of P. teres. 239 

In conclusion, P. teres isolates collected from barley grass and barley are genetically differentiated 240 

and cluster into two distinct groups. P. teres from barley grass exhibited avirulence on barley 241 

cultivars. This indicates that there is little genetic exchange between P. teres from the respective 242 
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hosts and barley grass is unlikely to harbour virulent strains of P. teres. Thus, despite growing near 243 

barley fields, P.teres-infected barley grass poses insignificant threat to barley production. Further 244 

studies including a greater number of P. teres isolates from barley grass from geographically 245 

diverse locations should be conducted to gather insights into genetic diversity and host specificity. 246 

Comparative genomics using sequences of barley grass and barley P. teres isolates could be 247 

employed to understand the molecular basis of genetic differentiation and host specialisation.  248 
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Tables and Figures 328 

Table 1: List of isolates used in this study with their host, original field identification, geographical 329 

location and date of collection.  330 

 331 

a original field identification based on lesion appearance. Molecular identification of isolates was in agreement with 332 
phenotypic classification, except for four putative isolates from barley grass (SNB172, BG14-011, Sf07-026, Ptm14-333 
015) which has Ptt mating type markers.  334 

 WA, Western Australia; VIC, Victoria; QLD, Queensland; NSW, New South Wales; SA, South Australia.  335 

 336 

S.No 

Name of 

Isolates Host 

Phenotypic 

identificationa Location State 

Date of 

collection 

1 SNB172 Barley Grass Ptm Mt. Baker WA 1995 

2 BG14-011 Barley Grass Ptm Ouyen VIC 2014 

3 Sf07-026ss Barley Grass Ptm Warracknebeal VIC 2007 

4 Ptm14-015 Barley Grass Ptm Curyo VIC 2014 

5 HRS#10128 Barley Grass Ptt Yelarbon QLD 2010 

6 CLG741 Barley Grass Ptt Narrandera  NSW 2013 

7 CLG947 Barley Grass Ptt Barmedman NSW 2013 

8 Ptt12-013 Barley Grass Ptt Joel South VIC 2012 

9 CLG694 Barley Grass Ptt Temora NSW 2013 

10 CLG759 Barley Grass Ptt Narrandera  NSW 2013 

11 CLG781 Barley Grass Ptt Narrandera  NSW 2013 

12 NB029 Barley Ptt Wongan Hills WA 1985 

13 NB085 Barley Ptt Gatton QLD 1995 

14 NB050 Barley Ptt Gatton QLD 1994 

15 NB053 Barley Ptt Narracoorte SA 1994 

16 NB024 Barley Ptt Jerramugup WA 1976 

17 NB054 Barley Ptt Esperance WA 2002 

18 NB052B Barley Ptt Rendelsham SA 1994 

19 NB097 Barley Ptt Byee QLD 1995 

20 NB063 Barley Ptt Williams WA 1994 

21 NB102 Barley Ptt Brookstead QLD 1995 

22 NB073 Barley Ptt Tansey QLD 1995 

23 Sf09-078 Barley Ptm Unknown Vic 2009 

24 Sf03-0061 Barley Ptm Unknown Vic 2003 

25 SNB320 Barley Ptm Warwick QLD 2012 

26 SNB74S Barley Ptm Millmerran QLD 1995 

27 Ptm340 Barley Ptm Shenton Park WA 2007 

28 HRS#07033 Barley Ptm Comet QLD 2007 

29 Ptm13-200 Barley Ptm Oxford WA 2013 

30 WAC10721 Barley Hybrid Esperance WA 2002 
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Table 2: Analysis of molecular variance (AMOVA) for P. teres of barley grass and barley.  337 

Source of variation Degrees 

of 

freedom  

 

Sum of 

squares  

 

Variance 

components  

 

Variation (%)  

 

Between P. teres from barley grass 

and P. teres from barley 

1 20094 1393 63.32 * 

Within P. teres from barley grass and 

P. teres from barley 

28 22376 807 36.67 * 

Between P. teres from barley grass 

and Ptt from barley 

1 18807 1695 85.40 * 

Within P. teres from barley grass and 

Ptt from barley 

20 5706 290 14.60* 

Between P. teres from barley grass 

and Ptm from barley 

1 17438 2033 89.64*  

Within P. teres from barley grass and 

Ptm from barley 

16 3705 234 10.35* 

Between Ptt and Ptm from barley 1 14145 1642 84.80 * 

Within Ptt and Ptm from barley 17 4609 294 15.19 * 

Between Ptt and Ptm from barley 

grass 

1 244 0 -0.16 (P=0.57) 

Within Ptt and Ptm from barley grass 9 2157 245 100.16 

*P-value <0.001; Ptt, Pyrenophora teres f. teres and Ptm, P. teres f. maculata  338 
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Table 3: Virulence scores of five barley grass Pyrenophora teres isolates on 11 barley 339 

genotypes.  340 

 341 

Ptt,  Pyrenophora teres f. teres; Ptm, P. teres f. maculata 342 

 343 

Genotypes Differential responses HRS#10128 Ptt12-

013 

CLG694 CLG759 CLG781 

CIho5791 Resistance to Ptt 2 2.5 3 2.5 3 

Keel Resistance to Ptm 3 2.5 3.5 3.5 5 

Granger Susceptible to Ptm 2 2 2 2 2 

Latrobe Susceptible to Ptm 2.5 3 2.5 3 3.5 

Compass Intermediate to Ptm 2 2.5 2.5 2.5 1.5 

Prior Used to describe 

Australian Ptt 

population 3 2 3.5 2.5 3 

Maritime Used to describe 

Australian Ptt 

population 2 2 2.5 2.5 2.5 

Skiff Used to describe 

Australian Ptt 

population 1.5 1.5 2 1 2 

Commander Susceptible to Ptt 3 3 3.5 3.5 4.5 

Dash Very Susceptible to 

Ptm 3.5 3 5 4.5 5.5 

Grimmett Susceptible to 

HRS#10128 2 2 2.5 2 2 

Barley grass  7 7 8 8.5 9 
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Figure 1: Scatter plot of the two first axes of the Principal Coordinates Analysis (PCoA) based 

upon the pairwise matrix showing overall diversity between Pyrenophora teres from barley grass 

and barley.  
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Figure 2: Dendrogram produced using UPGMA cluster analysis based on DICE’s similarity coefficient using 11 barley grass and 19 

barley P. teres isolates.  
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Chapter 6 

Conclusion and Future Recommendations 

 

6.1 Key Findings of this study 

The first objective of the study was to develop markers that can distinguish Ptt x Ptm hybrids from 

the two forms of P. teres. Using a whole-genome comparative approach, Ptt and Ptm specific 

regions were identified. Twelve sequence-specific PCR markers were developed, which 

unambiguously identified Ptt x Ptm hybrids. In addition, the markers could distinguish the net and 

spot forms of P. teres. These markers provided a more efficient and robust method than previously 

developed amplified fragment length polymorphism and random amplified polymorphic DNA 

markers and are useful as a regular diagnostic tool to identify P. teres isolates.  

The second objective of the study was to investigate the possibility of occurrence of Ptt x 

Ptm hybrids in the field where opposite mating types of both forms of P. teres co-existed. To 

identify hybrids, markers were used across 1045 conidia and 223 ascospores collected from three 

field trial sites established during 2013–2016. This was the first study where the field trials were 

conducted by inoculating with isolates of the opposite form and mating type to facilitate 

hybridisation between the two forms. Markers were also used to identify P. teres isolates 

previously stored during 1976-2015. No hybrids were identified which suggested that 

hybridisation between the two forms is rare in the field despite conducive conditions. Marker 

analysis of ascospores obtained from field collected stubble indicated the possibility of frequent 

hybridisation within the forms. This suggested that there was a reproductive isolation between the 

two forms of P. teres, which could have occurred due to pre- and post- mating barriers. The 

possible mating barriers were reviewed and it was concluded that sexual preference for the same 

forms of P. teres or fitness penalties of hybrids could account for genetic isolation between the 

forms. However, due to time constraints we could not conduct experiments to further investigate 

the pre- and post- mating barriers. In addition, high deviation was observed in the distribution of 

one form of P. teres over the other in the experimental fields, which could have account for the 

interference of hybridisation between Ptt and Ptm. This study suggested that sexual recombination 

between the two forms of P. teres was not likely to provide genetic and pathogenic diversity to 
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overcome resistances in commercial barley cultivars. However, periodical monitoring of P. teres 

populations for presence of hybrids in fields is recommended. 

Even though no hybrids were found, frequent recombination within Ptt forms was 

identified which contributed to the third objective of the study. This included investigation of the 

change in genetic structure of Ptt populations over time within a field. For this, 174 isolates were 

sampled from an experimental field site during 2013–2015 and genotyped using Diversity Array 

Technology (DArT) markers. The results indicated a high number of multi-locus genotypes and 

recombinant population structure with the 2014 and 2015 populations. This suggested that new 

races of Ptt populations emerged during each cropping season due to migration and sexual 

reproduction. The rapid change in the genotypic composition of Ptt population in this study 

highlights the need for constant monitoring of barley field for novel genotypes with higher 

virulence or adaptive potential.  

Only four Ptt specific markers and none of the Ptm specific markers amplified across the 

DNA of P. teres isolates collected from barley grass. On further investigation using AFLP markers, 

P. teres collected from barley grass were genetically different as compared to P. teres collected 

from barley, however only 33 markers were used (Chapter 2). Thus, we further investigated the 

genetic diversity of P. teres isolates collected from the respective host using DArT markers as the 

fourth objective of our study. When the diversity of P. teres on barley grass and barley was 

compared and pathogenicity results was assessed, barley grass and barley P. teres populations 

were distinct suggesting genetic isolation between them. This indicated that there was little genetic 

exchange between P. teres on barley and barley grass and that it was unlikely to harbour new 

virulences, despite them growing along the fence line of barley fields. Thus, barley grass poses 

insignificant risk for virulent pathogen transfer to barley crops. This study was based only on 11 

P. teres isolates collected from barley grass in Australia. Future studies should be done that include 

more isolates sampled from different geographical regions to provide further insight into the 

diversity of P. teres collected from other grass hosts.  

 

6.2. Future Recommendations 

The reasons for genetic isolation between Ptt and Ptm under field conditions have been reviewed 

in our study. One of the reason was the preference for reproduction within rather than between the 

100



forms. In the future investigation, both Ptt and Ptm individuals with opposite mating type loci 

should be crossed in the laboratory and collected progeny should be genotyped to determine 

whether there is competition within and between forms. It would be useful to determine if the 

signal produced by the peptide hormone pheromone during the mating response is responsible for 

such preference was found in Saccharomyces cerevisiae where cells producing the highest level 

of pheromone mate with each other (Jackson & Hartwell 1990).  

Further investigation is also needed to determine if genetic incompatibilities between the 

two forms decrease fitness of hybrid offspring. Such genetic incompatibilities have been observed 

in Saccharomyces cerevisiae, where two genes involved in cell wall synthesis were under-

expressed and two genes involved in sporulation were overexpressed thus lowering mitotic fitness 

and meiotic efficiency in hybrid cells (Dettman et al. 2007). By investigating genome comparisons 

between parents and hybrids of P. teres, insertion or deletions in key genes responsible for an 

unequal recombination between Ptt and Ptm during meiosis could be detected. Furthermore, 

genome-wide gene expression can be studied. These experiments would help us understand the 

underlying mechanism causing reproductive barriers between the two forms of P. teres.  

Studies can be conducted using laboratory produced Ptt x Ptm hybrids to characterise 

avirulence or virulence genes and to identify quantitative trait loci (QTL) associated with virulence 

in the pathogen. Hybrids have combinations of alleles from both the parents, and the 

virulence/avirulence genes present for pathogenicity in both Ptt and Ptm would be of interest. 

Moreover, segregation ratio of virulence/avirulence genes from parents to hybrids can be studied. 

Cloning and sequencing of the pathogen genes and mapping them to physical chromosomes as 

well as characterising the corresponding host genes at the QTL regions will provide better 

understanding of the interactions that occur within P. teres-barley pathosystems. This is important 

in germplasm enhancement which is necessary for developing resistant cultivars.  

Information about mechanism of P. teres pathogenicity is limited. With the availability of 

sequences and annotations of both Ptt (Ellwood et al. 2010; Wyatt et al. 2018) and Ptm isolates 

(unpublished), prediction of genes associated with virulence and avirulence has become possible, 

which will help in elucidating virulence mechanisms of the pathogen. Additionally, future hybrids 

genomes can be sequenced and compared with the genome of the two forms of P. teres, to identify 

the genetic variations such as single nucleotide variations (SNPs), insertion, or deletions between 
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the avirulence/virulence genes found across them. Identification of such variations will provide 

insights into the genetic relationships between parents and hybrid isolates and the genetics of 

pathogenicity and cause of phenotypic differences among these pathogens.   

 

6.3 Conclusion 

This thesis investigated the various aspects of sexual recombination in field conditions which is 

important for better management of the net blotch diseases. The possibility of emergence of new 

races of P. teres in barley fields due to sexual hybridisation between the two forms of P. teres or 

virulent P. teres from barley grass migrating to barley fields is insignificant. However, sexual 

recombination and genetic migration has the potential to generate new genotypes which could 

introduced novel pathotypes into the field. Therefore, stubble management, crop rotation and the 

use of uninfected seeds are recommended. Most importantly, it is necessary to manage the 

resistance sources of barley.  
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Chapter 2 

 

Supplementary Table 1: List of isolates used in this study with molecular identification, geographic origin, year of collection, host and 

references. 

Isolate 

Molecular 

Identification Locations Country Year Host References 

NB022 Ptt Allora, QLD Australia 1977 Barley Lehmensiek et al. 2010 

NB032 Ptt Kingsthorpe, QLD Australia 1984 Barley Lehmensiek et al. 2010 

NB034 Ptt Boodua, QLD Australia 1989 Barley Lehmensiek et al. 2010 

NB050 Ptt Gatton, QLD Australia 1994 Barley Lehmensiek et al. 2010 

NB073 * Ptt Tansey, QLD Australia 1995 Barley Lehmensiek et al. 2010 

NB085  Ptt Gatton, QLD Australia 1995 Barley Lehmensiek et al. 2010 

NB053 * Ptt Naracoorte, SA Australia 1994 Barley Lehmensiek et al. 2010 

NBHRS08119 Ptt Yorke Peninsula, SA Australia 2007 Barley Lehmensiek et al. 2010 

NB127 Ptt Woomelang, VIC Australia 1996 Barley Lehmensiek et al. 2010 

NB023 Ptt Badgingarra, WA Australia 1976 Barley Lehmensiek et al. 2010 

NB026 Ptt New Norcia, WA Australia 1978 Barley Lehmensiek et al. 2010 

NB063 * Ptt 15km N of Williams, WA Australia 1994 Barley Lehmensiek et al. 2010 

NB090 * Ptt Wongan Hills, WA Australia 1995 Barley Lehmensiek et al. 2010 

NB150 Ptt 33 km E of Lake Grace, WA Australia 1995 Barley Lehmensiek et al. 2010 

NB154 Ptt 22 km N of Nyabing, WA Australia 1995 Barley Lehmensiek et al. 2010 

NB160 Ptt 25 km N of Katanning, WA Australia 1995 Barley Lehmensiek et al. 2010 

NB085 Ptt Gatton, QLD Australia 1995 Barley Lehmensiek et al. 2010 

SNB06022 Ptm Jambin, QLD Australia 2006 Barley Lehmensiek et al. 2010 

SNB247 Ptm Brookstead, QLD Australia 1996 Barley Lehmensiek et al. 2010 

SNB74S * Ptm Millmerran, QLD Australia 1995 Barley Lehmensiek et al. 2010 

SNBHRS07033 * Ptm Comet, QLD Australia 2007 Barley Lehmensiek et al. 2010 

SNB05064 Ptm Caroona, NSW Australia 2005 Barley Lehmensiek et al. 2010 

SNB331 Ptm Moree, NSW Australia 2003 Barley Lehmensiek et al. 2010 
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SNB104 Ptm Brocklesby, NSW Australia 1995 Barley Lehmensiek et al. 2010 

SNB175 Ptm Arno Bay, SA Australia 1996 Barley Lehmensiek et al. 2010 

SNB222 Ptm Pinery, SA Australia 1996 Barley Lehmensiek et al. 2010 

SNB049 Ptm Swan Hill, VIC Australia 1993 Barley Lehmensiek et al. 2010 

SNB202 Ptm Echuca, VIC Australia 1996 Barley Lehmensiek et al. 2010 

SNB131 Ptm Goomalling, WA Australia 1995 Barley Lehmensiek et al. 2010 

SNB164 Ptm Badgingarra, WA Australia 1995 Barley Lehmensiek et al. 2010 

SNB167 Ptm Mt Ridley, WA Australia 1995 Barley Lehmensiek et al. 2010 

SNB171 * Ptm Pallinup River, WA Australia 1995 Barley Lehmensiek et al. 2010 

SNB172 P. teres Mt Barker, WA Australia 1995 Barley Grass Lehmensiek et al. 2010 

SNB340 Ptm Shenton Park, WA Australia 2007 Barley Lehmensiek et al. 2010 

SNB341 Ptm Badgingarra, WA Australia 2008 Barley Lehmensiek et al. 2010 

SNB344 Ptm Dumbleyung, WA Australia 2007 Barley Lehmensiek et al. 2010 

24/02 Ptm Darke Peak, SA Australia 2002 Barley McLean et al. 2014 

5/03 Ptm Myponga, SA Australia 2003 Barley McLean et al. 2014 

3/05 Ptm Turretfield, SA Australia 2005 Barley McLean et al. 2014 

08-003 Ptm Coorong, SA Australia 2008 Barley McLean et al. 2014 

09-122 Ptm Elliston, SA Australia 2009 Barley McLean et al. 2014 

09-124 Ptm Bute, SA Australia 2009 Barley McLean et al. 2014 

09-128 Ptm Brentwood, SA Australia 2009 Barley McLean et al. 2014 

09-129 Ptm Port Clinton, SA Australia 2009 Barley McLean et al. 2014 

09-133 Ptm Cummins, SA Australia 2009 Barley McLean et al. 2014 

23/96/7 Ptm Yeelanna, SA Australia 1996 Barley McLean et al. 2014 

5/00 Ptm Karoonda, SA Australia 2000 Barley McLean et al. 2014 

5/98/4 Ptm Yorke Peninsula, SA Australia 1998 Barley McLean et al. 2014 

09-005 Ptm Irvingdale, QLD Australia 2009 Barley McLean et al. 2014 

09-009 Ptm Mondure, QLD Australia 2009 Barley McLean et al. 2014 

09-011 Ptm Jondaryan, QLD Australia 2009 Barley McLean et al. 2014 

09-013 Ptm Wellcamp, QLD Australia 2009 Barley McLean et al. 2014 

HRS06022 Ptm Jambin, QLD Australia 2007 Barley McLean et al. 2014 

HRS09045 Ptm Jambin, QLD Australia unknown Barley McLean et al. 2014 
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SNB281 Ptm Dalby, QLD Australia 2007 Barley McLean et al. 2014 

SNB113 Ptm Leeton, NSW Australia 2007 Barley McLean et al. 2014 

09-010 Ptm Deniliquin, NSW Australia 2009 Barley McLean et al. 2014 

09-015 Ptm Unknown, NSW Australia 2009 Barley McLean et al. 2014 

09-025 Ptm Peak Hill, NSW Australia 2009 Barley McLean et al. 2014 

09-027 Ptm Parkes, NSW Australia 2009 Barley McLean et al. 2014 

09-028 Ptm Wyalong, NSW Australia 2009 Barley McLean et al. 2014 

09-030 Ptm Gilgandra, NSW Australia 2009 Barley McLean et al. 2014 

09-031 Ptm Tomingley, NSW Australia 2009 Barley McLean et al. 2014 

09-033 Ptm The Rock, NSW Australia 2009 Barley McLean et al. 2014 

09-035 Ptm Moree, NSW Australia 2009 Barley McLean et al. 2014 

09-036 Ptm Goondiwindi, NSW Australia 2009 Barley McLean et al. 2014 

09-037 Ptm Mooree, NSW Australia 2009 Barley McLean et al. 2014 

09-038 Ptm Mooree, NSW Australia 2009 Barley McLean et al. 2014 

SNB263 Ptm Casino, NSW Australia 2007 Barley McLean et al. 2014 

03-0002 Ptm Streatham, Vic Australia 2003 Barley McLean et al. 2014 

03-0007 Ptm Horsham, Vic Australia 2007 Barley McLean et al. 2014 

03-0070 Ptm Ultima, Vic Australia 2004 Barley McLean et al. 2014 

04-0015 Ptm Dimboola, Vic Australia 2004 Barley McLean et al. 2014 

04-0071 Ptm Dunkeld, Vic Australia 2004 Barley McLean et al. 2014 

04-0073 Ptm Cavendish, Vic Australia 2004 Barley McLean et al. 2014 

05-107 Ptm Streatham, Vic Australia 2005 Barley McLean et al. 2014 

08-032 Ptm Dimboola, Vic Australia 2008 Barley McLean et al. 2014 

08-048 Ptm Nathalia, Vic Australia 2008 Barley McLean et al. 2014 

09-002 Ptm Woomelang, Vic Australia 2009 Barley McLean et al. 2014 

09-054 Ptm Speed, Vic Australia 2009 Barley McLean et al. 2014 

09-079 Ptm Kaniva, Vic Australia 2009 Barley McLean et al. 2014 

09-084 Ptm St. Arnaud, Vic Australia 2009 Barley McLean et al. 2014 

09-139 Ptm Horsham, Vic Australia 2009 Barley McLean et al. 2014 

GIP09020 Ptm Boort, Vic Australia 2009 Barley McLean et al. 2014 

WAC10721 P.teres hybrid Esperance, WA Australia 2002 Barley McLean et al. 2014 
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WAC11153 Ptm Dumbleyung, WA Australia 2002 Barley McLean et al. 2014 

WAC11160 Ptm Boyerine, WA Australia 2002 Barley McLean et al. 2014 

WAC9238 Ptm Badgingarra, WA Australia 2002 Barley McLean et al. 2014 

WAC9179 Ptt Kalannie, WA Australia 1996 Barley This study 

09-154 Ptt Greenough, WA Australia 2009 Barley This study 

09-155 Ptt Greenough, WA Australia 2009 Barley This study 

HRS#09123 Ptt Greenough, WA Australia 2009 Barley This study 

HRS#09124 Ptt Greenough, WA Australia 2009 Barley This study 

HRS#10191 Ptt Wongan Hills, WA Australia 2010 Barley This study 

HRS#10192 Ptt Wongan Hills, WA Australia 2010 Barley This study 

03-0006 Ptt Lake Bolac, Vic Australia 2003 Barley This study 

nf09-136 Ptt Wonwondah, Vic Australia 2009 Barley This study 

nf09-140 Ptt Horsham, Vic Australia 2009 Barley This study 

HRS#10240 Ptt Lubeck, Vic Australia 2010 Barley This study 

HRS#11116 Ptt Horsham, Vic Australia 2011 Barley This study 

HRS#11117 Ptt Rupanyup, Vic Australia 2011 Barley This study 

HRS#11118 Ptt Inverleigh, Vic Australia 2011 Barley This study 

ptt11-004 Ptt Longerenong, Vic Australia 2011 Barley This study 

ptt11-005 Ptt Logan, Vic Australia 2011 Barley This study 

ptt11-006 Ptt Wonwondah, Vic Australia 2011 Barley This study 

nf49/07 Ptt Urrbrae, SA Australia 2007 Barley This study 

nf55/07 Ptt Urrbrae, SA Australia 2007 Barley This study 

HRS#08118 Ptt Balaklava, SA Australia 2008 Barley This study 

HRS#08194 Ptt Yorke Peninsula, SA Australia 2008 Barley This study 

09-120 Ptt Verran, SA Australia 2009 Barley This study 

HRS#09141 Ptt Unknown, SA Australia 2009 Barley This study 

nf09-001 Ptt Callington, SA Australia 2009 Barley This study 

nf133/09d Ptt Milang, SA Australia 2009 Barley This study 

nf47/09 A3 Ptt Warooka, SA Australia 2009 Barley This study 

nf48/09 A3 Ptt Foul Bay, SA Australia 2009 Barley This study 

nf57/09 Ptt Tumby Bay, SA Australia 2009 Barley This study 
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nf66/09 Ptt Wandearah, SA Australia 2009 Barley This study 

HRS#11091 Ptt Rosedale, SA Australia 2011 Barley This study 

HRS#11092 Ptt Hart, SA Australia 2011 Barley This study 

HRS#11095 Ptt Hart, SA Australia 2011 Barley This study 

HRS#08046 Ptt Biloela, QLD Australia 2008 Barley This study 

HRS#09015 Ptt The Hermitage, QLD Australia 2009 Barley This study 

HRS#09042 Ptt Dalby, QLD Australia 2009 Barley This study 

HRS#09092 Ptt Townsville, QLD Australia 2009 Barley This study 

HRS#09120 Ptt The Hermitage, QLD Australia 2009 Barley This study 

HRS#10004 Ptt The Hermitage, QLD Australia 2010 Barley This study 

HRS#10015 Ptt The Hermitage, QLD Australia 2010 Barley This study 

HRS#10033 Ptt The Hermitage, QLD Australia 2010 Barley This study 

HRS#10076 Ptt Cleveland, QLD Australia 2010 Barley This study 

HRS#10077 Ptt Cleveland, QLD Australia 2010 Barley This study 

HRS#10108 Ptt Gatton, QLD Australia 2010 Barley This study 

HRS#10121 Ptt Yangan, QLD Australia 2010 Barley This study 

HRS#10122 Ptt Mt Sturt, QLD Australia 2010 Barley This study 

HRS#10140 Ptt Allora, QLD Australia 2010 Barley This study 

HRS#10154 Ptt Cleveland, QLD Australia 2010 Barley This study 

HRS#10160 Ptt Kurumbul, QLD Australia 2010 Barley This study 

HRS#10164 Ptt Allora, QLD Australia 2010 Barley This study 

HRS#10167 Ptt Junabee, QLD Australia 2010 Barley This study 

HRS#10172 Ptt Junabee, QLD Australia 2010 Barley This study 

HRS#10185 Ptt Dalby, QLD Australia 2010 Barley This study 

HRS#10189 Ptt Killarney, QLD Australia 2010 Barley This study 

HRS#10190 Ptt Wheatvale, QLD Australia 2010 Barley This study 

HRS#11053 Ptt Jinghi, QLD Australia 2011 Barley This study 

HRS#11056 Ptt Yandilla, QLD Australia 2011 Barley This study 

HRS#11068 Ptt Bringalily, QLD Australia 2011 Barley This study 

HRS#11088 Ptt Fassifern, QLD Australia 2011 Barley This study 

HRS#11089 Ptt Toowoomba, QLD Australia 2011 Barley This study 
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HRS#11090 Ptt Toowoomba, QLD Australia 2011 Barley This study 

HRS#11100 Ptt Mt Sturt, QLD Australia 2011 Barley This study 

HRS#07013 Ptt Grafton, NSW Australia 2007 Barley This study 

HRS#08195 Ptt North Star, NSW Australia 2008 Barley This study 

HRS#09121 Ptt Wagga Wagga, NSW Australia 2009 Barley This study 

HRS#09122 Ptt Yanco, NSW Australia 2009 Barley This study 

HRS#09128 Ptt Breeza, NSW Australia 2009 Barley This study 

HRS#10131 Ptt North Star, NSW Australia 2010 Barley This study 

HRS#10134 Ptt Yallaroi, NSW Australia 2010 Barley This study 

HRS#10135 Ptt Yallaroi, NSW Australia 2010 Barley This study 

HRS#10136 Ptt Yallaroi, NSW Australia 2010 Barley This study 

HRS#10137 Ptt Yallaroi, NSW Australia 2010 Barley This study 

HRS#10138 Ptt Yallaroi, NSW Australia 2010 Barley This study 

HRS#10142 Ptt Breeza, NSW Australia 2010 Barley This study 

HRS#10157 Ptt Tulloona, NSW Australia 2010 Barley This study 

HRS#10158 Ptt Tulloona, NSW Australia 2010 Barley This study 

HRS#10159 Ptt Tulloona, NSW Australia 2010 Barley This study 

HRS#10217 Ptt Tamworth, NSW Australia 2010 Barley This study 

HRS#10220 Ptt Bithramere, NSW Australia 2010 Barley This study 

Ptt50#2 Ptt Bredasdorp South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt51#1 Ptt Bredasdorp South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt52#1 Ptt Bredasdorp South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt53#2 Ptt Bredasdorp South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt54#2 Ptt Bredasdorp South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt89#2 Ptt Caledon South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt90#2 Ptt Caledon South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt92#1 Ptt Caledon South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt82#2 Ptt Heidelberg South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt83#2 Ptt Heidelberg South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt84#2 Ptt Heidelberg South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt86#1 Ptt Heidelberg South Africa 2007 Barley Lehmensiek et al. 2010 
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Ptt87#2 Ptt Heidelberg South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt88#2 Ptt Heidelberg South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt75 Ptt Riviersonderend South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt77 Ptt Riviersonderend South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt78 Ptt Riviersonderend South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt04 Ptt Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt07 Ptt Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt17 Ptt Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt02 Ptt Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt10 Ptt Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt39#2 Ptm Bredasdorp South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt41#1 Ptm Bredasdorp South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt32 Ptm Riviersonderend South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt37#1 Ptm Swellendam South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt37#2 Ptm Swellendam South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt18 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt19 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt71 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt72 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt73 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt12#2 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt55#2 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt56#2 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt57#1 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt58#2 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt59#2 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt62#2 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt63#2 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt64#1 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt65#2 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt66#1 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 
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Ptt67#2 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt68#1 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

Ptt69#2 Ptm Waenhuiskrans South Africa 2007 Barley Lehmensiek et al. 2010 

CLG692 P. teres Temora, NSW Australia 2013 Barley grass This study 

CLG693 P. teres Temora, NSW Australia 2013 Barley grass This study 

CLG694 P. teres Temora, NSW Australia 2013 Barley grass This study 

CLG741 P. teres Narrandera, NSW Australia 2013 Barley grass This study 

CLG759 P. teres Narrandera, NSW Australia 2013 Barley grass This study 

CLG781 P. teres Narrandera, NSW Australia 2013 Barley grass This study 

CLG947 P. teres Barmedman, NSW Australia 2013 Barley grass This study 

98137 B. sorokiniana  Cobbitty, NSW Australia 1999 Barley Knight et al. (2010) 

SB60 B. sorokiniana  Hermitage, QLD Australia 1999 Barley Knight et al. (2010) 

05047 B. sorokiniana  Gatton, QLD Australia 2005 Barley  Knight et al. (2010) 

98121 B. sorokiniana  Tamworth, NSW Australia 1999 Barley Knight et al. (2010) 

A02#86 B. sorokiniana  Dulacca, QLD Australia 2002 Wheat Knight et al. (2010) 

A05#47 B. sorokiniana  Wandoan, QLD Australia 2005 Wheat Knight et al. (2010) 

PYSSc2 P. tritici-repentis Unknown, QLD Australia 2008 Wheat Lehmensiek et al. 2010 

DROSc3 E. rostratum Unknown, QLD Australia 2008 Barley Lehmensiek et al. 2010 

*Isolates used in Ptt x Ptm crosses 
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Supplementary Table 2: The number of Illumina reads, assembly lengths and number of scaffolds and 

transcripts used to identify P. teres form-specific sequences in this study. The assembly length for RNA 

reads is provided as the total number of bases with duplications from overlaps and alternative transcripts 

removed. N50 defines the number of largest scaffolds that contain 50% of the assembly. * Indicates RNA-

based data, - denotes not applicable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isolate Total No. reads 

(M) 

Assembly 

length 

Scaffolds > 200 

bp or 

No.transcripts 

N50 

     

Won 1-1 78,530 42.0 26,150 137 

 155,374* 25.0* 13,360* - 

Stir 9-2 78,756 40.7 25,272 117 

01 21.9 33.6 6,334 275 

SG 1 44,401 36.6 11,414 72 

 126,576* 22.9* 12,666* - 

Cad 6-4 69,168 37.7 15,263 83 

Mur 2 74,396 37.7 14,112 78 
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Chapter 3 

Supplementary Table 1: Monthly mean minimum and maximum temperature and total rainfall at the Hermitage Research Facility (Station: Warwick, site number: 

041525, Latitude: 28.21 °S, Longitude: 152.10 °E; Elevation: 475 m) and Horsham (Station: Longerenong; Number: 079028; Latitude: 36.67° Longitude: 142.30° 

Elevation: 133 m).  

 

Year  Location April May June July Aug Sept Oct Nov 

 

 

2013 

 

Temperature (oC) 

Warwick Maximum 24.4 19.9 17.3 18.5 21.0 26.2 28.0 28.9 

Minimum 9.9 7.2 5.6 5.8 2.4 7.5 10.2 13.2 

Horsham Maximum 23.1 17.7 14.8 14.2 15.3 18.9 20.7 24.4 

Minimum 8.2 5.5 4.7 4.4 5.5 6.6 4.9 7.6 

Rainfall (mm) Warwick 61.4 35.4 79.3 40.4 9.4 33.0 40.5 117.6 

Horsham 14.8 25.4 64.0 64.0 50.2 61.2 33.8 12.8 

 

 

2014 

 

Temperature (oC) 

Warwick Maximum 25.6 21.4 19.5 18.5 19.1 22.9 29.0 32.1 

Minimum 11.8 7.9 5.1 0.4 6.0 6.6 10.9 16.2 

Horsham Maximum 21.6 19.2 14.3 13.3 16.0 20.0 25.7 27.6 

Minimum 9.4 7.2 5.7 3.1 1.8 4.7 6.2 9.3 

Rainfall (mm) Warwick 8.0 22.0 13.0 6.8 46.3 23.2 14.4 33.0 

Horsham 55.2 38.6 39.6 40.2 9.2 14.4 4.8 13.2 

2015  

Temperature (oC) 

Warwick Maximum 23.2 21.1 18.1 17.3 20.4 22.3 27.9 30.3 

Minimum 10.6 6.8 5.4 3.0 3.1 5.3 10.3 15.2 

Horsham Maximum 20.3 17.6 13.5 13.1 14.7 18.5 28.7 27.1 

Minimum 7.0 6.1 3.8 2.5 3.7 3.9 8.7 9.7 

Rainfall (mm) Warwick 48.9 74.0 19.4 21.8 24.8 15.6 20.2 125.7 

Horsham 16.6 17.4 43.0 17.4 10.8 31.2 4.6 15.0 

2016  

Temperature (oC) 

Warwick Maximum 26.7 24.9 17.7 18.8 19.1 20.8 24.2 29.7 

Minimum 13.2 6.6 7.4 5.4 4.6 9.1 8.6 12.1 

Horsham Maximum 23.5 18.0 13.8 13.2 15.2 16.1 18.4 24.7 

 Minimum 8.8 8.2 4.4 5.1 3.9 5.3 5.5 7.7 

Rainfall (mm) Warwick 13.6 20.6 109.8 18.0 108.6 90.6 74.6 78.2 

Horsham 7.4 61.8 39.6 66.2 47.4 108.4 42.8 17.0 
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Supplementary Table 2: List of isolates used in this study with molecular characterisation, geographical 

origin and year of collection.  

 

 

Isolates 
Molecular 

characterisation 
Locations State 

Date 

Collected/stored(s) 

03-0001 SFNB Bannockburn Vic 2003 (s) 

03-0009 NFNB PBC Nursery Vic 2010 (s) 

03-0033 NFNB Minyip Vic 2003 (s) 

03-0061 SFNB Beulah Vic 2003 (s) 

03-0078 SFNB Dimboola Vic 2003 (s) 

04-0027 SFNB Patchywollock Vic 2004 (s) 

04-0033 SFNB Hopetoun Vic 2004 (s) 

04-0040 SFNB Birchip Vic 2004 (s) 

09-036 SFNB Goondiwindi QLD 2009 

HRS09045 SFNB Moree NSW 2009 

Ptm#14060 SFNB Monto QLD 2014 (s) 

Ptm#14063 SFNB Monto QLD 2014 (s) 

Ptm11-001 SFNB Woomelang Vic 2011 

Ptm11-002 SFNB Waitchie Vic 2011 

Ptm11-004 SFNB Rupanyup Vic 2011 

Ptm11-006 SFNB Rainbow Vic 2011 

Ptm11-008 SFNB Murray Bridge SA 2011 

Ptm12-005 NFNB Harrisville QLD Unknown 

Ptm12-009 SFNB Northam WA 2012 

Ptm12-011 SFNB Gatton QLD 2012 

Ptm12-015 SFNB Quambatook Vic 2012 

Ptm12-020 SFNB Chinchilla QLD 2012 

Ptm12-022 SFNB Wongon Hills WA 2012 

Ptm12-023 SFNB Walebing WA 2012 

Ptm12-031 SFNB Callawadda Vic 2012 

Ptm12-032 SFNB Hopetoun Vic 2012 

Ptm12-033 SFNB Birchip Vic 2012 

Ptm12-034 SFNB Rainbow Vic 2012 

Ptm12-035 SFNB Rainbow Vic 2012 

Ptm12-036 SFNB Badgingarra WA 2012 

Ptm13#13019 SFNB Clifton QLD 2014 (s) 

Ptm13#13073 SFNB Emu Creek QLD 2013 

Ptm13#13204 NFNB Fassifern QLD 2014 (s) 

Ptm13#13205 SFNB Tulloona NSW 2013 

Ptm13-115 SFNB Callawadda Vic 2013 

Ptm13-126 SFNB Birchip Vic 2013 

Ptm13-128 SFNB Hopetoun Vic 2013 

Ptm13-13031 SFNB Wellcamp QLD 2013 

Ptm13-13111 SFNB Chinchilla QLD 2013 

Ptm13-13145 SFNB Gatton Research Station QLD 2013 

Ptm13-13149 SFNB Yangan QLD 2013 

Ptm13-13176 SFNB Willowvale QLD 2013 

Ptm13-13234 SFNB Wagga Wagga NSW 2013 

Ptm13-133 SFNB Willenabrina Vic 2013 

Ptm13-143 NFNB PBC Nursery Vic 2013 

Ptm13-153 SFNB Murraville Vic 2013 

Ptm13-169 SFNB Caramut Vic 2013 
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Ptm13-198 SFNB Katanning WA 2013 

Ptm13-201 SFNB Lort River WA 2013 

Ptm13-202 SFNB Merredin WA 2013 

Ptm13-208 SFNB Northam DAFWA WA 2014 (s) 

Ptm13-209 SFNB Northam DAFWA WA 2014 (s) 

Ptm13-217 SFNB Medina WA 2014 (s) 

Ptm13-220 SFNB Lake King WA 2013 

Ptm13-221 SFNB Moora WA 2013 

Ptm13-222 SFNB Dandaragan WA 2014 (s) 

Ptm13-223 SFNB Dandaragan WA 2013 

Ptm13-224 SFNB Dandaragan WA 2013 

Ptm13-226 NFNB South Perth WA 2013 

Ptm14-016 SFNB Beulah Vic 2014 

Ptm14-017 SFNB Kalannie WA 2014 

Ptm14-018 SFNB Eradu WA 2014 

Ptm14-025 SFNB Quambatook Vic 2014 

Ptm14-028 SFNB Charlton Vic 2014 

Ptm14-030 SFNB Northam WA 2014 

Ptm14-032 SFNB South Stirlings WA 2014 

Ptm14-035 SFNB Hyden WA 2014 

Ptm14-038 SFNB Merredin WA 2014 

Ptm14-039 SFNB Miling WA 2014 

Ptm14-055 SFNB Yarrawonga Vic 2014 

Ptm14-060 SFNB Katamatite Vic 2014 

Ptm14-066 SFNB Bridgewater Vic 2014 

Ptm14-068 SFNB Wunghnu Vic 2014 

Ptm14-071 SFNB Hopetoun Vic 2014 

Ptm14-076 SFNB Rainbow Vic 2014 

Ptm14-078 SFNB Walpeup Vic 2014 

Ptm14-079 SFNB Hopetoun Vic 2014 

Ptt11-004 NFNB Longerenong Vic 2011 

Ptt12-001 NFNB Northam WA 2012 

Ptt12-008 NFNB Derinellum Vic 2012 

Ptt12-025 NFNB Walebing WA 2012 

Ptt13-170 SFNB Horsham Vic 2013 

Ptt13-174 SFNB Horsham Vic 2013 

Ptt13-178 SFNB GIP Cage Vic 2013 

Ptt13-180 NFNB Natimuk Vic 2013 

Ptt13-185 NFNB Yalla Y Poora Vic 2013 

Ptt14-007 NFNB Mininera Vic 2014 

Ptt14-009 NFNB Beulah Vic 2014 

Ptt14-053 NFNB Nursery Vic 2014 

Ptt14-057 NFNB Katamatite Vic 2014 

Ptt14-106 NFNB Ultima NVT Vic 2014 

Sf03-0014b SFNB Glasshouse Vic 2006 (s) 

Sf03-0023b SFNB Glasshouse Vic 2006 (s) 

Sf03-0114ss SFNB Glasshouse Vic 2006 (s) 

Sf04-0053b SFNB Glasshouse Vic 2006 (s) 

Sf04-0067ss SFNB Glasshouse Vic 2006 (s) 

Sf05-011 SFNB Polkhemet Vic 2005 (s) 

Sf05-021 SFNB Rainbow Vic 2005 (s) 

Sf05-051 SFNB Beulah Vic 2005 (s) 

Sf05-081 SFNB Lascelles Vic 2005 (s) 

Sf06-001ssb SFNB PBC Nursery Vic 2006 (s) 
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Sf07-0003ss SFNB Rainbow Vic 2007 

Sf07-014ss SFNB Sealake Vic 2007 

Sf07-0175 SFNB Unknown Vic 2007 

Sf07-021ss SFNB Dimboola Vic 2007 

Sf07-054ss SFNB Inverleigh Vic 2007 

Sf08-011ss SFNB Lascelles Vic 2008 

Sf08-017ss SFNB Mittyack Vic 2008 

Sf08-023ss SFNB Wood Wood Vic 2008 

Sf08-028ss SFNB Berriwillock Vic 2008 

Sf08-033ss SFNB Birchip Vic 2008 

Sf08-041ss SFNB Tarranyurk Vic 2008 

Sf09-052 SFNB Donald Vic 2009 

Sf09-055 SFNB Ouyen Vic 2009 

Sf09-058 SFNB Sea Lake Vic 2009 

Sf09-063 SFNB Rainbow Vic 2009 

Sf09-065 SFNB Beulah Vic 2009 

Sf09-078 SFNB Nhill Vic 2009 

Sf09-092 SFNB Rokewood Vic 2009 

Sf117/13a NFNB Wanilla SA 2014 (s) 

Sf121/11 SFNB Palmer SA 2011 

Sf24/12 SFNB Elliston SA 2012 

Sf52/11 SFNB Wharminda SA 2011 

Sf53/13a SFNB Unknown SA 2014 (s) 

Sf-54/13a SFNB Loxton SA 2014 (s) 

SF-56/13a SFNB Loxton SA 2014 (s) 

SF85/13a SFNB Crystal Brook SA 2014 (s) 

Sf96/13a SFNB Unknown SA 2014 (s) 

SNB281 SFNB Dalby QLD 2010 (s) 

WACno11153 SFNB Dumbleyung WA 2002 

WACno9238 SFNB Badgingarra WA 2002 

WAI 330 SFNB Unknown NSW 2013 (s) 

WAI 331 SFNB Unknown NSW 2013 (s) 

WAI 390 SFNB Tamworth NSW 2013 (s) 

WAI 485 SFNB Ganmain NSW 2013 

WAI 486 SFNB Ganmain NSW 2013 

WAI 488 SFNB Ganmain NSW 2013 

WRS13ptt-22 NFNB Longrenong Vic 2013 (s) 

ptm13-228 SFNB Goomalling WA 2014 (s) 

ptm13-165 SFNB Willaura Vic 2013 

sf04-0036ss SFNB Glasshouse Vic 2006 (s) 

sf04-0063ss SFNB Glasshouse Vic 2006 (s) 

sf04-0070ss SFNB Glasshouse Vic 2006 (s) 

sf05-002ss SFNB Glasshouse Vic 2006 (s) 

sf06-001ssa SFNB PBC Nursery Vic 2006 (s) 

sf06-001ssc SFNB PBC Nursery Vic 2006 (s) 

sf06-001ssd SFNB PBC Nursery Vic 2006 (s) 

sf06-001sse SFNB PBC Nursery Vic 2006 (s) 

sf09-057 SFNB Sea Lake Vic 2009 

sf09-061 SFNB Jeparit Vic 2009 

sf09-077 SFNB Nhill Vic 2009 

sf09-064 SFNB Rainbow Vic 2009 

sf07-036ss SFNB Maroopna Vic 2007 

sf07-048ss SFNB Glenthompson Vic 2007 

sf07-020ss SFNB Pinpinio Vic 2007 
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sf07-061ss SFNB Charlton Vic 2007 

sf08-062ss SFNB Unknown Vic 2009 (s) 

sf08-027ss SFNB Nullawil Vic 2008 

sf08-061ss SFNB Unknown Vic 2009 (s) 

sf07-042ss SFNB Saint Arnaud Vic 2007 

sf07-032ss SFNB Boort Vic 2007 

sf07-039ss SFNB Raywood Vic 2007 

sf07-038ss SFNB Elmore Vic 2007 

ptm12-030 SFNB Callawadda Vic 2012 

ptm13-103 SFNB Beulah Vic 2013 

ptm13-106 SFNB Warracknebeal Vic 2013 

ptm13-112 SFNB Donald Vic 2013 

ptm13-113 SFNB Watchem Vic 2013 

ptm13-114 SFNB Mamou Vic 2013 

sf03-0057ss SFNB Glasshouse Vic 2006 (s) 

sf03-0030ss SFNB Glasshouse Vic 2006 (s) 

sf03-0022ss SFNB Glasshouse Vic 2006 (s) 

sf03-0073ss SFNB Glasshouse Vic 2006 (s) 

sf03-0014ss SFNB Glasshouse Vic 2006 (s) 

sf03-0013ss SFNB Glasshouse Vic 2006 (s) 

sf03-0004ss SFNB Glasshouse Vic 2006 (s) 

sf03-0001ss SFNB Glasshouse Vic 2006 (s) 

ptm14-102 SFNB Elmore Vic 2014 

ptm14-080 SFNB Stawell Vic 2014 

ptm14-077 SFNB Brim Vic 2014 

ptm14-069 SFNB Mitiamo Vic 2014 

ptm14-067 SFNB Boweya North Vic 2014 

ptm14-062 SFNB Unknown Vic 2014 

ptm14-061 SFNB Katamatite Vic 2014 

ptm14-056 SFNB Yarrawonga Vic 2014 

sf07-022ss SFNB Kiata Vic 2007 

sf07-060ss SFNB Lake Bolac Vic 2007 

sf07-041ss SFNB Logan Vic 2007 

sf07-006ss SFNB Hopetoun Vic 2007 

sf07-001ss SFNB Nhill Vic 2007 

sf07-018ss SFNB Birchip Vic 2007 

sf07-029ss SFNB Donald Vic 2007 

sf08-077ss SFNB Unknown Vic 2009 (s) 

sf07-046ss SFNB Murtoa Vic 2007 

sf07-023ss SFNB Nhill Vic 2007 

sf07-044ss SFNB Marnoo Vic 2007 

sf07-058ss SFNB Skipton Vic 2007 

sf07-007ss SFNB Patchywollock Vic 2007 

sf07-011ss SFNB Lascelles Vic 2007 

sf07-034ss SFNB Mitiama Vic 2007 

sf07-030ss SFNB Donald Vic 2007 

ptm13-116 SFNB Birchip Vic 2013 

ptm13-123 SFNB Birchip Vic 2013 

ptm13-125 SFNB Natimuk Vic 2013 

ptm13-129 SFNB Hopetoun Vic 2013 

ptm13-131 SFNB Rainbow Vic 2013 

ptm13-135 SFNB Willenabrina Vic 2013 

ptm13-136 SFNB Taylors Lake Vic 2013 

ptm13-137 SFNB Dumosa Vic 2013 
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ptm13-138 SFNB GIP cage Vic 2013 

ptm13-141 SFNB Horsham Vic 2013 

ptm13-142 SFNB PBC Nursery Vic 2013 

ptm13-147 SFNB PBC Nursery Vic 2013 

ptm13-149 SFNB Yalla Y Poora Vic 2013 

ptm13-152 SFNB Hopetoun NVT Vic 2013 

ptm13-155 SFNB Charlton NVT Vic 2013 

sf07-015ss SFNB Menangatank Vic 2007 

HRS#08117 NFNB Tanneymorel Qld 2008 

HRS#09127 NFNB Brocklesby NSW 2009 

HRS#09130 NFNB Horsham, PBC Vic 2003 

HRS#09133 NFNB Meningie SA 2008 

HRS#10039 NFNB Mallala SA 1998 

HRS#10044 NFNB Streaky Bay SA 2009 

HRS#10046 NFNB Crystal Brook SA 2009 

HRS#10048 NFNB Bordertown SA 2009 

HRS#10097 NFNB Hermitage, HRF Qld 2010 

HRS#10153 NFNB Toowoomba, LRF Qld 2010 

HRS#10156 NFNB Tuloona NSW 2010 

HRS#10165 NFNB Allora Qld 2010 

HRS#10216 NFNB Rosedale, Turretfield Rd SA 2010 

HRS#11014 NFNB Borambola NSW 2011 

HRS#11018n NFNB Mt Sturt  Qld 2011 

HRS#11093 NFNB Hart (Blyth) SA 2011 

HRS#11094 NFNB Hart (Blyth) SA 2011 

HRS#11096 NFNB Hart (Blyth) SA 2011 

HRS#11097 NFNB Hart (Blyth) SA 2011 

HRS#11098 NFNB Hart (Blyth) SA 2011 

HRS#12031 NFNB Kents Lagoon (Kalbar) Qld 2012 

HRS#12090 NFNB Junabee Qld 2012 

HRS#12094 NFNB Northam WA 2012 

HRS#12097 NFNB Walebing WA 2012 

HRS#12098 NFNB Marnoo Vic 2012 

HRS#13001 NFNB Urania SA 2012 

HRS#13002 NFNB Brentwood SA 2012 

HRS#13003 NFNB South of Pt Pirie SA 2012 

HRS#13004 NFNB Elliston SA 2012 

HRS#13005 NFNB Conmurra SA 2012 

HRS#13006 NFNB Conmurra SA 2012 

NB102 NFNB Brookstead Qld 1995 

NB024 NFNB Jerramugup WA 1976 

NB033 NFNB Meandarra Qld 1989 

NB054 NFNB Biloela R.S. Qld 1994 

NB052B NFNB Rendelsham SA 1994 

97NB1 NFNB Unknown WA 1995 

NB077 NFNB Chinchilla Qld 1995 

NB081i NFNB Mt Rascal  Qld 1995 

NB097 NFNB Byee Qld 1995 

NB201i NFNB Walbundrie NSW 1996 

95NB100 NFNB Unknown WA 1997 

64/09 NFNB Unknown SA 2009 

11/10 NFNB Unknown SA 2010 

22/10 NFNB Unknown SA 2010 

24/10 NFNB Unknown SA 2010 
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HRS#15058-I NFNB South Stirlings WA 2014 

HRS#15059-I NFNB Esperance WA 2014 

HRS#15075-I NFNB Pittsworth Qld 2015 

HRS#15061-I NFNB Kincora Qld 2015 

HRS#08119 NFNB Urrbrae SA 2007 

HRS#08120 NFNB Urrbrae SA 2007 

HRS#09112 NFNB Warooka SA 2009 

HRS#09113 NFNB Foul Bay SA 2009 

HRS#09125 NFNB Greenough WA 2009 

HRS#09129 NFNB Lake Bolac Vic 2003 

HRS#09136 NFNB Kalannie WA 1996 

HRS#09137 NFNB Wonwondah Vic 2009 

HRS#09138 NFNB Horsham Vic 2009 

HRS#10022 NFNB Verran SA 2009 

HRS#10024 NFNB Rosedale SA 2009 

HRS#10025 NFNB Greenough WA 2009 

HRS#10026 NFNB Greenough WA 2009 

HRS#10027 NFNB Callington SA 2009 

HRS#10039 NFNB Mallala SA 1998 

HRS#10042 NFNB SW Tumby Bay SA 2009 

HRS#10043 NFNB Wandearah SA 2009 

HRS#10045 NFNB Urania SA 2009 

HRS#10047 NFNB Milang SA 2009 

HRS#10109 NFNB Clifton Qld 2010 

HRS#10193 NFNB Muresk WA 2010 

HRS#10194 NFNB Muresk WA 2010 

HRS#11087 NFNB Longerenong Vic 2011 

HRS#11099 NFNB Bithramere NSW 2011 

HRS#11119 NFNB Wonwondah Vic 2011 

WA03 NFNB Wickepin WA 2015 

WA05 NFNB Northam WA 2015 

WA06 NFNB Medina WA 2015 

WA07 NFNB 

DAFWA Experance  

Downs Research Station WA 2015 

WA08 NFNB Tenterden WA 2015 

WA09 NFNB Kendenup WA 2015 

WA10 NFNB Woogenellup WA 2015 

WA11 NFNB Arthur River WA 2015 

WA12 NFNB Griffiths Road WA 2015 

WA14 NFNB Wellstead WA 2015 

WA15 NFNB South Stirlings WA 2015 

WA16 NFNB Tenterden WA 2015 

WA17 NFNB Takalrup  WA 2015 

WA18 SFNB Broomehill WA 2015 

WA19 NFNB Northam WA 2015 

WA20 NFNB Kojonup WA 2015 

WA22 SFNB Carnamah WA 2015 

WA23 SFNB Kukerin WA 2015 

WA24 SFNB Coomalbidgup WA 2015 

WA26 SFNB Merredin WA 2015 

WA27 SFNB Stenton Park WA 2015 

WA28 SFNB West Arthur River WA 2015 

WA32 SFNB Cunderdin WA 2015 
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WA33 SFNB Esperance Region WA 2015 

WA35 NFNB Esperance Region WA 2015 
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Chapter 4 

 

R code for population genetics analysis  

 

#Required R library to run the analysis  

library("poppr") 

library("magrittr") 

 

x <- getfile() #get required file 

#reading file format, haploid=1 

HRFB1.DNArep <- read.genalex(x$files, ploidy = 1, geo = FALSE, region = FALSE, genclone = TRUE, 

sep = ",", recode = FALSE)  

HRFB1.DNArep #to check if the data loaded is genclone object 

 

#Calculate number of allelic differences between two replicated individuals: 

distPro <- provesti.dist(HRFB1.DNARep) 

 

#Population Genetics Analysis for isolates used in this study 

x <- getfile()  

HRFB1 <- read.genalex(x$files, ploidy = 1, geo = FALSE, region = FALSE, genclone = TRUE, sep = ",", 

recode = FALSE)  

splitStrata(HRFB1) <- ~Field/Year 

HRFB1 #to check if the data is correct; genclone object 

 

#Finding pairwise distance between the isolates  

myDist <- provesti.dist(HRFB1) # pairwise distance detected using provesti distance and matrix of 

pairwise distance stored in “myDist variable”  

 

#To collapse multilocus genotypes (MLGs) of threshold 0.03, which was obtained from pairwise distance 

calculated for replicated DNA samples.   

(mlg.filter(HRFB1, distance = myDist) <- 0.03)  

mlg.vector(HRFB1, reset = FALSE)    

mlg.filter(HRFB1, threshold = 0.03, distance = myDist, threads = 1L) 
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HRFB1 #to see number of collapsed MLGs 

 

#Calculating genotypic diversity 

poppr(HRFB1) 

 

#Correction of Simpson’s index for sample size 

(cc_diversity <- poppr(HRFB1))  

N <- cc_diversity$N      # number of samples 

lambda <- cc_diversity$lambda # Simpson's index 

(N/ (N - 1)) * lambda # Corrected Simpson's index  

 

#To identify MLGs and their corresponding isolates name  

MLGs <- mlg.table(HRFB1, total=FALSE) 

MLGs 

mlg.id(HRFB1) 

 

#To identify MLGs shared among the years  

HRFB1.crosspop <- mlg.crosspop(HRFB1) 

HRFB1.crosspop.tab <- mlg.table(HRFB1, strata = ~Year, sublist = "2013") 

HRFB1.crosspop.tab <- mlg.table(HRFB1, strata = ~Year, sublist = "2014") 

HRFB1.crosspop.tab <- mlg.table(HRFB1, strata = ~Year, sublist = "2015")  

HRFB1.crosspop.tab <- mlg.table(HRFB1) 

 

#Clone corrected data exported to csv file format for other analysis  

ccHRFB1 <- clonecorrect(HRFB1, strata = ~Year) 

genind2genalex (ccHRFB1, filename = "clonecorrected_HRFB1_156isolates.csv", quiet = FALSE, pop = 

NULL, allstrata = TRUE, geo = FALSE, sep = ",") 
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