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Abstract: Moods have been investigated previously in a range of cultural contexts. In our study, we
investigated if six mood profiles previously identified, termed the iceberg, inverse Everest, inverse
iceberg, shark fin, submerged, and surface profiles, were also evident among a Lithuanian sample.
A Lithuanian translation of the Brunel Mood Scale (BRUMS-LTU) was completed by a sample of
746 participants (male = 199, female = 547) aged from 17–78 years (M = 41.8 years, SD = 11.4 year).
Seeded k-means cluster analysis clearly identified the six hypothesized mood profiles, the prevalence
of which reflected previous findings. Cluster prevalence varied significantly by sex, age, exercise
and smoking status, frequency of overeating, and self-rated health of participants. Male participants
and older adults were under-represented for the inverse Everest profile and over-represented for
the iceberg profile. Those who reported more healthy habits (i.e., exerciser, non-smoker, rarely
overeat) and those reporting better self-rated health were over-represented for the iceberg profile
and under-represented for negative mood profiles; namely, the inverse Everest, inverse iceberg, and
shark fin profiles. Findings supported the cross-cultural invariance of the mood profile clusters and
confirmed the link between unhealthy habits and negative mood profiles.

Keywords: affect; emotion; mood profiling; cluster analysis; health; exercise; physical activity

1. Introduction

Moods and other affective constructs act as a barometer for psychological well-being
and mental health status [1]. With about 1 in 8 of the world’s population now living with a
mental health disorder [2], most often depression and anxiety, maintaining mental health
and preventing mental ill-health is a significant challenge in contemporary society, which
has only been made worse by the global COVID-19 pandemic [3–5]. Sustaining mental
health is a concern in Lithuania, with subjective well-being lower than the European Union
(EU) average [6] and mental health support services regarded as suboptimal [7,8]. The
development of simple methods of monitoring mental health status, including the recently
translated version of the Brunel Mood Scale (BRUMS) [9,10] into Lithuanian [11], adds
to the available resources. The assessment of changes in mood over time is often used
to monitor mental health [12], while the prevalence of mental health challenges globally
increases the importance of research into risk indicators. For the purposes of our study, we
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defined mood as “a set of feelings, ephemeral in nature, varying in intensity and duration,
and usually involving more than one emotion” [13]. Moods are seen to be of longer duration
and lesser intensity than emotions, and are often unrelated to an identifiable cause [14,15].

Measures of mood, including the Profile of Mood States (POMS) [16,17] and the
BRUMS, are frequently used to facilitate mood profiling, whereby the subscale scores of an
individual are plotted against normative scores to give a graphical representation of mood.
The 65-item POMS was originally targeted at psychiatric outpatients and hence assesses
more negative than positive moods; namely, the six mood dimensions of Anger, Confusion,
Depression, Fatigue, Tension, and Vigor [16]. Some researchers have been critical of the
negative orientation of the POMS and have noted that the scale offers a limited rather than
a comprehensive assessment of mood [18]. However, POMS profiles have shown value
as an early indicator of mental health issues [12,19] and for predicting performance in
sport contexts, for example, where negative moods can have a debilitating effect [20,21].
Morgan’s mental health model [12] predicts that a mood profile with a high score for
Vigor and low scores for Tension, Depression, Anger, Fatigue, and Confusion, which is
referred to as an iceberg profile, indicates positive mental health, while a profile with a
low score for Vigor combined with high scores for Tension, Depression, Anger, Fatigue,
and Confusion, which is referred to as an inverse iceberg profile [22], associates with poor
mental health outcomes. Another distinct mood profile, known as the Everest profile, is an
extremely positive profile characterized by a maximum or almost maximum Vigor score
and minimum or almost minimum scores for the other five subscales, and is proposed to
associate with good performance in sports and other domains [23].

Using the 24-item BRUMS to assess mood, additional profiles have been described
more recently which, based on their shapes and continuing the nautical/mountain theme,
are known as the inverse Everest, shark fin, submerged, and surface profiles [24,25]. The
first of these, the inverse Everest profile, is represented by high scores for Tension and
Fatigue, very high scores for Depression, Anger, and Confusion, and a low score for Vigor.
The very high scores on negative mood dimensions reflect elevated risk of mental health
disorders [26]. The next profile, referred to as the shark fin, is represented by a very high
Fatigue score, combined with below-average scores for Tension, Depression, Anger, Vigor,
and Confusion. The shark fin profile has been shown to associate with a lack of adherence
to safety procedures in the mining and construction industries [27] and is also somewhat
predictive of athletic injury [28]. The third profile is represented by average scores on all
mood dimensions and is known as the surface profile. The final profile is represented by
scores on all six mood dimensions that sit below the population average. The submerged
profile, as it is known, may relate to good performance in activities that require individuals
to remain calm and unemotional [29]. These four profiles, plus the inverse iceberg and
iceberg profiles, have been identified in several different languages and cultural contexts,
including Brazilian [30], Chinese [31], English [24,25,32], Italian [33], and Singaporean [34]
but have not yet been investigated in a Lithuanian context.

The BRUMS is used widely in a mental health context to, for example, screen military
personnel in South Africa for post-traumatic stress disorder [26]; monitor well-being among
cardiac rehabilitation patients and assess the risk of mental ill-health in Brazil [35,36],
prevent injury and reduce performance anxiety in Japanese ballet dancers [37]; and evaluate
American adolescents for risk of suicide [38].

Moods tend to vary according to biological sex and gender identity, with men reporting
higher Vigor scores and lower Tension, Depression, Anger, Fatigue, and Confusion scores
than women [5,32]. As a nation, Lithuania ranks poorly (i.e., 20 of 27 countries in the EU) for
gender equality [39], indicating that investigation of gender differences in the prevalence of
specific mood profiles is warranted among our sample of Lithuanian participants. Age is
also associated with mood differences, in that adults tend to report more positive moods as
age increases [32,40]. Such age-related variations may be explained in part by age-related
differences in emotion-regulation strategies. Younger adults tend to use less effective coping
strategies, instead resorting to maladaptive strategies such as avoidance, rumination, or
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suppression [41]. By comparison, older adults tend to engage more in more adaptive coping
strategies such as mindfulness [42–44]. Given the reported age-related differences in mood,
we also explored the prevalence of specific mood profiles according to age group.

The self-medication hypothesis of addictive disorders [45] posits that the use of illicit
or unhealthy substances is a way of coping with stress, anxiety, or depression [46]. Smoking,
alcohol consumption, and overeating are common forms of self-medication that can be
considered as unhealthy habits and potential threats to sustainable mental health. Hence,
all three are addressed in our study as potential influences on mood. Firstly, there is a
well-established link between smoking and mood disorders [47]. For example, adults
diagnosed with depression are twice as likely to smoke as adults without depression, and
mental ill-health contributes to both smoking initiation and higher levels of smoking [48].

Secondly, there is considerable evidence that alcohol consumption and mental health
are linked. Although drinking alcohol in moderation was long regarded as a contributor to
positive mental health [49], more recent evidence has tended to identify a range of threats
of alcohol consumption to sustainable well-being. For example, alcohol consumption
to alleviate negative moods was associated with a more than threefold increase in the
probability of developing alcohol dependence and of that dependence persisting over time,
among a sample of 43,093 participants in the United States [50]. Similarly, among a sample
of 2275 Finnish participants, alcohol use was linked to indicators of poor mental health,
especially psychological distress, as well as to poor life satisfaction [51]. Thirdly, overeating
is another maladaptive coping strategy linked to negative mood and risk of mental health
issues [52], as well as serious threats to physical health [53]. Overeating appears to be
precipitated by increased stress and may lead to clinical conditions, including depression,
binge eating disorder, and obesity [53,54].

The final potential influence on mood examined in our study is related to exercise.
Mental health status is linked to levels of physical activity and sedentary behavior. For
example, Chekroud et al. [55] analyzed data from more than 1.2 million adults in the USA.
Exercisers had 43.2% fewer days of poor mental health than non-exercisers. Further, a wide
range of epidemiological studies have shown that sedentary behavior negatively affects
physical and mental health, regardless of the level of physical activity [56]. Moreover, the
deleterious effects of lockdowns related to COVID-19 on reduction of both planned and
unplanned physical activity, increases in sedentary behavior, and a concomitant decline in
mental well-being, were reported in a multi-nation study across four countries [57].

The first aim of our study was to assess whether six mood profile clusters reported
previously; namely, the iceberg, inverse Everest, inverse iceberg, shark fin, submerged,
and surface profiles, would also be identified in Lithuanian-speaking participants. The
second aim of our study was to quantify the relative prevalence of the six mood profiles
and whether their prevalence varied by a range of demographic and lifestyle variables:
namely, sex, age, education, residence, smoking, alcohol consumption, eating behaviors,
physical activity, and self-rated health.

2. Materials and Methods
2.1. Participants

We recruited 746 individuals to participate in the study. A total of 199 (26.7%)
identified as men and 547 (73.3%) identified as women. The age range of participants
was 17 to 79 years (M = 41.8 ± 11.4 years). Most participants had a tertiary education,
with 583 (78.2%) having a university degree, and 163 (21.8%) being educated to a non-
degree level. Most participants resided in urban environments, with 457 (61.3%) living in
cities > 100,000 residents, and 289 (38.7%) living in smaller towns or rural locations. A total
of 142 (19%) identified as smokers and 604 (81%) as non-smokers. A total of 121 (16.2%)
reported they never drank alcohol and 625 (83.8%) did drink alcohol. Regarding eating
behaviors, 117 (15.7%) indicated they never overate, 495 (66.4%) indicated they rarely
overate, and 134 (18.0%) indicated they often overate. As for physical activity, a total
of 544 participants (72.9%) identified as exercisers (including participation in sport) and
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202 (27.1%) as non-exercisers. Finally, regarding self-rated health status, 133 reported being
in great health (17.8%), 420 in good health (56.3%), 173 in satisfactory health (23.2%), and
20 in bad health (2.7%) compared to others their age.

2.2. Measures

Mood was assessed using the Brunel Mood Scale (BRUMS), a 24-item measure origi-
nally developed for use with adolescents and athletes. The validation of the BRUMS has
since been extended for use with the general population and adults [9,10]. The BRUMS is
adapted from the POMS [16,17], and has four items in each of six subscales. Items of the
Tension scale are nervous, anxious, worried, and panicky. Items of the Depression scale
are unhappy, miserable, depressed, and downhearted. Items of the Anger scale are bitter,
angry, annoyed, and energetic. Items of the Vigor scale are energetic, active, lively, and
alert. Items of the Fatigue scale are exhausted, tired, worn out, and sleepy. Items of the
Confusion scale are mixed up, muddled, uncertain, and confused. A 5-point response scale
is used, ranging from 0 = not at all, 1 = a little, 2 = moderately, 3 = quite a bit, and 4 = ex-
tremely. Total subscale scores can range from 0–16. Participants respond to the question,
“How do you feel right now?” with reference to the 24 items. Cronbach alpha coefficients
in the 0.74 to 0.90 range [9,10] supported the internal consistency of the subscales. The
psychometric integrity of the measure was supported using multi-sample confirmatory
factor analysis, which demonstrated the invariance of the factor structure among adolescent
athletes, schoolchildren, adult athletes, and adult students [9,10].

Translation and re-validation studies of the BRUMS have occurred in many languages
and cultural contexts. These include Afrikaans [58], Bangla [59], Brazilian Portuguese [60],
Chinese [61], Czech [62], French [63], Hungarian [64], Italian [64,65], Japanese [66], Malay [67,68],
Persian [69], Serbian [70], Singaporean [71], Spanish [72], Turkish [73], and most recently
Lithuanian [11]. Researchers should note that the BRUMS measures six mood dimensions
only, assesses the construct of depressed mood rather than clinical depression, and is not a
diagnostic tool.

We used the Lithuanian-language version of the BRUMS, which is known as the
BRUMS-LTU. In a recent validation study [11], the BRUMS-LTU demonstrated strong
psychometric properties. Confirmatory factor analysis supported the hypothesized mea-
surement model (CFI = 0.954, TLI = 0.944, RMSEA = 0.060 [CI 0.056, 0.064], SRMR = 0.070).
The configural, metric, scalar, and residual invariance was supported for both men and
women using simultaneous multi-sample analysis. Two concurrent measures translated
and validated in the Lithuanian language; namely, the Perceived Stress Scale [74] and the
Big Five Personality Test [75], were shown to correlate with BRUMS-LTU scores as predicted,
which supported both the convergent and divergent validity of the scale. The Cronbach
alpha coefficients for the BRUMS-LTU subscales exceeded standard benchmarks [76], rang-
ing from 0.83 to 0.89 (see Table 1). The present study involved conducting further analyses
on the dataset collected during the validation study [11] to address additional research
questions related to the presence of distinct mood profile clusters and variations in their
prevalence when participants were grouped by sex, age, education, residence, smoking,
alcohol consumption, eating behaviors, physical activity, and self-rated health.

Table 1. Descriptive statistics for BRUMS-LTU subscales (n = 746).

Variable M SD SEM Min Max Skewness Kurtosis α

Tension 3.43 3.56 0.13 0 15 1.10 0.51 0.83
Depression 2.62 3.53 0.13 0 16 1.54 1.75 0.88

Anger 2.35 3.20 0.12 0 16 1.70 2.70 0.86
Vigor 9.13 3.70 0.14 0 16 −0.20 −0.50 0.88

Fatigue 5.12 4.22 0.15 0 16 0.59 −0.59 0.89
Confusion 2.84 3.46 0.13 0 16 1.41 1.55 0.85
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2.3. Procedure

Participants received the BRUMS-LTU as an online questionnaire through Facebook
using Google Forms. Participation was anonymous and no email addresses or names
were collected. The data collection period ran from May 2021 to September 2021, which
coincided with the end of the second COVID-19 wave in Lithuania, followed by a lull
in reported cases and then the third wave of infections. The study was conducted in
accordance with the Declaration of Helsinki, and the Human Research Ethics Committee at
Vytautas Magnus University granted approval for the study to be conducted. Participants
provided informed consent by clicking “continue” after reading the details of the research
and its purpose.

2.4. Data Analysis

Data were compiled for analysis using SPSS for Windows, Version 27, IBM Corpora-
tion, Armonk, NY, USA [77]. We applied cluster analysis techniques to investigate whether
six mood profile clusters previously identified, known as the iceberg, inverse Everest,
inverse iceberg, shark fin, submerged, and surface profiles [24,25] were evident among
a Lithuanian population. Hierarchical clustering is superior for delineating previously
undefined natural groupings, whereas k-means clustering is better for determining ex-
clusive cluster membership. When prior knowledge of clusters exists, as in our case, the
k-means procedure is recommended [78]. Hence, we used seeded k-means clustering to
improve clustering performance [79] and then compared the clusters identified to those
previously described [24,25] to assess external validity [80]. We subsequently conducted a
discriminant function analysis to assess the strength of the cluster structures. Finally, we
conducted chi-squared analyses to identify whether cluster prevalence varied significantly
by sex (male/female), age (17–30 year/31–40 year/41–50 year/51+ year), residence (urban:
>100,000 people/non-urban: <100,000 people), education (university degree/no university
degree), exercise (exerciser/non-exerciser), smoking (smoker/non-smoker), overeating
(never/rarely/often), and self-rated health status (bad/satisfactory/good/great).

3. Results
3.1. Data Screening and Descriptive Statistics

Our dataset showed some nonnormal distributions. For example, the distributions
of scores for Tension, Depression, Anger, and Confusion were positively skewed due to a
high proportion of very low scores reported with fewer scores at the upper end. This is
frequently the case for indicators of negative mood [9,10]. Similar nonnormality related
to kurtosis values was shown for Depression, Anger, and Confusion scores, which is also
common for these subscales [9,10]. A total of 15 multivariate outliers were identified
among the dataset using the Mahalanobis statistic, but all cases implicated were judged
to represent plausible responses and to be free of response bias [81,82]. Hence, no data
transformations were used. For all subscales, the full range of possible scores was reported
(range = 0–16), except for Tension (range = 0–15). Table 1 includes descriptive statistics for
all subscales of the BRUMS-LTU.

3.2. Cluster Analysis

To investigate the clustering of mood responses, we conducted a seeded k-means
cluster analysis prescribing a 6-cluster solution. All six clusters identified in the litera-
ture [24,25] were identified in our dataset: namely, the iceberg profile, inverse Everest
profile, inverse iceberg profile, shark fin profile, submerged profile, and surface profile.
Descriptive statistics related to the 6-cluster solution among the Lithuanian sample are
shown in Table 2. The mood profile clusters are shown graphically in Figure 1. The most
prevalent mood cluster was the iceberg (28.0%), which is the most positive profile of the
six profiles, and the least prevalent were the more negative profiles, the inverse iceberg
(14.1%), shark fin (13.4%), and the inverse Everest (7.5%), which is the profile most closely
associated with risk of psychopathology.
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Table 2. Descriptive statistics of the 6-cluster solution (n = 746).

Source
Iceberg (n = 209; 28.0%) Inverse Everest (n = 56; 7.5%) Inverse Iceberg (n = 105; 14.1%)

M SD 95% CI M SD 95% CI M SD 95% CI

Tension 43.22 3.75 [42.56, 43.88] 70.98 6.29 [69.70, 72.26] 61.64 6.29 [60.71, 62.58]
Depression 43.67 2.40 [43.02, 44.32] 72.98 8.29 [71.73, 74.24] 61.44 6.85 [60.52, 62.35]

Anger 44.14 3.10 [43.40, 44.89] 73.01 10.32 [71.57, 74.46] 58.88 8.30 [57.83, 59.93]
Vigor 60.22 4.93 [59.35, 61.10] 39.47 8.14 [37.79, 41.16] 43.55 8.60 [42.32, 44.78]

Fatigue 40.84 3.78 [40.12, 41.56] 65.24 7.23 [63.84, 66.63] 60.20 7.16 [59.18, 61.22]
Confusion 43.98 6.63 [43.23, 44.73] 72.25 8.27 [70.80, 73.70] 59.16 7.67 [58.10, 60.22]

Source
Shark Fin (n = 100; 13.4%) Submerged (n = 162; 21.7%) Surface (n = 114; 15.3%)

M SD 95% CI M SD 95% CI M SD 95% CI

Tension 47.65 5.29 [46.69, 48.60] 43.44 3.85 [42.69, 44.19] 52.79 5.35 [51.90, 53.69]
Depression 47.87 5.29 [46.93, 48.81] 44.18 2.77 [43.44, 44.92] 49.93 5.14 [49.05, 50.81]

Anger 46.57 4.45 [45.49, 47.65] 44.30 2.94 [43.46, 45.15] 52.36 5.91 [51.36, 53.37]
Vigor 42.33 7.25 [41.07, 43.59] 45.83 5.53 [44.84, 46.82] 55.02 5.94 [53.84, 56.20]

Fatigue 59.19 5.46 [58.14, 60.23] 45.39 4.57 [44.57, 46.21] 48.40 5.47 [47.42, 49.38]
Confusion 46.61 5.18 [45.53, 47.70] 44.12 3.64 [43.27, 44.97] 52.99 6.81 [51.98, 54.01]

3.3. Cluster Strength

The results of a discriminant function analysis to determine the accuracy of the cluster
structures are shown in Table 3. A total of 94.4% of cases were re-classified into their
original groupings and the result of a cross-validation test showed 93.6% accuracy. The first
three functions accounted for 99.4% of the cumulative variance (i.e., 86.1%, 11.3%, and 1.9%,
respectively), and a significant Wilks’ Lambda test (p ≤ 0.001) signaled a high degree of
discriminatory power for each function. Function 1 accounted for 90.8% of between-group
variance, while functions 2 and 3 accounted for 56.7% and 18.0%, respectively. Canonical
discriminant plots (see Figure 2) showed that cases were compressed around the group
centroids, with the iceberg, submerged, and surface profiles showing the highest degree of
compaction. Taken together, the results of the discrimination function analysis suggest that
the k-means cluster solution has excellent predictive accuracy and is a good fit to data.
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Table 3. Classification of discriminant functions (n = 746).

Cluster
Predicted Group Membership

n %
1 2 3 4 5 6

1 209 0 0 0 0 0 209 100
2 0 48 8 0 0 0 56 85.7
3 0 1 102 1 0 1 105 97.1
4 0 0 1 86 11 2 100 86.0
5 9 0 0 0 153 0 162 94.4
6 5 0 1 1 1 106 114 93.0

Note. 1 = Iceberg, 2 = Inverse Everest, 3 = Inverse iceberg, 4 = Shark fin, 5 = Submerged, 6 = Surface.
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3.4. Cluster Prevalence

The results of chi-squared analyses to determine whether mood profile cluster preva-
lence varied by demographic and lifestyle groupings are shown in Table 4. Adjusted
residuals identified which groups varied significantly, using critical values of ±1.96, ±2.58,
and ±3.29 to indicate significant differences at p < 0.05, p < 0.01, and p < 0.001, respec-
tively [83]. Cluster prevalence varied by the sex of participants in that males had a higher
prevalence of the iceberg profile and a lower prevalence of the inverse iceberg and shark
fin profiles, whereas females had a higher prevalence of the inverse iceberg and shark fin
profiles and a lower prevalence of the iceberg profile.

For age, the 17–30 year group had the lowest prevalence of the iceberg profile than
other age groups and the highest prevalence of the surface profile. The 31–40 year group
similarly had a lower prevalence of the iceberg profile than older age groups but the highest
prevalence of the inverse iceberg profile. The 41–50 year group had the highest prevalence
of the iceberg profile. The 51+ year group had the lowest prevalence of the inverse Everest
and inverse iceberg profiles than other age groups and the highest prevalence of the
submerged profile.

Those who smoked cigarettes showed a lower prevalence of the submerged profile and
a higher prevalence of the surface profile, whereas non-smokers had a higher prevalence
of the submerged profile and a lower prevalence of the surface profile. Exercisers had
a higher prevalence of the iceberg and surface profiles than non-smokers, and a lower
prevalence of the inverse Everest, inverse iceberg, and shark fin profiles. Non-exercisers
showed the opposite, being under-represented for the iceberg and surface profiles, and
over-represented for the inverse Everest, inverse iceberg, and shark fin profiles. Those who
overate often had the lowest prevalence of the iceberg profile and the highest prevalence of
the inverse Everest and inverse iceberg profiles, whereas those who overate rarely had the
lowest prevalence of the inverse iceberg profile.

For self-rated health status, those who rated themselves as in great health had the
highest prevalence of the iceberg profile and lowest prevalence of the inverse Everest
and inverse iceberg profiles. Those who rated themselves as in good health were under-
represented for the inverse Everest profile and had the highest prevalence of the surface
profile. Those who rated themselves as in satisfactory health were under-represented for
the iceberg profile, over-represented for the inverse iceberg profile, and had the highest
prevalence of the inverse Everest profile. Finally, those who rated themselves as in bad
health had the lowest prevalence of the iceberg profile and the highest prevalence of the
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inverse iceberg profile. Cluster prevalence did not vary significantly according to the
residential location (urban vs. non-urban), level of education (university degree vs. no
university degree), and alcohol consumption (alcohol drinker vs. non-alcohol drinker)
status of the participants.

Table 4. Distribution of clusters by demographic and lifestyle variables (n = 746).

Source
Cluster

1 % 2 % 3 % 4 % 5 % 6 %

Sex χ2(5) = 16.58 §

Male (n = 199) 73 §+ 36.7 15 7.5 19 *− 9.5 18 *− 9.0 39 19.6 35 17.6
Female (n = 547) 136 §− 24.9 41 7.5 86 *+ 15.7 82 *+ 15.0 123 22.5 79 14.4

Age group (year) χ2(15) = 47.62 †

17–30 (n = 243) 27 *− 19.7 14 10.2 22 16.1 16 11.7 26 19.0 32 §+ 23.4
31–40 (n = 263) 45 *− 22.4 21 10.4 40 §+ 19.9 33 16.4 35 17.4 27 13.4
41–50 (n = 236) 80 *+ 33.9 15 6.4 29 12.3 32 13.6 47 19.9 33 14.0
51+ (n = 172) 57 33.1 6 *− 3.5 14 §− 8.1 19 11.0 54 †+ 31.4 22 12.8

Smoking χ2(5) = 15.78 §

No (n = 604) 177 29.3 43 7.1 84 13.9 81 13.4 140 *+ 23.2 79 †− 13.1
Yes (n = 142) 32 22.5 13 9.2 21 14.8 19 13.4 22 *− 15.5 35 †+ 24.6

Exercise χ2(5) = 59.17 †

No (n = 202) 25 †− 12.4 25 §+ 12.4 40 §+ 19.8 41 †+ 20.3 53 26.2 18 §− 8.9
Yes (n = 544) 184 †+ 33.8 31 §− 5.7 65 §− 11.9 59 †− 10.8 109 20.0 96 §+ 17.6

Overeating χ2(10) = 43.83 †

Never (n = 117) 40 34.2 4 3.4 16 13.7 12 10.3 29 24.8 16 13.7
Rarely (n = 495) 156 §+ 31.5 33 6.7 59 *− 11.9 68 13.7 108 21.8 71 14.3
Often (n = 134) 13 †− 9.7 19 §+ 14.2 30 §+ 22.4 20 14.9 25 18.7 27 20.1

Health Status χ2(15) = 117.65 †

Bad (n = 20) 0 §− 0.0 3 15.0 9 †+ 45.0 4 20.0 3 15.0 1 5.0
Satisfactory (n = 173) 19 †− 11.0 30 †+ 17.3 38 †+ 22.0 25 14.5 41 23.7 20 11.6
Good (n = 420) 124 29.5 22 §− 5.2 51 12.1 57 13.6 92 21.9 74 *+ 17.6
Great (n = 133) 66 †+ 49.6 1 †− 0.8 7 §− 5.3 14 10.5 26 19.5 19 14.3

Note. 1 = Iceberg, 2 = Inverse Everest, 3 = Inverse iceberg, 4 = Shark fin, 5 = Submerged, 6 = Surface; + = over-
represented, − = under-represented; † p < 0.001; § p < 0.01; * p < 0.05.

4. Discussion

Our primary aim was to assess whether six mood profiles identified in the literature;
namely, the iceberg, inverse Everest, inverse iceberg, shark fin, submerged, and surface
profiles [24,25,30–32] would also be evident among a sample of 746 Lithuanian-speaking
participants. As the first research aim was met, our secondary aim was to assess if the
prevalence of the six mood profiles was moderated by the gender, age, residence, and
education level of participants, and by the lifestyle characteristics of smoking, exercise,
alcohol consumption, and frequency of overeating.

Compared to men, women were significantly more likely to report an inverse iceberg
profile or shark fin profile, and significantly less likely to report an iceberg profile. This
finding aligns with the general trend for women to report more negative mood profiles
than men [5,32], explained partly by hormonal fluctuations associated with reproductive
considerations [84,85] but primarily by the disadvantage women face in life compared to
men, especially in the areas of family responsibilities, education, and careers [86,87]. It
should be noted that data collection occurred during a relatively high point of the COVID-
19 pandemic, during which time women bore a higher proportion of the domestic and
emotional labor required to maintain family life [88], which was reflected in more negative
mood profiles among women [5].

Regarding age, participants in the 41–50 year group were significantly more likely
to report an iceberg profile than those in the 17–30 year group and 31–40 year group.
Also reflecting the tendency for older adults to report more positive moods than their
younger counterparts, those in the 51+ year group were significantly less likely to report an
inverse Everest profile or inverse iceberg profile than other age groups. Such age-related
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mood differences are generally consistent with the literature and are typically explained
by emotion-regulation strategies becoming better developed and more effective as people
age [41–44]. Extending investigation of the prevalence of the six mood profile clusters to
youth participants would be a worthwhile focus for future research.

Several significant differences were identified in the prevalence of mood profile clusters
related to lifestyle variables. Firstly, compared to non-smokers, smokers were more likely to
report a surface profile and less likely to report a submerged profile. These differences are
more meaningful when viewed in conjunction with other profiles, wherein smokers were
more likely to report an inverse Everest profile and less likely to report an iceberg profile
than non-smokers. These latter two differences were not statistically significant but reflect a
tendency for non-smokers to report more positive moods than smokers, which is consistent
with previous evidence that smokers have a higher risk of mental health issues [89]. A
potential mechanism for this link relates to the stimulative effect of nicotine on dopamine
release, which triggers positive feelings in the short term. Longer term, however, smoking
tends to depress the natural production of dopamine, rendering smokers more vulnerable
to depression and anxiety [89], although the nature of the causal relationship (i.e., does
smoking cause mental health problems or do those with mental health issues turn to
smoking?) is likely bidirectional. The complex relationship between smoking, mood,
and mental ill-health is further illustrated by research that highlights the pivotal role of
depression symptoms in moderating the smoking and mood relationship [90,91].

Secondly, those who engaged in exercise or sport were more likely to report an iceberg
profile or a surface profile than those who did not exercise, and less likely to report an
inverse Everest profile, an inverse iceberg profile, or a shark fin profile. This reflects a
very clear pattern for exercisers to report more positive moods than non-exercisers and
adds to an already strong evidence base for the preventive effects of exercise on mental
ill-health [92,93]. The mechanisms by which the beneficial effect of exercise on mood occurs
include an increase in blood circulation to the brain that influences the hypothalamic-
pituitary-adrenal (HPA) axis and thereby reduces reactivity to stress [93], although the
social interaction, self-efficacy, and distraction effects of exercise may also partially explain
the benefit [93].

Thirdly, it was shown that those who often overate were less likely to report an iceberg
profile than those who rarely or never overate, and more likely to report an inverse Everest
or an inverse iceberg profile. The link between overeating (leading to being overweight or
obese) and the risk of mental ill-health is well-established in the literature [94,95] and stress-
related mood disturbance is recognized as a risk factor for obesity [52]. Overeating and
mental ill-health operate as a vicious cycle, whereby weight increase leads to declining self-
esteem and negative affect, which promotes more binge eating [96]. Also, some medications
prescribed to counter mental health conditions can cause weight gain as a side effect [54],
reinforcing the overeating-mental ill-health relationship.

The most notable findings from our study were the clear relationships found between
mood profiles and self-rated health status. Those who rated themselves as in great health
or good health were far more likely to report an iceberg profile than those who rated
themselves as in satisfactory health or bad health. Conversely, those in bad health or
satisfactory health were more likely to report an inverse Everest or inverse iceberg profile
than those in good health or great health. The link between mood profiles and health status,
albeit self-reported, highlights the value of the BRUMS-LTU as a screening tool for use in
Lithuania. Once more data is generated, it would be beneficial to produce norms for the
BRUMS-LTU as a valid reference point to assist with the interpretation of scores derived
from the scale. The gender differences in mood profiles identified in the present study
suggest that separate tables of normative data for men and women would be advantageous.

It was unsurprising that the prevalence of the six mood profiles did not vary according
to the residential location (urban vs. non-urban) and education level (degree vs. non-
degree) of participants, considering the general lack of association previously reported in
the literature between mood and place of residence or level of education. More unexpected,
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however, was the lack of a significant association between mood profiles and alcohol
consumption, especially given the established link between alcohol consumption and
mental ill-health [50,51]. Nevertheless, based on our data derived from a Lithuanian
population, alcohol consumption was not associated with a high prevalence of negative
mood profiles that would signal an elevated risk of mental health disorders.

Publication of the BRUMS-LTU [11] represented a methodological advancement. Pro-
vision of a validated measure of mood for use with Lithuanian speakers avoids the need for
the time-consuming retranslation of items and helps prevent measurement errors caused by
incorrect comprehension [97,98]. The present study added another step forward method-
ologically by providing evidence of the prevalence of six distinct mood profiles, thereby
adding new reference points for future mood research in Lithuania. However, it is ac-
knowledged that the online questionnaire methodology has some inherent limitations.
Accessing any questionnaire via the internet reduces participation by marginalized and
lower socio-economic groups [99]. Also, the fact that our sample was mainly university ed-
ucated might also be seen as a limitation, although notably, Lithuania has one of the highest
graduation rates in the world, with 54% having a tertiary qualification [100]. The mean age
of participants (41.8 years) might also be considered a limitation of the present study. While
the mean age was approximately the same as the median age of the Lithuanian population
in 2020 (44.5 years) [101], no one under the age of 17 years participated. Another potential
limitation concerns gender representation, given that 73.3% of our sample identified as
women, whereas in 2020, 53.7% of Lithuanians were women [102]. Furthermore, only
19% of our sample identified as smokers, whereas a recent survey showed that 28% of
Lithuanians smoke [103]. Collectively, these limitations suggest caution when generalizing
the findings of the present study to the broader population of Lithuania.

Finally, the debate has raged for many decades about whether parametric statistical
procedures can be used legitimately with ordinal data derived from Likert-type scales, such
as the BRUMS-LTU. Although statistical purists claim this is a misuse of the data [104],
there is compelling evidence [105–107] that such use is acceptable given the robustness
of the statistical procedures involved, “Parametric statistics can be used with Likert data,
with small sample sizes, with unequal variances, and with non-normal distributions, with
no fear of ‘coming to the wrong conclusion’. These findings are consistent with empirical
literature dating back nearly 80 years” [107] (p. 631).

Putting our findings into a broader perspective, public and primary health approaches
to promoting sustainable health and well-being [108] should highlight the mood benefits
associated with smoking cessation, engaging in physical activity, and not overeating. The
key messages to be emphasized are that ceasing to smoke and overeat, while engaging in
more physical activity will likely promote mood benefits in the form of increased vigor,
reduced fatigue, tension, depression, confusion, and anger, and help avoid negative mood
profiles most closely associated with mental ill-health. Global [109] and national [110,111]
well-being advice invariably includes the need for more healthy lifestyle choices but does
not usually refer to their mood benefits.

Using mood profiling to screen large numbers of individuals for risk of mental ill-
health offers a simple, quick, and inexpensive method of identifying those who might
be appropriate candidates for a follow-up interview by clinicians. Access to a free mood
profiling system for completion and scoring of the BRUMS, including an instant report on
how reported mood may influence performance [20,21] and other behaviors, plus evidence-
based strategies for regulating mood, is available online [112]. Our paper provides evidence
to support the notion that healthy habits, in the form of exercising and not smoking or
overeating, are associated with positive moods that, in turn, signal a reduced risk of mental
ill-health and a greater likelihood of sustainable mental health.
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