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Abstract: Flowering, the beginning of the reproductive growth, is a significant stage in the growth
and development of plants. Conifers are economically and ecologically important, characterized
by straight trunks and a good wood quality and, thus, conifer plantations are widely distributed
around the world. In addition, conifer species have a good tolerance to biotic and abiotic stress,
and a stronger survival ability. Seeds of some conifer species, such as Pinus koraiensis, are rich in
vitamins, amino acids, mineral elements and other nutrients, which are used for food and medicine.
Although conifers are the largest (giant sequoia) and oldest living plants (bristlecone pine), their
growth cycle is relatively long, and the seed yield is unstable. In the present work, we reviewed
selected literature and provide a comprehensive overview on the most influential factors and on the
methods and techniques that can be adopted in order to improve flowering and seed production
in conifers species. The review revealed that flowering and seed yields in conifers are affected
by a variety of factors, such as pollen, temperature, light, water availability, nutrients, etc., and a
number of management techniques, including topping off, pruning, fertilization, hormone treatment,
supplementary pollination, etc. has been developed for improving cone yields. Furthermore, several
flowering-related genes (FT, Flowering locus T and MADS-box, MCMI, AGAMOUS, DEFICIENCES
and SRF) that play a crucial role in flowering in coniferous trees were identified. The results of this
study can be useful for forest managers and for enhancing seed yields in conifer plantations for
commercial use.

Keywords: conifers; flowering; seed production; pollination; phytohormones; tree management;
nutrient fertilization

1. Introduction

Conifer species are typically tall perennial and evergreen trees or shrubs. They are the
largest and most important species of gymnosperms with high economic and ecological
values, which have a potential life span of 1000 years under natural growth conditions [1].
Conifers include about 613 species, mainly in the Pinaceae, Taxodiaceae and Cupressaceae
families that are widely distributed over the world [2,3]. They appeared on earth’s sur-
face about three hundred million years ago [4]. The number of species of angiosperms
is estimated at about 300,000, conifers dominated the forests of the Jurassic until the rise
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of the angiosperms during the Cretaceous period [4]. Conifers also include the Arau-
caria family, the Podocarpus family, the species Sciadopitys verticillata and the yew family
(Taxacae). Although conifers dominate many of the temperate forests of the Northern
hemisphere, 208 (34%) of the 613 extant conifer species are threatened with extinction.
Conifer species are also a crucial landscape tree species due to its green leaves and straight
stems, and the world’s five largest courtyard species are conifer species, such as Cedrus
deodara (Deodara cedar), Sequoiadendron giganteum (giant sequoia), Araucaria cunninghamii
(hoop pine) and Pseudolarix amabilis (golden larch) [5]. In addition, conifers supply over
50% of the world’s timber, and most conifer wood is processed for pulp and paper [6]. Larix
(Larch sps), Picea asperata (Chinese spruce) and Platycladus orientalis (Oriental arborvitae)
have gradually become great timber tree species due to a good wood quality suitable for
wood processing, papermaking and construction industries [7,8]. Seeds of some conifer
species, such as P. koraiensis, have a high oil content and a variety of potential medicinal
components, including vitamins, fatty acids and minerals, which are widely used in food
industries and drug development with potential industrial applications and economic
benefits [9,10].

Tree genetic improvement is an important technology for breeding new and improved
varieties [11]. Reproduction through tissue culture and stem cuttings of many conifer
species remains difficult; thus, direct sowing and planting of seedlings raised in nurseries
is still considered a useful method for breeding an improved variety. Many seed orchards
of conifer species have already been established [12,13], such as P. koraiensis, Pinus sylvestris
and Larix, are in the primary or second-generation seed orchards [14–16]. While some tree
species, such as Pinus taeda (loblolly pine) and Pinus radiata (Monterey pine), are in the
fourth-generation of selection in seed orchards [17,18]. Most seed orchards show periodic
and variable reproduction due to unfavorable environment conditions and challenges of
management, which seriously affect the yield of seed orchards [19].

In this review, we discuss the crucial factors related to the flowering and seed pro-
duction of conifer species. In addition, we synthesized the techniques and management
practices that can be adopted to enhance seed production. In view of the complex challenges
in defining the mechanisms that control flowering and reproduction, we propose some
solutions to increase the economic benefits accrued from forestry activities, while providing
a theoretical basis for genetic improvement and expanded planting of conifer species.

2. Materials and Methods

For the current study, we reviewed articles indexed in the databases Web of Science
and Google Scholar. At the first stage, relevant studies were identified by using combi-
nations of the following keywords: “conifer”, “flower development”, “seed production”,
“pollination”, “phytohormones”, “tree management”, “topping off”, “dwarf”, “water and
fertilizer coupling”, “temperature”, “light”, “genetic improvement” and “seed orchards”.
At the final stage, the most appropriate articles were selected to perform a solid overview
of (a) the factors affecting conifers’ flowering and seed production and (b) the techniques
and management practices that can be adopted to enhance seed production.

3. Results

The growth cycle of conifer species is relatively long, and many factors affect seed pro-
duction, resulting in unstable seed yields. Thus, it is crucial to propose technical guidelines
for improving seed production in conifer plantations for commercial use (Figure 1).
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(P. koraiensis for example), panel (b) is topping off, panel (c) is pruning, panel (d) shows ideal tree 
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Pollen, the material basis for transmitting genetic information, is one of the important 
factors for seed formation [20]. Under natural conditions, most conifer species are polli-
nated by wind (anemophilous pollination). Pollen can travel hundreds of miles and at 
thousands of feet in altitude while maintaining some viability [21,22]. A typical young 
reproductive P. taeda can shed about one kg of pollen in a two-week period. Each year, 
about one billion seedlings of P. taeda are planted in the Southeastern US, with a potential 

Figure 1. Flowering and seed yields in conifers are affected by a variety of factors (pollen, tem-
perature, light, water availability, nutrients, etc.) and that for improving cone yields a number of
management techniques have been tested, including topping off, pruning, fertilization, hormone
regulation, supplementary pollination, etc. Panel (a) represents the 5–10-year-old tree of conifer
species (P. koraiensis for example), panel (b) is topping off, panel (c) is pruning, panel (d) shows ideal
tree shape, panel (e) shows fertilization and watering, panel (f) depicts hormone application, panels
(g) and (h) are female and male cones, respectively, panel (i) shows pollen storage, panel (j) depicts
supplementary pollination and panel (k) shows improved cone yield.

3.1. Factors Affecting Seed Formation and Development
3.1.1. Pollen

Pollen, the material basis for transmitting genetic information, is one of the impor-
tant factors for seed formation [20]. Under natural conditions, most conifer species are
pollinated by wind (anemophilous pollination). Pollen can travel hundreds of miles and
at thousands of feet in altitude while maintaining some viability [21,22]. A typical young
reproductive P. taeda can shed about one kg of pollen in a two-week period. Each year,
about one billion seedlings of P. taeda are planted in the Southeastern US, with a potential
yield of ten million tons of pollen over a short rotation from this species alone. Pollen
dispersal not only promotes gene flow between different populations, it also effectively
increases species diversity and richness [23]. In conifer species, pollen viability and quan-
tity are crucial for the success of pollination. Low pollen viability, high abortion rate
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and unsynchronized flowering are common in conifers and thereby reduce the rate of
successful zygotic fertilization [24]. Environmental conditions have a great impact on
the flowering period, and pollen viability is generally reduced or lost during abnormal
weather conditions [25,26]. In addition, pollen development and maturation are easily
disturbed by pollutants due to industrialization [27]. Combined with the above factors,
the probability of normal pollination of female cones is low in conifers, which has a direct
effect on the formation and development of seed. The low viability of pollen is to some
extent compensated by extraordinary pollen abundance. The synchronous release of pine
pollen, for example, creates visible yellow pollen clouds, which blanket the land as a fine
layer of snow. Pine pollen has been collected and distributed as a food and as a medicine
for 5000 years (Tang Materia Medica 657–659 C.E.).

3.1.2. Temperature and Light

Low temperature affects germination by regulating the vernalization of seeds [28].
Vernalization is a process that depends on a chilling requirement to produce flowering
and a good fruit crop. For example, peaches need a few hundred hours below 7 ◦C to
satisfy the chilling requirement to break dormancy, promote flowering and have successful
fruit production (https://www.greenwoodnursery.com/peach-tree-chilling-requirements
accessed on 31 March 2021). The overall germination rate and the time needed for ger-
mination of seeds varies significantly under different temperature conditions [29–31]. A
suitable temperature is also a precondition for flower bud formation and an important
factor affecting pollen longevity and viability [32]. In addition, the number of male cones
is generally more than female cones in conifers, which is not an ideal situation. Many
experimental results may be caused by the different mechanisms of male and female flower
buds in response to temperature, as temperature indirectly regulates the sex expression
of conifer species by changing the hormone balance in flower buds [33,34]. Conifer seeds
typically can be stored in the cold, e.g., at around zero degrees + or −2 ◦C for several
months, then planted to break dormancy. Temperature signals can also regulate the activity
of various enzymes and affect the metabolism in various biochemical reactions of conifer
species; thus, becoming a vital participant in photosynthesis and respiration [35–37].

Light is also a crucial environmental signal and the main energy source for the plant’s
photosynthesis and respiration [38]. There is a high canopy density with many lateral
and dead branches that affect the supply of normal light in conifers. Light intensity,
spectral composition and photoperiod are important factors for conifer species growth
and development, and they influence numerous physiological and biochemical reactions
that cause changes in their morphology and reproductive characteristics [39]. In addition,
different tree species have different demands and reaction mechanisms for light, which
are affected by external environmental factors as well as their biological characters [40,41].
With the increase in forest age and the crown canopy density, the available light under the
canopy will decrease, and flowering and reproduction will inevitably be affected. Therefore,
an appropriate planting density, pruning and topping off can ameliorate the insufficient
light of conifer species [42].

3.1.3. Water and Nutrient Fertilization

Water and nutrient fertilization are equally indispensable for plant seed formation and
development [43]. Plant roots absorb nutrients from the soil, which is rich in minerals and
organic matter to feed seed formation. Nutrient fertilization typically provides nitrogen,
phosphate and potassium. Nitrogen deficiency often limits growth due to the need for
substantial amounts being needed for biosynthesis of proteins and nucleic acids, while
phosphorous is needed for energy metabolism and nucleic acid biosynthesis. Potassium
is needed for salt balance, transport of water and nutrients. Fertilization maintains the
stability of mineral circulation in the soil, which ensures the support capacity of the soil for
plants and promotes the biosynthesis of proteins, amino acids and vitamins [44,45]. Plant
growth and development are the result of the interaction of water and fertilizer. Water
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provides a good moist environment for plant growth, which determines the activity of
roots and microbes, and contributes to the construction of a good root system [46]. In the
Southeastern US, with extensive plantations of southern pines, fertilization is a common
practice. In this region, chronic deficiencies are found for both nitrogen and phosphorus [47].
The internal rate of return from mid-rotation fertilization of nitrogen and phosphorus was
calculated to be 16%. Because most conifer species grow in mountainous areas with
poor soil and harsh environmental conditions, the nutrients are typically limited in the
soil [48]. Water and fertilization not only can effectively improve the soil environment,
but can regulate the nutrient supply and growth, photosynthesis and other metabolic
processes [49,50].

3.1.4. Molecular Mechanisms

The molecular mechanisms of flowering and seed production are complex, and the
related genes can directly or indirectly interfere with the sex differentiation of flower, time
of anthesis and seed development, resulting in the seed formation differences among
individuals or species. Flower-related genes, such as FT (Flowering locus T) and MADS-
box (MCMI, AGAMOUS, DEFICIENCES and SRF box), have been identified to play a
crucial role in flowering in conifer trees.

In the study of P. massoniana, Chen [51,52] cloned PmFT1 and PmEMF2 genes by
RT-PCR and RACE technology, and found that the two genes were highly expressed
during the development of male and female cones, respectively, suggesting that they were
involved in the development of flowers and seed formation. The CO gene is an important
member of the regulation of sunshine length between the circadian clock and flowering
time genes, which can combine light signals with circadian clock signals to regularly
activate the expression of the FT gene; thus, inducing flowering. In Ginkgo biloba, the study
of the effects of photoperiod on the GbCO gene transcription and seedling growth showed
that GbCO activates FT transcription to control flowering [53,54]. The plant LEAFY gene
encodes a class of plant-specific transcription factors, which play an important role in the
transition from vegetative to reproductive growth of flowering plants. The LEAFY and
UFO genes have a similar function in conifers; the LEAFY gene interacts with the UFO
gene by cloning and yeast two-hybrid techniques, and it is speculated that the UFO gene in
Metasequoia glyptostroboides may act as a transcriptional cofactor to regulate the LEAFY gene
activity and, thus, participate in the regulation of the flower meristem development [55].
MADS-box genes, a class of important transcriptional regulatory factors in eukaryotes
(animals, plants and fungi), play an important role in growth and development regulation
and signal transduction [56,57]. There are studies that show that three MADS-box genes
(PrMADS1, PrMADS2 and PrMADS3), LEAFY/FLORICAULA and NEEDLY (NLY) were
highly participated in the early stages of initiation and differentiation of P. radiata male
and female cone buds, as well as vegetative buds [58]. In another study, a transcriptome
data analysis showed that the enhanced transcriptional activity of MADS-box transcription
factors was also closely related to the formation of early cones, in particular the process of
sex reversal [59,60]. Thus, it can be also speculated that MADS-box transcription factors are
a key gene family in the molecular mechanism of conifer flowering and seed production.
The research on the molecular mechanism of flowering and seed production of conifers
is still scarce. Therefore, it is still the mainstream direction of future research. Despite a
long growth cycle and large genome compared with the broad-leaved trees, conifer species
were developed and used with some traditional tree breeding methods.

3.2. Technical Measures of Breeding and Management

In forest tree breeding, selecting parents with good characters is the basis of tree
improvement. Efficient management technology is the guarantee of a high quality and
yield. Conventional methods, including artificial pollination, hormone treatment, pruning,
water and fertilization coupling, can promote the flowering and reproduction of conifer
species. One technical measure that greatly improves the efficient management of a
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genetic improvement program is genetic fingerprinting, which provides a high level of
quality control on genetic selection [61]. In addition to providing an accurate inventory,
DNA markers can estimate genetic diversity, define genetic load, estimate the degree of
inbreeding, identify quantitative trait loci (QTLs) and using high throughput genomic
markers allow for a highly efficient genomic selection where many genomic markers
associated with favorable traits can be selected simultaneously [62].

3.2.1. Supplementary Pollination

Plant inbreeding refers to the combination of male and female gametophytes on the
same plant, or the mating between individuals with the same genotype [63]. Because of
the high genetic diversity and load, close genetic relationships can lead to poor selection.
Inbred lines are rare in conifer breeding programs [64,65]. The genetic characters of inbred
offspring are mediocre, including growth, cone and wood traits [66]. Most conifer species
are monoecious with a high possibility of inbreeding, which causes a high abortion rate of
flowers and low cone yields [67]. Therefore, supplemental pollination avoids inbreeding
and increases the efficiency of crosses. This method can be applied to open pollination
or to controlled crosses to effectively make up for low natural pollination. The pollen
with desired genes is scattered on the stigma of female flowers to create more fertilization
events [66]. Understanding the details of flowering is needed to improve the sustainability
and effectiveness of pollination. In the study of Douglas fir, (Pseudotsuga menziesii), the
rate of external pollination and the inbreeding rates were 10% to 28% and 12% to 17%,
respectively [68]. In addition to high inbreeding, pollen contamination from unwanted
genotypes is a serious detriment to defined breeding. In Scots pine (P. sylvestris), a hand
pollinator was used on female cones at the end of May. The amount of pollen per individual
plant was 0.06~0.08 mL, and the success rate was 66–84%; whereas the success rate was
10–23% when the pollination amount per plant was 0.03–0.05 mL that was applied by a
long aluminum pole duster [69]. The highest success rate of pollination was 69% using
pressurized backpack sprayers to pollinate the female flowers. Therefore, methods and
amounts are also critical factors affecting the success of pollination.

Supplementary pollination can introduce elite pollen into female cones to broaden
the genetic base, reduce pollen contamination, increase cone yield and maximize genetic
gain [70]. Understanding the flowering habits of each individual and selecting elite parents
are crucial for the efficient improvement of conifer species. It is essential to select the
best plants with good characters, fast growth, a high yield and allowing a robust pollen
collection. Furthermore, weather condition is a key factor affecting the success rate of
pollination [71]. As Additionally, the well-timed isolation of cones (method and bags) of
selected mother trees has a crucial importance in the process of artificial pollination.

3.2.2. Topping Off

Topping off (cutting off the apical meristem) inhibits apical dominance, controls shape
and height, improves light conditions and increases seed yields of trees [72]. When topping
off was carried out on P. sylvestris for seven consecutive years, the cone yields for each
individual tree increased by 95.5% and quality by 17.2% [73]. In Pinus tabulaeformis, the
upper two-wheel branches were topped off, and the results showed an average growth
rate for female cones and male cones increased by 372% and 238% [74]. Sun [75] carried
out topping off on P. koraiensis for three years, and the best result for topping off was to
cut the first wheel branch, and then the numbers of female and male cones increased by
2–4-fold. Similar results were obtained in Chen et al. [76] and Tan et al. [77] studies on
Pinus massoniana.

Topping off can reduce the tree height of conifers, which is more convenient for cone
collection and improves cone quality. The topping off treatment should be carried out in
late autumn or early spring because conifer species grow slowly and have low physiological
activity during those periods [74,75]. The target trees should be 10~20 m tall and have
vigorous growth. For such trees, it is advisable to cut off a fifth to quarter of the tree height.
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For some conifer species with a height of 20~30 m, a quarter to third of the overall height
can be topped off. For particularly tall trees, the topping off height should not exceed one
half of the tree height to avoid inhibition of further growth. After a topping off treatment,
some new branches of conifer species will regenerate at the top in the second year, which
will serve as cone setting branches, thereby increasing cone yields [74].

Adult conifer species with big crowns hardly form ideal tree shapes under natural
conditions. Thus, some measures such as topping off and branch pruning should be used
to control the tree shape and improve cone yields [78] (Figure 2). Many new branches
are induced from new lateral meristems after topping off in the first year, then the trees
create a new leader and regain apical dominance. Therefore, the topping off treatment
should be implemented on lateral branches in consecutive years. The final ideal tree shape
is umbrella-like and has a large canopy, low tree height, many lateral branches and new
shoots [76]. When conifer species reach the mature seed production age, the number of
flowers and fertile seeds increases significantly.
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3.2.3. Thinning and Pruning

Thinning, a primary forestry tree management method, is the main treatment to
reduce stand density. Its main function for trees is to provide light and to improve nutrient
utilization efficiency [79–81], as well as carbon uptake and drought resistance [82]. Thinning
allows faster growth rates, reduces root competition and combined with pruning results
in longer rotation times and great improvements in wood quality. Thinning treatment of
P. koraiensis, retaining 300 trees per hectare, with 75% intensity, increased the cone yield
of each individual tree by 8~10-fold. When 750 trees per hectare were reduced by 37.5%
thinning intensity, the total yield of cones increased three-fold compared to an un-thinned
stand [83]. In Pinus pinea (stone pine), when 350 trees were retained per hectare, the
cone yield of each individual tree increased by 1.48 times, while a high thinning intensity
reduced the cone yield [84]. Appropriate timing and reasonable intensity are the basic
requirements of thinning. Based on the evaluation of different traits such as growth, wood
and cone characters, some individuals with poor performance were selected as the thinning
targets [85,86]. Based on aforementioned research, the optimal thinning time was before
the stage of tree sap flow or after cone shedding. For different site conditions and species
characteristics, optimal thinning intensity may be different, and a poor choice of thinning
methods may result in the reduction in yield [82]. In summary, conifer forests with a high
density should maintain 500~700 trees per hectare after thinning in the first year, and
thinning intensity should maintain 300~400 trees per hectare after 2~3 years.
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Pruning is another effective measure to improve the light transmittance of trees in
plantations. It refers to the removal of parts or redundant lateral branches, which can
improve tree shape and increase the effect of ventilation and light transmittance [87].
Pruning may have dramatic effects on wood quality by reducing knots and promoting
the growth of long straight stems. The content of trace elements in needles changes after
pruning, which can improve the biomass and productivity of trees [88–90]. In P. sylvestris
and P. koraiensis, the yields and quality of individual trees were significantly improved
after pruning [91,92]. In another study, 3–4 main branches were kept in each round of the
P. sylvestris crown while the remaining branches were cut off results in an increase in the
number of cones of each individual tree by 14.3% [93]. Therefore, reasonable pruning plays
a key role in the growth and development of conifers [94,95]. The stage of tree sap flow is
the optimal time for pruning because the ability of trees to recover is strong and wound
healing is fast.

3.2.4. Girdling and Cutting Roots

Girdling is a method involving wounding of the phloem of the trunk or main branches
to regulate the distribution of nutrients in the trees so as to promote flowering and repro-
duction. Studies on girdling in conifers are focused on its impacts on cell activity [96], wood
characteristics [97,98] and photosynthesis and respiration [99], but only a few investigate
its effect on flowering and reproduction dynamics. In a study on Japanese larch (Larix
leptolepsis), girdling carried out at 1.2 m above the ground in April resulted in a significantly
higher average cone yield than the control group [100].

Girdling should be carried out on trees growing in good soil conditions, with vigorous
growth and no infestation/infection by pests or pathogens. The girdling time should be
one month before bud differentiation. The specific method would be to girdle the bark of
the trunk or main branches with a knife around the trunk with a width of 1~2 cm below
the DBH (100~120 cm from the ground) and cut the bark to the xylem in depth. If the tree
is very large, the girdling width can be enlarged. After 3~5 years, the number of flowers
and developing seeds will improve. Girdling does damage to the tree itself, which may
lead to a weakened resistance to pests and pathogens, and nutrients should be added in
time to accelerate conifer growth after girdling.

Conifer species absorb nutrients from the soil by their roots. Root cutting is the process
of removing excess virtual roots from the ground and limiting root growth. The study
conducted on winter wheat (Triticum aestivum) has shown that the water consumption and
water use efficiency were low after root cutting [101,102]. It also affects the photosynthesis,
translocation and stress resistant of plants [103]. However, root cutting is rarely conducted
in conifer species. In a study of P. asperata, root cutting was carried out in three seed
orchards of different ages in May at about 2 m from the trunk on both sides of each tree
with sharp steel plates to a soil depth of 40 cm. There was no significant difference in the
number of male cones, but the number of female cones was doubled [104]. In P. koraiensis,
a circular groove was opened at a distance of 1.7 m from the trunk to cut off roots in April,
and the number of female and male flowers increased two to three-fold and one to two-fold,
respectively [75]. Summing up the above, the treatment time of conifer species generally
chosen before the stage of tree sap flow and an annular groove is dug around the tree
1.5~2 m away from the trunk of the tree.

3.2.5. Water and Fertilization Management

The number of flowers is related to the nutrient supply of the plant and the external soil
environment, and some plants growing in low fertility soil produce few flowers because of
nutrient deficiencies. Thus, it will be necessary to apply nutrient fertilizers and to maintain
disease resistance [105,106]. Suitable water and fertilizer treatments differ according to soil
conditions and biological characteristics that can effectively shorten the breeding cycle [107].
Good water and fertilizer management can not only increase production and maintain
nutrient supply, but also improves photosynthesis and respiration [108,109].
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The main inorganic nutrients for conifer cultivation include nitrogen (N), phosphorus
(P), potassium (K), calcium (C), iron (Fe), zinc (Zn), boron (B), copper (Cu) and magnesium
(Mg). The corresponding fertilization and efficacy of each element are shown in Table 1.
Generally, N, P and K fertilizers are used in the management of conifer species, which play
significant roles in cone development. According to different environmental conditions,
the combination of many nutrient elements is needed to maintain the normal growth of
plants [110]. Fertilization timing and dose are crucial for vegetative and reproductive
growth of trees. In studies of conifer species, fertilizers are applied before flower bud
differentiation in the spring, which can shorten flowering time of P. taeda clones [50]. In
a study of the application of N, P, K and other fertilizers on Chinese fir (Cunninghamia
lanceolata), the compound fertilizer (0 g N, 400 g P, 50 g K, 50 g Mg and 50 g B) increased
the average number of cones in each individual plant by 0.54-fold [111]. In a study of
1.5 generations of P. massoniana, the application of N, P, K and micronutrient fertilizer
resulted in an increase in the number of cones by 2.76-fold when 150 g N, 90 g P and 60 g
micronutrients were applied to each tree. The ratio of male and female cones was more
suitable for the development of seed orchards after applying 120 g N, 72 g K and 60 g of
micronutrients. When the treatment involved 150 g N, 26 g P and 60 g of micronutrient
being applied to each individual tree, the number of cones increased by more than three-
fold [112]. In a study conducted on Fujian cypress (F. hodginisi), the application of 0.3 kg
N, 0.4 kg P and 0.3 kg K on each individual tree increased the number of cones from each
individual tree by 200% and the number of male and female cones by 129% and 338%,
respectively, demonstrating that fertilization could improve the ratio of male and female
cones of F. hodginsii and promote the flowering and reproduction of the trees [113].

Table 1. Fertilizer commonly used in conifer species.

Element Fertilizer Efficacy References

N CH4N2O Promote flower bud development, stem and leaf growth and
cone development [114]

P Ca(H2PO4)2 Promote plant growth and metabolism [115]
K KCl Promote photosynthetic rate, plant resistance and cone quality [116]
Ca Ca(NO3)2 Regulate osmotic action, enzymatic reaction and plant senescence [112]
Mg MgSO4 Promote photosynthesis and chlorophyll formation [117]
B Na2[B4O5(OH)4]·8H2O Promote auxin operation, pollen germination and pollen tube growth [118]

Cu CuSO4 The components of enzymes [119]
Zn ZnSO4 Promote cellular respiration [120]

Based on the results above, we summarized a set of water and fertilization manage-
ment measures for conifer species. In the stage of tree sap flow, fertilizer treatments are
implemented when the soil thaws. Compound fertilizer in a ratio of N:P:K = 10:2:1 should
be applied in a circular ditch 20~30 cm depth at a distance of 1.5 m away from trees. For
conifer tree species with heights less than 5 m, 0~1 kg of fertilizer should be applied to
each tree. The optimal dose for trees 6 to 15 m high is 1~2 kg, while the suitable dose
for trees more than 15 m high is 2~5 kg. In terms of nutrients, N and P are the most
important nutrients affecting formation of female cones. Besides fertilization, water is a
key factor to promote the plant growth and reproduction process. In the areas of high
altitude, where the soil is not suitable for storing water, irrigation is indispensable [121,122].
Dobbertin et al. [46] studied the effect of irrigation in a P. sylvestris forest in Switzerland
by applying water quantities that doubled the long-term annual precipitation of the site.
The results showed irrigation treatment increased the growth of foliage, stems and shoots,
which provided basic conditions for future seed production [46]. Therefore, the conifer
species planted in drought-affected areas need timely watering. However, there is a lack of
reports on the related mechanisms of action between water and seed production, which
will be a crucial research direction in the future. Reasonable irrigation measures and
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fertilization strategies provide significant improvements in flowering and reproduction
of conifers.

3.2.6. Phytohormone Treatments

Plant hormones are an important regulator of embryogenesis, organ development
and flowering [123,124]; they can enhance stress resistance and increase yield and planting
efficiency [125,126]. Phytohormones have a wide range of effects and several phytohor-
mones affect seed formation. Auxin, (primarily indole acetic acid, IAA), gibberellins (GA),
cytokinin (CTK), abscisic acid (ABA) and ethylene (ETH) are widely used in agricultural
production and forest tree physiological investigations [127]. IAA, GA and CTK have
the most direct activity on flowering, while ABA and ETH affect reproduction and seed
production [128]. IAA is the most abundant of the auxins found in conifers, which is
produced in the apical bud, then is transported down the stem and inhibits lateral bud
formation. The suppression of lateral branching results in the apical dominance of the main
central stem giving rise to tall straight trees able to outcompete branching trees for light
and to minimize the damage to lateral branches from wind or snow. Cytokinin, known
to stimulate shoot development and lateral branching are a class of molecules derived
from adenine. They are synthesized in the roots and move through the xylem to leaves. In
conifers, the growth and morphology of the stem and crown depend on the ratio of auxin
and cytokinin.

Gibberellins (GAs) are a group of more than a hundred tetracyclic diterpenoid car-
boxylic acids affecting organ growth, seed dormancy, germination, flowering and senes-
cence [129]. GAs are composed of 19 or 20 carbon atoms, and the C-19 GAs are the most
active. The mutation of enzymes in the GA biosynthetic pathway are dwarfs due to the
inhibition of internode growth. GAs have a key role in seed dormancy and germination in
addition to metabolic effects on biosynthesis of phospholipids, nucleic acids and proteins.
GAs are synthesized in the plastids and when breaking dormancy, they trigger de novo syn-
thesis of hydrolytic enzymes in the seeds. Cytokinin and gibberellins stimulate flowering in
conifers [130,131]. Ethylene is intriguing because it affects both the growth and senescence,
often with contradictory effects [131]. The complexity of its effects may reside in its inter-
action with auxins, cytokinin, gibberellins and abscisic acid. In general, ethylene inhibits
flowering and senescence, for example, in Arabidopsis and rice, but stimulates flowering
in Bromeliads. In conifers, ethylene stimulates a response to wounding, to systemically
acquired resistance and promotes the formation of traumatic resin ducts. Ethylene affects
the branch angle (hyponasty) and, therefore, has some influence on the apical control of
branching [132]. Auxin induces an ethylene response, confounding the interpretation of
results because the exogenous application of auxin may induce an ethylene response.

The abundances of GA, IAA and CTK are high during bud differentiation of oriental
arborvitae (P. orientalis), suggesting that these hormones have a significant influence on
the internal mechanism of bud formation [133]. IAA and CTK are also involved in cellular
proliferation and differentiation, organ formation and stem development. GA is the main
regulator of the flowering pathway, and it mainly regulates growth, flower development
and seed formation [134,135]. Previous studies on G. biloba and P. asperata found that
the changes of hormone composition at different development stages would determine
whether it would be a major or minor seed year. A high content of ZR (zeatin riboside, a
cytokinin), IAA and GA are conducive to a high seed yield [136]. An imbalance of the male
and female differentiation limits a high seed yield in conifer species, but the application
of hormones can effectively restore the balance [137]. Table 2 summarizes studies on the
application of hormones to promote flowering and reproduction in several conifer species.
Among the different hormones tested, GA4/7 was the most widely used to induce blooming
in conifers [138].
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Table 2. Studies on the effect of hormone on flowering and seed production of conifer species.

Variety Hormone Dose Effect Method References

Pinus koraiensis

GA3 50 mg male bulb↑ Ti [139]
GA4 37 mg female bulb↑ Ti

[75]GA7 37 mg female bulb↑ Ti
GA3 + GA4/7 45 mg male bulb↑ Ti

6-BA 3 mL female bulb↑ S [140]
Pinus sylvestri

GA4/7

250 mg/L female bulb↑ S [141]
Pinus tabuliformis 500 mg/L male and female bulb↑ S [142]

Pseudotsuga menziesii 400 mg/L male and female bulb↑ S [143]
Pinus thunbergii Parl 80 mg/L female bulb↑ Ti [144]

Pinus massoniana
IAA 250 mg/L male and female bulb↑ Ti

[145]BAP 500 mg/L male and female bulb↑ Ti
Tsuga chinensis

GA4/7

200 mg/L cone↑ Si [146]

Picea asperata Mast 20 mg cone↑ Ti [147]
10 mg cone↑ Ti [148]

Larix potaninii GA3 200 mg/L female bulb↑ S [149]

↑ = increase; Ti = trunk injection; S = spraying.

In Chinese hemlock (T. chinensis), the cone yield was increased 2–5-fold after extensive
spraying with a GA4/7 solution [145]. The injection of GA4/7 for two consecutive years
from May to June resulted in an increase in the number of female flowers of Scots pine
(P. sylvestris) by 63~120% and 168~282% in the first and second years, respectively [141]. In
western larch (Larix occidentalis), doses were graded according to the DBH so that 60 mg was
injected for every 5 cm of DBH. Additionally, it was found that cone yield was increased
up to seven-fold when the injection concentration was 120 mg/mL GA4/7 [150]. In Zhao’s
2007 study [142], 6-BA (6-benzylaminopurine, a cytokinin), CCC (chlormequat chloride, a
GA synthesis inhibitor) and GA4/7 were injected into plant stems, and better flowering was
observed with GA4/7 in Chinese pine (P. tabulaeformis). The number of female and male
cones was the highest at 500 mg/L and 1000 mg/L, respectively. After a stem injection of
20 mg GA4/7 in Chinese spruce (P. asperata) in June, the yield of cones for each individual
increased 12-fold [147]. In another study, the number of P. asperata cones also increased
with a hormone dose [151]. In a study of Fujian cypress (Fokienia hodginsii), branches
were sprayed with GA3, NAA (naphthaleneacetic acid, a synthetic auxin) and 2,4-D (a
synthetic auxin used as an herbicide against dicots) during the flowering period. NAA had
the greatest influence on the yield of male and female flowers and cones. At 200 mg/L,
the increase in female flowers reached 111%, and the increase in cones was 9.27% higher
than the control group [113]. In May, the number of male and female cones of Korean
pine (P. koraiensis) was increased significantly by stem injection with GA3, GA4 and GA7.
Up to a 50 mg dose, the number of male and female cones increased with the increase in
concentration [139]. Many hormones interact to regulate the various stages of flowering and
seed development and germination, so hormone interactions have profound significance in
promoting seed production of conifer species [143]. Receptors for endogenous hormones’
action are different, which involve bud differentiation and sexual reversal by a unique
signal transmission mechanism [152,153]. The balance of hormones shortened the time
needed for flowering and seed formation. Under natural conditions, conifer species not
only have a long breeding cycle, but also an uneven male and female gametic ratio. As the
most important endogenous signaling mechanisms, phytohormones play crucial roles in
the processes of growth, development, reproduction, metabolism and adaptation of conifer
species [154,155].

Previous results lead to some suggestions for hormone treatments to promote flower-
ing and seed development in conifers: (1) stem injection and spraying are the best methods
for hormone treatment; (2) DBH is a useful reference for hormone dosage because the DBH
growth of conifer species is directly related to the age of the tree. When DBH is below
15 cm, 30~45 mg of hormone should be injected, the concentration should be 200~350 mg/L
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and spraying should continue until the branches are moist. If the DBH is 15~30 cm, hor-
mone injection should be 45~60 mg per plant, and solution concentration should be set at
350~500 mg/L. Similarly, for every 15 cm increase in DBH, stem injection amounts should
increase by 15 mg and the concentration increased to 150 mg/L. (3) Hormones should be
applied before flower bud differentiation in winter and (4) GA is preferred for the promo-
tion of flowering and seed yield. To obtain synergy in the development of male and female
cones in annual cone producing conifer species, such as Tsuga chinensis, the application of a
mixture of GA4/7 and GA3 with equal doses one month before flower bud differentiation
gives the best results. The method is also suitable for some conifers with two-year growth
cycles, such as P. koraiensis, P. taeda and Pinus thunbergii. Before snow comes, GA3 should
be injected to preserve pollen viability, to successfully achieve fertilization in the following
year. In addition, NAA solutions can be sprayed during flowering to ensure a favorable
cone-setting. CCC can be sprayed on cones twice within 7 days to ensure quality.

4. Conclusions and Outlook

The yield and quality of conifer cones and seeds have become a greater focus of
research over the years. Many experiments about flowering and reproduction in conifers
have been carried out and a substantial amount of information obtained. Based on the
synthesis of available information, the present work revealed that flowering and seed pro-
duction in conifers are affected by a variety of biotic and abiotic factors, That can seriously
impact cone yields in plantations for commercial use. On the other hand, there are useful
tools and management techniques that can be adopted in order to sustain or improve cone
yields, including topping off, branch pruning, girdling, hormone application, fertilization,
irrigation and supplementary pollination. Furthermore, several flowering-related genes
(FT, Flowering locus T and MADS-box, MCMI, AGAMOUS, DEFICIENCES and SRF) that
play a crucial role in flowering in conifer trees were identified. In recent years, genome
selection (GS) and genetic engineering have been added to traditional approaches to conifer
species breeding research. Even though conifers have very large genomes, molecular tech-
nology is being applied to the genetic improvement of economic traits for conifer species,
especially in improving flowering and reproduction traits. Despite research advances, there
is an urgent need to produce species-specific technical management guidelines for conifers,
aiming to sustain high cone yields. This work can be considered as a first attempt of a
framework to reach the goal; however, more extended and systematic research is needed.
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