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I love a sunburnt country,  
A land of sweeping plains,  
Of ragged mountain ranges,  

Of droughts and flooding rains. 
I love her far horizons,  

I love her jewel-sea,  
Her beauty and her terror  

The wide brown land for me! 

My Country, Dorothea Mackellar (1904) 
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THESIS PLAN 

This thesis is presented in three research chapters and an appendix featuring a plant 

field guide that I wrote and published in February 2014. Figures appear at the end of 

each chapter. All photographs and images are my own. Chapters 1-3 are intended for 

submission, as such the pronoun ‘we’ is used to represent co-authors in material 

intended for publication. Below I outline the contribution of my co-authors. 

Mike Crisp (MDC) identified the opportunity to use the Heady Callitris woody trait 

dataset to study trait evolution in Callitris. MDC provided the phylogenetic trees for the 

Callitroideae used in all chapters. 

Chapter 1:  

Callitroid thickening is correlated with extreme drought resistance in Australian 

conifers  

I was responsible for design, coding in R, statistical analyses, and writing. Lyn Cook 

(LC) suggested the novel convergence test. MDC and LC provided editorial comments. 

This chapter was in first draft on 17 February 2017 when Larter et al. (2017) was 

published in April with almost identical results. This resulted in a redraft with the 

addition of new analyses and change of focus to highlight findings missing from the 

Larter et al (2017) study. Some analyses may therefore appear identical or similar to the 

Larter et al (2017) study, but were the result of independent research as our research 

group was unaware of that study. 

Chapter 2:  

Not a radiation: Callitris climatic niche evolution and diversification 

I was responsible for design, coding in R, statistical analyses, and writing. 

Chapter 3: 

Signal loss: Assessing the impact of extinctions on trait evolution models via 
simulations 

I was responsible for design, coding in R, statistical analyses, and writing. 
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Appendix: 

Photographic Guide to Native Plants of the Australian Capital Territory 

During my PhD I also published a field guide to native plants of the Australian Capital 

Territory. I was solely responsible for the concept, layout, photographs, text, plots and 

data collection. 
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OVERVIEW 

Plants cover most of earth’s landmasses. Their ability to adapt to changing climates 

through evolutionary time has formed the distinctive biomes we see today. In plants, 

maintaining water supply from the roots to the leaves is critical because leaves are the 

sites of photosynthesis, where the sugars necessary for growth are produced. The failure 

of a plant’s hydraulic system can ultimately lead to death, so drought imposes a high 

selection pressure on plant traits. Species adapted to dry and arid climates have evolved 

traits that maintain the water supply critical to life. If species cannot survive changing 

climatic conditions they risk extinction, and drought therefore also poses a serious threat 

to species diversity. Plant lineages that have evolved drought-tolerance often have 

higher diversification rates because they can ‘radiate’ into new arid niches that most 

other species cannot exist in. 

Callitris is an ecologically diverse, cupressoid conifer genus native to Australia and 

New Caledonia. Drought-adapted Callitris species are the world’s most drought-tolerant 

trees. No other trees can operate under such water-tensions without suffering significant 

injury or mortality. Additionally, drought-adapted Callitris species do not experience a 

hydraulic conductance-saftey trade-off. The traits related to an absence of the hydraulic 

trade-off has not been identified. Callitris therefore presents an ideal study group to 

investigate trait-related radiations into droughted environments. Callitris species 

possess ‘callitroid thickenings’ in their water-conducting tracheids, but drought-adapted 

Callitris have a much higher frequency of thickenings than Callitris from wet habitats, 

suggesting that callitroid thickenings are a trait critical to drought-tolerance.  

This thesis investigates the evolution of drought-tolerance in Callitris from a 

macroevolutionary perspective. I used data from R.D. Heady’s (1997) SEM study of 

callitroid thickening and a new phylogeny of the southern hemisphere component of the 

Cupressaceae, the Callitroideae, to investigate the evolution of climatic niches and 

drought-tolerance traits in Callitris. The trait evolution studies emphasised a weakness 

in phylogenetic comparative methods (PCMs), leading to a simulation-based study that 

investigated the effect of extinctions on tree reconstruction and subsequently on PCMs.  
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The first chapter in this thesis investigates the evolution of hydraulic drought-tolerance 

traits in Callitris by comparing the evolution of key hydraulic traits. I expected the 

frequency of callitroid thickenings (FCT) to be evolving under selection because of its 

strong ecological signal. Instead I found that FCT fitted a Brownian Motion (BM) 

model, suggesting evolution via drift. However, I also found that FCT was convergent 

with arid habitats, revealing that FCT appears to be under selection. The seemingly 

contradictory pattern of a trait under selection fitting a model of evolutionary drift 

suggests that FCT may be critical to drought-adaptation and speciation. FCT might 

enable high conductance and high safety by reinforcing pit borders, rather than by 

reducing pit apertures. 

Chapter two investigates climatic niche evolution in the Callitroideae to ask whether the 

Callitris has evolved into a drier niche than its closest relatives and if the evolution of 

arid niches has led to higher diversification in Callitris. I found that Callitris has a drier, 

hotter and flatter niche than the rest of the Callitroideae (RoC). Sister-pair comparisons 

showed that drought-adapted Callitris had divergent niches as a result of geographic 

fragmentation. Despite extraordinary drought-tolerance Callitris had a lower 

diversification rate than the RoC, suggesting high selection and recent extinctions. 

Range fragmentation appears to have been the result of intensifying aridification, 

leading to local adaptation and geographic speciation. 

Finally, chapter three investigates the effect of tree reconstructions on PCMs. I 

simulated phylogenies under four random extinction scenarios and traits under BM and 

Ornstein–Uhlenbeck (OU) models. Using extant only taxa from the simulations, I 

reconstructed phylogenies in BEAST. I found that the ‘slowdown’ in lineages-through-

time plots was only observed in the reconstructed trees, suggesting it is an artefact of 

phylogenetic reconstruction methods. Reconstructed trees produced higher phylogenetic 

signal, erroneous ancestral trait reconstructions and incorrect inferences of the 

evolutionary model. In particular, traits simulated under a BM model were inferred as 

evolving under Early Burst models and traits simulated under an OU model were 

inferred as fitting a BM model. These results show that PCMs are heavily influenced by 

tree shape, which can lead to the erroneous interpretation of evolutionary histories. 

They also explain how traits under selection and associated with geographic speciation 

could fit a BM model. 
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Chapter 1 

Callitroid thickenings confer extraordinary drought-

tolerance in Callitris 

Callitris glaucophylla in Mutawintji National Park, New South Wales 
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Callitroid thickenings confer extraordinary drought-tolerance in 

Callitris 

ABSTRACT 

Hydraulics-related wood traits are critical to plant survival because they supply water to 

the leaves, where photosynthesis creates the sugars necessary for life. Hydraulic failure 

is either costly or deadly, and therefore species must adapt to aridifying climates or 

become extinct. Callitris, a conifer genus native to Australia and New Caledonia, 

contains the world’s most drought-adapted trees. Drought-adapted Callitris species 

operate at far higher levels of water stress than mesic Callitris and yet do not suffer any 

reduction in water conductance. Conduit diameter and interconduit pit diameter are 

wood traits known to affect conductance and cavitation resistance, but no hydraulic 

safety-efficiency trade-off has been found in drought-tolerant Callitris species. All 

Callitris possess bar-like ‘callitroid’ thickenings at interconduit pits, a trait that is more 

frequent in drought-adapted species, but the function of these thickenings remains 

unknown. Here, we use a new, highly resolved phylogeny of Southern Hemisphere 

callitroids to investigate whether callitroid thickenings are an adaptation to drought. 

Evolutionary models inferred that the frequency of callitroid thickening (FCT) evolved 

according to a Brownian Motion (BM) model. BM simulations of FCT showed that 

FCT is highly convergent with arid habitat, and unlikely to have evolved via drift. The 

BM model probably represents a process of ecological speciation in Callitris, as aridity 

caused localised extinction and selected for high FCT, drought-tolerant species in dry 

climatic niches. Pit apertures and tracheids with callitroid thickenings show no 

phylogenetic signal and are not associated with aridity, suggesting that callitroid 

thickenings may prevent cavitation by stabilising pit borders under extremely negative 

xylem pressure, allowing conductance to remain high in drought-tolerant species. This 

is the first study to show that callitroid thickenings are key in drought-tolerance 

evolution in the most arid adapted tree in the world. 
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INTRODUCTION 

 

Water limitation and high evaporation rates are serious threats to plant survival. Traits 

that facilitate water movement are therefore under high selection pressure and influence 

species’ ranges and diversification (Brodribb and Hill 1999; Brodribb et al. 2010; Crisp 

and Cook 2013; Cavender-Bares et al. 2016; Wilson 2016; Larter et al. 2017). In 

conifers, adaptation to drought in warm climates is uncommon. Only two extant conifer 

lineages (cypresses and pines) have diversified into warm, dry climates. Of these, the 

southern hemisphere cypress genus Callitris contains the most drought-tolerant trees in 

the world (Bouche et al. 2014; Larter et al. 2015; Larter et al. 2017). Surprisingly, 

despite keen interest in drought-tolerance of plants, the traits that confer its extreme 

tolerance remain elusive. 

 

Wood traits play a key role in the evolution of drought-tolerance in plants, especially 

the water-transporting xylem. The conduit size of xylem is critical to the efficient 

movement of water: conduits with larger diameters are more efficient because an 

increase in diameter is accompanied by an exponential (n4) increase in water 

conductance (following the Hagen-Poisuielle equation) (Tyree et al. 1994). In drought-

tolerant plants, larger conduits should therefore be favoured by selection. However, 

larger conduits are prone to hydraulic failure under water stress because as water supply 

diminishes, the tension in the water column increases (i.e. pressure become more 

negative). Water in the xylem can transition into a gas (water vapour) as pressure 

become more negative, a process known as cavitation. Cavitation creates air bubbles 

within the conduit and can lead to the total failure of water conductance if air and water 

vapour fill a conduit, creating an embolism. If embolisms accumulate across conduits, it 

leads to a reduction in water supply and photosynthesis, and can cause plant mortality. 

 

Cavitation vulnerability can be measured by P50, the negative pressure required to cause 

a 50% loss of xylem sap conductance. At these pressures, embolisms leading to 

hydraulic failure escalate, causing local tissue and ultimately, whole plant death (Choat 

et al. 2012). P50 and conductance are measured on stem sections and are therefore 

measures of xylem performance. While conduit width is important because of its benefit 

to water conductance, other characteristics such as conduit length, pit structure, pit 
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number, pit size and pit aperture contribute to cavitation resistance (‘safety’) and 

hydraulic efficiency (Hacke et al. 2004). 

 

Hydraulic Safety–Efficiency Trade-off 

The Safety-Efficiency Trade-off hypothesis (Tyree and Ewers 1991; Tyree and 

Zimmermann 2002) predicts that there should be a trade-off between conductance and 

the risk of embolism (P50). Larger conduits have higher conductance (‘efficiency’) but 

should be more vulnerable to embolisms, and narrow conduits should be ‘safe’ from 

embolisms but have lower conductance. 

 

Water Transport in Conifers 

In conifers, water is transported through tracheids, single-celled conduits that 

collectively form the wood of the plant. Tracheids have two purposes: they provide 

support to the canopy of the plant and they conduct water. Water moves between 

tracheids through perforations in the tracheid walls known as inter-tracheid or bordered 

pits. Pits are bounded by a raised disc, the pit border, and an aperture with a ‘torus-

margo’ valve, through which water passes (see Valli et al. 2002 for a schematic 

diagram). The torus is a centrally located, impermeable disc connected to the pit 

margins by a ring of margo strands. When the torus is in a neutral position, water passes 

between the margo strands. When a water-filled tracheid has more negative pressure 

than a neighbouring (embolised) tracheid, the pressure difference pulls the torus against 

the inner rim of the bordered pit creating a seal. Under extreme pressures, the walls of 

water-filled tracheids can warp inwards, and even collapse, referred to as implosion. 

Tracheids with thicker walls are less susceptible to implosion (Hacke et al. 2001). 

 

Cavitation commonly occurs when negative pressures cause the torus to slip in the 

bordered pit, leading to air bubbles ‘seeding’ into the tracheid, causing embolisms that 

prevent water flow (Delzon et al. 2010). Pits are therefore critical to water management 

because they partition embolised tracheids and prevent escalating cavitation rates 

(Choat et al. 2008; Cochard et al. 2009; Delzon et al. 2010; Pittermann et al. 2010).  

 

Smaller pit aperture diameters are associated with species from dry habitats because 

they are more fail-safe (Bouche et al. 2014), but they impede water movement (Schulte 

et al. 2015). The ideal combination of narrow, cavitation resistant pits and wide, 

efficient tracheids is not feasible because pits are a chief source of hydraulic resistance, 
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rendering wide tracheids redundant (Sperry et al. 2006; Pittermann et al. 2010). To 

maintain efficient flow in wide tracheids would require more pits, potentially 

weakening the tracheid walls and thereby increasing the risk of implosion (Hacke et al. 

2004; Sperry et al. 2006; Choat et al. 2012).   

 

Evidence for a Safety–Efficiency Trade-off in Conifers 

Given the large efficiency gains that can be made by a small increase in conduit width, 

it would be expected that an efficiency-safety trade-off would be frequently detected in 

plants. At a broad scale, there is evidence for a safety-efficiency trade-off in 

gymnosperms compared to angiosperms. Gymnosperms have lower conductance and 

are more cavitation resistant than angiosperms, because tracheids are smaller than large 

angiosperm vessels, which are specialised for water movement (Maherali et al. 2004; 

Choat et al. 2012; Gleason et al. 2016). Whether this is a direct or indirect trade-off 

remains unclear because narrow tracheids built to cope with load-bearing wood may 

coincidentally confer cavitation resistance (Hacke et al. 2001; Bouche et al. 2014). 

However, under freezing or dry conditions, the angiosperm advantage disappears: 

conifers are as efficient or more efficient than angiosperms when cavitations are more 

likely to occur. The conifer advantage seems to rest in the unique structure of the torus-

margo pit, which has far higher conductance than angiosperm pits (Hacke et al. 2004; 

Pittermann et al. 2005). 

 

Evidence of a Hydraulic Trade-off within Conifers 

In conifers, tracheid width and pit size scale with tree height and environment. 

Tracheids and pits decrease in size with distance away from the roots (Domec et al. 

2008; Lazzarin et al. 2016), in freezing environments (Pittermann and Sperry 2003), and 

with increasing aridity (Pittermann et al. 2010). Pits have been found to contribute up to 

70% conductance resistance (Domec et al. 2006; Pittermann et al. 2006), indicating that, 

vulnerability to cavitation probably occurs at the pit level, rather than the tracheid level. 

Because hydraulic failure is frequently a result of pit failure, tracheid widths have often 

been found to be uncoupled from cavitation risk,(Pittermann et al. 2006; Delzon et al. 

2010). 

 

Pits with a larger torus overlap have greater cavitation resistance (Delzon et al., 2010), 

and many conifer species in dry environments have high torus overlap and thicker 

tracheid walls (Bouche 2014). Larger torus overlap is achieved by reducing pit 
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apertures, which leads to a larger area for the torus to seal against, but also an increase 

in pit resistance (Delzon et al. 2010; Pittermann et al. 2010). Given this, it would be 

expected that a trade-off of higher resistance to cavitation with lower conductance 

would most likely be a consequence of pit anatomy (Choat et al. 2008; Pittermann et al. 

2010; Schulte et al. 2015). However, in Callitris, the world’s most cavitation-resistant 

trees, there is no apparent trade-off between P50 and conductance (Larter et al., 2017). 

Larter et al. (2017) found that drought-adapted species had narrower tracheids and were 

more cavitation resistant than mesic species, but did not have higher pit resistance. 

Additionally, the lack of a trade-off was not related to tracheid dimensions, wood 

density, pit density or pit structure. 

 

The Heady Hypothesis for Callitris 

Heady (1997) investigated wood anatomical traits in Callitris using SEM (Heady 1997). 

SEM allowed the first accurate observations of callitroid thickenings, a trait common to 

Callitris, but apparently rare in other conifers. Callitroid thickenings are pairs of 

distinctive, bar-like structures that bracket bordered pits (Fig. 1) with an unknown 

function. 

 

Heady (1997) observed different forms of callitroid thickenings and frequency of 

callitroid thickenings (FCT) in species growing in different habitats. Species in dry 

habitats tended to have high FCT and a high proportion of Type 2 form thickenings, 

whereas species in wet habitats had low FCT and Type 1 form thickenings (Fig. 1). 

Furthermore, the presence of thickenings was related to tracheid width (Heady, 1997). 

Tracheids with callitroid thickenings were narrower than those without thickenings, 

such that species with low FCT also tended to have larger tracheids, on average, than 

species with high FCT. Within wood samples, there was a range of wide and narrow 

tracheids, and pits with thickenings. Within a tree, the frequency of callitroid thickening 

did not differ with height from the roots or with distance from the pith to the bark. 

Heady suggested that callitroid thickening could operate as a structural support in 

tracheids, preventing implosion under extremely negative pressure, particularly at pits 

where tracheid-wall failure typically begins. 

 

The extreme drought-tolerance of Callitris remains puzzling. Drought-adapted Callitris 

are able to operate at much lower negative pressures than other conifers, and yet there is 

no evidence that they suffer a loss of conductance compared to wet and mesic Callitris 
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species. Using Heady’s data, we investigate whether callitroid thickening: 1) explains 

the lack of a hydraulic trade-off in Callitris; 

 2) could be an evolutionary adaptation to drought; and 3) is a trait convergent with 

adaptation to aridity. 

 

 

METHODS 

 

Study Species 

Callitris is a small, ecologically diverse conifer genus of 24 species, endemic to 

Australia (21 species) and New Caledonia (3 species). Here we follow the species-level 

taxonomy of (Hill 1998). Callitris is found in habitats that include tropical and 

subtropical rainforest, temperate woodland and heath, subtropical savannah, and arid 

shrubland. 

 

Callitris Phylogeny 

The modelling of niche and trait evolution requires a phylogenetic framework and 

timescale. A relaxed molecular clock phylogeny, including all species of Callitris 

recognised by Hill (1998), was estimated using Bayesian inference in BEAST ver. 1.8.0 

(Drummond et al. 2012)  (Supplementary Fig. 1). The data comprised DNA sequences 

obtained using the standard Sanger method from the chloroplast and three nuclear loci 

(Crisp et al. in prep.). In addition to the maximum clade credibility (MCC) tree, a set of 

100 trees was evenly sampled, to avoid autocorrelation, from across the post-burnin 

posterior of the BEAST analysis for downstream analyses of trait and niche evolution.  

 

Tree Pruning 

After estimating the time-calibrated phylogeny, we pruned the trees to include only 

those species for which trait data were available. In cases where our phylogeny showed 

east-west divergences within species, we followed Heady’s collection sites and used 

only the lineage from the region in which he collected his sample, e.g., C. glaucophylla 

has three geographic lineages (Sakaguchi et al. 2013) but we used only the eastern 

lineage, excluding the western and central Australian lineages. Following Heady’s 

collection locations (and Hill’s taxonomy), we treated C. preissii as a taxon confined to 

the Western Australian coast near Perth, and C. columellaris as confined to the northern 
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New South Wales and southern Queensland coast. Callitris verrucosa records from 

Western Australia were treated as C. tuberculata, and C. verrucosa as an eastern 

Australian species (Hill 1998). Callitris macleayana has two disjunct populations along 

the eastern coast of Australia, and the northern lineage was excluded. 

 

Woody Trait Data 

Woody trait data for 19 species (17 Australian, two New Caledonian) were taken from 

Heady's (1997) SEM study of the wood anatomy of Callitris (Heady 1997). Heady 

collected 5 mm diameter wood cores from wild, adult trees growing within their native 

range and made observations on 34,800 pits from a total of 171 wood samples (4–22 

individuals per species, mean = 8). Unfortunately Heady did not sample Actinostrobus 

(3 spp.) or Neocallitropsis (1 sp.), which molecular and morphological data indicate are 

within Callitris (Piggin and Bruhl 2010) (Pye et al. 2003; Mao et al. 2012). There is 

also no trait data available for closely related outgroups.   

 

Variability in wood traits could be a plastic response to environment, rather than an 

evolutionary adaptation. Heady (1997) tested the plasticity of Callitris woody traits in a 

three-year common garden experiment, using high and low water treatments on Callitris 

grown from seed. He found no significant differences in FCT, but tracheids were 

broader in high-water treatment plants, indicating that tracheid width alone does not 

determine FCT. Environment-related differences in wood traits were also found in field-

based studies of C. columellaris s.l. (Bowman et al. 2011; Prior et al. 2012), but these 

differences might be due to the presence of cryptic species in this taxon (phylogeny 

presented here). 

 

We investigated six woody traits putatively related to drought-resistance: diameter of 

bordered pits (BPD), diameter of pit aperture (PAD), the frequency of callitroid 

thickening (FCT), tracheid width with callitroid thickening (TW+t), and tracheid width 

without callitroid thickening (TW−t). Heady’s FCT data are logit regression model 

predictions based on counts of pits with or without thickenings from wood samples, and 

are not the original data (Heady 1997). Our FCT scores were extracted from his graphs. 

 

Because Heady noted that tracheids without thickenings are consistently wider than 

tracheids with thickenings, we included maximum (PADmax) and minimum (PADmin) 
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pit aperture, to investigate whether pits scaled with tracheid widths. If this were the case 

then pits in TW+t should be significantly correlated with minimum pit aperture. 

 

We added maximum plant height (MaxH) to Heady’s data because water relations are 

known to limit plant growth and drought-adaptation may be achieved by a reduction in 

stature (Domec et al. 2008). Plant heights were taken from (Hill 1998) and The 

Gymnosperm Database (Earle 2017). All trait data used in subsequent analyses were 

log-transformed mean values. 

 

Climatic Niche Data 

Locality Data 

Publically available locality data for vouchered specimens of Callitris species were 

downloaded from Australia's Virtual Herbarium (AVH) <http://avh.chah.org.au>, the 

Database Virot botanical herbarium of IRD Nouméa (NOU) <http://herbier-

noumea.plantnet-project.org> and the Global Biodiversity Information Facility (GBIF) 

<http://www.gbif.org>. Records were cleaned prior to analyses by removing records for 

cultivated plants and erroneous records, e.g., those plotting in the ocean. We also 

removed duplicate records so that there were no multiples at any one site. We selected 

the most recent collections where possible because these are less likely to have 

erroneous coordinates. These data were edited according to the same taxonomic criteria 

as the phylogeny (described below). 

 

Environmental Data 
We downloaded the base nineteen global Bioclim v1.4 climate layers for the period 

1950-2000 (Hijmans et al. 2005) as 30 arc-second rasters, equivalent to approximately 

one kilometre at the equator (30 seconds = 0.93 x 0.93 km = 0.86 km2 at the equator). 

These temperature and precipitation layers account for the major influences of 

temperature and precipitation on climatic niche. We additionally downloaded the 

Aridity Index (AI) raster from the Global Aridity and PET Database <http://www.cgiar-

csi.org/data/global-aridity-and-pet-database>.  The Aridity Index is calculated as Mean 

Annual Precipitation (MAP)/Mean Annual Potential Evapo-Transpiration (MAE), and 

is a measure of moisture availability, not including soil moisture. When MAP and MAE 

are equal, AI = 1. Because the denominator is MAE, when precipitation is low and 

evaporation is high, AI is low.   
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We follow the generalised climate classification scheme for Global-Aridity, which 

classifies habitat according to AI: Humid > 0.65; Dry sub-humid = 0.65−0.5; Semi-Arid 

= 0.5−0.2; Arid = 0.2−0.03 (UNEP 1997). Australia has no Hyper Arid environments 

(AI <0.03). Water availability is critical to plant survival, and AI is a more realistic 

measure than precipitation because it accounts for water lost from the environment via 

evaporation.  

 

The 20 global layers were clipped in QGIS (QGIS 2016) to include only Australia (map 

limits = 108, 155 E, -44, -10 S) or New Caledonia (map limits = 163.55 168.20 E,-22.75 

-19.54 S). Because Australia spans approximately 30 degrees of latitude, Bioclim layers 

were transformed from WGS84 (EPSG:4326) to Australian Albers GDA94 

(EPSG:3577), an equal-areas projection that satisfies MaxEnt modelling assumptions 

(Elith et al. 2011). As New Caledonia lies approximately 1400 km off the eastern coast 

of Australia and is outside the GDA94 bounds, New Caledonian layers were 

transformed to the equal area Lambert New Caledonia (EPSG:3163) projection. We 

extracted point climatic values for all species occurrences from the 20 layers in QGIS. 

 

Analyses 

Species Climatic Niche  

We used univariate and multivariate methods to estimate environmental niches in 

Callitris. A single variable might be a significant driver of niche evolution, but complex 

climatic niches might be better described by multivariate space. In the univariate 

approach, we used environmental niche models (ENMs) to predict species’ climatic 

niches and then created predicted niche occupancy (PNO) profiles for each climate 

variable (Phillips et al. 2006; Evans et al. 2009). In the multivariate approach, we used 

point data extracted from the Bioclim layers and estimated niche differentiation using 

Outlying Mean Index (OMI), a form of two-table ordination (Dolédec et al. 2000).  

 

MaxEnt Models and Predicted Niche Occupancy 

To construct ENMs for all Callitris species we used MaxEnt (Phillips et al. 2006).  

Because Bioclim variables are correlated, we excluded highly correlated variables 

(Spearman’s rho ≥ 0.8). This left 12 variables: Bio 1, Bio 3, Bio 5, Bio 6, Bio 7, Bio 8, 

Bio 9, Bio 15, Bio 17, Bio 18, Bio 19, and AI. We ran 10 MaxEnt replicates per species 

using random seeds, a regularisation multiplier of one, and sampled from a maximum 

10,000 background points across the Australian or New Caledonian landmass. Seventy-
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five percent of the data were used to train the model, and 25% used as test data.  The 

area under the curve (AUC) values of the receiver operating characteristic (ROC) curve 

was assessed for all species modelled to indicate whether the MaxEnt model could 

accurately predict test occurrences. An AUC of 0.5 indicates that the model prediction 

is no better than expected by chance and 1.00 indicates a perfect recovery of novel 

occurrences used to test the model. (Phillips et al. 2006).  

 

We combined the Australian and New Caledonian average MaxEnt probabilities and 

produced a profile of each species’ PNO for each variable using the R package 

phyloclim (Heibl and Calenge 2013). PNOs are created by integrating the MaxEnt 

probability of a species occurring in a pixel with the values from a climatic layer for the 

same pixel (see Evans et al. 2009 for details). The climatic means weighted by the 

cumulative probability of the MaxEnt model (weighted means) were extracted from the 

PNOs and log transformed prior to use in analyses.  

 

Outlying Mean Index 

Outlying Mean Index (OMI) is a form of two-table ordination that allows for the use of 

multivariate environmental data and corrects for uneven sampling (Dolédec et al. 2000). 

The first principal coordinate analysis (PCA) creates ordinate space for all species based 

on climatic point data. The centroid of this ordination represents the mean 

environmental conditions for all species. A second PCA, orthogonal to the first, defines 

the niche of each species, with the mean for each species lying at a marginal distance 

from the mean environmental conditions for all species.  We used climatic point data for 

the same 12 Bioclim layers as used in MaxEnt models. A total 3910 observations were 

used in the analysis, ranging from eight (C. neocaledonica) to 798 (C. glaucophylla) per 

species (median = 86, mean = 205, sd = 224). 

 

Phylogenetic Signal 

Phylogenetic signal can be seen as a way of measuring how clustered or dispersed traits 

are, relative to the expected value determined by the tree and a Brownian Motion (BM) 

model. The BM model predicts that traits will co-vary according to their degree of 

relatedness, the timing of species divergences, and the cumulative variances of a non-

directional, random walk. When the phylogeny and a BM model accurately predict the 

values found at the tips of the tree, the phylogenetic ‘signal’ is strong. We estimated 

phylogenetic signal using both Pagel’s Lambda (λ) (Pagel 1999, 2002) and Blomberg’s 
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K (K) (Blomberg et al. 2003).  All phylogenetic signal analyses were run in the R (R-

Core-Team 2017) package phytools (Revell 2012). 

 

Pagel’s Lambda 

Pagel’s Lambda (Pagel 1999, 2002) employs a scaling branch-modification method. 

Branch lengths are altered by multiplying the off-diagonal elements of a variance-

covariance matrix that describes the tree by a value of λ. Since the diagonals are the 

summed branch lengths, multiplying the off-diagonals alters the lengths of the internal 

branches in the tree. If the trait has evolved according to a BM model (λ = 1), the 

internal branches are not altered, as the distances between relatives account for trait 

values observed at the tips. If λ = 0, branch lengths have been altered to the point where 

they are all equal, creating a star phylogeny, in which case relatedness has had no effect 

on trait evolution. If λ > 1, tip values are more alike than the phylogeny predicts under 

BM, indicating that some kind of constraint is limiting or canalising trait evolution.  

 

Blomberg’s Kappa 

Blomberg’s K is a standardised ratio, comparing the mean square error of the tip data 

fitted to the tree compared to the mean square error of tip data simulated along the same 

tree according to a BM expectation (Blomberg et al. 2003; Kamilar and Cooper 2013). 

As with lambda, when K = 1, traits are evolving according to BM. K < 1 indicates that 

traits are less similar than would be expected under a BM model. We estimated 

significance for λ and K for the MCC tree using 1000 random permutations of the tip 

data. The null hypothesis is that there is no phylogenetic signal in the data. Support for 

phylogenetic signal is interpreted when the values differ significantly between the 

observed and randomly permuted tip values. 

 

Phylogenetic Uncertainty 

Variation among trees from a BEAST analysis can be large. As trait modelling relies on 

the topology and branch lengths of a tree, we incorporated phylogenetic uncertainty by 

analysing 100 trees sampled from the posterior.  

 

Macroevolutionary Modelling 

Analyses of phylogenetic signal identify whether trait data fit a BM pattern or not, but it 

cannot identify an evolutionary process (Revell et al. 2008). To investigate evolutionary 

processes we ran maximum likelihood analyses using seven models: lambda, kappa, 
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delta, BM, Early Burst (EB), single-optimum Ornstein-Uhlenbeck (OU), and White 

Noise (WN) (details in Supplementary material). Trait data were log-transformed to 

allow for comparisons between traits (Harmon et al. 2010). We ran analyses for an 

optimal (MCC) tree, and for a set of 100 posterior trees from the BEAST analysis. 

Model selection was performed using second-order Akaike information criterion 

corrected for small sample sizes (AICcw) weights (Burnham and Anderson 2002). 

Analyses were run in the R package geiger (Pennell et al. 2014). 

 

Phylogenetic Generalised Least Squares (PGLS) 

We used phylogenetic generalised least squares (PGLS) regression to investigate 

whether the evolution of traits was correlated (Grafen 1989; Martins and Hansen 1997; 

Pagel 1997). We chose PGLS because it estimates the phylogenetic signal of the 

regression model using the residual error of the response variable (Revell 2010; 

Symonds and Blomberg 2014). In the absence of a phylogenetic effect on correlated 

trait evolution the PGLS model collapses to an ordinary least squares (phylogenetically 

uncorrected) model. 

 

We used the branch-transformation method with Pagel’s lambda (λ) to correct for 

phylogenetic signal in the traits being correlated. Lambda is insensitive to the number of 

taxa in the phylogeny, and unlike Blomberg’s K, does not directly imply rate variation 

(Freckleton et al. 2002; Münkemüller et al. 2012). Lambda was estimated with 

maximum likelihood (ML). We regressed woody traits against each other to see if they 

showed correlated evolution, and against niche position (OMI) and climatic niche traits 

to see if woody traits were associated with climatic niche. We used the PNO weighted 

means and OMI axes to describe the climatic niche as the independent variables. If a 

single climatic trait results in better PGLS fit than the OMI axis, it suggests that the 

additional information in the axis is not critical to trait evolution. All PGLS analyses 

were performed using the pgls function in the R package caper (Orme 2013). 

 

Convergent Evolution in FCT 

Water availability is critical to plant survival. Because of this, traits that confer drought 

tolerance are expected to be under strong selection in aridifying environments. When 

trait values are more alike in species with similar climatic niches than in those that are 

most closely related phylogenetically, it indicates convergence in trait evolution. 

However, trait clustering could also be a chance result of drift. 
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Polygon Morphospace Method 

One approach used to evaluate convergence is to simulate traits under a null model and 

compare how often observed and simulated data share the same trait space (Stayton 

2015). Under selection, traits should converge on an optimal solution, and convergent 

traits should be more clustered in trait space than traits evolving under a BM model. To 

test whether FCT is a convergent trait shaped by increasing aridity, we simulated FCT 

under a BM model and plotted FCT against AI. A polygon was plotted around the 

resulting points to assess the position and area of each polygon within trait space.  

 

If FCT has evolved under selection by increasing aridification, and is convergent in 

drought-adapted species, we expect that the trait space of drought-tolerant species 1) 

will be more clustered in the observed data than in data simulated by the null BM 

models and 2) will occupy a distinct position within trait space. If FCT is not 

convergent under increasing aridification, then the trait space of the observed data 

should be similar to the trait space of simulations generated under a BM model. 

Furthermore, polygons should not differ in area (i.e. how aggregated or dispersed 

species traits are in trait space) or in position on the Y-axis (i.e. how often high FCT 

values result from a BM model). Additionally, if FCT has not evolved as a drought-

tolerance trait, then there should be no association between FCT and AI.  

 

FCT Trait Simulation 

The phylogenetic root value (z0) and variance (σ2) of FCT were estimated for the MCC 

tree and 100 evenly sampled posterior trees based on the observed values of FCT for 19 

Callitris species. Ancestral character estimation was done using the ace function in the 

R package ape (Paradis et al. 2004). 

 

Using the estimated root value and variance, the evolution of FCT was simulated under 

a bounded BM model for each tree. Callitroid thickening in the Heady data is expressed 

as a frequency, so bounds were included to limit the simulated range of FCT from 0.001 

to 100%, matching the observed range. This produced 100 simulations for each of the 

101 trees (total = 10100 simulated datasets). Simulations were run in the R package 

phytools using the fastBM function (Revell et al. 2012).  All data were simulated as 

log transformed values for subsequent use. 

 



 

	 15 

Convex Hull Polygons 

To create morphospace plots for the simulated data, we plotted simulated FCT values 

against observed AI values. A polygon for the observed values of FCT and AI, and a 

polygon for each of the 100 BM simulations of FCT per tree (10100 polygons in total) 

were plotted in morphospace. Polygons were plotted around species found in semiarid 

to arid habitats (AI < 0.5) because this was the region of interest for adaption to aridity. 

Polygons were plotted to describe the broadest possible polygon boundary, and points 

plotting inside polygon boundary were ignored. AI remained the same for each species 

because no assumption was made that FCT and AI were correlated. Polygon shape was 

therefore a result of differing values of FCT, not AI. Convex hulls were used in 

preference to concave hulls because the choice of concavity (alpha) is sensitive to the 

distances between points, and results in an arbitrary hull boundary depending on the 

spacing of points and degree of concavity. Convex hulls were created using the 

Polygon function in the R package sp (Pebesma and Bivand 2005). 

 

For each simulation the area, maximum and mean position on the FCT-axis of the 

polygon was calculated. We also investigated the Y-axis position of the smallest 

polygon from every simulation to see if high FCT values were tightly clustered in trait 

space, suggesting convergence. Polygons from the simulations were compared to that of 

the actual data to assess whether a polygon with such a small area and high mean FCT 

could be the result of a ‘null’ BM model. Significance was evaluated using one-sided 

Monte-Carlo permutation tests. Tests were run in R, using the randtest function 

from the package ade4 (Dray and Dufour 2007). 

 

 

RESULTS 
 

Species Climatic Niche 

MaxEnt Models and PNOs 

The area under the curve (AUC) values of the receiver operating characteristic (ROC) 

curve ranged from 0.91-1.00 for all species modelled, indicating that the MaxEnt model 

could recover test occurrences accurately. For some species the predicted climatic niche 

was broader than the current geographic range (Supplementary Fig. 2). Species 

occurring in south-western or south-eastern Australia were predicted to also occur on 

the opposite side of the continent at lower probabilities. In particular, species occurring 
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in the Flinders Ranges in South Australia were predicted to have suitable habitat in 

south-western Australia, and vice versa.  

 

The PNO weighted means confirmed that Callitris has a broad climatic niche 

(Supplementary Table 1). Predicted MAT ranged from 12.2 ºC (C. oblonga) to 25.8 ºC 

(C. intratropica). PDryQ ranged from 18 mm (C. intratropica) to 281 mm (C. 

neocaledonica) and PWarmQ varied from 54 mm (C. canescens) to 716 mm (C. 

neocaledonica). C. neocaledonica has the wettest niche (PDryQ = 281 mm, PWarmQ = 

716 mm, AI = 1.59), with the least variation in temperature (13.8 ºC). C. tuberculata 

has the most arid niche (AI = 0.2; the boundary between semi-arid and arid), with the 

highest annual temperature range (28.8 ºC). C. oblonga occupies the coolest niche with 

the most even rainfall. The niche of C. intratropica is unique within Callitris. It has the 

most seasonal rainfall and the highest temperatures, receiving all of its rainfall during 

the summer monsoon of northern Australia. 

 

Outlying Mean Index  

The first three PCA axes accounted for 85% of the total variability in climate across all 

species. Axis 1 (34%) was primarily associated with temperature and precipitation 

seasonality; Axis 2 (31%) with precipitation and annual temperature range; and Axis 3 

(20%) with seasonal variability in temperature and rainfall (Supplementary Table 1). 

The second PCA of species’ niches within environmental space accounted for 95% of 

the variability in species’ climatic niche (Axis1 = 42%, Axis 2 = 35%, Axis 3 = 18%). 

Correlations with environmental variables were similar to those in the first PCA. C. 

neocaledonica and C. intratropica had the most outlying niches compared to the mean 

climatic space for all species. Species niche point data shows a hard boundary at the 

lower right corner that seems to be linked to aridity (Fig. 2).  

 

Phylogenetic Signal  

Woody Traits 

Woody traits varied considerably in phylogenetic signal. Lambda ranged from 0 to 0.98 

and Blomberg’s K from 0.34 to 1 (Table 1). FCT (λ = 0.98, K = 1.00) and TW−t (λ = 

0.98, K = 0.75) showed significant phylogenetic signal, indicating a high level of 

inheritance according to a BM model. TW+t and MaxH showed significant signal 

according to Blomberg’s K, but not Pagel’s Lambda (TW+t, λ = 0.69, K= 0.57, MaxH, 

λ = 0.90, K = 0.63). There was no phylogenetic signal detected in PAD according to 
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Pagel’s Lambda, and Blomberg’s K was relatively low and non-significant (λ = 0, K = 

0.34). 

 

Climatic Niche Traits 

For climatic traits, lambda ranged from 0 to 1.07 and Blomberg’s K from 0.22 to 0.74 

(Table 1). Four traits showed significant phylogenetic signal: ATR, PWarmQ, OMI and 

OMI Axis 2 (λ = 0.72–1.07, K = 0.65–0.75). Iso, MeanTWetQ, MeanTDryQ, PS, 

PColdQ, OMI Axis1 and OMI Axis 3 had very low phylogenetic signal (λ = 0, K = 

0.22–0.51). 

 

Phylogenetic Uncertainty 

Mean lambda across 100 evenly sampled posterior trees was marginally lower than for 

the MCC tree for all traits. However, the spread of lambda was sometimes large, 

skewed or bimodal across 100 trees (Supplementary Fig. 3). While in general the 

phylogenetic signal of the MCC tree was close to the mode of the posterior trees, there 

was one notable exception: 58% of lambdas calculated for TW+t lay between 0 and 0.1, 

compared to 0.69 for the MCC tree. Mean K for 100 trees was slightly lower than for 

the MCC tree for all traits and the standard deviation ranged between 0.041 and 0.101 

(Supplementary Fig. 4). Because Blomberg’s K is a standardised measure, distributions 

were less skewed than lambda. K for the MCC tree lay near the mode for all traits 

across all 100 trees.  

 

Macroevolutionary Modelling 

FCT, TW-t, OMI, PwarmQ and OMI Axis 2 fitted a BM model (Table 2). Model 

support was low for climatic niche variables for the MCC tree and posterior, but was 

strong for FCT and TW-t across the posterior trees (AICc weights, Supplementary Fig. 

5). TW+t, BDP and PAD all fitted a white noise (WN) model confirming that that 

phylogeny had no influence on evolution of these traits. Model support for pit data was 

high for both the MCC and posterior trees. All other climatic niche variables fitted a 

WN model except ATR, which fitted a lambda model (λ = 0.71), and AI and MAT, 

which fitted a pure speciational model (κ = 0). MAT is used to calculate AI and so is 

highly correlated with AI. Full results are presented in Supplementary Table 2. 
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Phylogenetic Generalised Least Squares 

Species Niche Position (OMI) 

Species niche position had a near perfect positive correlation with PWarmQ (Bio18, r2 = 

0.998). OMI was negatively correlated with FCT (r2 = 0.47) and positively correlated 

with TW-t (r2 = 0.44). Significant results of PGLS analyses are presented in Table 3. 

Full results are presented in Supplementary Table 3. 

 

Frequency of Callitroid Thickening 

FCT was negatively correlated with OMI Axis 2 (r2 = 0.70), and therefore also with AI 

(r2 = 0.65), and positively correlated with ATR (Bio7, r2 = 0.57). Thickenings were 

weakly associated with pits with narrow apertures (r2 = 0.27). FCT had no correlation 

with tracheid widths.  

 

Tracheid Width 

Tracheid widths were positively correlated with MeanTWetQ (Bio8, r2 = 0.41), and 

PWarmQ (Bio18, TW+t, r2 = 0.31; TW−t, r2 = 0.38), whether they had thickenings or 

not. TW+t alone was positively correlated with MAT (Bio1, r2 = 0.36). Tracheid widths 

were correlated with one another (r2 = 0.67), and both were correlated with maximum 

tree height, although the correlation between MaxH and TW-t was weaker than with 

TW+t (TW+t, r2 = 0.68; TW-t, r2 = 0.47). Tracheid widths and bordered pits were 

positively correlated (TW+t, r2 = 0.50; TW-t, r2 = 0.21). TW-t and PAD were correlated 

(r2 = 0.40), but TW+t showed a non-significant trend with PAD (r2 = 0.17, P = 0.084). 
Tracheid widths were not correlated with FCT. 

 

Bordered Pits 

BPD was most strongly positively correlated with PDryQ (Bio17, r2 = 0.44) and OMI 

Axis 2 (r2 = 0.42). PAD was positively correlated with OMI Axis 2 (r2 = 0.46) and with 

PWarmQ (r2 = 0.35), and had a weak correlation with PDryQ (r2 = 0.28). 

 

DBP and PAD were significantly positively correlated (r2 = 0.69). Neither was 

correlated with TW+t, but both were positively correlated with TW-t (BPD, r2 = 0.50; 

PAD, r2 = 0.40). As TW-t have wider diameters, using a mean PAD value may not 

account for allometric scaling of PAD in narrower TW+t. However, the overall result 

remained non-significant whether using mean, maximum (PADmax) or minimum 

(PADmin), although TW+t showed the strongest relationship with PADmin (r2 = 0.18), 
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indicating that pits do scale with tracheid width. PAD and BPD were negatively 

correlated with FCT, but the relationship with PAD was stronger (BPD, r2 = 0.23; PAD, 

r2 = 0.38). 

 

Maximum Height 

MaxH was positively correlated with AI (r2 = 0.33) and with MAT (Bio1, r2 = 0.30). It 

was positively correlated with both TW+t (r2 = 0.68), and TW−t (r2 = 0.47), but not 

with BPD or FCT. 

 

Several broad patterns emerged from PGLS analyses of niche, woody and climatic 

traits. Species position in niche space was determined by aridity and hydraulic traits, 

chiefly FCT and TW-t. Species height in arid environments was lower than those in wet 

and mesic environments. Tracheids were widest in warm, wet niches, and narrowest in 

cold, wet niches. TW-t became narrower as PWarmQ diminished and aridity increased, 

whereas TW+t narrowed with MeanTWetQ and MAT, but not increasing aridity. There 

was no relationship between tracheid widths (TW-t and TW+t) and FCT. In drought-

adapted species, FCT increased as pit apertures decreased. Pit apertures scaled with 

TW-t, becoming smaller with increasing aridity, but there was no significant 

relationship between PAD and TW+t.  

 

Polygon Morphospace 

The simulations resulted in 100 polygons for the MCC tree and 100 posterior trees 

(10100 polygons in total). Polygon shape and location in morphospace was the result of 

FCT simulated under a BM model along a chosen tree. Polygons were plotted for semi-

arid to arid species (AI < 0.5) because this was the area of interest for adaption to aridity 

(Fig. 3). AI remained the same for each species in all simulations, and only differing 

values of FCT simulated under a BM model altered polygon shape. 

 

Polygon Area 

The observed polygon area was smaller than the majority of the 10100 polygon areas 

simulated across all trees, and was significantly different from the distribution of 

simulated polygon areas (P = 0.001, Fig. 4A). However, the area of the observed 

polygon was not significantly different to the smallest polygon of each of the 100 

posterior tree simulations (P = 0.088, Fig. 4D), although it was smaller than any 

polygons simulated on the MCC tree. 
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Polygon Position on Y-Axis 

The highest single point of a polygon on the Y-axis was significantly higher for the 

observed polygon than the 10100 simulations (P = 0.030, Fig. 4B), as was the mean of 

points defining a polygon (P = 0.000, Fig. 4C). Even when considering the smallest 

polygons within simulations, the position of the observed polygon was unlikely to be 

produced under a BM model. It differed in maximum point on the Y-axis (P = 0.029, 

Fig. 4E) and in mean of points making up polygons (P = 0.010, Fig. 4F). 

 

 

DISCUSSION 

 

R.D. Heady Heady (1997)1997) suggested that callitroid thickenings could act as a 

reinforcement to tracheid walls, preventing tracheid implosion under water stress. Since 

the pressure required to cause implosion is much more negative than that to cause 

cavitation (Hacke et al. 2004; Bouche et al. 2014), it seems unlikely that callitroid 

thickenings limits implosion. If thickenings prevent implosion, we would expect them 

to be found either in wide, implosion-vulnerable tracheids, where they would allow high 

conductance without wall collapse, or in narrow tracheids where they could act as a 

super-reinforcement at very negative pressures. Tracheid width in Callitris does not 

appear to be related to implosion or cavitation risk. This is because wood samples 

within an individual have both tracheids with and without thickenings, and we found no 

relationship between the width of tracheids and FCT, whether tracheids had callitroid 

thickenings or not. Drought-adapted species tended to be smaller in stature, but there 

was no association between species plant height and FCT, indicating that FCT probably 

does not prevent tracheid implosion. If it did, taller species from moist environments 

should have higher FCT.  

 

Callitris species in more arid niches had higher FCT. According to OMI analyses, FCT 

and TW-t explained the position of species niches in environmental ordination space. 

Tracheid widths in species experiencing low summer rainfall were narrower than those 

in wet climates, but only tracheids without thickenings became smaller in arid 

environments. Tracheids with thickenings in arid environments did not become 

narrower. Therefore, there appears to be a trade-off between the frequency of callitroid 

thickenings and wider, more efficient unthickened tracheids. 
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Pit apertures were smaller in drought-adapted species, and became smaller as TW-t 

narrowed, but there was no relationship between pit aperture and TW+t. Pit apertures in 

drought-adapted Callitris are not always smaller than in their mesic relatives, and while 

the smallest pit apertures had the highest FCT, some species with quite large apertures 

also had high FCT. It therefore seems that not only tracheid widths, but also pit 

apertures are uncoupled from cavitation resistance in Callitris. In particular, in tracheids 

with callitroid thickenings, pit apertures are not smaller in narrow tracheids. This allows 

drought-adapted species to maintain high conductance relative to their mesic relatives.  

 

Lack of hydraulic trade-off 

These data indicate that the lack of hydraulic trade-off in drought-tolerant Callitris 

might be explained by the presence of callitroid thickenings. Failure of the torus-margo 

valve is a common cause of cavitation (Choat et al. 2008; Cochard et al. 2009; Delzon 

et al. 2010; Bouche et al. 2014). Conifers have evolved a tight valve seal by decreasing 

the pit aperture relative to the pit border margin, which results in reduced conductance, 

a pattern not detected in Callitris (Larter et al. 2017). Callitroid thickenings could 

prevent deformation of the pit border under extreme water stress, creating a stable 

surface for the torus to seal against, without sacrificing hydraulically efficient pit 

apertures. Drought-tolerant Cupressaceae species with lower P50 have thickened pit 

borders (Pittermann et al. 2010), suggesting that weak pit borders may contribute to 

torus slippage under extreme water stress. Callitroid thickenings could also be 

reinforcing tracheids to prevent implosion, but as embolised tracheids in Callitris do not 

seem to be repaired (Brodribb and Cochard 2009), it seems far more likely that 

thickenings assist in preventing the propagation of embolisms throughout the xylem. 

The frequency of callitroid thickening is convergent in drought-adapted species. Not 

only do drought-adapted species have higher FCT, they also have more reinforced 

forms of thickenings (Heady (2000), which is a major indication that thickenings are 

critical to survival in droughted habitats. Callitroid thickenings might secure cavitation 

resistance by stabilising pit borders under extremely negative pressures, explaining the 

lack of a trade-off between conductance and tracheid width or pit diameter. 

 

If FCT secures survival in semi-arid environments, it should be under high selection, 

yet it showed very high phylogenetic signal and fitted a BM model. This seems 

surprising, since a common interpretation of traits fitting a BM model is that they are 
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under drift, not selection. This interpretation stems from two questionable assumptions: 

that the genes used to construct the phylogeny are evolving under neutral genetic drift 

(Kimura 1968; Ohta 1992), and that the random walk of the BM model does not have a 

directional trend toward a selection optimum (Hansen and Martins 1996). If traits are 

under high selection pressure they should converge in trait space. Our simulations of 

FCT generated under a BM model showed that FCT clustered in a significantly smaller 

and more remote area of trait space than the BM simulated data, giving strong evidence 

that FCT is convergent with aridity. It is highly unlikely that FCT could have evolved 

by chance under a BM model. In fact, all traits associated with aridity (Table 2), except 

AI and MAT, had high phylogenetic signal and fitted a BM model. AI fitted a pure 

speciational model (κ = 0), indicating that trait evolution is a result of speciation. 

 

The strong BM signal in FCT and TW+t, and the speciational model of AI may instead 

be evidence of ecological speciation in Callitris. The aridification of the Australian 

continent caused genetic bottlenecks in Callitris (Sakaguchi et al. 2013), and cryptic 

species in C. canescens and C. glaucophylla suggests that population fragmentation has 

led to speciation (Crisp et al. in prep). If this is so, FCT has been a trait critical to 

drought adaptation and inseparable from the process of speciation itself. If 

geographically based environmental conditions have exerted a critical selection 

pressure, then a high phylogenetic signal might be expected to be the outcome, 

especially if adaptation has been gradual. 

 

In drought-adapted species cavitation risk is not related to tracheid diameter. Larter et 

al. (2017) found tracheid diameters in Callitris were highly labile. This study also found 

that tracheids without thickenings fitted a BM model. Tracheid widths with thickenings 

fitted a white noise model, indicating that evolutionary relationships among species do 

not shape their evolution. Larter et al. (2017) found no evidence of reduced pit 

conductance in drought-adapted species with high cavitation resistance, and we also 

found that small pit apertures were not associated with dry environments.  

 

Callitroid thickening is not exclusive to drought-adapted species. It is also found in wet 

and mesic-dwelling species, but at lower frequencies and in different forms (Heady and 

Evans 2000). As with FCT, TW-t fitted a BM model, and the proportion of TW-t varied 

with climate and tree position. In warm, wet climates, where cavitation risk is low, most 

tracheids are wide and do not have thickenings. As cavitation becomes more likely 
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because of drought, the frequency of tracheids with thickenings relative to those without 

increases, but TW+t do not become narrower. This suggests that callitroid thickenings 

prevent cavitation by reinforcing pits, leaving tracheid and pit dimensions free to 

optimise conductance. Thus other hydraulic traits might be labile and free to evolve to 

optimise conductance because callitroid thickening has secured cavitation resistance. In 

other words, trait lability is not necessarily a sign that traits are under strong selection, 

nor BM a sign that they are not under strong selection. 

 

Callitroid thickenings are not unique to Callitris. Other drought-tolerant cupressoid 

conifers with high cavitation resistance also have callitroid thickenings, including 

Cupressus sempervirens, Juniperus procera and Tetraclinis articulata (Heady 1997; 

Bouche et al. 2014), implicating callitroid thickening in drought-adaptation. Further 

studies are needed to investigate how widespread callitroid thickenings are within 

Cupressaceae and in non-cupressoid conifers with very high cavitation resistance. X-ray 

tomography (microCT and nanoCT) scanning and 3D imaging offer new opportunities 

to model hydraulic dynamics in realistic representations of wood structure (Vaziri et al. 

2015; Choat et al. 2016; Nolf et al. 2017). Combining hydraulic and genomic methods 

should lead to a clearer picture of the role of callitroid thickenings in drought-adaptation 

and in ecological speciation. 
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Table 1.  Phylogenetic signal estimated with Pagel’s Lambda and Blomberg’s K for the maximum clade credibility (MCC) tree and 100 evenly sampled posterior 

trees. Significance for the MCC tree was estimated with 1000 permutations of the tip values. 

   Pagel’s Lambda  Blomberg’s K 
   MCC Tree  100 posterior trees  MCC Tree  100 posterior trees 

 Trait Code λ P value  Mean λ SD  K 
P 
value  Mean K SD 

Wood Traits Bordered Pit Diameter BPD 0.334 0.495  0.332 0.058  0.376 0.397  0.363 0.063 
 Pit Aperture Diameter PAD 0.000 1.000  0.000 0.000  0.341 0.550  0.322 0.049 
 Frequency Callitroid Thickening FCT 0.983 0.005  0.949 0.077  1.003 0.002  0.953 0.093 
 Tracheid Width with Callitroid Thickening TW+t 0.691 1.000  0.301 0.376  0.571 0.051  0.536 0.054 
 Tracheid Width without Callitroid Thickening TW-t 0.980 0.035  0.936 0.089  0.746 0.007  0.725 0.072 
 Maximum Height MaxH 0.901 0.139  0.900 0.085  0.628 0.037  0.605 0.084 
              
Climate Traits Mean Annual Temperature Bio1 0.548 0.386  0.483 0.105  0.505 0.163  0.462 0.078 
 Isothermality Bio3 0.000 1.000  0.000 0.000  0.274 0.772  0.257 0.056 
 Maximum Temperature of Warmest Month Bio5 0.566 0.232  0.562 0.071  0.488 0.159  0.474 0.072 
 Minimum Temperature of Coldest Month Bio6 0.670 0.112  0.614 0.067  0.565 0.077  0.505 0.081 
 Annual Temperature Range Bio7 0.715 0.021  0.688 0.036  0.654 0.053  0.599 0.101 
 Mean Temperature of Wettest Quarter Bio8 0.000 1.000  0.000 0.000  0.398 0.337  0.375 0.049 
 Mean Temperature of Driest Quarter Bio9 0.000 1.000  0.262 0.258  0.489 0.140  0.477 0.056 
 Precipitation Seasonality Bio15 0.000 1.000  0.000 0.000  0.233 0.895  0.214 0.042 
 Precipitation of Driest Quarter Bio17 0.444 0.187  0.452 0.047  0.422 0.255  0.425 0.096 
 Precipitation of Warmest Quarter Bio18 1.102 0.015  0.747 0.259  0.664 0.015  0.605 0.083 
 Precipitation of Coldest Quarter Bio19 0.000 1.000  0.000 0.000  0.224 0.885  0.217 0.046 
 Aridity Index AI 0.566 0.163  0.528 0.046  0.508 0.084  0.463 0.084 
 Outlying Mean Index OMI 1.072 0.167  0.728 0.294  0.647 0.016  0.593 0.080 
 OMI Axis1 Axis1 0.000 1.000  0.000 0.000  0.325 0.641  0.304 0.065 
 OMI Axis2 Axis2 0.788 0.023  0.744 0.050  0.747 0.010  0.680 0.092 
  OMI Axis3 Axis3 0.000 1.000   0.000 0.000   0.230 0.954   0.224 0.041 
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Table 2.  Best fitting macroevolutionary models according to AICc weights for wood traits (upper panel) and climatic niche traits (lower panel). Parameter  = model 

parameters used to fit model; σ2 = sigma squared, the variance of the random walk; z0 = estimated root value (log scale); lnL = lognormal likelihood; k = number of 

parameters in mode; AICc = small sample size corrected Akiake Information Criterion; delta AICc = difference of a given AICc from the best-fitting (lowest AICc) 

model; rel.LL = relative log-likelihood. 

Trait Model Parameter σ2 z0 lnL k AICc Δ AICc rel.LL AICc 
weight 

Frequency Callitroid Thickening BM   – 0.01 -0.79 -13.11 2 30.97 0.00 1.00 0.40 
Tracheid Width with Callitroid Thickening White   – 0.01 1.19 14.50 2 -24.26 0.00 1.00 0.27 
Tracheid Width without Callitroid Thickening BM   – 0.00 1.37 14.39 2 -24.04 0.00 1.00 0.38 
Pit Aperture Diameter White   – 0.01 0.54 21.88 2 -39.02 0.00 1.00 0.65 
Bordered Pit Diameter White   –  0.00 1.19 24.50 2 -44.26 0.00 1.00 0.60 
Maximum Height BM   _ 0.00 1.09 -3.26 2 11.28 0.00 1.00 0.27 
Mean Annual Temperature Kappa κ = 0.00 0.00 1.23 26.21 3 -44.82 0.00 1.00 0.31 
Isothermality White   – 0.00 -0.30 49.21 2 -93.66 0.00 1.00 0.66 
Maximum Temperature of Warmest Month White   – 0.00 1.47 34.16 2 -63.58 0.00 1.00 0.31 
Minimum Temperature of Coldest Month Kappa κ = 0.00 0.02 0.76 4.63 3 -1.65 0.00 1.00 0.45 
Annual Temperature Range Lambda λ =  0.71 0.00 1.33 22.38 3 -37.16 0.00 1.00 0.29 
Mean Temperature of Wettest Quarter White   – 0.02 1.24 11.83 2 -18.90 0.00 1.00 0.60 
Mean Temperature of Driest Quarter White   – 0.01 1.23 16.04 2 -27.34 0.00 1.00 0.42 
Precipitation Seasonality White   – 0.02 1.59 8.41 2 -12.06 0.00 1.00 0.67 
Precipitation of Driest Quarter White   – 0.09 1.97 -3.75 2 12.26 0.00 1.00 0.44 
Precipitation of Warmest Quarter BM   – 0.01 2.34 -7.91 2 20.57 0.00 1.00 0.27 
Precipitation of Coldest Quarter White   – 0.06 2.21 -0.37 2 5.49 0.00 1.00 0.67 
Aridity Index Kappa κ = 0.00 0.02 -0.31 1.28 3 5.03 0.00 1.00 0.32 
Outlying Mean Index BM   – 0.00 0.36 22.94 2 -41.13 0.00 1.00 0.25 
OMI Axis1 White   – 3.43 -0.38 -38.68 2 82.10 0.00 1.00 0.56 
OMI Axis2 BM   – 0.27 1.98 -42.90 2 90.55 0.00 1.00 0.24 
OMI Axis3 White   – 1.39 0.28 -30.07 2 64.88 0.00 1.00 0.67 
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Table 3.  Significant Phylogenetic GLS results. Regressions between wood traits are shown in grey rows, and regressions of wood traits and climatic traits are in 

white rows. The first term in each model is the response variable. Results are ranked by AICc weights. 

PGLS Model Intercept Slope Lambda Sigma R_squared P value LogLk AICc Δ AICc rel.LL AICc weights 
FCT ~ PAD 0.879 -3.014 0.742 0.083 0.267 0.023 -10.579 25.907 11.756 0.003 0.003 
FCT ~ Axis2 -0.320 -0.196 0.000 0.053 0.699 0.000 -5.602 15.955 0.000 1.000 0.778 
FCT ~ AI -1.029 -1.928 0.000 0.058 0.648 0.000 -7.082 18.914 2.959 0.228 0.177 
FCT ~ PNO7 -7.630 5.224 0.001 0.063 0.572 0.000 -8.932 22.614 6.659 0.036 0.028 
BPD ~ PAD 0.795 0.724 0.000 0.006 0.692 0.000 35.677 -66.604 0.000 1.000 0.989 
BPD ~ TW+t 0.685 0.370 0.000 0.008 0.500 0.001 31.090 -57.429 9.175 0.010 0.010 
BPD ~ PNO17 0.878 0.155 0.533 0.009 0.436 0.002 30.012 -55.274 0.000 1.000 0.459 
BPD ~ Axis2 1.164 0.017 0.000 0.008 0.423 0.003 29.729 -54.708 0.567 0.753 0.346 
PAD ~ BPD -0.593 0.955 0.000 0.007 0.692 0.000 33.057 -61.363 0.000 1.000 0.995 
PAD ~ TW-t 0.025 0.379 0.000 0.010 0.399 0.004 26.723 -48.696 12.668 0.002 0.002 
PAD ~ Axis2 0.513 0.021 0.000 0.009 0.461 0.001 27.754 -50.758 0.000 1.000 0.535 
PAD ~ AI 0.586 0.199 0.000 0.010 0.416 0.003 26.995 -49.241 1.518 0.468 0.251 
TW+t ~ MaxH 0.858 0.309 0.000 0.011 0.675 0.000 25.180 -45.609 0.000 1.000 0.625 
TW+t ~ TW-t 0.075 0.825 1.000 0.016 0.667 0.000 24.665 -44.580 1.029 0.598 0.374 
TW+t ~ PNO8 0.575 0.505 0.755 0.017 0.406 0.003 19.264 -33.779 0.000 1.000 0.455 
TW+t ~ PNO1 -0.061 1.010 0.000 0.015 0.359 0.007 18.735 -32.721 1.058 0.589 0.268 
TW-t ~ TW+t 0.396 0.809 1.000 0.015 0.667 0.000 24.846 -44.943 0.000 1.000 0.985 
TW-t ~ MaxH 1.072 0.276 0.782 0.017 0.469 0.001 20.191 -35.632 9.311 0.010 0.009 
TW-t ~ PNO18 0.932 0.188 0.874 0.019 0.376 0.005 18.797 -32.844 0.000 1.000 0.437 
TW-t ~ PNO8 0.683 0.552 0.496 0.016 0.412 0.003 18.648 -32.546 0.298 0.861 0.376 
MaxH ~ TW+t -1.521 2.182 0.000 0.028 0.675 0.000 6.622 -8.494 0.000 1.000 0.974 
MaxH ~ TW-t -1.247 1.700 0.766 0.041 0.470 0.001 2.941 -1.131 7.363 0.025 0.025 
MaxH ~ AI 1.195 0.604 1.000 0.056 0.325 0.011 0.468 3.814 0.000 1.000 0.360 
MaxH ~ PNO1 -1.969 2.458 0.000 0.041 0.302 0.015 -0.639 6.029 2.215 0.330 0.119 
OMI ~ PNO18 -0.098 0.197 0.861 0.001 0.998 0.000 79.701 -154.653 0.000 1.000 1.000 
OMI ~ AI 0.412 0.262 0.000 0.006 0.737 0.000 34.809 -64.867 89.785 0.000 0.000 
OMI ~ FCT 0.300 -0.087 0.000 0.009 0.466 0.001 28.085 -51.419 0.000 1.000 0.484 
OMI ~ TW-t -0.183 0.393 0.001 0.009 0.440 0.002 27.632 -50.513 0.906 0.636 0.308 
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Figure 2.  Schematic illustration of conifer tracheids and bordered pits. (A) Depicts a 

typical conifer pit with the pit structure expanded to show the pit aperture and torus-

margo valve (left), and the pit border within a tracheid wall with the pit in an 

unaspirated an aspirated state (right).; (B) A Callitris bordered pit with elliptical 

cupressoid pits and Type 2 callitroid thickening; (C) SEM photographs of callitroid 

thickenings and their forms (Type 1–4) taken from Heady’s (1997) study. 

Type 1

Type 2

Type 4

Type 3
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Figure 2.  Outlying Mean Index (OMI) analysis showing the two main axes of climatic space 

and species locations within it. Species niche positions are represented by species name 

abbreviations, and coloured by subclade. Niches are shown as ellipses and occurrence data as 

points linked to the niche centroid by lines (all in grey). Black arrows show the correlations of 

climate variables and main axes. Arrows emerge from the mean of climatic space for all 

species. Axis 1 is correlated with temperature and rainfall seasonality. Axis 2 is correlated 

with aridity. C. intratropica, C. neocaledonica and C. sulcata have clearly outlying niches. 
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Figure 3.  Examples of morphospace polygons based on FCT data simulated under a BM 

model on the MCC tree. The observed data for semi-arid species is shown as a red polygon, 

with 100 polygons based on simulations of FCT in grey, and the smallest polygon from the 

100 simulations in black. A phylomorphospace plot of the MCC tree is plotted for two 

morphospace polygons: A) for the observed data, and B) a the simulated polygon. A 

phylomorphospace plot warps a phylogenetic tree to fit the trait values at the tips. Note that 

species positions only change on the y-axis. Species positions on the x-axis do not change 

because AI was not simulated, and remains the same as the observed values. 
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Figure 4.  Significance tests comparing observed morphospace polygons to those with FCT 

modelled under BM. Significance was estimated with permutation tests. A) Area of observed 

and simulated polygons; B) Highest point on the Y-axis in any polygon; C) Mean of points 

defining a polygon on the Y-axis; D) Area of observed polygon and the smallest polygon 

from each simulation set; E) Highest point on the Y-axis of the observed and smallest 

polygons; F) Mean Y position of the observed and smallest polygons. Simulated polygons are 

shown as grey bars, the observed data as a red line and the mean of the simulations as a 

dashed black line. The observed polygon was significantly smaller or higher on the Y-axis in 

all except D. 
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SUPPLEMENTARY MATERIAL 

 
Trait macroevolution models  

We used eight macroevolutionary models to investigate woody trait and niche evolution in the 

southern hemisphere conifer, Callitris. All analyses were run in the R package geiger (version 

2.0.3), using the function fitContinuous (Pennell et al. 2014). 

 

Details of Evolutionary Models 

Pagel’s lambda (λ), kappa (κ) and delta (δ) are all models based on tree transformations 

(Pagel 1999). Lambda is a measure of phylogenetic signal according to a Brownian Motion 

(BM) expectation. When λ=0 the tree is a single polytomy and there is no influence of 

phylogeny on trait evolution. When λ=1, trait evolution is equivalent to a BM model. Values 

λ > 1 indicate that traits are more similar than expected among related taxa. Kappa is a 

punctuational/gradualist model; when κ=0, branch lengths are all equal and speciation alone 

accounts for trait evolution. κ > 1 indicates graduational trait evolution over time, as the 

influence of elongating branch lengths accounts for more trait change than speciation does. 

Delta is a rate model in which node depths are raised to the power of δ. When δ=0, there has 

been no change in the rate over time. When δ >1 the rate of trait evolution increases 

exponentially toward the present. The Brownian motion (BM) model is a stochastic drift 

model, where the trait mean amongst lineages remains zero (α=0), but trait variance (σ2) 

increases over time (Felsenstein 1973). The early burst (EB), or adaptive radiation model, 

uses a rate change parameter (r) to model a decelerating rate of trait evolution toward the tips 

of the tree (Harmon et al. 2010). Trend is a model in which the random walk has a linear trend 

toward greater or smaller rates over time. The OU model constrains a random walk to a 

central tendency (θ) with a strength of attraction (α ≠ 0) to the central tendency (Butler and 

King 2004). High values of α indicate a stronger attraction to the optimal value θ. OU models 

can be interpreted as a model of stabilizing or directional selection. We used a single optimum 

OU model. 
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Supplementary Table 1.  PNO weighted means extracted from MaxEnt models for each species. Weighted means and summary statistics of climatic niche variables 
from PNO analyses derived from MaxEnt predictions. The weighted mean is the climatic mean weighted by the cumulative probability of the MaxEnt model. MAT 
= Mean Annual Temperature; MaxTWarmM = Maximum Temperature of Warmest Month; MinTColdM = Minimum Temperature of Coldest Month; ATR = 
Annual Temperature Range; MeanTWetQ = Mean Temperature of Warmest Quarter; MeanTDryQ = Mean Temperature of Driest Quarter; PS = Precipitation 
Seasonality; PDryQ = Precipitation of Driest Quarter; PWarmQ = Precipitation of Warmest Quarter; PColdQ = Precipitation of Coldest Quarter. 
 
Callitris species MAT 

(ºC) 
Isothermality 

(%) 
MaxTWarmM 

(ºC) 
MinTColdM 

(ºC) 
ATR 
(ºC) 

MeanTWetQ 
(ºC) 

MeanTDryQ 
(ºC) 

PS  
(%) 

PDryQ 
(mm) 

PWarmQ 
(mm) 

PColdQ 
(mm) 

Aridity Index 
(MAP/MAE) 

baileyi 17.81 50.99 29.88 3.87 26.01 23.01 12.77 39.90 117.64 324.74 128.82 0.57 
canescens 16.97 50.15 30.93 5.70 25.23 12.10 21.06 45.37 48.51 54.79 162.20 0.30 
columellaris 19.64 50.44 29.04 8.20 20.84 23.42 15.93 42.67 161.00 473.58 211.77 0.97 
drummondii 16.25 53.40 28.62 6.21 22.41 12.12 20.56 39.22 63.07 69.39 177.61 0.38 
endlicheri 16.34 48.57 29.89 2.90 26.99 19.52 13.64 31.24 128.38 255.71 156.21 0.58 
glaucophylla 17.76 48.15 32.36 3.96 28.40 19.60 16.07 28.88 79.18 137.15 101.61 0.32 
gracilis 15.95 49.86 29.94 4.62 25.31 12.26 20.29 31.48 66.54 73.75 143.57 0.33 
intratropica 25.80 57.56 35.00 14.55 20.45 27.74 22.35 107.02 18.52 431.97 25.57 0.65 
macleayana 16.86 50.10 27.15 5.06 22.09 21.13 12.45 38.28 169.75 455.00 217.82 1.02 
monticola 15.96 49.85 27.18 3.47 23.72 20.89 10.98 38.47 153.46 425.17 178.19 0.88 
muelleri 15.10 48.27 26.76 2.90 23.86 19.99 10.21 29.84 168.28 342.41 205.94 0.87 
neocaledonica 20.71 52.07 27.52 13.69 13.82 23.69 19.67 35.19 281.46 716.19 330.59 1.59 
oblonga 12.21 50.50 23.10 3.14 19.95 9.62 16.31 21.69 137.62 140.07 229.04 0.79 
preissii 18.69 50.46 30.01 9.58 20.43 15.22 22.67 83.35 40.92 65.21 390.29 0.64 
rhomboidea 15.00 49.78 26.76 4.33 22.43 14.69 15.80 33.77 126.25 221.97 216.43 0.73 
roei 16.35 51.28 29.91 5.71 24.21 11.93 20.82 44.01 55.93 61.89 175.57 0.34 
sulcata 21.32 53.07 28.13 14.17 13.96 24.27 19.97 37.90 237.18 641.87 277.34 1.33 
tuberculata 18.72 48.06 33.84 5.04 28.80 17.64 18.61 35.95 43.18 65.92 95.14 0.20 
verrucosa 16.61 49.54 31.17 4.47 26.70 13.44 20.17 26.33 63.60 69.21 111.26 0.26 

             Minimum 12.21 48.00 23.10 2.90 13.82 9.62 10.21 21.69 18.52 54.79 25.57 0.20 
Median 16.86 50.00 29.88 5.04 23.72 19.52 18.61 37.90 117.64 221.97 177.61 0.64 
Mean 17.58 50.63 29.33 6.40 22.93 18.01 17.39 41.61 113.71 264.53 186.05 0.67 
Maximum 25.80 58.00 35.00 14.55 28.80 27.74 22.67 107.02 281.46 716.19 390.29 1.59 
Standard 
Deviation 2.90 2.29 2.75 3.84 20.22 4.14 5.25 3.92 70.59 210.87 84.75 0.38 
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Supplementary Table 2. Full results from macroevolutionary modelling. Parameter  = model parameters used 
to fit model; σ2 – sigma squared, the variance of the random walk; z0 = estimated root value (log scale); lnL = 
log normal likelihood; k = number of parameters in mode; AICc = small sample size corrected Akiake 
Information Criterion;  delta AICc = difference of a given AICc from the best-fitting (lowest AICc) model; 
rel.LL = relative log-likelihood. 

Trait Model Parameter σ2 z0 lnL k AICc Δ 
AICc rel.LL AICc 

weight 
MAT Kappa κ = 0.00 0.00 1.23 26.21 3 -44.82 0.00 1.00 0.31 
Bio1 White   – 0.00 1.24 24.42 2 -44.08 0.74 0.69 0.22 
  OU α = 0.07 0.00 1.23 25.47 3 -43.33 1.49 0.47 0.15 
  Delta δ = 3.00 0.00 1.23 25.19 3 -42.77 2.05 0.36 0.11 
  Lambda λ =  0.55 0.00 1.24 24.79 3 -41.98 2.84 0.24 0.08 
  Trend slope = 100.00 0.00 1.24 24.55 3 -41.50 3.32 0.19 0.06 
  BM   – 0.00 1.24 23.12 2 -41.48 3.34 0.19 0.06 
  EB a = 0.00 0.00 1.24 23.12 3 -38.63 6.19 0.05 0.01 
                        
Iso White   – 0.00 -0.30 49.21 2 -93.66 0.00 1.00 0.66 
Bio3 OU α = 0.44 0.00 -0.30 49.21 3 -90.82 2.84 0.24 0.16 
  Lambda λ =  0.00 0.00 -0.30 49.21 3 -90.81 2.85 0.24 0.16 
  Kappa κ = 0.00 0.00 -0.30 46.80 3 -86.01 7.66 0.02 0.01 
  Delta δ = 3.00 0.00 -0.29 45.51 3 -83.43 10.23 0.01 0.00 
  Trend slope = 100.00 0.00 -0.29 44.14 3 -80.69 12.97 0.00 0.00 
  BM   – 0.00 -0.29 41.94 2 -79.12 14.54 0.00 0.00 
  EB a = 0.00 0.00 -0.29 41.94 3 -76.27 17.39 0.00 0.00 
                        
MaxTWarmM White   – 0.00 1.47 34.16 2 -63.58 0.00 1.00 0.31 
Bio5  OU α = 0.08 0.00 1.46 35.13 3 -62.67 0.91 0.63 0.20 
  Lambda λ =  0.57 0.00 1.46 34.88 3 -62.16 1.42 0.49 0.15 
  Kappa κ = 0.00 0.00 1.47 34.70 3 -61.80 1.78 0.41 0.13 
  Delta δ = 3.00 0.00 1.46 34.54 3 -61.49 2.09 0.35 0.11 
  Trend slope = 100.00 0.00 1.46 33.69 3 -59.79 3.79 0.15 0.05 
  BM   – 0.00 1.46 32.02 2 -59.28 4.29 0.12 0.04 
  EB a = 0.00 0.00 1.46 32.02 3 -56.43 7.14 0.03 0.01 
                        
MinTColdM Kappa κ = 0.00 0.02 0.76 4.63 3 -1.65 0.00 1.00 0.45 
Bio6 White   – 0.05 0.75 1.80 2 1.15 2.81 0.25 0.11 
  Lambda λ =  0.67 0.00 0.77 3.06 3 1.47 3.13 0.21 0.09 
  OU α = 0.05 0.00 0.74 3.05 3 1.51 3.16 0.21 0.09 
  Delta δ = 3.00 0.00 0.74 2.94 3 1.72 3.38 0.18 0.08 
  BM   – 0.00 0.77 1.50 2 1.75 3.40 0.18 0.08 
  Trend slope = 100.00 0.00 0.75 2.60 3 2.39 4.05 0.13 0.06 
  EB a = 0.00 0.00 0.77 1.50 3 4.60 6.25 0.04 0.02 
                        
ATR Lambda λ =  0.71 0.00 1.33 22.38 3 -37.16 0.00 1.00 0.29 
Bio7 BM   – 0.00 1.33 20.34 2 -35.93 1.23 0.54 0.16 
  Kappa κ = 0.34 0.00 1.35 21.63 3 -35.67 1.50 0.47 0.14 
  OU α = 0.04 0.00 1.34 21.47 3 -35.34 1.83 0.40 0.12 
  Delta δ = 3.00 0.00 1.34 21.28 3 -34.97 2.20 0.33 0.10 
  Trend slope = 100.00 0.00 1.34 21.14 3 -34.68 2.48 0.29 0.08 
  White   – 0.01 1.35 19.70 2 -34.66 2.51 0.29 0.08 
  EB a = 0.00 0.00 1.33 20.34 3 -33.08 4.08 0.13 0.04 
                        
MeanTWetQ White   – 0.02 1.24 11.83 2 -18.90 0.00 1.00 0.60 
Bio8  OU α = 0.17 0.01 1.23 11.96 3 -16.31 2.59 0.27 0.16 
  Lambda λ =  0.00 0.00 1.24 11.83 3 -16.05 2.85 0.24 0.14 
  Delta δ = 3.00 0.00 1.23 10.66 3 -13.72 5.18 0.08 0.04 
  Trend slope = 100.00 0.00 1.24 9.82 3 -12.05 6.86 0.03 0.02 
  BM   – 0.00 1.24 8.28 2 -11.81 7.10 0.03 0.02 
  Kappa κ = 0.51 0.00 1.22 8.79 3 -9.97 8.93 0.01 0.01 
  EB a = 0.00 0.00 1.24 8.28 3 -8.96 9.95 0.01 0.00 
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Supplementary Table 2 continued 
Trait Model Parameter σ2 z0 lnL k AICc Δ 

AICc rel.LL AICc 
weight 

            
MeanTDryQ White   – 0.01 1.23 16.04 2 -27.34 0.00 1.00 0.42 
Bio9  OU α = 0.08 0.00 1.22 16.49 3 -25.39 1.95 0.38 0.16 
  Delta δ = 3.00 0.00 1.22 16.24 3 -24.87 2.47 0.29 0.12 
  Lambda λ =  0.00 0.00 1.23 16.04 3 -24.49 2.85 0.24 0.10 
  BM   – 0.00 1.22 14.37 2 -23.99 3.35 0.19 0.08 
  Trend slope = 100.00 0.00 1.22 15.67 3 -23.75 3.59 0.17 0.07 
  Kappa κ = 0.73 0.00 1.22 14.52 3 -21.43 5.91 0.05 0.02 
  EB a = 0.00 0.00 1.22 14.37 3 -21.14 6.20 0.05 0.02 
                        
PS White   – 0.02 1.59 8.41 2 -12.06 0.00 1.00 0.67 
Bio15 OU α = 0.53 0.03 1.59 8.41 3 -9.21 2.85 0.24 0.16 
  Lambda λ =  0.00 0.00 1.59 8.41 3 -9.21 2.85 0.24 0.16 
  Kappa κ = 0.00 0.01 1.61 5.61 3 -3.62 8.44 0.01 0.01 
  Delta δ = 3.00 0.00 1.58 3.72 3 0.17 12.23 0.00 0.00 
  Trend slope = 100.00 0.00 1.58 2.15 3 3.29 15.36 0.00 0.00 
  BM   – 0.00 1.58 -0.22 2 5.19 17.26 0.00 0.00 
  EB a = 0.00 0.00 1.58 -0.22 3 8.04 20.11 0.00 0.00 
                        
PDryQ White   – 0.09 1.97 -3.75 2 12.26 0.00 1.00 0.44 
Bio17 Lambda λ =  0.44 0.00 2.03 -2.88 3 13.37 1.11 0.57 0.25 
  OU α = 0.11 0.02 2.00 -3.41 3 14.42 2.16 0.34 0.15 
  Kappa κ = 0.00 0.04 1.91 -3.88 3 15.35 3.09 0.21 0.09 
  Delta δ = 3.00 0.00 2.03 -4.77 3 17.14 4.88 0.09 0.04 
  Trend slope = 100.00 0.00 2.04 -5.75 3 19.11 6.85 0.03 0.01 
  BM   – 0.01 2.05 -7.54 2 19.83 7.57 0.02 0.01 
  EB a = 0.00 0.01 2.05 -7.54 3 22.68 10.42 0.01 0.00 
                        
PWarmQ BM   – 0.01 2.34 -7.91 2 20.57 0.00 1.00 0.27 
Bio18  Delta δ = 3.00 0.00 2.31 -7.09 3 21.79 1.22 0.54 0.15 
  OU α = 0.04 0.01 2.31 -7.19 3 21.99 1.41 0.49 0.13 
  Trend slope = 100.00 0.00 2.32 -7.24 3 22.08 1.51 0.47 0.13 
  Kappa κ = 0.48 0.02 2.26 -7.41 3 22.42 1.85 0.40 0.11 
  White   – 0.15 2.27 -8.93 2 22.60 2.03 0.36 0.10 
  Lambda λ =  1.00 0.01 2.34 -7.91 3 23.42 2.85 0.24 0.06 
  EB a = 0.00 0.01 2.34 -7.91 3 23.42 2.85 0.24 0.06 
                        
PColdQ White   – 0.06 2.21 -0.37 2 5.49 0.00 1.00 0.67 
Bio19 OU α = 150.00 18.26 2.21 -0.37 3 8.34 2.85 0.24 0.16 
  Lambda λ =  0.00 0.00 2.21 -0.37 3 8.34 2.85 0.24 0.16 
  Kappa κ = 0.00 0.04 2.25 -4.27 3 16.14 10.65 0.00 0.00 
  Delta δ = 3.00 0.00 2.26 -5.89 3 19.37 13.88 0.00 0.00 
  Trend slope = 100.00 0.00 2.27 -7.55 3 22.71 17.22 0.00 0.00 
  BM   – 0.01 2.28 -10.05 2 24.84 19.35 0.00 0.00 
  EB a = 0.00 0.01 2.28 -10.05 3 27.69 22.20 0.00 0.00 
                        
AI Kappa κ = 0.00 0.02 -0.31 1.28 3 5.03 0.00 1.00 0.32 
Aridity Index  White   – 0.06 -0.24 -0.42 2 5.59 0.56 0.76 0.25 
  Lambda λ =  0.57 0.00 -0.19 0.55 3 6.50 1.46 0.48 0.16 
  OU α = 0.08 0.01 -0.21 0.24 3 7.11 2.08 0.35 0.11 
  Delta δ = 3.00 0.00 -0.20 -0.27 3 8.14 3.11 0.21 0.07 
  BM   – 0.00 -0.18 -2.17 2 0.00 4.06 0.13 0.04 
  Trend slope = 100.00 0.00 -0.19 -0.87 3 9.33 4.30 0.12 0.04 
  EB a = 0.00 0.00 -0.18 -2.17 3 11.95 6.91 0.03 0.01 
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Supplementary Table 2 continued 

Trait Model Parameter σ2 z0 lnL k AICc Δ 
AICc rel.LL AICc 

weight 
            
OMI BM   – 0.00 0.36 22.94 2 -41.13 0.00 1.00 0.25 
Species’  Delta δ = 3.00 0.00 0.36 23.84 3 -40.08 1.05 0.59 0.15 
Position in OU α = 0.04 0.00 0.36 23.73 3 -39.87 1.26 0.53 0.14 
OMI Niche Trend slope = 100.00 0.00 0.36 23.66 3 -39.71 1.42 0.49 0.13 
Space White   – 0.01 0.35 22.13 2 -39.51 1.62 0.44 0.11 
  Kappa κ = 0.47 0.00 0.35 23.43 3 -39.27 1.86 0.39 0.10 
  Lambda λ =  1.00 0.00 0.36 22.94 3 -38.28 2.85 0.24 0.06 
  EB a = 0.00 0.00 0.36 22.94 3 -38.28 2.85 0.24 0.06 
                        
OMI Axis 1 White   – 3.43 -0.38 -38.68 2 82.10 0.00 1.00 0.56 
  OU α = 0.20 1.39 -0.29 -38.57 3 84.75 2.65 0.27 0.15 
  Kappa κ = 0.00 1.43 -0.41 -38.67 3 84.94 2.83 0.24 0.14 
  Lambda λ =  0.00 0.08 -0.38 -38.68 3 84.95 2.85 0.24 0.13 
  Delta δ = 3.00 0.13 -0.16 -40.85 3 89.30 7.20 0.03 0.02 
  Trend slope = 100.00 0.00 -0.23 -42.09 3 91.77 9.67 0.01 0.00 
  BM   – 0.30 -0.28 -44.17 2 93.09 10.99 0.00 0.00 
  EB a = 0.00 0.30 -0.28 -44.17 3 95.94 13.84 0.00 0.00 
                        
OMI Axis 2 BM   – 0.27 1.98 -42.90 2 90.55 0.00 1.00 0.24 
  Kappa κ = 0.09 1.65 0.94 -41.71 3 91.03 0.47 0.79 0.19 
  Lambda λ =  0.79 0.17 1.95 -42.00 3 91.60 1.05 0.59 0.14 
  OU α = 0.03 0.43 1.82 -42.26 3 92.12 1.57 0.46 0.11 
  Delta δ = 2.42 0.16 1.78 -42.36 3 92.33 1.77 0.41 0.10 
  Trend slope = 100.00 0.00 1.85 -42.39 3 92.38 1.82 0.40 0.10 
  EB a = 0.00 0.27 1.98 -42.90 3 93.40 2.85 0.24 0.06 
  White   – 6.38 1.25 -44.57 2 93.88 3.33 0.19 0.05 
                        
OMI Axis 3 White   – 1.39 0.28 -30.07 2 64.88 0.00 1.00 0.67 
  OU α = 149.91 415.80 0.28 -30.07 3 67.73 2.85 0.24 0.16 
  Lambda λ =  0.00 0.03 0.28 -30.07 3 67.73 2.85 0.24 0.16 
  Delta δ = 3.00 0.07 0.33 -35.07 3 77.74 12.86 0.00 0.00 
  Trend slope = 100.00 0.00 0.32 -36.56 3 80.72 15.84 0.00 0.00 
  Kappa κ = 0.07 1.01 0.56 -36.75 3 81.10 16.22 0.00 0.00 
  BM   – 0.17 0.32 -38.84 2 82.42 17.54 0.00 0.00 
  EB a = 0.00 0.17 0.32 -38.84 3 85.27 20.39 0.00 0.00 
                        
FCT BM   – 0.01 -0.79 -13.11 2 30.97 0.00 1.00 0.40 
Frequency of  OU α = 0.00 0.01 -0.79 -13.08 3 33.77 2.80 0.25 0.10 
Callitroid  Trend slope = 0.01 0.01 -0.79 -13.09 3 33.77 2.80 0.25 0.10 
Thickening Delta δ = 1.15 0.01 -0.79 -13.09 3 33.79 2.82 0.24 0.10 
  Lambda λ =  0.98 0.01 -0.79 -13.11 3 33.81 2.84 0.24 0.10 
  Kappa κ = 1.00 0.01 -0.79 -13.11 3 33.82 2.85 0.24 0.10 
  EB a = 0.00 0.01 -0.79 -13.11 3 33.82 2.85 0.24 0.10 
  White   – 0.35 -0.56 -17.01 2 38.77 7.80 0.02 0.01 
                        
TW+t White   – 0.01 1.19 14.50 2 -24.26 0.00 1.00 0.27 
Tracheid BM   – 0.00 1.21 14.21 2 -23.68 0.58 0.75 0.20 
Width Delta δ = 3.00 0.00 1.19 15.21 3 -22.82 1.44 0.49 0.13 
with OU α = 0.06 0.00 1.19 15.14 3 -22.69 1.57 0.46 0.12 
Callitroid Trend slope = 100.00 0.00 1.20 14.98 3 -22.35 1.90 0.39 0.10 
Thickening Lambda λ =  0.00 0.00 1.19 14.50 3 -21.41 2.85 0.24 0.07 
  Kappa κ = 1.00 0.00 1.21 14.21 3 -20.83 3.43 0.18 0.05 
  EB a = 0.00 0.00 1.21 14.21 3 -20.83 3.43 0.18 0.05 
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Supplementary Table 2 continued 
Trait Model Parameter σ2 z0 lnL k AICc Δ 

AICc rel.LL AICc 
weight 

            
TW-t BM     0.00 1.37 14.39 2 -24.04 0.00 1.00 0.38 
Tracheid   OU α = 0.01 0.00 1.37 14.48 3 -21.36 2.68 0.26 0.10 
Width Trend slope = 0.03 0.00 1.37 14.47 3 -21.35 2.69 0.26 0.10 
without Delta δ = 1.36 0.00 1.37 14.47 3 -21.35 2.69 0.26 0.10 
Callitroid Lambda λ =  0.98 0.00 1.37 14.40 3 -21.21 2.83 0.24 0.09 
Thickening Kappa κ = 1.00 0.00 1.37 14.39 3 -21.19 2.85 0.24 0.09 
  EB   0.00 0.00 1.37 14.39 3 -21.19 2.85 0.24 0.09 
  White     0.02 1.35 12.19 2 -19.63 4.41 0.11 0.04 
                        
PAD White   – 0.01 0.54 21.88 2 -39.02 0.00 1.00 0.65 
Pit OU α = 0.29 0.00 0.54 21.92 3 -36.25 2.77 0.25 0.16 
Aperture  Lambda λ =  0.00 0.00 0.54 21.88 3 -36.17 2.85 0.24 0.16 
Diameter Delta δ = 3.00 0.00 0.54 19.47 3 -31.34 7.67 0.02 0.01 
  Kappa κ = 0.00 0.00 0.52 19.47 3 -31.33 7.68 0.02 0.01 
  Trend slope = 100.00 0.00 0.55 18.43 3 -29.26 9.76 0.01 0.00 
  BM   – 0.00 0.55 16.65 2 -28.54 10.47 0.01 0.00 
  EB a = 0.00 0.00 0.55 16.65 3 -25.69 13.32 0.00 0.00 
                        
BPD White     0.00 1.19 24.50 2 -44.26 0.00 1.00 0.60 
Bordered  Lambda λ =  0.33 0.00 1.19 24.74 3 -41.87 2.38 0.30 0.18 
Pit OU α = 0.58 0.01 1.19 24.50 3 -41.41 2.85 0.24 0.14 
Diameter  Kappa κ = 0.00 0.00 1.18 23.36 3 -39.12 5.14 0.08 0.05 
  Delta δ = 3.00 0.00 1.19 22.44 3 -37.28 6.98 0.03 0.02 
  Trend slope = 100.00 0.00 1.20 21.57 3 -35.54 8.71 0.01 0.01 
  BM     0.00 1.20 19.97 2 -35.20 9.06 0.01 0.01 
  EB a = 0.00 0.00 1.20 19.97 3 -32.35 11.91 0.00 0.00 

            MaxH BM   _ 0.00 1.09 -3.26 2 11.28 0.00 1.00 0.27 
Maximum Delta δ = 3.00 0.00 1.05 -2.47 3 12.55 1.27 0.53 0.14 
Height OU α =  0.04 0.01 1.06 -2.58 3 12.75 1.47 0.48 0.13 
  Trend slope = 100.00 0.00 1.07 -2.61 3 12.81 1.53 0.47 0.12 
  White   _ 0.09 1.08 -4.05 2 12.86 1.58 0.45 0.12 
  Lambda λ =  0.90 0.00 1.09 -2.96 3 13.52 2.24 0.33 0.09 
  Kappa κ = 0.80 0.01 1.08 -3.15 3 13.91 2.63 0.27 0.07 
  EB a = 0.00 0.00 1.09 -3.26 3 14.13 2.85 0.24 0.06 
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Supplementary Table 3. Full PGLS results for species position in ordinal niche space, Outlying Mean Index (OMI). Results are ranked by AICc weights, and 
significant results according to P values are marked in bold. Lambda refers to the phylogenetic correction of the regression, which is estimated using the residuals of 
the Y-axis. 

 
 
 
 
 
 

 
Intercept Slope Lambda Sigma R_squared Pval LogLk AIC AICc deltaAICc rel.LL AICc weights 

OMI ~ PNO18 -0.098 0.197 0.861 0.001 0.998 0.000 79.701 -155.403 -154.653 0.000 1.000 1.000 
OMI ~ AI 0.412 0.262 0.000 0.006 0.737 0.000 34.809 -65.617 -64.867 89.785 0.000 0.000 
OMI ~ Axis2 0.317 0.026 0.000 0.006 0.737 0.000 34.807 -65.614 -64.864 89.788 0.000 0.000 
OMI ~ PNO8 -0.121 0.389 1.000 0.009 0.707 0.000 34.615 -65.231 -64.481 90.172 0.000 0.000 
OMI ~ PNO17 0.023 0.166 0.000 0.009 0.418 0.003 27.269 -50.538 -49.788 104.865 0.000 0.000 
OMI ~ PNO9 0.824 -0.380 0.960 0.013 0.335 0.009 26.738 -49.475 -48.725 105.928 0.000 0.000 
OMI ~ Axis3 0.370 -0.027 0.799 0.012 0.307 0.014 26.188 -48.375 -47.625 107.027 0.000 0.000 
OMI ~ PNO1 -0.241 0.487 1.000 0.015 0.233 0.037 25.455 -46.910 -46.160 108.492 0.000 0.000 
OMI ~ PNO7 0.986 -0.471 0.000 0.010 0.287 0.018 25.340 -46.681 -45.931 108.722 0.000 0.000 
OMI ~ Axis1 0.360 -0.006 1.000 0.017 0.040 0.412 23.327 -42.654 -41.904 112.748 0.000 0.000 
OMI ~ PNO15 0.278 0.053 1.000 0.017 0.032 0.465 23.247 -42.495 -41.745 112.908 0.000 0.000 
OMI ~ PNO19 0.421 -0.026 1.000 0.017 0.022 0.544 23.152 -42.304 -41.554 113.099 0.000 0.000 
OMI ~ PNO6 0.326 0.046 1.000 0.017 0.020 0.563 23.132 -42.264 -41.514 113.138 0.000 0.000 
OMI ~ PNO3 0.461 0.338 1.000 0.017 0.016 0.612 23.088 -42.177 -41.427 113.226 0.000 0.000 
OMI ~ PNO5 1.196 -0.578 0.000 0.012 0.094 0.201 23.069 -42.138 -41.388 113.265 0.000 0.000 

             OMI ~ FCT 0.300 -0.087 0.000 0.009 0.466 0.001 28.085 -52.169 -51.419 0.000 1.000 0.484 
OMI ~ TW-t -0.183 0.393 0.001 0.009 0.440 0.002 27.632 -51.263 -50.513 0.906 0.636 0.308 
OMI ~ TW+t -0.067 0.355 1.000 0.014 0.316 0.012 26.542 -49.084 -48.334 3.085 0.214 0.104 
OMI ~ PAD 0.039 0.575 0.000 0.010 0.339 0.009 26.062 -48.124 -47.374 4.045 0.132 0.064 
OMI ~ BPD -0.365 0.602 0.000 0.010 0.283 0.019 25.287 -46.574 -45.824 5.596 0.061 0.030 
OMI ~ MaxH 0.257 0.096 0.954 0.015 0.141 0.112 24.307 -44.615 -43.865 7.555 0.023 0.011 
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Supplementary Table 3 continued  

 

Model Intercept Slope Lambda Sigma R_squared Pval LogLk AIC AICc deltaAICc rel.LL AICc weights 
FCT ~ OMI Axis 2 -0.320 -0.196 0.000 0.053 0.699 0.000 -5.602 15.205 15.955 0.000 1.000 0.778 
FCT ~ AI -1.029 -1.928 0.000 0.058 0.648 0.000 -7.082 18.164 18.914 2.959 0.228 0.177 
FCT ~ ATR -7.630 5.224 0.001 0.063 0.572 0.000 -8.932 21.864 22.614 6.659 0.036 0.028 
FCT ~ PWarmQ 1.080 -0.785 0.527 0.075 0.333 0.010 -10.408 24.816 25.566 9.611 0.008 0.006 
FCT ~ OMI 0.636 -3.860 0.575 0.077 0.315 0.012 -10.475 24.951 25.701 11.549 0.003 0.003 
FCT ~ MaxTWarmM -9.881 6.258 0.642 0.082 0.233 0.036 -11.324 26.647 27.397 11.442 0.003 0.003 
FCT ~ Iso -2.726 -6.582 1.000 0.106 0.132 0.126 -11.766 27.532 28.282 12.327 0.002 0.002 
FCT ~ MinTColdM -0.283 -0.669 1.000 0.108 0.096 0.196 -12.149 28.299 29.049 13.094 0.001 0.001 
FCT ~ PDryQ 1.900 -1.253 0.000 0.076 0.389 0.004 -12.328 28.656 29.406 13.451 0.001 0.001 
FCT ~ OMI Axis 1 -0.782 0.044 1.000 0.111 0.052 0.349 -12.605 29.210 29.960 14.005 0.001 0.001 
FCT ~ PS -0.143 -0.412 1.000 0.111 0.044 0.390 -12.685 29.369 30.119 14.164 0.001 0.001 
FCT ~ OMI Axis 3 -0.783 -0.036 1.000 0.113 0.019 0.572 -12.926 29.852 30.602 14.647 0.001 0.001 
FCT ~ MeanTWetQ -0.285 -0.408 0.947 0.107 0.017 0.600 -12.963 29.925 30.675 14.720 0.001 0.000 
FCT ~ MAT 0.207 -0.809 1.000 0.113 0.014 0.624 -12.971 29.943 30.693 14.738 0.001 0.000 
FCT ~ MeanTDryQ -0.458 -0.277 1.000 0.114 0.004 0.791 -13.069 30.139 30.889 14.934 0.001 0.000 
FCT ~ PColdQ -0.940 0.064 0.999 0.113 0.003 0.826 -13.081 30.163 30.913 14.958 0.001 0.000 

             FCT ~ PAD 0.879 -3.014 0.742 0.083 0.267 0.023 -10.579 25.157 25.907 0.000 1.000 0.652 
FCT ~ TW-t 1.094 -1.370 0.860 0.096 0.103 0.180 -12.213 28.426 29.176 3.268 0.195 0.127 
FCT ~ MaxH -0.275 -0.478 0.993 0.108 0.081 0.239 -12.309 28.618 29.368 3.460 0.177 0.116 
FCT ~ BPD -0.347 -0.371 0.947 0.108 0.004 0.807 -13.087 30.174 30.924 5.016 0.081 0.053 
FCT ~ TW+t -0.927 0.111 0.985 0.112 0.001 0.915 -13.099 30.197 30.947 5.040 0.080 0.052 
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Supplementary Table 3 continued 

 

 

 

 

 

Model Intercept Slope Lambda Sigma R_squared Pval LogLk AIC AICc deltaAICc rel.LL AICc weights 
TW+t ~ MeanTWetQ 0.575 0.505 0.755 0.017 0.406 0.003 19.264 -34.529 -33.779 0.000 1.000 0.455 
TW+t ~ MAT -0.061 1.010 0.000 0.015 0.359 0.007 18.735 -33.471 -32.721 1.058 0.589 0.268 
TW+t ~ PWarmQ 0.800 0.174 1.000 0.022 0.310 0.013 17.744 -31.488 -30.738 3.041 0.219 0.099 
TW+t ~ OMI Axis 3 1.204 -0.047 0.000 0.016 0.240 0.033 17.115 -30.230 -29.480 4.299 0.117 0.053 
TW+t ~ OMI Axis 1 1.181 -0.027 0.000 0.017 0.193 0.060 16.543 -29.087 -28.337 5.442 0.066 0.030 
TW+t ~ MaxTWarmM -0.573 1.204 0.000 0.017 0.183 0.068 16.425 -28.850 -28.100 5.679 0.058 0.027 
TW+t ~ PS 0.746 0.280 0.000 0.017 0.149 0.102 16.043 -28.085 -27.335 6.444 0.040 0.018 
TW+t ~ MinTColdM 1.063 0.172 0.000 0.017 0.113 0.160 15.639 -27.278 -26.528 7.251 0.027 0.012 
TW+t ~ AI 1.233 0.146 1.000 0.025 0.119 0.147 15.421 -26.842 -26.092 7.687 0.021 0.010 
TW+t ~ PColdQ 1.432 -0.109 0.000 0.018 0.057 0.326 15.059 -26.118 -25.368 8.410 0.015 0.007 
TW+t ~ OMI Axis 2 1.182 0.012 0.977 0.026 0.058 0.321 14.811 -25.623 -24.873 8.906 0.012 0.005 
TW+t ~ Iso 1.505 1.062 0.001 0.018 0.029 0.484 14.784 -25.569 -24.819 8.960 0.011 0.005 
TW+t ~ MeanTDryQ 1.459 -0.209 0.898 0.024 0.039 0.416 14.669 -25.338 -24.588 9.191 0.010 0.005 
TW+t ~ ATR 1.164 0.028 0.677 0.022 0.000 0.940 14.318 -24.635 -23.885 9.893 0.007 0.003 
TW+t ~ PDryQ 1.202 0.000 0.691 0.022 0.000 0.999 14.315 -24.629 -23.879 9.900 0.007 0.003 
TW+t ~ OMI 0.885 0.889 1.000 0.022 0.316 0.012 17.815 -31.630 -30.880 14.729 0.001 0.000 

             TW+t ~ MaxH 0.858 0.309 0.000 0.011 0.675 0.000 25.180 -46.359 -45.609 0.000 1.000 0.625 
TW+t ~ TW-t 0.075 0.825 1.000 0.016 0.667 0.000 24.665 -45.330 -44.580 1.029 0.598 0.374 
TW+t ~ BPD 0.263 0.783 0.000 0.016 0.214 0.046 16.793 -29.587 -28.837 16.772 0.000 0.000 
TW+t ~ PAD 0.868 0.600 0.000 0.017 0.166 0.084 16.226 -28.451 -27.701 17.908 0.000 0.000 
TW+t ~ FCT 1.200 -0.002 0.668 0.022 0.000 0.969 14.315 -24.631 -23.881 21.729 0.000 0.000 
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Supplementary Table 3 continued 

 

Model Intercept Slope Lambda Sigma R_squared Pval LogLk AIC AICc deltaAICc rel.LL AICc weights 
TW-t ~ PWarmQ 0.932 0.188 0.874 0.019 0.376 0.005 18.797 -33.594 -32.844 0.000 1.000 0.437 
TW-t ~ MeanTWetQ 0.683 0.552 0.496 0.016 0.412 0.003 18.648 -33.296 -32.546 0.298 0.861 0.376 
TW-t ~ OMI Axis 2 1.315 0.030 0.001 0.017 0.354 0.007 16.339 -28.678 -27.928 4.917 0.086 0.037 
TW-t ~ AI 1.404 0.179 1.000 0.024 0.183 0.068 16.315 -28.631 -27.881 4.963 0.084 0.037 
TW-t ~ MAT 0.460 0.736 0.756 0.020 0.180 0.070 16.020 -28.039 -27.289 5.555 0.062 0.027 
TW-t ~ OMI Axis 3 1.381 -0.029 0.785 0.021 0.147 0.105 15.691 -27.382 -26.632 6.212 0.045 0.020 
TW-t ~ MeanTDryQ 1.678 -0.251 0.943 0.024 0.059 0.315 14.967 -25.935 -25.185 7.659 0.022 0.009 
TW-t ~ ATR 2.357 -0.742 0.001 0.018 0.250 0.029 14.924 -25.847 -25.097 7.747 0.021 0.009 
TW-t ~ PDryQ 1.155 0.106 0.778 0.022 0.074 0.260 14.903 -25.807 -25.057 7.787 0.020 0.009 
TW-t ~ OMI Axis 1 1.370 -0.009 1.000 0.026 0.036 0.434 14.747 -25.494 -24.744 8.100 0.017 0.008 
TW-t ~ PS 1.240 0.084 1.000 0.026 0.032 0.460 14.708 -25.416 -24.666 8.178 0.017 0.007 
TW-t ~ MinTColdM 1.312 0.078 1.000 0.026 0.024 0.529 14.623 -25.246 -24.496 8.348 0.015 0.007 
TW-t ~ MaxTWarmM 0.889 0.332 0.953 0.025 0.015 0.614 14.540 -25.081 -24.331 8.514 0.014 0.006 
TW-t ~ Iso 1.493 0.411 1.000 0.027 0.009 0.694 14.483 -24.967 -24.217 8.628 0.013 0.006 
TW-t ~ PColdQ 1.407 -0.016 0.965 0.026 0.003 0.833 14.425 -24.850 -24.100 8.744 0.013 0.006 
TW-t ~ OMI 1.024 0.963 0.899 0.019 0.381 0.005 18.904 -33.809 -33.059 11.884 0.003 0.003 

             TW-t ~ TW+t 0.396 0.809 1.000 0.015 0.667 0.000 24.846 -45.693 -44.943 0.000 1.000 0.985 
TW-t ~ MaxH 1.072 0.276 0.782 0.017 0.469 0.001 20.191 -36.382 -35.632 9.311 0.010 0.009 
TW-t ~ BPD -0.250 1.352 0.000 0.015 0.500 0.001 18.776 -33.553 -32.803 12.140 0.002 0.002 
TW-t ~ PAD 0.786 1.052 0.000 0.016 0.399 0.004 17.030 -30.060 -29.310 15.633 0.000 0.000 
TW-t ~ FCT 1.302 -0.090 0.597 0.020 0.153 0.098 15.401 -26.801 -26.051 18.892 0.000 0.000 
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Supplementary Table 3 continued 

 

Model Intercept Slope Lambda Sigma R_squared Pval LogLk AIC AICc deltaAICc rel.LL AICc weights 
PAD ~ OMI Axis 2 0.513 0.021 0.000 0.009 0.461 0.001 27.754 -51.508 -50.758 0.000 1.000 0.535 
PAD ~ AI 0.586 0.199 0.000 0.010 0.416 0.003 26.995 -49.991 -49.241 1.518 0.468 0.251 
PAD ~ PWarmQ 0.273 0.117 0.000 0.010 0.350 0.008 25.978 -47.956 -47.206 3.552 0.169 0.091 
PAD ~ ATR 1.224 -0.507 0.000 0.010 0.324 0.011 25.597 -47.194 -46.444 4.314 0.116 0.062 
PAD ~ PDryQ 0.271 0.136 0.000 0.011 0.275 0.021 24.935 -45.870 -45.120 5.638 0.060 0.032 
PAD ~ MinTColdM 0.442 0.130 0.000 0.012 0.139 0.116 23.307 -42.613 -41.863 8.895 0.012 0.006 
PAD ~ MeanTWetQ 0.291 0.200 0.000 0.012 0.115 0.155 23.048 -42.096 -41.346 9.413 0.009 0.005 
PAD ~ MaxTWarmM 1.449 -0.621 0.000 0.012 0.106 0.174 22.947 -41.894 -41.144 9.614 0.008 0.004 
PAD ~ PColdQ 0.346 0.087 0.000 0.012 0.079 0.244 22.663 -41.326 -40.576 10.182 0.006 0.003 
PAD ~ Iso 0.808 0.910 0.000 0.012 0.047 0.374 22.337 -40.673 -39.923 10.835 0.004 0.002 
PAD ~MAT 0.241 0.240 0.000 0.012 0.044 0.388 22.311 -40.623 -39.873 10.886 0.004 0.002 
PAD ~ OMI Axis 1 0.537 -0.004 0.000 0.012 0.011 0.670 21.987 -39.975 -39.225 11.534 0.003 0.002 
PAD ~ PS 0.587 -0.030 0.000 0.013 0.004 0.802 21.919 -39.838 -39.088 11.670 0.003 0.002 
PAD ~ MeanTDryQ 0.570 -0.026 0.000 0.013 0.001 0.887 21.894 -39.788 -39.038 11.720 0.003 0.002 
PAD ~ OMI Axis 3 0.538 0.000 0.000 0.013 0.000 0.984 21.883 -39.766 -39.016 11.743 0.003 0.002 
PAD ~ OMI 0.333 0.590 0.000 0.010 0.339 0.009 25.814 -47.629 -46.879 14.485 0.001 0.001 

             PAD ~ BPD -0.593 0.955 0.000 0.007 0.692 0.000 33.057 -62.113 -61.363 0.000 1.000 0.995 
PAD ~ TW-t 0.025 0.379 0.000 0.010 0.399 0.004 26.723 -49.446 -48.696 12.668 0.002 0.002 
PAD ~ FCT 0.493 -0.080 0.000 0.010 0.382 0.005 26.462 -48.923 -48.173 13.190 0.001 0.001 
PAD ~ MaxH 0.395 0.133 0.000 0.011 0.272 0.022 24.900 -45.799 -45.049 16.314 0.000 0.000 
PAD ~ TW+t 0.210 0.276 0.000 0.011 0.166 0.084 23.603 -43.207 -42.457 18.907 0.000 0.000 



 

 42 

Supplementary Table 3 continued 

 

Model Intercept Slope Lambda Sigma R_squared Pval LogLk AIC AICc deltaAICc rel.LL AICc weights 
BPD ~ PDryQ 0.878 0.155 0.533 0.009 0.436 0.002 30.012 -56.024 -55.274 0.000 1.000 0.459 
BPD ~ OMI Axis 2 1.164 0.017 0.000 0.008 0.423 0.003 29.729 -55.458 -54.708 0.567 0.753 0.346 
BPD ~ AI 1.221 0.151 0.000 0.009 0.316 0.012 28.108 -52.216 -51.466 3.808 0.149 0.068 
BPD ~ PWarmQ 0.971 0.094 0.000 0.009 0.300 0.015 27.885 -51.770 -51.020 4.254 0.119 0.055 
BPD ~ ATR 1.681 -0.367 0.000 0.010 0.223 0.041 26.899 -49.799 -49.049 6.225 0.044 0.020 
BPD ~ PColdQ 0.953 0.107 0.526 0.011 0.190 0.062 26.581 -49.161 -48.411 6.863 0.032 0.015 
BPD ~ MeanTWetQ 0.939 0.199 0.000 0.010 0.150 0.101 26.049 -48.097 -47.347 7.927 0.019 0.009 
BPD ~ MaxTWarmM 1.931 -0.505 0.482 0.011 0.087 0.220 25.516 -47.033 -46.283 8.991 0.011 0.005 
BPD ~ PS 1.342 -0.094 0.412 0.011 0.059 0.316 25.290 -46.581 -45.831 9.443 0.009 0.004 
BPD ~ MinTColdM 1.122 0.084 0.000 0.010 0.077 0.250 25.264 -46.528 -45.778 9.496 0.009 0.004 
BPD ~ MeanTDryQ 1.351 -0.128 0.416 0.011 0.042 0.402 25.115 -46.229 -45.479 9.795 0.007 0.003 
BPD ~ OMI Axis 1 1.197 0.007 0.510 0.012 0.047 0.371 25.069 -46.139 -45.389 9.885 0.007 0.003 
BPD ~ Iso 1.019 -0.598 0.445 0.011 0.031 0.472 24.986 -45.973 -45.223 10.051 0.007 0.003 
BPD ~MAT 0.944 0.195 0.000 0.011 0.038 0.422 24.874 -45.747 -44.997 10.277 0.006 0.003 
BPD ~ OMI Axis 3 1.194 -0.005 0.298 0.011 0.011 0.670 24.836 -45.672 -44.922 10.352 0.006 0.003 
BPD ~ OMI 1.021 0.469 0.000 0.009 0.283 0.019 27.660 -51.319 -50.569 16.035 0.000 0.000 

             BPD ~ PAD 0.795 0.724 0.000 0.006 0.692 0.000 35.677 -67.354 -66.604 0.000 1.000 0.989 
BPD ~ TW-t 0.685 0.370 0.000 0.008 0.500 0.001 31.090 -58.179 -57.429 9.175 0.010 0.010 
BPD ~ FCT 1.155 -0.053 0.000 0.010 0.225 0.040 26.926 -49.851 -49.101 17.503 0.000 0.000 
BPD ~ TW+t 0.859 0.273 0.000 0.010 0.214 0.046 26.792 -49.583 -48.833 17.771 0.000 0.000 
BPD ~ MaxH 1.076 0.101 0.000 0.010 0.207 0.050 26.709 -49.419 -48.669 17.935 0.000 0.000 
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Supplementary Table 3 continued  
 

Model Intercept Slope Lambda Sigma R_squared Pval LogLk AIC AICc deltaAICc rel.LL AICc weights 
MaxH ~ AI 1.195 0.604 1.000 0.056 0.325 0.011 0.468 3.064 3.814 0.000 1.000 0.360 
MaxH ~ MAT -1.969 2.458 0.000 0.041 0.302 0.015 -0.639 5.279 6.029 2.215 0.330 0.119 
MaxH ~ PS 0.202 0.559 1.000 0.060 0.227 0.039 -0.818 5.635 6.385 2.571 0.276 0.100 
MaxH ~ MinTColdM 0.620 0.609 1.000 0.060 0.224 0.041 -0.852 5.705 6.455 2.641 0.267 0.096 
MaxH ~ ATR 3.149 -1.549 1.000 0.061 0.200 0.055 -1.145 6.291 7.041 3.227 0.199 0.072 
MaxH ~ OMI Axis 2 0.983 0.052 1.000 0.062 0.174 0.076 -1.452 6.905 7.655 3.841 0.147 0.053 
MaxH ~ MeanTWetQ 0.131 0.768 0.736 0.051 0.148 0.104 -1.620 7.240 7.990 4.176 0.124 0.045 
MaxH ~ OMI Axis 1 1.071 -0.048 0.828 0.054 0.128 0.133 -1.712 7.424 8.174 4.360 0.113 0.041 
MaxH ~ PWarmQ 0.430 0.281 1.000 0.063 0.129 0.132 -1.957 7.914 8.664 4.850 0.088 0.032 
MaxH ~ Iso 1.975 3.030 0.908 0.059 0.064 0.295 -2.328 8.656 9.406 5.592 0.061 0.022 
MaxH ~ PColdQ 0.829 0.112 0.961 0.064 0.022 0.543 -2.825 9.649 10.399 6.585 0.037 0.013 
MaxH ~ OMI Axis 3 1.078 0.023 0.972 0.064 0.020 0.562 -2.884 9.768 10.518 6.704 0.035 0.013 
MaxH ~ MeanTDryQ 0.865 0.181 0.909 0.061 0.005 0.777 -2.912 9.825 10.575 6.761 0.034 0.012 
MaxH ~ MaxTWarmM 0.644 0.303 0.879 0.060 0.002 0.860 -2.946 9.892 10.642 6.828 0.033 0.012 
MaxH ~ PDryQ 1.089 -0.002 0.901 0.061 0.000 0.994 -2.958 9.915 10.665 6.851 0.033 0.012 
MaxH ~ OMI 0.549 1.485 0.884 0.055 0.147 0.105 -1.452 6.903 7.653 16.148 0.000 0.000 

             MaxH ~ TW+t -1.521 2.182 0.000 0.028 0.675 0.000 6.622 -9.244 -8.494 0.000 1.000 0.974 
MaxH ~ TW-t -1.247 1.700 0.766 0.041 0.470 0.001 2.941 -1.881 -1.131 7.363 0.025 0.025 
MaxH ~ PAD 0.250 1.521 0.722 0.050 0.200 0.055 -1.044 6.089 6.839 15.333 0.000 0.000 
MaxH ~ BPD -0.646 1.446 0.744 0.052 0.123 0.142 -1.888 7.777 8.527 17.021 0.000 0.000 
MaxH ~ FCT 0.957 -0.163 0.911 0.059 0.078 0.246 -2.187 8.373 9.123 17.617 0.000 0.000 
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Supplementary Figure 1.  BEAST maximum clade credibility (MCC) phylogeny used in for this study. Tips have been pruned to match the Heady 

(1997) woody trait sampling.
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Supplementary Figure 2.  Plots showing average MaxEnt predictions of suitable habitats 

for the 19 Callitris species studied. Means are based on 10 replicate runs, each with a 

different random seed. Colours indicate probability of habitat suitability with blue = 0 

(unsuitable) to red = 1 (most suitable). Coloured bars at right hand side of each panel 

indicates the Callitris subclade. Niches were modelled with distributions edited to 

match Heady’s (1999) woody trait sampling and are subsamples of actual ranges for 

some species (e.g. C. glaucophylla, C. macleayana). 

baileyi canescens columellaris drummondii endlicheri

glaucophylla gracilis intratropica monticolamacleayana

muelleri oblonga preissii rhomboideaneocaledonica

roei sulcata tuberculata verrucosa
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Supplementary Figure 3. Phylogenetic uncertainty according to Pagel’s Lambda across 

100 evenly sampled post-burnin posterior trees. Compared to the MCC tree there is 

considerable difference in phylogenetic signal in Precipitation of Warmest Quarter 

(Bio19), Outlying Mean Index (OMI) and Tracheid Width with Thickenings (TW+t). 
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Red vertical lines represent the phylogenetic signal of 
the MCC tree. For histograms where only a red line is
plotted, lambda for all trees was zero.
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Supplementary Figure 4. Phylogenetic uncertainty according to Blomberg’s K across 

100 evenly sampled post-burnin posterior trees
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Supplementary Figure 5. Macroevolutionary models across 100 posterior trees. Plots 

show density curves of AICc weights for the eight models run. 
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Chapter 2  

Not a radiation: Callitris climatic niche evolution and 

diversification 
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Not a radiation: Callitris climatic niche evolution and diversification 

 

 

ABSTRACT 

 

The evolution of extraordinary drought-tolerance traits in Callitris may have enabled it 

to diversify into novel arid niches. To investigate whether drought adaptation resulted in 

higher diversification we compared Callitris diversification with its nearest relatives, 

the southern hemishphere Callitroideae. We also investigated whether Callitris has a 

different climate niche from the Rest of the Callitroideae (RoC). Using sister-pair 

comparisons, we investigated whether species’ niches overlapped in climatic niche or 

geographic range. Finally we modelled how future climate change will affect 

distribution of drought-adapted Australian Callitris. Our results indicate that Callitris 

does not have a higher rate of diversification than the RoC. Callitris and RoC climatic 

niches are partially overlapping and divergent. Callitris occupies a hotter, drier and 

flatter niche than the RoC. It also has a narrower climatic niche, reflecting the low 

elevation and topographic homogeneity of Australia. Sister-pair comparisons indicated 

that geographic overlap in Australian Callitris explained climatic niche divergence and 

similarity. Geographic isolation was frequently due to arid barriers. The lack of 

evidence for an increase in diversification associated with drought-adaption could be 

because extinctions were high as aridity intensified. Range fragmentation as a result of 

extinction due to aridity point to geographic speciation, which probably led to the 

evolution of extraordinary drought-tolerance in Callitris. Future climate change 

predictions suggest that a lack of climatic refugia will lead to range contractions and 

climatic niche extinctions. Despite its extraordinary drought-tolerance Callitris is not 

predicted to survive increasing aridification as temperatures increase because of low 

topographic relief in Australia. 
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INTRODUCTION 

 

Water is critical to plant survival. The capacity to survive water stress is so important 

that it shapes distributional ranges, species assemblages and biomes (Bartlett et al. 

2012; Vicente-Serrano et al. 2013; Donoghue and Edwards 2014; Cook et al. 2015; 

Greenwood et al. 2017; Trueba et al. 2017). Because plants are sessile, drought stress 

poses a potentially fatal threat to individuals, populations and species (Allen et al. 2015; 

Zwieniecki and Secchi 2015).  

 

To evade warming drought stress, plants can track their suitable niche by shifting 

elevation because lower temperatures reduce evapo-transpiration demand (Kelly and 

Goulden 2008; Lenoir et al. 2008; Feeley et al. 2011; Wolf et al. 2016). Latitudinal 

range shifts can also offer an escape from hot climates because temperatures decrease 

towards the poles (Ordonez and Williams 2013; Boisvert-Marsh et al. 2014; Gonzalez-

Orozco et al. 2016). Because plants can only track climatic niches via their progeny, 

range movement is limited by the high rates of climatic change, frequency of 

reproductive bouts, distance of propagule dispersal, physical or ecological barriers to 

establishment and local topography. Topography makes a difference because 

heterogeneous landscapes have a greater range of climatic niches (Thuiller et al. 2006; 

Stein et al. 2014). As environments become drier, heterogeneous landscapes provide 

microclimates and mesic refugia and therefore higher biodiversity (Ackerly et al. 2010). 

In low elevation regions with little landscape complexity, latitudinal or longitudinal 

(east-west) tracking are likely because neither elevation nor topographic refugia are 

available (VanDerWal et al. 2013; Fei et al. 2017). 

 

Over macroevolutionary timescales, some lineages have evolved water-conserving traits 

that have allowed them to diversify into dry environments. These include reduced plant 

height in paper daisies (Nie et al. 2016); geophytic tubers in the Ceropegieae (Klak et al. 

2017), geophytic bulbs in Babiana (Schnitzler et al. 2012), succulence in the Aizoaceae 

(Klak et al. 2017) and Cactaceae (Hernandez-Hernandez et al. 2014), modified leaf 

anatomy in Triodia (Toon et al. 2015), Dioon (Gutiérrez-Ortega et al. 2017) and the 

Cupressaceae (Pittermann et al. 2012) and CAM photosynthesis in the Agavoideae 

(Heyduk et al. 2016). Recent diversifications in arid-adapted Australian plant lineages 
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are likely to involve trait adaptations to drought (Byrne et al. 2008), especially since 

lineages experiencing aridification that are unable to shift their range or adapt, will 

become extinct. 

 

Trees are particularly susceptible to drought because they operate close to the limit of 

water availability, and suffer hydraulic failure when water is limiting (Choat et al. 

2012). The safety margin refers to the difference between ‘normal’, non-damaging 

water stress experienced in the field (minimum water potential) and the decrease in 

hydration that causes hydraulic failure. Conifers have larger safety margins than 

angiosperms because coniferous wood is constructed of small tracheids that are less 

vulnerable to drought-induced failure. Safety margins are largely independent of 

environment because all plants utilise the maximum amount of water available in their 

habitat, whether they are adapted to wet or dry climates. The majority of the world’s 

conifers occupy moist niches (Fragnière et al. 2015), though two lineages have made the 

transition to semi-arid and arid environments – the pines (Pinaceae) and the cypresses 

(Cupressaceae). The most drought-tolerant trees in the world belong to the genus 

Callitris, a cupressoid conifer genus endemic to Australia (24 spp.) and New Caledonia 

(3 spp.).  

 

Callitris is part of the southern hemisphere component of the Cupressaceae, the 

subfamily Callitroideae. The Cupressaceae is an ancient lineage. The oldest recorded 

Cupressaceae fossil has been dated to the Middle Jurassic (~170 million years ago 

(Ma)) (Spencer et al. 2015). Molecular evidence suggests a far earlier emergence in the 

Triassic or even the Permian, with dates varying between 209–282 Ma (Mao et al. 

2012), 192–237 Ma (Yang et al. 2012), and 197–211 Ma (Lu et al. 2014). The 

Cupressaceae show an ancient divergence between the northern and southern 

hemispheres, which is assumed to represent the breakup of the supercontinent, Pangaea 

(Leslie et al. 2012; Mao et al. 2012). This divergence created the northern hemisphere 

Cupressoideae, and the southern hemisphere Callitroideae. Members of the 

Callitroideae are found on all of the major landmasses of the southern hemisphere, 

evidence of a long history of vicariance associated with the breakup of Gondwana and 

in situ diversification. 
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During the Cenozoic the world became cooler and drier. Late Miocene tectonic activity 

altered major ocean circulations (Potter and Szatmari 2009) and the climate worldwide, 

creating novel arid climates (Pound et al. 2012). This climate change initiated high 

extinction rates in conifers (Crisp and Cook 2011). The fossil record provides evidence 

that in the past Australian conifer diversity was far higher (Hill 2004). Genera now 

extinct from Australia but still extant on other landmasses include Agathis (Hill et al. 

2008), Austrocedrus (Paull and Hill 2008) Dacrycarpus (Jordan 1995; Lewis and 

Drinnan 2013), Dacrydium (Macphail et al. 1995; Hill and Christophel 2001), Fitzroya 

(Paull and Hill 2010), Libocedrus (Whang and Hill 1999) and Papuacedrus and 

Retrophyllum (Carpenter et al. 2011). 

 

Callitris is a relatively young clade, with a crown age of ~40 Ma (Crisp, in prep). The 

first unequivocal appearance of Callitris in the fossil record is Callitris leaensis, dated 

to the early Oligocene (~32–30 Ma) where it grew in the ever-wet forests of Tasmania 

(Paull and Hill 2010). A far younger fossil, Callitris strahanensis, is recorded from 

western Tasmania growing in wet forests during the early to Middle Pleistocene (~2.5–

0.7 Ma) (Jordan 1995). Fossil pollen locates cupressoid conifers growing in mesic 

forests across southern Australia during the warm, wet Early Pliocene (Sniderman et al. 

2016). By the Middle Pleistocene (0.7–0.1 Ma), these mesic forests had been replaced 

by arid shrublands on the Nullarbor, where cupressoids held out until the Last Glacial 

Maximum (LGM; 20 000 years ago). In south-eastern Australia, rainforests with now-

extinct conifers alternated with moist sclerophyll forests until as recently as the Early 

Pleistocene (Sniderman 2011). Of the Australian conifers, only Callitris persisted in the 

increasingly arid interior, where it experienced severe bottlenecks and range 

contractions during the LGM (Sakaguchi et al. 2013). The subsequent pollen record 

suggests that woodland habitats increased following the LGM, and that Callitris 

populations increased (Dodson 1979). Increasing aridity over the last 2000 years has 

caused range contractions, as has human clearing in the last 200 years (Cupper et al. 

2000). 

 

Today, Callitris occupies much of the Australian continent (Fig. 1). They are found in 

subtropical rainforest, temperate forest, coastal margins, open woodlands, semiarid 

shrublands and desert rangelands. Callitris is are absent only from the three most arid 

areas of the country: a low elevation belt that crosses the country at approximately 20ºS, 
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comprised of the Great Sandy Desert, most parts of the Tanami Desert and the interior 

of Queensland; the Lake Eyre Basin, and the Nullarbor Plains.  

 

Callitris are slow growing, long-lived trees. Dendrochronologists have used Callitris to 

reconstruct the Australian climate because its tree rings show a clear growth response to 

water availability (Haines et al. 2016). Their wide distribution across many habitat types 

makes them ideal to investigate the dynamics of the monsoon climate (Baker et al. 

2008), the arid zone (Cullen and Grierson 2007), and the frequency of historical fires 

(O'Donnell et al. 2010). The imprinting of climate on the growth rings of Callitris is 

evidence of its adaptation to irregular rainfall in a range of climates. 

 

Aims 

Using a new phylogeny of the Callitroideae, constructed with sampling across species 

ranges and fossil calibrations, we investigate whether drought tolerance in Callitris 

enabled it to diversify into a different climate niche compared to its nearest relatives, the 

Rest of the Callitroideae (RoC), a paraphyletic group. Firstly we ask whether Callitris 

diversified faster than RoC using Lineage Through Time (LTT) analyses. Secondly, we 

investigate whether Callitris niche space is wider than in the RoC. We first use 

Principal Coordinates Analysis (PCA) and Ecological Niche Models (ENMs) methods 

to ask whether Callitris has diversified into more arid niches than the RoC, and if there 

is overlap between Callitris–RoC niches. We then investigate niche overlap in sister-

species pairs to investigate whether Callitris niches are more diverged than RoC niches. 

Finally, we model Callitris niches under climate change models to see how climate 

change might affect their future distribution and survival. 

 

 

METHODS 

 

Callitroideae Phylogeny 

This study uses a new and improved phylogeny of the southern hemisphere 

Callitroideae, focussing on the Australian and New Caledonian genus Callitris (Crisp, 

in prep). All species of Callitris recognised by Hill (1998) were sampled and the 
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phylogeny was estimated using Bayesian inference in BEAST ver. 1.8.0 (Drummond et 

al. 2012), using a relaxed clock. The data comprised DNA sequences obtained using the 

standard Sanger sequencing method from the chloroplast and three nuclear loci. For this 

study, the phylogeny was pruned to exclude replicate samples of species (Fig. 2). 

Callitroideae outgroups were not fully sampled and three absent taxa, Libocedrus 

plumosa, Widdringtonia nodiflora and Widdringtonia whytei were manually added to 

the tree. They were placed according to Farjon (2005) and added midway along the 

branch of their closest relative as their divergence dates are unknown. The phylogeny 

identifies a deep (~18.5) divergence between Callitris canescens populations from 

western and eastern Australia. They are therefore treated as two species in this study, C. 

canescens East and C. canescens West. 

 

Did Callitris diversify faster than the RoC? 

Lineages Through Time (LTT) 

The phylogeny was used to define the phylogenetic relationships between study taxa, 

and for Lineages Through Time (LTT) analyses. LLT is a method of investigating the 

rate of divergence by counting the number of lineages throughout the tree. If 

diversification has been high, the slope of the LTT line is steep. Long, flat regions in a 

LTT plot can indicate either late radiation or a period of extinctions (Crisp and Cook 

2009). We used Pybus and Harvey’s gamma statistic (γ) (Pybus and Harvey 2000) to 

compare rates of diversification in the Callitroideae, the RoC and Callitris. The gamma 

statistic compares whether branches are longer towards the base of the tree (γ < 0) or 

the tips (γ > 0) relative to a pure-birth model in which branches are evenly spaced (= 

constant diversification). When γ < 0 it indicates late speciation or early extinctions, 

and when γ > 0, early speciation or late extinction. LTT plots were log transformed and 

the analysis performed using the R package phytools (Revell 2012). 

 

Is the climatic niche of Callitris different from RoC? 

Species Occurrence Data 

Collection data for all extant southern hemisphere Callitroideae were downloaded from 

the Global Biodiversity Information Facility (GBIF; http://www.gbif.org/), Australia’s 

Virtual Herbarium (AVH; http://avh.chah.org.au/), Herbarium of the Centre IRD 

Noumea (NOU; http://herbier-noumea.plantnet-project.org), New Zealand Virtual 
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Herbarium (NZVH; www.virtualherbarium.org.nz). For some Widdringtonia species, 

vouchered databased collections are depauperate and therefore data from citizen science 

websites such as iSpot Southern Africa 

(http://www.ispotnature.org/communities/southern-africa) were accessed. Additional 

data for Widdringtonia wallichii were sourced from White et al. (2016). The data were 

checked manually for errors in coordinates. Any points plotting in the ocean were 

replotted based on locality description or removed if the location could not be 

accurately pinpointed. Recent records were favoured over older records because they 

were considered to have more accurate global positioning system (GPS) data. 

 

WorldClim Layers and Spatial Projections 

Nineteen WorldClim v1.4 (Hijmans et al. 2005) climate raster layers based on data from 

1960-1990 were downloaded from WorldClim (http://worldclim.org/). Global Potential 

Evapo-Transpiration (PET) and Aridity Index (AI) layers were downloaded from the 

Consultative Group on International Agricultural Research Consortium for Spatial 

Information (CGIAR-CSI, http://www.cgiar-csi.org/data/global-aridity-and-pet-

database). Altitude data was sourced from the Shuttle Radar Topography Mission 

(SRTM) digital topographic data at a 30-arc second resolution. STRM v2.1 layers were 

downloaded from the U.S. Geological Survey (USGS) at 

https://dds.cr.usgs.gov/srtm/version2_1/SRTM30/. 

 

Environmental Niche Models (ENMs) 

ENMs were used to model climatic niches in an explicitly geographic context. ENMs 

were created with the base Bioclim layers (Bio 1-19) in MaxEnt (Steven and Miroslav 

2008). The Bioclim layers are temperature and precipitation variables that define the 

major contributors to the world’s climates. Many of the Callitroideae are threatened or 

endangered and MaxEnt has been shown to perform well even when using a low 

presence number (Pearson et al. 2007). We ran ten cross-validated runs of MaxEnt 

models with default settings, using the complementary log-log (cloglog) transformation 

to estimate the probability of species occurrences (Phillips et al. 2017). Future climate 

models were run for the two emission scenarios for 2050 and 2070 using Bioclim v1.4 

rasters. All Bioclim layers were clipped to the relevant landmass limits and projected 

into a region-specific equal areas projection using QGIS (QGIS). Data for Antarctica 
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are not included in v1.4 Bioclim data and it is therefore not in any future climate 

models. 

 

The MaxEnt prediction layers were converted into suitable climatic ranges, using the 

ten percentile training presence Cloglog threshold to create binary layers, where cells 

with values above the threshold = 1, and those below = 0. This threshold excludes 

presences that fell into the lowest 10 percent of the MaxEnt training model for a 

species, and effectively means excluding outliers. This is desirable in terms of 

constructing a niche model with improved prediction accuracy, but it also excludes 

records from range edges, locations often associated with niche adaptation. As this 

study does not address the process of niche adaptation, this limitation was not a 

concern. Suitable habitat layers were used to calculate predicted range area, elevation 

and slope. Range area was calculated from suitable habitat raster layers in Whitebox 

(Lindsay 2016)  in square metres, and converted to square kilometres. Elevational data 

were extracted from the STRM layer by creating clipping masks from suitable habitat 

layers. Slope was calculated in QGIS using the Zevenbergen & Thorne method 

(Zevenbergen and Thorne 1987), expressed as percentage slope. Latitude was estimated 

by creating centroids for the suitable habitat range. All spatial analyses were carried out 

in QGIS and R (R Core R-Core-Team 2017). 

 

Climatic Niches in Geographic Space 

To investigate overlap in geographic space, pairwise species comparisons were made 

between suitable habitat rasters for all sister pairs. Because callitroid species are all 

endemic to a single landmass, comparisons were calculated at a landmass level. 

Analyses were run in the R package ENMeval (Muscarella et al. 2014) using the 

function calc.niche.overlap, which can compare multiple raster layers. 

Geographic overlap was calculated for predicted suitable habitat for 1960-90. 

 

Climatic Niches in Ordination Space 

We used spatial data extracted from occurrence records to estimate niche overlap 

between sister-species and at clade level, comparing Callitris with the rest of the 

Callitroideae (RoC). We used Principal Coordinate Analysis (PCA) to define species 

niches within coordinate climate space, according to presences and background data. 
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Following Broennimann (2012) the environmental PCA space was gridded into a raster 

layer and species occurrences modelled as a density kernel. The density kernel is used a 

smoother species occurrences across each cell of the environmental ordination space. 

This method has the advantage of making it possible to compare niches within a non-

geographic framework, and is ideal in this case because, with the exception of 

Antarctica, the Callitroideae span the continents of the southern hemisphere. It also 

facilitates accounting for species occupancy when calculating niche overlap, and 

therefore contributes extra information about niche utilisation. We used niche overlap 

analysis to compare clade-level and sister pair niche differentiation. 

 

Background data for the southern hemisphere was created by generating 50 000 random 

points across the landmasses of southern hemisphere. Species occurrence climatic data 

was extracted from Bioclim layers, and from additional rasters containing PET, AI, 

Altitude and Slope data. We used all layers in the analysis as the range of climatic 

ranges across the southern hemisphere is vast, and while some variables are highly 

correlated, their covariation is likely to change across extensive climatic regions. 

Therefore, excluding variables may lead to a lack of information about niche-specific 

covariances. Point climatic data for background and species occurrences were extracted 

using the Point Sampling Tool in QGIS (QGIS). All analyses were carried out in the R 

package ecospat (Di Cola et al. 2017). 

 

Species Position and Species Niche Breadth 

Outlying Mean Index (OMI) is a two-table form of canonical analysis (Dolédec et al. 

2000) which can be used to estimate species niche position and niche breadth within 

climatic ordination space. A first principal coordinate analysis (PCA) creates 

environmental ordinate space for all species based on climatic point data. The centroid 

of the first PCA represents the mean environmental conditions for all species. A second 

PCA, orthogonal to the first, defines species niche positions, which lie a marginal 

distance from the mean environmental conditions for all species. OMI analysis was 

performed on the same PCA of environmental space used in niche overlap analysis. 

 

Callitris–RoC Niche Differences 
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We used non-parametric Mann-Whitney U ranked tests to investigate Callitris–RoC 

differences in climate niche space, species position, niche breadth, AI, suitable habitat 

area, altitude, slope and latitude. To investigate whether adaptation to drought was 

correlated with range area and/or altitude, we used phylogenetic generalised least 

squares (PGLS) (Grafen 1989; Martins and Hansen 1999). We tested the correlation 

under three different tree branch modification methods lambda(Pagel 1999) (λ), which 

tests whether the correlation is predicted by the phylogeny or not; delta (δ), which tests 

for changes in the rate of correlated traits; and kappa (κ), which tests whether trait 

correlation is associated with speciational or gradual evolution. 

 

Niche Overlap in Sister Groups 

We compared niche overlap between the Callitris and their nearest relatives, the rest of 

the Callitroideae (RoC) conifers using Schoener’s D (D) and Warren’s I (I) indexes. 

Schoener’s D was developed in an ecological framework, and used to compare the 

frequency of species’ niche utilisation (Schoener 1970). It therefore interprets the 

frequency of occupancy as having ecological significance, and uneven sampling 

(‘utilisation’) is considered to be biologically meaningful. Warren’s I incorporates D 

with Helliger’s distance, treating sampling densities as probability distributions to avoid 

direct ecological implications associate with frequency of use (Warren et al. 2008). For 

both indexes, niches are identical when equal to one, and have no overlap when equal to 

zero.  

 

Niche Equivalency and Similarity in Sister Groups 

Niche equivalency compares two species’ niche overlap to a null model of overlap, 

constructed by randomly sampling the combined overlap of both species across climatic 

space. Overlap is measured with D or I. Niche similarity tests whether niches are similar 

by making reciprocal random draws of overlap from the each species’ niche. If they 

describe the species’ niche better than the null distribution of the combined niche, they 

are considered to be more similar. In other words, niche equivalency considers whether 

niches are clustered in ordination space, and niche similarity considers whether niches 

overlap. Significance for D and I was estimated by permutation testing using 1000 

replicates. One-sided permutation tests were used to investigate if niches were more or 

less equivalent or similar than the null distribution. If the observed was greater than the 
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null distribution, the niches were more equivalent or similar than expected, indicating 

niche conservatism. When the observed value was lower, the niches were less similar 

than expected, indicating niche divergence. 

Effect of climate change on future distribution of the Callitroideae 

Future Climate Models 

Future climate models for 2050 and 2070 from the Coupled Model Intercomparison 

Project Phase 5 (CMIP5) were downloaded from Worldclim 

(http://www.worldclim.org/CMIP5v1). The CMIP5 project couples different models of 

atmospheric, land, ocean, sea-ice and geological data to create global climate models 

(GCMs) for different emission scenarios, time periods and baseline data (Taylor et al. 

2012). We used the Australian Community Climate and Earth System Simulator 

ACCESS 1.0 GCM (Bi et al. 2013), conditioned on the Bioclim v1.4 climate layers, 

under two Representative Concentration Pathways (RCP) scenarios. RCP scenarios 

model greenhouse gas emissions resulting from CO2 emissions, other greenhouse gases 

associated with pollution levels and land use intensity (IPCC). 

 

We used two RCP scenarios to model suitable habitat niches in Australian Callitris 

under moderate and extreme climate change: 

1. RCP 4.5: Intermediate greenhouse gas emissions, equivalent to a global temperature 

increase of 1.1–2.6 ºC by the end of the 21st century. Under this scenario, CO2 

concentrations rise from the present ~ 400 ppm to 580–720 ppm. 

2. RCP 8.5: Very high emissions equivalent to a global temperature increase of 2.6–

4.8°C by the end of the 21st century. Under this scenario, CO2 concentrations will rise 

to 720 to > 1000 ppm. 

 

ACCESS 1.0 model predictions have been shown to perform well in predicting recent 

past climates in the southern hemisphere, and particularly in Australia (Moise et al. 

2015). Predicted range size was based on suitable habitat estimated as described above. 

We compared predicited suitable habitat ranges for 1960-90 to ranges predicted by 2050 

and 2070 future climate models unfor both emission scenarions. The 1960-90 ranges 

were taken as the baseline range, and the change in predicted geographic range 

expressed as a percentage.  
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RESULTS 

 

Did Callitris diversify faster than the RoC? 

Lineages Through Time 

Lineages through time show did not show higher diversification in Callitris than in RoC 

(Fig. 2). The γ-statistic for all three groups was non-significant. Gamma was positive 

for the Callitroideae (γ = 1.2983, P = 0.194) and the RoC (γ = 1.6419, P = 0.101), 

showing a trend towards recent diversification or earlier extinctions, but negative for 

Callitris (γ = -1.2873, P = 0.198) reflecting a trend towards recent extinction or early 

diversification. The LTT plots show that the RoC and Callitris have had higher 

diversification in the last ~10 Ma. Long branches from this period suggest previous high 

extinctions. 

 

Is the climatic niche of Callitris different from RoC? 

Callitroideae ENMs and Suitable Habitat 

The average area under the curve (AUC) for all MaxEnt models ranged from 0.84 to 

1.00, indicating that models were able to predict test presences with high accuracy. 

Lower AUC values were associated with species that have large geographical ranges 

and/or widely dispersed presences. The majority of the predictions matched the 

observed presence data, but with some key exceptions: seven of the 24 Australian 

Callitris species (Callitris canescens East and West, C. drummondii, C. gracilis, C. 

rhomboidea, C. roei, and C. tuberculata) occur on the eastern or western side of 

Australia, but were predicted to occur on both sides. 

 

PCA Climatic Niches 

The first two axes of the PCA ordination space accounted for 71% of the variability in 

the climatic data (Table 1, Fig 3). Axis 1 (43%) was associated with the Maximum 

Temperature of Warmest Month (Bio5), Potential Evapo-Transpiration (PET) and the 

Mean Temperature of Warmest Quarter (Bio10). Axis 2 (27.9%) was associated with 
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the Minimum Temperature of the Coldest Month (Bio6), Mean Annual Precipitation 

(Bio12), and Precipitation of Wettest QuarterBio16) (Fig. 3).  

 

Callitris–RoC Niche Differences 

Differences between Callitris and RoC climatic niches were associated with PCA Axis 

1 (Mann–Whitney U test: P = 0.000), but not PCA Axis 2 (Mann–Whitney U test: P = 

0.224) (Fig. 4). Callitris and RoC had different species position (OMI) in ordination 

space (Mann–Whitney U test: P = 0.000), and Callitris had narrower niches than RoC 

(Mann–Whitney U test: P = 0.034). Callitris had more arid niches (Mann–Whitney U 

test: P = 0.000) at lower altitudes (P = 0.000) and species occurred on shallower slopes 

(P = 0.000). There were no significant differences between the two in latitude (P = 

0.501) or range size (P = 0.161) (Table 1, Fig. 4). 

 

PGLS analysis revealed that drier niches tended to be larger (Table 2), but the 

association was quite weak (r2 = 0.22). All models found significant correlations 

between range area and AI, but AICc weights could not discriminate between the three 

‘best’ models. The lambda model had the highest AICc weight (λ = 0, P = 0.003, 

AICCw = 0.37), indicating that phylogenetic relationships did not predict the evolution 

of large, dry niches. The second most probable model was a speciational model in 

which both AI and Altitude (Alt) were associated with range size (κ = 0, P (AI) = 0.004, 

P (Alt) = 0.02, AICCw = 0.29). Three species had much smaller ranges than predicted 

by the regression: Callitris preissii, Libocedrus chevalieri and Widdringtonia wallichii. 

The last two species are critically endangered (IUCN). Altitude was weakly associated 

with range size (r2 = 0.14) and was a poor model according to AICc weights (Table 2). 

 

Callitris–RoC Geographic and Climatic Niche Overlap 

Schoener’s D and Warren’s I interpret presence data differently. The Broennimann PCA 

method uses presences to create a density smoother indicating regions of high 

occupancy in climatic niche space. As overlap was calculated on data containing 

information about occupancy, results in text are presented for Warren’s I. For reference, 

both measures are presented in Table 3. Callitris and RoC had very low geographic 

overlap (I = 0.001). Geographic overlap is only found in New Caledonia, where 

Callitris and Libocedrus species co-occur. Climatic niche overlap was much higher than 



 

 63 

geographic overlap (I = 0.56). Callitris–RoC niches were not identical (P = 0.038), but 

they were more similar than expected (P = 0.001), reflecting niche overlap in Callitris 

and Widdringtonia, and the New Caledonian Callitris and Libocedrus species (Fig. 3). 

 

Sister Species Overlap 

Five out of nine Callitris sister-pairs had less equivalent climatic niches than expected 

(Table 3, Fig. 5), indicating niche divergence: C. canescens East–C. canescens West 

(Fig 5B); C. columellaris–C. intratropica (Fig. 5C); C. drummondii–C. baileyi (Fig. 

5D); C. muelleri–C. oblonga (Fig. 5F) and C. tuberculata–C. preissii, (Fig. 5H). In four 

of these pairs at least one sister species has a dry niche. C. tuberculata–C. preissii were 

less equivalent and less similar than expected. This sister-pair have no overlap in 

geographic (I = 0.000) or climatic space (I = 0.000), yet the nearest collections in this 

dataset lie only 30 km apart, and the predicted suitable habitat ranges are even closer. 

Two pairs (C. glaucophylla–C. gracilis and C. rhomboidea–C. monticola (Fig. 5E and 

5G) were more similar than expected in their climatic niches. C. glaucophylla–C. 

gracilis share dry niches. Their geographic overlap is relatively low (I = 0.26) because 

C. glaucophylla has an extensive range that encompasses all but the most southerly 

range of C. gracilis. Callitris rhomboidea–C. monticola share moist niches along the 

coastal ranges. In contrast, the New Caledonian pair Neocallitropsis pancheri–C. 

neocaledonica (Fig. 5I) had high geographic and climatic overlap, yet their niches were 

neither conserved nor diverged, indicating little niche differentiation. 

 

In the RoC, the sister pair Diselma–Fitzroya (Fig. 5J) had divergent niches (P (I) = 

0.027) because they occur on different landmasses: Diselma is endemic to Tasmania 

and Fitzroya to Chile and Argentina. Within the RoC, the New Zealand Libocedrus 

species (Fig. 5L) had the highest geographic niche overlap (I = 0.213), but were the 

most diverged sister-pair (P (I) = 0.007). Libocedrus bidwillii encompasses most of the 

climatic niche space of L. plumosa, which has a smaller, mostly North Island climatic 

niche. Widdringtonia wallichii and W. schwarzii climatic niches were more similar than 

expected (I = 0, P = 0.049) despite no geographic overlap. Libocedrus sister pairs in 

New Caledonia had neither diverged nor more conserved climatic niches (Table 3). 
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Regression of geographic and climatic niches found that niche divergence in Australian 

Callitris was largely due to low geographic overlap (df = 6, t = 3.43, P = 0.014), but not 

in Callitris with New Caledonian species included (P = 0.062) or RoC (P = 0.382). 

 

Effect of climate change on future distribution of the Callitroideae 

Callitris Future Climatic Niches 

Mean annual temperature across the current Callitris range is predicted to increase up to 

3 ºC, from 17.1 ºC to a maximum 20.1 ºC under the highest emission 2070 models. 

Under RCP 4.5 models annual precipitation is predicted to increase mildly (+29 mm), 

and under RCP 8.5 to decrease mildly (-31 mm). However, any increases in 

precipitation will be counteracted by temperature increases, indicating that current 

Callitris niches will be more arid by 2050/70. As a result Australian Callitris species are 

predicted to experience moderate to severe range contraction as temperatures increase 

(Fig. 6). Lower emission models generally predict smaller declines in suitable habitat 

area, but the results are variable among models and species. Species in central Australia 

are predicted to move southwards, creating disjunct ranges as they diminish in area. 

South-eastern Australia is predicted to have a climate more like southwestern Australia 

today, and niche contraction is predicted for the majority of south-eastern species, 

especially those in semi-arid areas (Fig. 7). By 2070, under the highest emission 

scenario, C. gracilis will no longer have a suitable climatic niche in Australia. 

Conversely, some southwestern species (C. arenaria, C. canescens West and C. 

drummondii) are predicted to have expanding disjunct niches in the southeast, separated 

by the major barrier of the Nullarbor Plain. Callitris preissii is predicted to experience 

an increase in niche space as a result of a suitable but disjunct niche developing in the 

coastal Kimberley region. Species occupying moist coastal regions and ranges in the 

south-east are predicted to move south along the coast and/or into isolated niches in the 

coastal ranges. Callitris species closer the equator (C. intratropica and the New 

Caledonian species) are predicted to experience lower rainfall. These data predict that 

C. neocaledonica will have no climatic niche within the next 30 years, regardless of 

emission scenario. This is due to predictions of higher annual temperature ranges in 

future New Caledonian niches. Neocallitropsis has large predicted niche loss for the 

same reason, and is predicted have disjunct niches on the highest peaks in New 

Caledonia. Callitris intratropica is predicted to have a more northerly range, with 

largest declines in the Cape of York. 
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DISCUSSION 

 

Did Callitris diversify faster than the RoC? 

Drought exposes species to threats of population declines (Allen et al. 2015), range 

shifts (Brodribb and Cochard 2009; Fei et al. 2017), and ultimately, if traits do not 

evolve under selection, to extinction (Barreda and Palazzesi 2007; Jimenez-Moreno et 

al. 2013; Pokorny et al. 2015). However some studies have found that adaptation to 

drought results in an increase in diversification rates as species occupy new or empty 

niche space (Good-Avila et al. 2006; Arakaki et al. 2011; Gutiérrez-Ortega et al. 2017). 

Conifers in particular have had high extinction rates associated with aridification (Crisp 

and Cook 2011; Fragnière et al. 2015), yet lineages through time analyses show that the 

Callitroideae had a positive, albeit non-significant rate of diversification, indicating a 

trend towards later diversification. This more recent diversification (positive γ-

statitistic) may have been driven by recent diversification in Callitris as found by Larter 

et al. (2017). However, we did not find recent diversification in Callitris (positive but 

non-significant γ) in this study. The phylogeny used in the Larter et al. (2017) study had 

a younger crown age for Callitris (~30 Ma vs ~41 Ma in this study) and fewer 

Callitoideae outgroups. Also, for example, Callitris glaucophylla was misidentified as 

C. columellaris, all of which might explain the different results in diversification for 

Callitris. Diversification in the Callitris clade alone showed a non-significant negative 

gamma, indicative of a trend of extinctions towards the present. Thus the evolution of 

drought-tolerance was not associated with higher diversification rates in Callitris 

compared to the RoC. This is in contrast to studies of other plant groups that found an 

association between aridity and increased speciation (Good-Avila et al. 2006; Arakaki 

et al. 2011; Gutiérrez-Ortega et al. 2017) (Klak et al. 2004), even in Cupressaceae 

(Pittermann et al. 2012). 

 

Is the climatic niche of Callitris different from RoC? 

If drought adaptation in Callitris has allowed it to occupy a novel climatic niche, we 

might expect Callitris to have a broader climatic niche that RoC. However, based on 

PCA analyses of climatic niche space, RoC has a broader climatic niche than Callitris. 
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Although drought-adaptation in Callitris did not result in a broader climatic niche for 

Callitris, climatic niches in Callitris and RoC nevertheless were not equivalent, 

suggesting niche divergence. Though RoC and Callitris overlap in climatic niche space, 

Callitris is concentrated in a hotter, drier section of the RoC niche and therefore has a 

narrower climatic niche. Differences in climatic niche were a result of significant 

differences in altitudinal ranges. The RoC inhabit warm-wet or cool-wet climates in 

mountainous or coastal regions across a wide latitudinal range. Low elevation in 

Callitris reflects the low topography of Australia.  

 

Niche Divergence in Sister Pairs 

Out of the five sister pair comparisons of the RoC, only Libocedrus in New Zealand and 

Diselma–Fitzroya had divergent niches, suggesting niches may be conserved. However, 

low species diversity within genera in the RoC reduces the number of available sister 

pair comparisons, making patterns difficult to interpret. 

 

In the Australian Callitris, five out of eight sister pair comparsons had divergent 

climatic niches.  This is largely due to geographic divergence. Nearly all sisters with 

divergent climatic niches are drought-adapted (the exception is C. muelleri–C. 

oblonga). Drought-adapted sisters were frequently separated by arid barriers. Callitris 

canescens East and Callitris canescens West occur on either side of the dry Nullarbor 

plain, but ENMs place their suitable habitat on both sides of the Nullarbor. Callitris 

canescens (~ 19 Ma divergence) could have been separated by the uplift of the 

Nullarbor karst approximately 15-14 Ma (Miller et al. 2012) but it is more likely that 

the subsequent aridification of the Nullarbor has left the sisters on either side of the 

continent in slightly different climatic niches. Furthermore, C. columellaris and C. 

intratropica are separated by an arid belt south of the monsoonal subtropics. Callitris 

intratropica may have niche-tracked a monsoon-like climate northwards as the interior 

of Australia become more arid (Herold et al. 2011) and/or adapted in situ as the modern 

monsoonal climate developed (Christensen et al. 2017). The most diverged sister pair is 

C. tuberculata and C. preissii, which have no climatic or geographic overlap. Yet their 

ranges are in very close geographic proximity, perhaps a result of the steep climatic 

gradients of the south-western Australia (Cook et al. 2015).  
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Three of the eight Australian Callitris sister pair comparisons had climatic niches that 

were equivalent or more similar than expected. Two drought-adapted sister pairs (C. 

arenaria–C. pyramidalis and C. glaucophylla–C. gracilis) were more similar than 

expected in their climatic niches because of high geographic overlap. The youngest 

sister pair (C. arenaria and C. pyramidalis) have an approximate divergence date of ~3 

Ma and have the highest climatic and geographic overlap of all Australian species. 

Though they are sisters in terms of extant species, recent extinctions may have 

eradicated all other close relatives in regions that suffered intense aridification. Higher 

geographic overlap in C. rhomboidea–C. monticola might also represent niche 

convergence to mesic landscapes. This may indicate another possible outcome to aridity 

- niche convergence. There are therefore, contradictory patterns in climatic niche 

evolution, which cannot be explained by drought-adaptation in Callitris. Interpretation 

is further complicated by a lack of evidence on ancestral ranges of Callitris. 

 

Effect of climate change on future distribution of the Callitroideae 

Several Callitris species (C. glaucophylla, C. macleayana, C. intratropica, C. oblonga 

and C. rhomboidea) currently have disjuct populations, likely to have been created by 

climate change. Under future climate models of increased temperatures, a continuing 

pattern of range retraction, disjunctions and extinction of climatic niches is predicted. 

Suitable climatic niches are predicted to retreat from the arid centre, contracting to the 

north and south, with a bias towards the east in southern Australia. Future climate 

models suggest that the rate of aridification associated with climate change may lead an 

increased risk of extinctions in drought-adapted Australian Callitris, which have few 

areas of refuge from increasing temperatures. 

 

It is becoming increasingly clear that hydraulic traits are essential to drought-adaptation 

and diversification into arid niches (Gleason et al. 2012; Choat 2013; Costa-Saura et al. 

2016). Callitris species from the dry regions of Australia are extraordinarily drought-

tolerant, recording the lowest cavitation resistance (P50) values known (Brodribb and 

Hill 1998; Bouche et al. 2014; Larter et al. 2015). Larter et al. (2017) found that the 

evolution of drought-tolerant hydraulic traits led to a ‘radiation’ in Callitris, implying a 

‘key innovation’ followed by the colonisation of novel niches. However, our data does 

not support higher diversification in Callitris relative to the RoC. Callitris has 
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diversified into dry niches, but the lack of evidence for higher diversification we found 

may be explained by counteracting high extinction rates. 

 

Diversification in Callitris appears to be associated with the development of arid 

geographic barriers. Local extinctions in regions of extreme aridity were likely to cause 

range fragmentation leading to disjunct populations. Because Callitris are long-lived, 

slow-growing trres with low dispersal ability range movement was likely to be limited. 

Instead, local adaptation and extinctions could have selected for drought-tolerance traits 

as regional climates differentiated. It is therefore likely that the evolution of drought-

tolerance traits and speciation in Callitris occurred hand-in-hand. 

 

Conclusion 

Divergent climatic niches separated by arid barriers such as the Nullarbor or the dry 

interior of Australia, suggest frequent geographic speciation in Callitris. However, 

drought-adaptation has not led to higher diversification. Rather the high selection 

imposed on hydraulic traits has led to high local extinctions, and possibly species 

extinctions. Evidence of high conifer extinction in the fossil record (Hill and Brodribb 

1999; Hill 2004), the pattern of strong ecological associations in hydraulic traits (Heady 

and Evans 2000; Larter et al. 2017), and evidence of aridity-related genetic bottlenecks 

(Sakaguchi et al. 2013) in the context of increasing aridification in Australia (Fujioka et 

al. 2005; Fujioka et al. 2009; Quigley et al. 2010), all support the hypothesis that 

aridification led to diversification in Australian Callitris via geographic speciation, at 

the price of high extinction. Lastly, future climate models reiterate a pattern of niche 

divergence/convergence in response to increasing aridity. These models further suggest 

that Callitris will face a significant threat of extinction due to increasing temperatures 

and low topography in Australia, despite their evolution of extraordinary drought 

adaptation.  

.
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Table 1. Results of PCA and means of variables extracted from suitable habitat ranges predicted by ENMs. Results are arranged by group (Callitris–

RoC) and species, showing species positions on OMI Axes 1 and 2, species niche position (OMI) and niche breadth (Tol) according to Outlying Mean 

Index analysis; and mean values for Aridity Index (AI), suitable range area, percent coverage of the landmass occupied, altitude, slope expressed as a 

percentage, latitude and the region of endemism for each species. 

Group	 Species	 Code	 OMI	
Axis1	

OMI	
Axis2	

Niche	
Position	
(OMI)	

Niche	
Breadth	
(Tol)	

Aridity	
Index	
(AI)	

Suitable	
Range	
Area	
(km2)	

Landmass	
Coverage	

(%)	

Mean	
Altitude	
(m)	

Slope	
(%)	

Mean	
Latitude	

Region	

Callitris	 Callitris	acuminata	 Cac	 1.63	 -1.35	 10.52	 0.27	 0.47	 37941	 0.49	 144	 1.57	 -31.15	 Australia	
Callitris	 Callitris	arenaria	 Car	 2.85	 -0.87	 11.87	 0.61	 0.29	 74297	 0.96	 221	 0.61	 -31.10	 Australia	
Callitris	 Callitris	baileyi	 Cb	 0.66	 -1.19	 4.55	 0.30	 0.58	 38658	 0.5	 448	 3.37	 -27.46	 Australia	
Callitris	 Callitris	canescens	East	 CcanE	 0.88	 0.36	 5.26	 0.23	 0.35	 43857	 0.57	 90	 0.95	 -34.31	 Australia	
Callitris	 Callitris	canescens	West	 CcanW	 2.35	 0.33	 6.72	 0.76	 0.28	 295874	 3.84	 277	 1.03	 -31.33	 Australia	
Callitris	 Callitris	columellaris	 Ccol	 -1.42	 -2.90	 16.11	 0.68	 1.06	 14164	 0.18	 39	 1.43	 -26.92	 Australia	
Callitris	 Callitris	drummondii	 Cd	 0.44	 0.01	 5.25	 0.17	 0.40	 43203	 0.56	 163	 1.29	 -33.64	 Australia	
Callitris	 Callitris	endlichei	 Ce	 0.42	 0.91	 3.35	 0.94	 0.59	 412824	 5.36	 513	 3.84	 -29.21	 Australia	
Callitris	 Callitris	glaucohpylla	 Cgl	 2.50	 0.06	 8.15	 2.11	 0.28	 1957251	 25.39	 312	 1.16	 -27.34	 Australia	
Callitris	 Callitris	gracilis	 Cgr	 1.36	 0.85	 3.91	 0.41	 0.31	 295227	 3.83	 151	 0.87	 -33.81	 Australia	
Callitris	 Callitris	intratropica	 Ci	 0.60	 -7.25	 56.06	 2.68	 0.70	 462910	 6.01	 206	 1.84	 -15.53	 Australia	
Callitris	 Callitris	macleayana	 Cmac	 -2.80	 -3.20	 22.11	 8.05	 1.17	 57213	 0.74	 373	 6.58	 -25.48	 Australia	
Callitris	 Callitris	monticola	 Cmon	 -1.82	 0.08	 7.67	 0.46	 1.03	 21113	 0.27	 806	 6.43	 -29.41	 Australia	
Callitris	 Callitris	muelleri	 Cmue	 -2.19	 0.67	 8.78	 0.71	 1.01	 11298	 0.15	 470	 5.09	 -34.77	 Australia	
Callitris	 Callitris	neocaledonica	 Cn	 -6.46	 -4.48	 69.58	 2.38	 1.63	 2567	 13.64	 701	 16.33	 -21.98	 New	Caledonia	
Callitris	 Callitris	oblonga	 Co	 -1.64	 1.94	 8.98	 0.31	 0.83	 31061	 0.4	 626	 4.31	 -36.25	 Australia	
Callitris	 Callitris	preissii	 Cpr	 0.21	 -1.65	 15.21	 0.03	 0.60	 521	 0.01	 21	 0.96	 -32.04	 Australia	
Callitris	 Callitris	pyramidalis	 Cpy	 1.20	 -0.54	 5.63	 0.78	 0.42	 188726	 2.45	 174	 1.22	 -32.05	 Australia	
Callitris	 Callitris	rhomboidea	 Crh	 -1.28	 0.90	 4.20	 2.31	 0.82	 228684	 2.97	 258	 3.28	 -33.09	 Australia	
Callitris	 Callitros	roei	 Cro	 1.28	 0.59	 4.02	 0.08	 0.32	 108096	 1.4	 229	 0.90	 -32.97	 Australia	
Callitris	 Callitris	sulcata	 Cs	 -3.57	 -4.76	 43.90	 0.73	 1.32	 3558	 18.9	 431	 15.46	 -21.91	 New	Caledonia	
Callitris	 Callitris	tuberculata	 Ct	 2.97	 0.17	 9.35	 1.54	 0.22	 433478	 5.62	 347	 0.83	 -30.22	 Australia	
Callitris	 Callitris	verrucosa	 Cv	 2.19	 0.88	 6.66	 0.29	 0.26	 252928	 3.28	 154	 0.72	 -33.39	 Australia	
Callitris	 Neocallitrposis	pancheri	 Np	 -4.85	 -3.11	 38.65	 2.41	 1.73	 1862	 9.89	 377	 7.55	 -21.97	 New	Caledonia	
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Table 1 continued 

 

 

  

Group Species Code OMI	
Axis1 

OMI	
Axis2 

Niche	
Position	
(OMI) 

Niche	
Breadth	
(Tol) 

Aridity	
Index	
(AI) 

Suitable	
Range	
Area	
(km2) 

Landmass	
Coverage	

(%) 

Mean	
Altitude	
(m) 

Slope	
(%) 

Mean	
Latitude 

Region 

RoC	 Diselma	archeri	 Da	 -7.42	 4.03	 72.58	 1.80	 2.47	 10265	 0.13	 871	 7.61	 -42.39	 Australia	
RoC	 Fitzroya	cupressoides	 Fc	 -6.15	 2.51	 50.85	 1.24	 2.02	 70237	 0.48	 668	 14.15	 -39.92	 South	America	
RoC	 Libocedrus	austrocaledonica	 La	 -6.44	 -4.78	 72.22	 2.65	 1.61	 3426	 18.2	 565	 11.40	 -21.80	 South	America	
RoC	 Libocedrus	bidwillii	 Lb	 -7.32	 2.28	 62.60	 7.60	 2.60	 71549	 26.63	 645	 13.39	 -41.25	 New	Zealand	
RoC	 Libocedrus	chevalieri	 Lc	 -7.91	 -4.05	 94.30	 0.11	 2.09	 74	 0.39	 1133	 15.76	 -21.92	 New	Caledonia	
RoC	 Libocedrus	plumosa	 Lp	 -5.36	 0.75	 34.74	 1.53	 1.88	 41370	 15.4	 184	 4.93	 -38.67	 New	Zealand	
RoC	 Libocedrus	yateensis	 Ly	 -5.22	 -5.31	 61.70	 1.13	 1.72	 3455	 18.35	 440	 10.89	 -21.52	 New	Caledonia	
RoC	 Papuacedrus	papuana	 Pp	 -9.73	 -3.86	 139.74	 5.81	 2.22	 96901	 10.24	 2217	 16.61	 -5.01	 New	Guinea	
RoC	 Pilgerodendron	uviferum	 Pu	 -6.75	 2.60	 60.72	 1.38	 2.11	 189572	 1.28	 639	 15.74	 -45.51	 South	America	
RoC	 Widdringtonia	nodiflora	 Wn	 -0.48	 -0.54	 4.55	 1.70	 0.56	 196944	 2.12	 1004	 6.13	 -27.38	 Southern	Africa	
RoC	 Widdringtonia	schwarzii	 Ws	 -0.18	 1.01	 7.81	 0.39	 0.54	 14079	 0.15	 764	 8.76	 -33.58	 Southern	Africa	
RoC	 Widdringtonia	wallichii	 Wwa	 0.16	 1.82	 11.97	 0.51	 0.33	 3396	 0.04	 1089	 10.31	 -32.32	 Southern	Africa	
RoC	 Widdringtonia	whytei	 Wwh	 -4.10	 -2.73	 45.72	 2.81	 1.36	 14669	 0.16	 1595	 8.89	 -15.72	 Southern	Africa	
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Table 2. PGLS regression results of range area (Range) regressed on Aridity Index (AI) and Altitude (Alt), according to Lambda (λ), Delta (δ) and 

Kappa (κ) tree branch modifications. ML Parameter = value of λ, δ or κ; Intercept = the intercept of the regression slope on the y-axis; AI = the slope 

of the regression for Aridity Index; Alt = the slope of the regression for Altitude; k = the number of parameters in each model; sigma = σ2, the fitted 

variance of the random walk; P value = significance (P < 0.05); logLk = log likelihood; AICc = sample size corrected Akaike Information Criterion 

scores; ΔAICc = difference in AICc from the lowest AICc score; Relative LogLk = relative likelihood of AICc scores. 

 

PGLS	Model ML	Parameter Intercept AI Alt k sigma r2 P	value	(AI) P	value	(Alt) logLk AICc ΔAIC Relative	logLk AICc	weights 

Range	~	AI	λ 0.00 10.19 -1.29 – 2.00 0.19 0.22 0.00 – -77.12 158.59 0.00 1.00 0.37 

Range	~	AI	δ 3.00 10.90 -2.28 – 2.00 0.00 0.21 0.00 – -89.09 182.52 23.93 0.00 0.00 

Range	~	AI	κ 0.00 12.64 -1.98 – 2.00 1.28 0.22 0.00 – -79.50 163.35 4.75 0.09 0.03 

Range	~	Alt	λ 0.00 11.35 – -0.15 2.00 0.21 0.00 – 0.69 -81.66 167.67 9.08 0.01 0.00 

Range	~	Alt	δ 3.00 4.81 – 0.91 2.00 0.00 0.11 – 0.04 -91.42 187.19 28.60 0.00 0.00 

Range	~	Alt	κ 0.00 4.42 – 0.95 2.00 1.34 0.14 – 0.02 -81.21 166.76 8.17 0.02 0.01 

Range	~	AI+Alt	λ 0.00 7.95 -1.49 0.37 3.00 0.19 0.24 0.00 0.31 -79.50 159.11 0.51 0.77 0.29 

Range	~	AI	+	Alt	δ 3.00 6.16 -2.08 0.73 3.00 0.00 0.28 0.01 0.08 -87.36 180.73 22.14 0.00 0.00 

Range	~	AI	+	Alt	κ 0.00 6.31 -1.85 0.86 3.00 1.20 0.33 0.00 0.02 -76.53 159.07 0.47 0.79 0.29 
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Table 3.  Geographic and Climatic Niche Overlap results comparing Callitris and RoC and sister species pairs, showing Schoener’s D and Warren’s I 

indexes of overlap, and the results of niche equivalency and niche similarity tests using 1000 randomisations to produce a null model. One-tailed tests 

were run for either hypothesis of niche conservatism (‘greater’) or niche divergence (‘less’). Results are arranged in rows by clade, Callitris sister-pairs 

and the Rest of Callitroideae (RoC) sister-pairs. Car = Callitris arenaria; Cpy = C. pyramidalis and CcanW = C. canescens East and West; Ccol = C. columellaris; Ci = C. 

intratropica; Cd = C. drummondii; Cb = C. baileyi; Cgl = C. glaucophylla; Cgr = C. gracilis; Cmue = C. muelleri; Co = C. oblonga; Crh = C. rhomboidea; Cmon = C. monticola; Ct 

= C. tuberulata; Cpr = C. preissii; Np = Neocallitropsis pancheri; Cn = C. neocaledonica; Da = Diselma archeri; Fc = Fitzroya cupressoides; La = Libocedrus austrocaledonica; Lc 

= L. chevalieri; Lb = L. bidwillii; Lp = L. plumosa; Wn = Widdringtonia nodiflora; Wwh = W. whytei; Wwa = W. wallichii (syn. W. cederbergensis); Ws = W. schwarzii.; CcanE  

Sister-Pair  Geographic Overlap  
  

 Climatic Niche Overlap 
  

  Niche Conservatism 
 

  Niche Divergence 
  

             More equivalent than expected More similar than expected Less equivalent than expected Less similar than expected 
     Equivalency 

  
Similarity 

  
Equivalency 

  
Similarity 

 

 
D I D I   P (D) P (I)   P (D) P (I)   P (D) P (I)   P (D) P (I) 

Callitris- 
RoC 0.001 0.001 0.397 0.557   0.001 1   0.027 0.038   1 0.001   0.977 0.964 

                                  
Car-Cpy 0.329 0.525 0.503 0.639  0.001 0.513  0.019 0.051  1 0.54  0.974 0.941 

CcanE-
CcanW 0.025 0.064 0.306 0.406  0.426 1  0.088 0.155  0.578 0.001  0.91 0.841 
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Figure 1.  Map of Australia coloured according to the Maximum Temperature of the Warmest Month (Bio5), with collection data for Callitris species 

used in this study. The dashed line represents the southerly limit of the subtropical monsoon. Circles represent A) an arid region consisting of the 

Pilbara, the Little and Great Sandy Deserts, the Gibson Desert, the Tanami Desert and the Great Victorian Desert; B) the Nullarbor Plain and C) the 

Lake Eyre drainage basin. The shapes defining the arid regions are approximate. 
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Figure 2.  Callitroideae phylogeny used in this study and (inset) Lineages Through Time (LTT) plot. The Southern Hemisphere callitroids, the 

Callitroideae, are marked with a grey bar. Callitris species are shown in green, and the Rest of the Callitroideae (RoC) in blue. Circles at the crown of 

the RoC and Callitris correspond with the circles on the LTT plot. 
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Figure 3.  Plot of PCA climatic niches and overlap for the niche space of Callitris and RoC. Two identical plots of the PCA are shown to compare the 

niches of Callitris and the RoC, with a bold outline for each group on both plots, Green = Callitris; Blue = RoC. Coloured blobs represent species 

climatic niches within PCA space, identified by species codes. Species codes for drought-adapted Callitris species have been placed for legibility and 

do not accurately represent the PCA coordinates e.g. Ct, Ggl, Ci. The histograms represent the spread of values for the two most important variables 

for each axis.  
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Figure 4.  Boxplots of Mann-Whitney U tests comparing Callitris and RoC differences in PCA climatic niche space and key variable 
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Figure 5.  A-F 
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Figure 5.  G-L 
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Figure 5.  Geographic and climatic niche overlap in sister pairs. Plots show the climatic niches in PCA space (left), and their suitable predicted niche 

range (right), as predicted by MaxEnt models. Callitris pairs are coloured in green and brown, and RoC pairs in blue and brown. Regions of overlap in 

the PCA plot are shown in light gray. Occupancy is depicted in dark grey. Values for geographic and climatic niche overlap according to Schoener’s I 

are in text. A) Callitris arenaria–C. pyramidalis; B) C. canescens East–C.canescens West; C) C. columellaris–C. intratropica; D) C. drummondii–C. 

baileyi; E) C. glaucophylla–C. gracilis; F) C. muelleri–C.oblonga; G) C. rhomboidea–C. monticola; H) C. tuberculata–C. preissii; I) Neocallitropsis 

pancheri–Callitris neocaledonica; J) Fitzroya cupressoides–Diselma archeri; K) Libocedrus austrocaledonica–L. chevalieri; L) Libocedrus bidwillii–

L. plumosa; M) Widdringtonia nodiflora–W. whytei; N) W. wallichi (syn. cedarbergensis)–W. schwarzii. 
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Figure 6.  Maps of projected ranges for Callitris according to four future climate change scenarios as predicted by the ACCESS 1.0 climate model. 

Deep red = predicted suitable habitat ranges estimated in MaxEnt using the Bioclim variables (Bio1-19); Yellow = projected ranges under moderate 

emissions (RCP 4.5) by 2050; Brown = projected ranges under moderate emissions (RCP 4.5) by 2070. RCP 4.5; Cyan = projected ranges under high 

emissions (RCP 8.5) by 2050; Blue = projected ranges under high emissions (RCP 8.5) by 2070. All five models are overlaid in the composite image to 

show range changes over the different scenarios and periods modelled.
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Figure 7. Barplots of predicted suitable climate range by 2050 and 2070 under two climate change emission scenarios. The present range is shown in 

white. Predictions for moderate emissions (RCP 4.5) are coloured in light grey, and high emissions in (RCP 8.5) in dark grey. Moderate and high 

emissions are grouped by year.
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Chapter 3 

Signal loss: Assessing the impact of extinctions on trait 

evolution models via simulations 
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Signal loss: Assessing the impact of extinctions on trait evolution 

models via simulations 

 
ABSTRACT 

 

Phylogenetic comparative methods (PCMs) use phylogenetic trees to investigate how 

traits evolve and influence diversification. One of the basic statistical assumptions of 

nearly all methods is that the phylogeny used in trait evolution studies is the ‘true’ tree. 

However, due to extinctions we are usually unable to sample the genomes of extinct 

taxa. If the lack of extinct data has an effect on phylogenetic tree reconstruction when 

using extant-only data, it might have flow-on effects to PCMs. We used simulations to 

test whether using phylogenetic reconstructions from extant-only taxa affected trait 

modelling analyses. To do this we simulated 100 ‘complete’ trees (with extinct and 

extant taxa) under four extinction scenarios and then, using only the extant taxa, 

reconstructed phylogenies in BEAST 2. We simulated trait data under BM and single-

optimum OU models and with two levels of trait variance to use in trait evolution 

models. We compared the effect of using the complete trees, complete trees with extinct 

taxa removed and BEAST MCC trees on lineages through time (LTT) and Pybus and 

Harvey’s gamma, phylogenetic signal, ancestral character estimation, and evolutionary 

trait models. The commonly observed ‘slowdown’ in LTT plots may be artefact of 

BEAST priors, as it was not observed in the complete or pruned trees. MCC trees had 

more significant early diversifications than complete or pruned trees, higher than 

expected phylogenetic signal, and more inaccurate estimations of the root value. 

Evolutionary models misidentified BM traits on MCC trees as evolving under an Early 

Burst model, and OU traits were misidentified as evolving under a BM model. 

Extinction scenario had no effect on trait evolution models, implying that using extant-

only data to reconstruct phylogenetic trees does have serious consequences for trait 

models. 

 

 
INTRODUCTION 
 

Reconstruction of the past is hampered by the large amount of evidence destroyed by 

the passage of time. In biology, fossils provide us with a window into the past of taxa 
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that went extinct. However, the vast majority of extinctions have left no fossil evidence, 

meaning we cannot reconstruct the past relying on fossils alone. DNA sequencing and 

its subsequent use in phylogenetic reconstruction offered an opportunity of filling the 

gaps left by extinctions, because ancestral genes persist in relatives even when their 

ancestors no longer exist. Thus theoretically, phylogenies could also be used to 

investigate the evolution of traits because traits are inherited (Ridley 1983; Harvey and 

Pagel 1991). 

 

One of the basic statistical assumptions of evolutionary trait modelling methods is that 

the ‘true’ or ‘known’ phylogenetic tree is to be used (Felsenstein 1985). However, 

because of extinctions, the ‘true’ or complete tree can never be recovered. Thus 

extinctions represent an irremediable form of incomplete sampling when constructing 

phylogenies. Since the credible estimation of trait evolution rests on using the true tree, 

using a tree ‘reconstructed’ from extant species could have serious consequences for 

conclusions made about the phylogenetic and ecological factors that shape trait 

evolution. 

 

Evolutionary biologists realised that Brownian Motion (BM) models used to describe 

stochastic movement patterns (Einstein 1906) could be used to model phylogenetic trees 

(Cavalli-Sforza and Edwards 1967; Felsenstein 1973), and trait evolution (Felsenstein 

1985; Harvey and Pagel 1991; Maddison 1994; Pagel 1997) (Pagel 1999). Phylogenies 

could account for evolutionary relationships, while BM could be used to model the 

evolution of traits under the Darwinian premise of ‘descent with modification’, in which 

traits evolve gradually over time via inheritance and random genetic drift (Darwin 

1859). 

 

The most basic model used in trait modelling is the BM model. The BM model in trait 

evolution is altered by a single parameter, sigma (σ), which defines the variance of the 

random walk (Fig 1). The trait values found in the species at the tips of the phylogeny 

are the result of the cumulative sum of a random walk with a variance of σ over the time 

of the tree. Trait divergence fits a normal distribution with the trait mean equal to the 

value at the root. The random walk is non-directional, meaning that trait values can 

increase or decrease over time, and the walk is unbounded: traits can evolve into any 

area of trait space without any constraints. The rate of evolution is non-varying: traits 

do not evolve at a faster or slower rate in certain portions of the tree, i.e. the value of σ 
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does not alter across the tree. Therefore in a BM model traits diverge according to a 

normal distribution, a rate defined by σ, the time span of the tree, and the timing of 

species divergences in the tree (Felsenstein 1973). 

 

The BM model is thought of as a ‘neutral’ or ‘drift’ model for several reasons. One 

reason BM models are ‘drift’ models refers to the use of phylogenetic trees, which are 

constructed with ‘neutral’ loci that are not under selection (Felsenstein 1973). Genes 

under selection would identify similarly adapted species as close relatives, rather than a 

single group with highly diverse phenotypes. Another reason refers to the non-

directional character of the BM random walk, in which traits are free to wander into any 

area of trait space guided by the topology of the tree. Finally it refers to the gradual 

accumulation of trait changes over time in traits evolving under genetic drift, not 

selection. 

 

A way to assess the influence of relatedness on trait evolution is phylogenetic signal 

(Pagel 1999; Blomberg and Garland 2002; Blomberg et al. 2003). Phylogenetic signal 

uses the phylogeny to predict trait values under the BM assumption of evolutionary 

drift. If traits have evolved under a BM model, the structure of the tree should predict 

the evolution of species’ traits at the tips of the tree. Based on this Pagel (1999) 

developed Pagel’s Lambda (λ), a tree branch-length transformation method that 

investigates whether the observed traits are more likely to have been produced by the 

phylogeny as it is (indicating that the traits fit a BM model, λ = 1), or whether shorter (λ 

< 1) or longer shorter (λ > 1) branches fit the trait data better. Phylogenetic signal tests 

whether species’ relatedness accounts for their trait values, but does not investigate the 

underlying evolutionary processes that have shaped traits (Revell et al.). Therefore, high 

phylogenetic signal cannot always be interpreted as evidence of BM, because both real 

and artifactual factors can shape the tree. 

 

Concepts of neutrality have led to the BM model sometimes being thought of as a null 

model of trait evolution (Crisp and Cook 2012). When traits fit a BM model, they are 

frequently thought to have evolved in the absence of selection or under stabilising 

selection. Conversely, when traits do not fit a BM model, it is seen as evidence that they 

have departed from the neutral phylogeny because of selective pressures. For this 

reason, traits fitting a BM model have sometimes been referred to as ‘conserved’, or 

‘constrained’, and considered evidence for a lack of evolutionary innovation (Diniz et 
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al. 1998; Johnson et al. 1999; Prinzing et al. 2001; Webb et al. 2002; Wiens 2004). The 

BM model is also a ‘null’ model in comparison to evolutionary models with more 

parameters, such as Ornstein-Uhlenbeck (OU) models (Hansen 1997; Butler and King 

2004)  

 

One parameter that is not very often thought of as a parameter is the phylogenetic tree 

itself. It is probably the single most influential parameter as it acts as the scaffold for all 

trait evolution methods. The tree brings essential information about species 

relationships, but the topology of the tree also predicates the outcome of evolutionary 

trait models. Because the phylogeny has so much influence on trait models, researchers 

have incorporated posterior trees to account for ‘phylogenetic uncertainty’. 

Phylogenetic uncertainty refers to the range of tree topologies, branch lengths and their 

variance produced from the Bayesian MCMC chain. If the range of tree topologies is 

large, using them in trait models will reduce the chance of finding a false significant 

result that is the result of one particular tree (de Villemereuil et al. 2012).  

 

However, any given set of posterior trees will have been fitted using the same Bayesian 

priors, which means that the range of tree topologies may be limited depending on the 

starting phylogeny and model parameters used.  Trees are usually constructed with 

sequence data from extant species only, therefore the interior nodes of the trees may not 

be accurately placed. Because of this the nodes of a tree have no special meaning other 

than marking points of species divergences given the data and the model. Thus 

phylogenetic trees are a map of genetic similarities and differences drawn from present 

species only. 

 

Because we can rarely sample ancient genetic data, concerns about the effect of 

extinctions of trait modelling remain a moot point. And yet, if unsampled extinct data 

significantly alters the relationships and timing of divergences in trees (Yedid et al. 

2012), it could have downstream effects on trait evolution models (Grafen 1989; Losos 

2010). 

 

In this study, we investigate the effect of extinction on tree reconstruction and trait 

modelling. To do this we simulated ‘complete’ trees (with extinct and extant taxa). We 

considered these trees to be the ‘true’ evolutionary trees. We modelled traits on the 

complete trees which gave us ‘extinct’ traits to use in modelling. The assumption 
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therefore is that the complete trees and traits accurately represent the full evolutionary 

history of the simulated group. We then reconstructed phylogenetic trees using only the 

extant species from the complete trees. We applied commonly used PCMs to the 

complete trees and the reconstructed trees and compared the outcome of modelling. If 

the result of PCMs on the reconstructed tree match those on the complete tree, then 

extinctions do not affect tree and trait reconstruction, because tree shape did not affect 

the outcome. 

 
 

METHODS 
 

To create data, we simulated trees with different levels of random (non trait-related) 

extinction events and then simulated DNA over the trees. This provided our complete 

trees and modelled DNA sequences of those trees. We then modelled traits on the trees 

under a BM model and a single OU model, giving us complete trait data for extinct and 

extant species. Because tree reconstructions rarely include extinct genetic data, we 

pruned out extinct sequences and reconstructed the trees in BEAST. We applied 

standard trait evolution methods using the complete tree and traits, the complete tree 

and traits pruned to exclude extinct taxa, and reconstructed BEAST trees and traits. We 

chose the most simple (and perhaps unlikely) models possible, using random 

extinctions, a strict molecular clock and BM and single-optimum OU traits. 

 

Simulation methods 
To create ‘complete’ phylogenies (with extinct and extant taxa), we simulated 100 trees 

under four extinction scenarios. We used multiple extinction scenarios because the loss 

of extinct sequence data earlier or later in history might affect tree reconstructions. 

DNA sequences were modelled over the complete phylogenies. 

 

Tree Simulations 

One hundred trees with 50 species were simulated under a birth-death process for four 

random extinction scenarios. 
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Extinction Scenarios 

1. Random Extinction (Null) – Birth-death trees with a speciation rate (λ = 1), and 

an extinction rate (µ = 0.3). Trees therefore have a diversification rate of 0.7 (r = 

λ-µ) (Magallon and Sanderson 2001) without any large extinction events. 

2. Random and Early Extinction Event (Early) – a single extinction event early in 

the tree, where 30% of the species survive. Simulates an estimated mass 

extinction level for plants at the Cretaceous–Paleogene (K–Pg) boundary (Wilf 

and Johnson 2004). 

3. Random and Late Extinction Event (Late) – a single smaller extinction event, 

where 60% of the species survive, representing a Pleistocene-like extinction rate 

for conifers, based on the known records (Barnosky et al. 2011). 

4. Random and Double Extinction Events (Double) – A combination of the Early 

and Late scenarios. 

 

Four time intervals (T0, T1, T2, T3, moving back in time from T0, the present) were 

used to place mass extinction events (Early = T3; Late = T1). The simulated trees had 

50 extant tips and n number of extinct species, so that trees with higher extinction rates 

have more extinct taxa rather than fewer tips. The same number of tips ensures that 

analyses are not confounded by differences in sample sizes. Trees were simulated using 

the sim.bd.taxa function in the R package TreeSim (Stadler 2017). 

 

DNA Sequence Simulation 

Using the R package PhyloSim (Sipos et al. 2011), DNA sequences were modelled over 

the simulated trees that included extinct species to create simulated nucleotide sequence 

data. These data were subsequently used to reconstruct trees in BEAST. A single gene 

of 1000 base pairs was modelled under a General Time-Reversible and Gamma 

(GTR+G) model (Tavare 1986; Felsenstein 2004). The GTR model allows for different 

nucleotide frequencies, and nucleotide substitution rates that can vary individually. The 

DNA simulation model had base frequencies of: T and C = 0.33333333; and A and G = 

0.1666667, with a gamma distribution of α = 1. Sequences of extinct taxa were pruned 

from the simulated DNA sequence fasta files, creating sequences for extant only taxa. 

These sequences were used to reconstruct the simulated trees in BEAST. 
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Phylogenetic Reconstruction 

Using the nexus files for extant only species we reconstructed the simulated trees in 

BEAST 2 (Bouckaert et al. 2014). Nucleotide frequencies were estimated under a 

GTR+G substitution model, with a strict clock, and a uniform Birth-Death model 

estimated under BEAST default settings. The MCMC chain length was 10 million. The 

convergence of model parameters was confirmed in TRACER v 1.6 (Rambaut  and 

Drummond 2013). All BEAST tree reconstructions had likelihood effective sample 

sizes (ESS) > 200, indicating good mixing of the MCMC chain. The first 25% burnin of 

the MCMC chain was removed and maximum clade credibility (MCC) trees estimated 

in Tree Annotator (Bouckaert et al. 2014). Node heights were estimated using Common 

Ancestor Heights.  

 

The aim of this study was not to assess BEAST performance per se, or even to recover 

the original simulated trees with high accuracy. In actual studies the true tree is never 

known, and the BEAST settings used cannot truly be verified to recover the true tree. 

This approach therefore aims to mimic the unavoidable error introduced by not knowing 

the true evolutionary history of genes. 

 

We compared the pruned TreeSim (pTreeSim) trees with the MCC trees using 

Robinson-Foulds distances (RFDs) (Robinson and Foulds 1981). RFDs compare tree 

topologies between trees with the same tip numbers, so comparisons between the extinct 

and extant trees were not possible. When two trees differ in the placement of a single 

branch edge then RFD = 2 (Fig. 1). 

 

Trait Simulations 

To simulate traits to use in evolutionary trait modelling, we simulated continuous traits 

for extinct and extant taxa on the complete TreeSim trees. A single trait was simulated 

under 1) a BM model and 2) an OU model on 100 trees for all four extinction scenarios. 

Traits for extinct taxa were removed when trait models were used with extant taxa only. 

 

Models of Trait Evolution 

Trait evolution models aim to discriminate between traits evolving under drift or 

selection. To test this we generated two trait datasets: traits evolving under a drift BM 

model, and traits evolving under a single-optimum OU model, indicating selection for a 

single trait optimum. Two levels of trait variance were modelled for BM and OU traits. 
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Traits evolving under a Brownian Motion (BM) model 

For traits simulated under a BM model, root values ranging from 3-30 were generated 

with random deviates from the uniform distribution. Two BM data sets were generated, 

with two different variances, sigma (σ), in the BM random walk (Fig. 2). Under σ = 0.1, 

the variance of the random walk is low, representing a “slow” rate of trait evolution. 

Under σ  = 1, variances are high with trait values at the tips more dispersed than under σ  

= 0.1, i.e. a “faster” rate of trait evolution. BM traits were simulated using the function 

fastBM in the R packages phytools (Revell 2012) and ape (Paradis et al. 2004). 

 

Traits evolving under an Ornstein-Uhlenbeck (OU) model 

The single-OU model is identical to a BM model, with the exception of two parameters: 

alpha (α) (the optimum value traits evolve to), and theta (θ) (the rate at which modelled 

values converge to alpha). In fact, the BM model is a particular case of an OU model 

with a single optimum, where alpha = 0. Single optimum OU models with low alphas 

will closely resemble a true BM model of evolution. 

 

Single optimum OU traits were evolved using the same root and σ values as in BM trait 

modelling. Theta (θ), the value representing an optimum adaptive trait value, was 

created using random deviates from the uniform distribution with minimum and 

maximum values extracted from an exponential distribution. Alpha (α), the rate at 

which traits evolve to reach the optimum trait value was set at α = 0.5 (refer to Table 1 

for a summary of simulations). 

 

Evolutionary Analyses 
Phylogenies 

We used three phylogenies (‘tree types’) in evolutionary analyses: 

1. The complete TreeSim trees, which include extinct and extant taxa, and two 

variant phylogenies derived from these trees represented by (2) and (3) below. 

2. The pruned TreeSim (pTreeSim) trees with extinct taxa removed.  

3. The BEAST MCC trees, which are the data commonly used in comparative 

studies. 

All four extinction scenarios described above were applied to each of the three tree 

types.  
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Lineages Through Time (LTT) 

Lineages Through Time (LTT) plots and the Pybus and Harvey γ statistic were used to 

assess the impact of extinctions on diversification, and the effect of tree type on the 

estimation of diversification. To estimate the number of lineages at different time points 

across a tree, LTT analyses were conducted with the ltt function in the R package 

phytools (Revell 2012). LTT plots show the number of lineages at different time points 

across a tree (Harvey et al. 1994; Nee 2006). As lineages accumulate the slope of the 

line increases, allowing easy visual comparison of lineage numbers and rates of 

diversification over time. A decrease in lineages as a result of extinction is represented 

by a fall in the slope of the LTT plot when extinct taxa are included. Because 

diversification is exponential, extinctions are seen as a flat section when extinct taxa are 

absent from the tree (Crisp and Cook 2009). LTT plots were log transformed. 

 

The Pybus and Harvey γ statistic (Pybus and Harvey 2000) tests whether rates of 

diversification have been constant, the expectation under a pure birth model (the null 

hypothesis). When γ is negative it indicates that diversification has occurred early in the 

tree, and when γ is positive, that diversification is closer to the tips. 

 

Phylogenetic Signal 

Phylogenetic signal (Pagel 1997; Blomberg and Garland 2002; Blomberg et al. 2003) 

investigates whether species’ relatedness accounts for their trait value. Phylogenetic 

signal was estimated with Pagel’s Lambda (λ), using maximum likelihood (ML). When 

λ = 1, trait evolution is equivalent to a BM model because the timing of species 

divergences accounts for species’ trait differences. When λ = 0, branch lengths are 

reduced to zero creating a single polytomy or ‘star’ phylogeny, indicating that species 

relationships have no effect on trait evolution. When lambda is low (< 1), species’ traits 

are less alike than would be expected given a BM expectation and the phylogeny, and 

when very high (> 1), species’ traits are more similar than expected given a BM model. 

 

Lambda relies on the timing of species divergences to create a covariance matrix. It 

could therefore be susceptible to changes in tree topology, theoretically leading to an 

over- or underestimation of phylogenetic signal. 
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Lambda has been shown to be a robust method to measure the statistical dependence of 

traits on trees (Freckleton et al. 2002). For each trait data set we estimated phylogenetic 

signal for TreeSim trees, pTreeSim trees and MCC trees under four extinction 

scenarios. Significance was tested with 999 randomisations of the data. Phylogenetic 

signal tests were conducted in R using the phylosig function in the phytools package. 

 

Ancestral Character Estimation 

Ancestral Character Estimation (ACE) was used to investigate the effect of extinctions 

on the ability to predict ancestral characters. ACE was estimated under a BM model 

using the ace function in the R package ape. Under a BM model, the root value should 

be the mean of the trait values at the tip. If random extinctions distort the distribution of 

values at the tips, ACE accuracy should be affected. We were able to compare estimated 

root values against the true root values used to simulate trait data to access accuracy.  

 

Evolutionary Modelling 

We used macroevolutionary models within a ML framework to examine the effect of 

extinctions on trait evolution models. We used eight to models to fit to the data: 

Brownian Motion (BM) (Felsenstein 1973), Ornstein-Uhlenbeck (OU) (Butler and 

King), lambda (λ), kappa (κ), delta (δ), (Pagel 1997) Early Burst (EB), (Harmon et al. 

2010), Late Burst (LB) (Blomberg et al. 2003) and White Noise (WN). Models were 

fitted using maximum likelihood (ML). Model selection was performed using sample-

size corrected second-order Akaike information criterion (AICc) weights. Models were 

fitted using the function fitContinuous in the R package geiger (Pennell et al. 

2014). 

 

 

RESULTS 
 

Tree Simulations 

The effect of modelling trees with extant data and selection of a strict clock affected the 

ages of the trees: nodes in all MCC trees were far younger than in the simulated trees 

(data not shown). BEAST reconstructed all sister pairs accurately, and most trees did 

not differ substantially in topology at shallower nodes. However, there were large 

differences in tree topology between the TreeSim trees and pTreeSim and MCC trees 

(Fig. 1A), but far fewer between pTreeSim and MCC trees, though they too differed in 
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the placement of deeper internal nodes (Fig. 1B). The mean RFDs of pTreeSim and 

MCC tree comparisons ranged from 8.34 (Late) – 9.02 (Double), with a maximum of 22 

(Fig. 3), i.e. 11 branch differences between two trees tree with 50 taxa. Standard 

deviations were between 4.34 and 4.71. Extinction scenario made no difference to 

RFDs.  

 

LTT & Gamma 

Lineages through time plots demonstrated that the modelling of extinctions was 

successful, as large drops in lineage numbers are visible in the plots of simulated trees 

(Fig. 4). The steep slope of lineage accumulation indicated the high rate of 

diversification (r = 0.7) set in the simulation parameters. In all LTT plots of the MCC 

trees there was a noticeable decline in the gradient of the slope towards the present, 

representing a slowdown in the rate of diversification. In TreeSim trees, γ values had a 

wide distribution, regardless of extinction scenario, indicating that extinctions were 

random across individual trees (Fig. 5). Mean gamma for TreeSim and MCC trees were 

marginally below zero for all extinction models (Table 2). The range of gamma was 

larger when extinctions were large (Double) or occurred early (Early) in TreeSim trees 

(Fig. 5). In early extinctions mean gamma was marginally more negative, but 41% of 

the early extinction trees had a positive gamma (data not shown). For all extinction 

scenarios, the removal of extinct taxa (pSimTrees) resulted in a higher mean gamma. 

Regardless of extinction scenario, mean gamma for the MCC trees was always more 

negative than mean gamma of TreeSim trees, indicating even or early diversification 

(Table 2). There were no instances of late diversification, indicated by positive gamma 

in the MCC trees (Fig. 5), except for a single outlier in the early extinction. As a result, 

the proportion of significant gamma results was inflated for MCC trees (median P = 

0.01) compared to simulated trees, especially when extinctions were very low, as in the 

Null extinction simulated trees (Fig. 5). In the case of Null TreeSim trees, 

diversification rates were non-significant in 84% of trees (median P = 0.47). In TreeSim 

trees only 16% had a significant (P < 0.05) gamma to the null expectation, whereas in 

MCC trees the number of significant results was 69% (Table 2).  

 

Phylogenetic Signal 

Because all BM and OU traits were modelled using trees with extinct taxa, we were 

able to observe the effect of different tree topologies on estimates of phylogenetic 

signal. As expected, TreeSim trees showed highly significant phylosignal (λ = 0.88 to 
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1.00), regardless of extinction scenario or whether traits were BM or OU (Table 3, Fig. 

6). Phylogenetic signal was higher in pruned TreeSim trees with BM traits (λ = 0.87 to 

1.04) than in TreeSim trees, but highest in the MCC trees (λ = 0.98 to 1.12), showing an 

upward trend across all extinction scenarios. Ninety to ninety-five percent of lambdas 

for BM traits on MCC trees were higher than one, indicating more similarity among 

traits than predicted by the tree under a BM model (Table 3). The highest lambda values 

were in MCC trees with Null Extinctions (maximum λ = 1.12). Phylogenetic signal was 

lower for OU traits on pruned (λ = 0 to 1.01) and MCC trees (λ = 0.60 to 1.05). Again, 

λ were elevated when using pruned or reconstructed trees (λ pTreeSim = 17 to 26%, λ 

MCC = 59 to 68%) (Table 3, Fig. 6), but the percentage of erroneously high lambdas in 

OU traits was not as extreme as for BM traits (Table 3). Only 1-3% of OU traits on 

pTreeSim and MCC trees had false, non-significant phylogenetic signal. Trait variance 

had no effect on phylogenetic signal (data not shown). 

 

Ancestral Character Estimation 

We measured the relative increase or decrease in the reconstructed root value compared 

to the true root value, expressed as a percentage, to estimate how accurately the root 

value was calculated. The type of tree used to estimate the ancestral root had a large 

impact on accurate reconstructions. Estimating the root value with extinct trait data 

(TreeSim trees) produced the closest values to the true root. Percentage differences in 

root values were highest under higher trait variance (σ = 1) for all extinction scenarios 

under a BM model (Fig. 7). Standard deviations of the ACE root values were 

consistently higher in OU than in BM models for all three tree types and across all four 

extinction scenarios (Table 4). Using either pruned pTreeSim trees or MCC trees root 

estimates were highly erroneous, but they were similarly erroneous, indicating the 

impact of lost trait data in extinct taxa. Root values in both OU datasets were 

overestimated by 500% in some cases (Fig. 7). 

 

Evolutionary Modelling 

Eight evolutionary models were fitted to traits simulated under BM and OU models. 

Traits were modelled on pruned simulated (pTreeSim) trees and MCC trees only, 

because it is not possible to fit evolutionary models on trees with extinct taxa in the 

function fitContinuous. Akaike Information Criterion weights (AICcw) were used 

to identify the best fitting model of the models tested. The results here refer to the 

median AICcw for each tree-trait combination. For all extinction scenarios, traits 
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simulated under a BM model were correctly identified as best fitting a BM model when 

using pTreeSim trees, but were incorrectly identified as evolving under an Early Burst 

model when modelled on MCC trees under all extinction scenarios (Fig. 8). Traits 

simulated under an OU model were equally likely to fit an OU or Late Burst model 

when modelled on pTreeSim trees for all extinction scenarios. When OU traits were 

modelled on MCC trees, traits fitted a BM model, however, AICc weights were low, 

showing that no single model was good at discriminating the pattern of OU trait data on 

MCC trees (Fig. 8). 

 

 

DISCUSSION 
 

Because DNA degrades rapidly after death, it is usually impossible to obtain DNA 

sequences of ancient extinct ancestors. The lack of ancient DNA can affect the accuracy 

of phylogenetic tree reconstructions and the evolutionary trait models that rely on those 

phylogenies. But does it really matter that we cannot account for extinct taxa? Do 

extinctions really have a dramatic or even a negligible effect on phylogenetic 

reconstructions and thus macroevolutionary trait models?  

 

Extinctions affect tree reconstruction and measures of diversification 

Despite the lack of sequence data of extinct taxa, BEAST was able to reconstruct sister 

species relationships perfectly, and shallow nodes were also placed with high accuracy. 

However, deeper relationships were less well resolved, and there were large 

rearrangements of MCC tree topology towards the base of the tree (Fig. 1). 

 

The LTT plots for reconstructed MCC trees showed a noticeable slowdown in 

diversification toward the present. In contrast, the LTT plots for complete and pruned 

complete trees showed a steep gradient, expected under a low extinction birth-death 

model (Nee et al. 1994). Explanations for the slowdown observed in LTT for MCC 

trees are multitude, ranging from incomplete sampling (Nee et al. 1994), poor 

identification of recently diverged species (Purvis et al. 2011), density dependent 

diversification as a result of niche filling (Purvis et al. 2011; Price et al. 2014), species 

richness (Rabosky 2013), time for speciation (Etienne and Rosindell 2012), non-random 

extinctions (Rabosky 2009) or a combination of these factors (Moen and Morlon 2014; 

Gascuel et al. 2015). 
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The Pybus and Harvey γ statistic showed significantly negative gamma values 

associated with tree type, but not with extinction scenario. In fact, the largest difference 

in gamma was between simulated and MCC trees under the Null extinction scenario. 

These results suggest that the slowdown in diversification rates could be an artefact of 

tree reconstruction methods. When using only extant data, BEAST priors may have a 

smoothing or homogenising effect on branch lengths resulting in the observed 

slowdown. This may be related to the birth-death model and/or clock settings and 

suggests that branch lengths are longer than they should be toward the present. Because 

we used BEAST default settings, this result could be due to a simplified approach to 

phylogenetic analyses, but widespread commentary on slowdowns in diversification 

rates suggests the phenomenon is commonly observed (Rabosky 2009; Purvis et al. 

2011; Etienne and Rosindell 2012; Rabosky 2013; Moen and Morlon 2014; Price et al. 

2014; Gascuel et al. 2015). Thus the slowdown is likely to be a result of the model and 

the data used in tree reconstructions, implying that interpretations of diversification 

rates, the timing of extinctions and temporal triggers of trait evolution are all in 

question. 

 

Extinctions affect tree topology which skews phylogenetic signal 

The phylogenetic signal of traits on pTreeSim and MCC trees was higher than expected 

(i.e. lambda > 1) for both BM (90 to 95%) and OU (59 to 68%) traits (Table 3). This 

indicates that traits were more similar than predicted by the tree and that phylogenetic 

signal was influenced by tree topology. The removal of extinct taxa significantly 

changes tree topology and therefore evolutionary relationships among taxa. If traits 

have evolved under a pure BM model, sampling traits from the present actually 

represents a subsample of traits values. The combined effect of reconfigured species 

relationships and undersampling of the BM process is what most likely leads to higher 

phylogenetic signal than expected. When traits have evolved under a BM model across 

the timespan of the tree, the undersampling of extinct species in the phylogeny leads to 

the erroneous interpretation that trait evolution has been constrained. 

 

Extinctions make ancestral character estimation of the tree root problematic 

Concerns about the accuracy of ancestral trait reconstruction are long standing. These 

concerns range from methodological approaches used (Cunningham et al. 1998; 

Duchene and Lanfear 2015; King and Lee 2015), to inaccuracies due to evolutionary 
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processes shaping traits (Oakley and Cunningham 2000; Webster and Purvis 2002). For 

example, estimations of ancestral characters are known to be poor when the distribution 

of extant traits does not include the ancestral root value (i.e. trait evolution with a 

directional trend) (Oakley and Cunningham 2000). Because of directional trends in 

character evolution, it has been suggested that traits showing strong phylogenetic signal, 

and therefore assumed to fit a BM model, are more likely to produce reliable ancestral 

trait reconstructions (Litsios and Salamin 2012). But despite high phylogenetic signal, 

the estimation of root values on the MCC trees tends to be inaccurate (high standard 

deviations) even in Null extinction scenarios and BM traits with low variance. Also, and 

perhaps more concerning, is the common interpretation that traits with high 

phylogenetic signal are evolving under a BM model. Our results show that single-

optimum OU traits can also show high phylogenetic signal. If OU traits are incorrectly 

assumed to be evolving in a BM manner because of high phylogenetic signal, root 

estimates can be overestimated by as much as 500% according to our simulations. The 

implication here is that it is impossible to know just how incorrect ancestral character 

estimation is because phylogenetic signal does not describe any particular evolutionary 

processes (Revell et al. 2008). 

 

The different topology of trees lacking extinct taxa has a very large effect in ancestral 

character estimation (Cusimano and Renner 2014), but even when we used extinct taxa 

and traits, root estimates were poor for OU traits (as seen by large standard deviation 

values, Table 4). This is because there was no trait data available close to the root. 

Additionally, the strength of attraction to the trait optimum (α) affects how accurate 

trait reconstruction will be under an OU model because the optimum trait value is 

reached more or less rapidly depending on the strength of alpha (Butler and King 2004).  

 

Implications of extinctions on tree reconstruction and evolutionary trait models 

Model-based methods are recommended to pin down the most likely process of trait 

evolution. If evolutionary models can detect whether traits fit a BM or OU model, then 

ancestral estimates might be more accurate, giving valuable insights into trait change 

over time. However, we show that evolutionary models are just as susceptible to tree 

topology as the other methods investigated here (LTT and gamma, phylogenetic signal 

and ACE). In every extinction scenario, BM traits modelled on MCC trees were more 

likely to fit an Early Burst model, and OU traits to fit a BM or Late Burst model. This 

makes sense when we know that BM traits had high phylogenetic signal as a result of 
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undersampled extinct data, but in the absence of that information, interpretation can be 

bewildering. Perhaps more importantly, tree topology swamped any extinction signal in 

the data – every extinction scenario fitted the same models in the same way, though 

with small differences in variance. 

 

This gives rise to the frightening thought that inferred early bursts of trait diversification 

could also be a tree-related phenomenon. It also suggests that traits appearing to evolve 

under a BM model can be evolving to an optimum with a trend. The difference between 

a pure BM model and an OU model with low alpha is slight, and model discrimination 

with small trees (< 200 taxa) can be poor (Cooper et al. 2016b), perhaps explaining this 

result. Unfortunately, had we not known that our ‘BM’ model was in fact a single-

optimum OU model, we would again have made incorrect inferences about the process 

of trait evolution. We would have interpreted a trait evolving with a trend to an 

optimum to be a ‘conserved’ trait, and this could have been confirmed by its high 

phylogenetic signal. Any ancestral character estimation would therefore also seem to be 

valid, but the ancestral values could be highly erroneous depending on the strength of 

the trend. 

 

Another consideration (not investigated here) is whether the evolutionary past has left a 

mark on diversification. If extinctions are non-random, or if speciation is not 

independent from traits like life history, growth habit or environment (Lanfear et al. 

2013; Bromham et al. 2015), then molecular evolution may not be ‘neutral’. If the 

reconstructed tree is in fact a reflection of trait-biased diversification, trait models will 

be unable to find any model other than a BM model because the loci used to reconstruct 

the tree are not independent of diversification. The assumption that a phylogenetic tree 

is evolving under BM model, or is neutral is in question in such cases.  

 

Many researchers will have had unsettling thoughts about how the trees they use effect 

their interpretation of trait evolution (Losos 2011). This is exacerbated by the multiple 

sources of potential error in trait models (Cooper et al. 2016a; Cooper et al. 2016b). It 

has been shown that well placed fossil data improves the accuracy of trait modelling 

because 1) fossils can invalidate poor models of trait reconstructions (Meseguer et al. 

2015; Puttick and Thomas 2015; Sherratt et al. 2015; Saladin et al. 2017; Schnitzler et 

al. 2017), and 2) fossils can rectify some of the evolutionary signal lost through 

extinction when used in models (Slater et al. 2012). Recent studies found model 
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inaccuracy when comparing extant-only data to fossil evidence in birds (Mitchell 2015), 

but not in mammals (Puttick and Thomas 2015), results that probably reflect different 

levels of trait disparity in the extant groups. 

 

Unfortunately, many groups do not have a good fossil record, so the ‘true’ evolutionary 

tree cannot be recovered because of undersampling due to extinctions. If tree 

reconstruction obscures actual evolutionary processes because extinct taxa cannot be 

sampled, the downstream consequences for evolutionary trait modelling are serious. 

The effect of the gap between ‘true’ trees and reconstructed trees on trait models has not 

been investigated using simulations before. A previous study by Sanmartin (Sanmartin 

and Meseguer 2016) found that extinctions affect tree reconstruction and estimates of 

diversification rates. We found the same, but also that commonly used PCMs were 

affected by trees reconstructed from extant-only data. Phylogenetic signal, ancestral 

character estimation and evolutionary trait models were all unable to recover the initial 

evolutionary process shaping traits, even in the most conservative cases of a constant, 

random background extinction rate and traits evolving under BM. These results suggest 

that, depending on the extant study group, we may be analysing phylogenetic 

reconstruction methods far more than we are analysing diversification or trait evolution. 

 

This problem with the way trait evolution models use phylogenies is two-fold. First, 

models assume the tree to be ‘true’ (Felsenstein 1985; Grafen 1989). Secondly, the 

entirety of the tree is used. Thus the relationships are taken as evolutionary fact, even 

though the effect of extinctions is to distort the actual evolutionary relationships 

between taxa and clades. Inaccurate relationships toward the base of the tree reflect 

diminishing signal in extant genetic data, rather than a plotted map of evolutionary 

history, suggesting that methods need to be developed that do not rely on the estimation 

of root values. Alternatively, estimations should be able to accommodate a wider range 

of scenarios towards the root of the tree. 
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Table 1. Extinction scenarios, trees and traits used in simulations.  
 

 
 
 
 
 

Extinction	Scenarios	 		 		
Null	 Early	 Late	 Double	
Background	Extinctions	=	30%	
extinct	

Early	Extinction	Event	=	70%	extinct	 Late	Extinction	Event	=	40%	extinct	 Early	and	Late	Extinctions		=	70%	+	40%	
extinct	

		 		 		 		
		 		 		 		
Tree	Types	 		 		 		
TreeSim	 pTreeSim	 MCC	

	Simulated	Tree	with	Extinct	and	
Extant	

Simulated	Tree	with	Extinct	removed	 BEAST	MCC	Tree		 	

		 		 		 		
		 		 		 		
Trait	Models	 		 Sigma		

	BM	 OU	 σ	
Traits	evolve	under	under	a	
Brownian	Motion	model	

Traits	evolve	under	a	single-optimum	
Ornstein-Uhlenbeck	(OU)	model.	The	
optium	applies	to	the	whole	tree.	

All	trait	datasets	are	fitted	with	one	of	
two	different	variances	of	a	random	walk	
(σ);	0.1	or	1	
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Table 2. Results of lineages throught time (LTT) gamma tests. Mean gamma, standard deviation (SD) of gamma and the number of trees with 

significant gamma, indicating non-constant diversification rates. TreeSim = simulated trees with extinct and extant taxa; pTreeSim = simulated trees 

with extinct taxa removed; MCC = BEAST maximum clade credibility tree. Null, Early, Late and Double refer to the levels of extinction modelled in 

simulated trees. 

 

                		 Null	 		 		 		 Early	 		 		 		 Late	 		 		 		 Double	 		 		

		 Mean	γ	 SD	
n	Trees	
P	<	0.05	 		 Mean	γ	 SD	

n	Trees	
	P	<	0.05	 		 Mean	γ	 SD	

n	Trees		
P	<	0.05	 		 Mean	γ	 SD	

n	Trees	
	P	<	0.05	

TreeSim	 -0.393	 1.207	 16	 		 -0.882	 2.015	 38	 		 -0.374	 1.319	 17	 		 -0.313	 1.754	 25	
pTreeSim	 0.611	 1.058	 11	 		 1.328	 1.049	 31	 		 1.410	 0.872	 27	 		 1.979	 0.934	 56	
MCC	 -2.446	 0.834	 69	 		 -2.047	 0.811	 56	 		 -0.257	 0.731	 59	 		 -1.759	 0.781	 40	
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Table 3.  Phylogenetic signal (λ) and P values for BM and OU trait data and four extinction scenarios, estimated on trees with extinct taxa included 

(TreeSim), extinct taxa removed (pTreeSim), and MCC trees (MCC). The number of samples where lambda was larger than one is shown in bold. 

 

      λ TreeSim P (TreeSim) λ pTreeSim P (pTreeSim) λ MCC P (MCC) 

BM Null Min 0.97 0.00 0.87 0.00 0.99 0.00 
    Max 1.00 0.00 1.04 0.00 1.12 0.00 
     λ > 1 (n) 0 – 62 – 90 – 
  Early Min 0.98 0.00 0.97 0.00 0.98 0.00 
    Max 1.00 0.00 1.01 0.00 1.04 0.00 
     λ > 1 (n) 0 – 57 – 95 – 
  Late Min 0.97 0.00 0.98 0.00 1.00 0.00 
    Max 1.00 0.00 1.01 0.00 1.10 0.00 
     λ > 1 (n) 0 – 47 – 95 – 
  Double Min 1.00 0.00 0.96 0.00 1.00 0.00 
    Max 1.00 0.00 1.01 0.00 1.04 0.00 
     λ > 1 (n) 0 – 57 – 95 – 
                  
OU Null Min 0.88 0.00 0.00 0.00 0.69 0.00 
    Max 1.00 0.00 1.01 1.00 1.05 0.47 
     λ > 1 (n) 0 – 26 – 68 – 
  Early Min 0.90 0.00 0.18 0.00 0.62 0.00 
    Max 1.00 0.00 1.01 1.00 1.04 0.01 
     λ > 1 (n) 0 – 24 – 65 – 
  Late Min 0.97 0.00 0.00 0.00 0.60 0.00 
    Max 1.00 0.00 1.01 1.00 1.03 0.01 
     λ > 1 (n) 0 – 17 – 59 – 
  Double Min 0.99 0.00 0.29 0.00 0.74 0.00 
    Max 1.00 0.00 1.00 0.43 1.03 0.01 
     λ > 1 (n) 0 – 21 – 60 – 
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Table 4.  Comparisons of the true root value and the root value estimated using ancestral character estimation (ACE). Results are displayed showing 

the standard deviation of percent differences in root values. Comparisons were made using three tree types (TreeSim: simulated tree with extinct trait 

data; pTreeSim: simulated tree with extinct traits removed; MCC: the BEAST reconstructed tree with extant traits), under four different extinction 

scenarios (Null, Early, Late, Double) and traits simulated under two models (BM and OU). 

 
		 		 Null	 		 Early	 		 Late	 		 Double	 		
Trait	Model	
	

TreeType	
	

SD		
(σ	=	0.1)	

SD		
(σ	=	1)	

SD		
(σ	=	0.1)	

SD	
(σ	=	1)	

SD			
(σ	=	0.1)	

SD		
(σ	=	1)	

SD		
(σ	=	0.1)	

SD		
(σ	=	1)	

BM	 Root	v	TreeSim	Estimate	 4.38	 10.27	 5.53	 14.45	 6.70	 14.99	 4.09	 16.27	
		 Root	v	pTreeSim	Estimate	 12.68	 45.63	 21.32	 51.84	 13.54	 36.35	 14.68	 50.86	
		 Root	v	MCC	Estimate	 12.82	 46.05	 21.24	 52.15	 13.38	 36.05	 14.73	 51.21	
OU	 Root	v	TreeSim	Estimate	 55.20	 55.46	 46.98	 47.36	 64.34	 63.43	 69.57	 69.07	
		 Root	v	pTreeSim	Estimate	 101.34	 101.34	 106.14	 106.90	 102.44	 102.05	 106.71	 106.66	
		 Root	v	MCC	Estimate	 101.39	 101.39	 106.12	 106.77	 102.44	 102.04	 106.71	 106.61	
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A.          B. 
 

 
Figure 1.  One of one hundred trees simulated under the null extinction scenario, showing 

differences in topology between A) TreeSim trees (with extinct taxa) and pruned TreeSim 

(pTree) trees, and B) pTreeSim trees and the MCC tree reconstructed in BEAST. Branches 

coloured in red indicate unique edges in the trees compared. For example, the Robinson-

Foulds Distance (RFD) for the trees shown in B is 6, because there are three edge differences 

between the two trees. Plots were constructed using the function phylo.diff in the R 

package distory. 
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A.       B. 

 
 

Figure 2.  Plots demonstrating the effect of the variance parameter, sigma (σ) of the Brownian 

Motion random walk on trait values at the tips. A) Under low σ, the smaller variance of the 

random walk results in smaller variance at the tips. B) Trait variance is larger under higher σ.  

A density curve of the normal distribution is plotted to emphasise the effect of σ on trait 

distributions. The code to create the plots is from Wagenmakers, J and Gronau, Q.F., A 

Compendium of Clean Graphs in R., Version 2.0 

http://shinyapps.org/apps/RGraphCompendium/index.php. 
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Figure 3.  Robinson-Foulds distances (RFDs) comparing tree topology in pruned simulated 

(pTreeSim) and MCC trees for each extinction scenario. Dotted horizontal lines indicate the 

mean RFD. 
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Figure 4. Lineage Through Time (LTT) plots for A) background Null extinctions; B) Early 

Extinction; C) Late Extinction and D) Double Extinction. For each extinction scenario 

individual plots show LTT for 100 trees with extinct species (TreeSim trees); simulated trees 

with extinct species removed (pTreeSim trees) and BEAST MCC trees. Extinctions can be seen 

in downward steps in the simulated (TreeSim) plots. 
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Figure 5.  Boxplots of Pybus and Harvey’s gamma for A) Null Extinction Event, B) Early 

Extinction, C) Late Extinction and D) Double Extinction. The upper panels are boxplots of 

the γ-statistic ordered by tree type (TreeSim, pTreeSim and MCC). The lower panels are P 

values for gamma. Each boxplot represents 100 trees with 50 tips. 
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Figure 6.  Boxplots of phylogenetic signal according to Pagels’s Lambda (λ) Results are 

arranged by trait type (BM and OU); tree type (TreeSim, pTreeSim, MCC); and extinction 

scenario (Null, Early, Late, Double). For each boxplot frame, lambda (λ) is plotted on the left 

with the significance value of lambda (P) on the right. 
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Figure 7.  Boxplots of ancestral character estimation (ACE) of the root value for traits evolved 

under two different models: Brownian Motion (BM, left) and single-optimum Ornstein 

Uhlenbeck (OU, right). Each boxplot shows the difference between the true root and the 

estimated root expressed as a percent. Comparisons were made between extinction models 

(Null, Early, Late and Double, shown by bars at the bottom of each plot); the tree type 

(TreeSim, pTreeSim, and MCC) and the variance of the random walk used to simulate traits 

(σ = 0.1, the first three boxplots in each extinction model shown in white; and σ = 1, the last 

three boxplots in each extinction model shown in grey).  
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Figure 8.  Boxplots of AICc weights comparing eight evolutionary models. A) Null; B) Early; 

C) Late and D) Double extinctions. The upper two boxes within each extinction group are 

trait evolution model results for BM simulated traits on pTreeSim trees (left) and MCC trees 

(right). The lower two boxes are trait evolution model results for OU simulated traits. 

Boxplots are organised by model type: Brownian Motion (BM), Ornsein-Uhlenbeck (OU), 

Lambda, Kappa, Delta, Early Burst, Late Burst and White Noise. 
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Concluding Remarks 
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CONCLUDING REMARKS 

 

Callitris are endemic to Australia, a continent with ancient geology and low elevation that has 

been undergoing increasing aridification since the late Eocene. As seasonal climates were 

established (with both winter and summer rainfall zones), and Australia gradually became a 

more arid, distinct regional climatic niches developed. It is hard to image that a conifer 

lineage from ever-wet habitats 40 million years ago would become the most drought-tolerant 

tree species in the world. 

 

Drought Adaptation and Diversification 

It is hypothesised that aridity accelerates plant evolution (Stebbins 1952; Donoghue and 

Edwards 2014) and promotes higher species diversification (Klak et al. 2004; Crayn et al. 

2006; Arakaki et al. 2011; Cornwell et al. 2014; Evans et al. 2014; Horn et al. 2014). Callitris 

species are the most drought-adapted tree species in the world, but adaptation to drought in 

Callitris did not result in a higher diversification, or an adaptive radiation.  

 

Chloroplasts and gene flow 

Callitris are long-lived, slow-growing trees that take an average of 30 (20–70 years) years to 

reach sexual maturity (Sakaguchi et al. 2013). Trees have lower mutation rates than short-

lived plants due to their longer generation times, large genomes and increased stature (Lanfear 

et al. 2013). Conifer molecular evolutionary rates are slow relative to angiosperms but 

conifers have higher substitution rates, with a higher proportion of sites under positive 

selection (De La Torre et al. 2017), indicating higher fixation of beneficial mutations. In 

wind-pollinated Callitris, the chloroplast is inherited paternally (Sakaguchi et al. 2014). 

Chloroplasts are the sites of photosynthesis, where CO2 is converted into sugars to use in 

growth. But, chloroplasts are sensitive to drought-stress, heat, CO2 concentration and salinity 

(Ashraf and Harris 2013). These factors may damage photosynthetic apparatus and reduce 

growth. Plants that are more drought-adapted should have a selective advantage because their 

growth rates are not as constrained by drought. Thus, wind pollination might result in drought 

adaptation by the fixation of beneficial mutations. But high gene flow also leads to 

incomplete lineage sorting in drought-adapted Callitris (Sakaguchi et al. 2014), which could 

have reduced speciation rates.   

 

Geographical speciation in Callitris 
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In Australian trees population-level genetic differences are strongly associated with range 

disjunctions (Broadhurst et al. 2017). The distributional patterns of Callitris suggest that arid 

barriers have caused population fragmentation and local adaptation. Strong ecological 

associations in traits such as callitroid thickening suggests that traits associated with drought 

are under high selection, and therefore could be drivers of speciation via local extinctions and 

local adaptation. Evidence of genetic clustering according to geographic range in C. 

glaucophylla and C. gracilis demonstrates that Callitris species do have a signature of 

geography in their genomes (Sakaguchi et al. 2015). 

 

The phylogenetic encoding of geography 

It appears that speciation in Callitris has a strong geographic signal. Hydraulic traits have 

strong ecological associations, suggesting that selection has been high as landscapes became 

more arid. Strong selection pressure on drought-tolerance traits, resulted in trait-biased 

extinctions and trait-dependent diversification. This means that the phylogeny of Callitris 

might not be neutral if speciation is the product of trait adaptation to geographically defined 

climatic niches. The simulations in Chapter 3 show that reconstructed phylogenies can 

produce erroneous results when used in phylogenetic comparative methods (PCMs) because 

of unsampled extinct taxa, even when extinction is random. Trait-biased extinctions 

associated with aridification might mean that the phylogeny and hydraulic traits, are 

correlated with geography, and not neutral at all. This could explain why traits like callitroid 

thickening fitted a BM model: because speciation has occurred as a result of selection on 

drought-tolerance traits. If the tree is not independent of geography or drought-tolerance it 

might explain why we could not infer an OU model, even though the frequency of callitroid 

thickening (FCT) is convergent with aridity.  

 

This then is a classic example of how the assumption that the tree is neutral can lead to the 

misinterpretation of PCMs. FCT showed high phylogenetic signal and fitted a BM model. 

One interpretation could have been that FCT was not a trait evolving under strong selection, 

but just a trait evolving under drift, which has nothing to do with selection. Equally, the 

hydraulic traits that fitted a white noise would have been identified as highly labile and 

considered to be under selection because they ‘departed from the null tree’. This also explains 

why FCT is a trait convergent with aridity, but also why single or multiple OU models did not 

fit the evolution of FCT – because the tree itself is an OU tree, not a BM tree.  
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Instead it seems likely selection for drought tolerance was so strong that it resulted in high 

extinction rates, which might have cancelled out increases in speciation rate. Because 

Australia has large, low-elevation topography, climate space in Australia is quite narrow. 

Once adapted to arid climates, Callitris could form extensive populations, with little variation 

in ecology to select against, resulting in low speciation rates. 

 

Collectively, this research show that modelling the evolution of multiple hydraulic traits 

enabled me to identify callitroid thickening as the most important trait implicated in the 

evolution of extreme drought-tolerance in Callitris. It also explains a lack of a hydraulic 

trade-off and trait lability found by other studies. Hydraulic traits are integrated to achieve 

optimal conductance and minimum failure. However, in the case of trade-offs, multivariate 

methods failed because of inverse scaling. Thus investigating correlations between many 

individual hydraulic traits in an evolutionary context, uncovered traits critical to drought 

adaptation. (Un)fortunately, this study also highlights the weaknesses associated with trait 

modelling. The structure of the phylogeny is implicated in misinterpreting the evolution of 

drought-adapted traits in Callitris, but my simulations show that the effect could be far 

reaching. Because the models are heavily reliant on the tree, tree structure can lead to false 

conclusions of trait evolution. Without other forms of testing trait evolution such as 

convergence testing, it is impossible to verify whether the model of trait evolution is real or 

an artifact.  
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Photographic Guide to Native Plants of the Australian Capital Territory 

This field guide is a 360 page, image-rich book covering 327 native plant species. Each 

species is presented by one page (Eucalyptus two pages per species). Each species page 

has at least four photographs featuring the whole plant, flowers, fruit and key 

identification features. Distribution maps, altitude graphs, full-scale size bars of leaf, 

flower and fruit. For each genus, the number of species for the ACT, Australia and 

worldwide are presented.  Scale bar measurements were taken from herbarium 

specimens. Location data for distribution maps was sourced from Australia’s Virtual 

Herbarium and the Atlas of Living Australia. This is the first plant field guide to use 

data from those sources. 

 

The strength of citizen science rests on having accurate field identifications. This guide 

is therefore an important contribution to engage the public in science and give them the 

material to make correct identifications. 

 

A small set of example pages are presented here to highlight the innovative approach 

taken in this field guide. Because I am unable to present the whole book here, two book 

reviews are included. 
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FABACE A E F

Dillwynia phylicoides
SMALL-LEAVED PARROT-PEA

HABIT Shrub

HEIGHT To 1.5 m

FLOWERING October–December

FLOWER COLOUR Standard yellow 
with red markings, keel bright red.①

FRUITING November–January

FRUIT Legume, ovoid, covered in 
long, soft hairs, sheathed by calyx.  
2 seeds per pod.②

BREEDING SYSTEM  
Hermaphroditic

KEY ID Leaves linear, channelled, 
spirally twisted.③

OCCURRENCE Common

HABITAT Grassy woodland, 
woodland

ALTITUDE 550–830 m

SYNONYMS  
Dillwynia retorta var. phylicoides

NOTES Often forms an open understorey 

in woodland.

SUBFA MILY:  Faboideae 

G EN US: Dillwynia

SPECIE S D IS T RIBU TIO N: ACT:5 | AU: 37 | W:37

SPECIE S IN AC T:  

D. phylicoides

D. prostrata

D. sericea

D. sieberi

D. sp. Yetholme (P. C. Jobson 5080)

LE AF LENGTH

3–4 mm long

LE AF W IDTH

0.5–1 mm wide

FLOWER SIZE

5–8 mm long

FRUI T SIZE

4–7 mm long
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