Mile-a-Minute

Problem  |  History  |  Biology  |  Habitat  |  Management  |  New York Distribution Map

mile-a-minute weed
Mile-a-minute weed Leslie J. Mehrhoff, University of Connecticut, Bugwood.org

Problem

Mile-a-minute weed (Persicaria perfoliata) is a vigorous, barbed vine that smothers other herbaceous plants, shrubs and even trees by growing over them. Growing up to six inches per day, mile-a-minute weed forms dense mats that cover other plants and then stresses and weakens them through smothering and physically damaging them. Sunlight is blocked, thus decreasing the covered plant’s ability to photosynthesize; and the weight and pressure of the mile-a-minute weed can cause poor growth of branches and foliage. The smothering can eventually kill overtopped plants.

History

Mile-a-minute weed (Persicaria perfoliata (L.) H. Gross, formerly Polygonum perfoliatum) is a member of the polygonum or buckwheat family. It is native to India and Eastern Asia and was accidentally introduced via contaminated holly seed into York County, Pennsylvania in 1930. Mile-a-minute weed has been found in all the Mid-Atlantic states, southern New England, North Carolina, Ohio, and Oregon (2011). In New York, mile-a-minute weed has been recorded mostly in counties south of the northern Connecticut border. Mile-a-minute weed has a large potential to expand in cooler areas, as the seed requires an eight-week cold period in order to flower. It is estimated that mile-a-minute weed is in only 20% of its potential U.S. range.

Infestations of mile-a-minute weed decrease native vegetation and habitat in natural areas impacting plants and the wildlife that depend on those plants as well. Mile-a-minute weed can also be a major pest in Christmas tree plantations, reforestation areas and young forest stands, and landscape nurseries. Areas that are regularly disturbed, such as powerline and utility right-of-ways where openings are created through regular herbicide use are prime locations for mile-a-minute weed establishment. Small populations of rare plants could be completely destroyed. Thickets of these barbed plants can also be a deterrent to recreation.

Biology

Mile-a-minute weed is an herbaceous annual vine. Its leaves are alternate, light green, 4 to 7 cm long and 5 to 9 cm wide, and shaped like an equilateral triangle. Its green vines are narrow and delicate, becoming woody and reddish with time. The vines and the undersides of leaves are covered with recurved barbs that aid in its ability to climb. Mile-a-minute has ocreae that surround the stems at nodes. This distinctive 1 to 2 cm feature is cup-shaped and leafy. Flower buds, and thus flowers and fruit, grow from these ocreae. When the small, white, inconspicuous flowers are pollinated they form spikes of blue, berry-like fruits, each containing a single glossy, black seed called an achene. Vines can grow up to six inches per day.

Mile-a-minute fruiting spike, ocreae, and barbs.
Mile-a-minute fruiting spike, ocreae, and barbs. Leslie J. Mehrhoff, University of Connecticut, Bugwood.org

Mile-a-minute weed is primarily a self-fertile plant and does not need any pollinators to produce viable seeds. Its ability to flower and produce seeds over a long period of time (June through October) make mile-a-minute weed a prolific seeder. Seeds can be viable in the soil for up to six years and can germinate at staggered intervals. Vines are killed by frost and the seeds overwinter in the soil. Mile-a-minute seeds require an eight-week vernalization period at temperatures below 10 degrees Celsius in order to flower, and therefore be a threat. Germination is generally early April through early July.

Seeds are carried long distances by birds, which are presumed to be the main cause of long distance spread. Deer, chipmunks, squirrels and even one particular species of ant is known to eat mile-a-minute weed fruit. Viable seeds have been found in deer scat; an indication that other animals may also be vectors.

Mile-a-minute weed seeds can float for seven to nine days, which allows for long distance movement in water. This movement can be amplified during storms when vines hanging over waterways drop their fruit into fast moving waters, which then spread the seeds throughout a watershed.

Habitat

Mile-a-minute weed is generally found colonizing natural and man-made disturbed and open areas and along the edges of woods, streams, wetlands, uncultivated fields, and roads. It can also be found in areas with extremely wet environments with poor soil structure, and while it will grow in drier soils, mile-a-minute prefers high moisture soils. It will tolerate some shade for part of the day, but prefers full sun. Using its specially-adapted recurved barbs, mile-a-minute weed can reach sunlight by climbing over plants, helping it outcompete other vegetation.

Mile-a-minute weed infested area.
Mile-a-minute weed infested area. USDA APHIS PPQ Archive, USDA APHIS PPQ, Bugwood.org

Management

Mile-a-minute has a number of management options that can be employed. Different sites will dictate different levels of management depending on conditions and the level of infestation. Once all the plants have been removed, on-going monitoring and management must occur for up to six years in order to exhaust any seeds remaining in the soil.

Biological Control

The mile-a-minute weevil, Rhinocominus latipes Korotyaev, is a 2 mm long, black weevil which is often covered by an exuded orange film produced from the mile-a-minute plants it feeds on. This small weevil is host-specific to mile-a-minute weed and has been successfully released and recovered in multiple locations in the U.S.

Mile-a-minute Weevil, Rhinocominus latipes, adult on mile-a-minute. (note close up of recurved barbs)
Mile-a-minute Weevil, Rhinocominus latipes, adult on mile-a-minute. Note the recurved barbs. Ellen Lake, University of Delaware, Bugwood.org

The adult weevils feed on the leaves of mile-a-minute weed and females lay eggs on the leaves and stems. When the eggs hatch, the larvae bore into the stem to complete their development, feeding on the stems between the nodes. The larvae then emerge and drop to the soil to pupate. There are three to four overlapping generations per year, with about a month needed per generation. Egg laying ceases in late summer or early fall, and the mile-a-minute weevil overwinters as an adult in the soil or leaf litter.

Mile-a-minute weevil feeding damage can stunt plants by causing the loss of apical dominance and can delay seed production. In the presence of competing vegetation, mile-a-minute weed can be killed by the weevil. The mile-a-minute weevil is more effective in the sun than in the shade. Over time, mile-a-minute weevils have been shown to reduce spring seedling counts. Biological control of mile-a-minute weed is currently the most promising and cost effective method.

Feeding damage of adult mile-a-minute weevils.
Feeding damage of adult mile-a-minute weevils. Ellen Lake, University of Delaware, Bugwood.org

For more information on the mile-a-minute weevil, check the University of Delaware Biological Control on Invasive Plants Research website:

https://cdn.canr.udel.edu/wp-content/uploads/sites/6/2016/03/09184336/HG-et-al.-2015.-FHTET-revision.pdf

Cultural Control

Cultural methods can be used to help prevent mile-a-minute weed introduction to a new area. Maintain a stable plant community; avoid creating disturbances, openings or gaps in existing vegetation; and maintain wide, shade-producing, vegetative buffers along streams and wooded areas to prevent establishment.

Manual and Mechanical Control

Hand-pulling of vines can be effective; ideally before the barbs harden, afterwards thicker gloves are needed. Pull and bale vines and roots as early in the season as possible. Let the piles of vines dry out completely before disposing. Later in the season, vines must be pulled with caution as the fruit could be knocked off or spread more easily. Collected plants can be incinerated or burned, left to dry and piled on site, or bagged and landfilled (least preferred). Dry piles left on site should be monitored and managed a few times each year, especially during the spring and early summer germination period to ensure any germinating seedlings are destroyed.

Low growing populations of mile-a-minute weed can have their resources exhausted through repeated mowing or cutting. This will reduce flower production and therefore reduce fruit production.

Chemical Control

Mile-a-minute weed can be controlled with commonly used herbicides in moderate doses. The challenge with herbicides is mile-a-minute’s ability to grow over the top of desirable vegetation, and spraying the foliage of only the mile-a-minute weed can be challenging. Pre-emergent herbicides (herbicides that prevent seed germination) can be used with extensive infestations, often in combination with spot treatments of post-emergent herbicides (herbicides applied to the growing plant) for seedlings that escape control. Small populations are better controlled with post-emergent herbicides. General chemical control guidelines can be found at http://www.docs.dcnr.pa.gov/cs/groups/public/documents/document/dcnr_20033415.pdf. Areas treated with herbicides need to be monitored and retreated as necessary when new seedlings emerge from the seed bank, see above. Please contact your local Cornell Cooperative Extension office http://www.cce.cornell.edu for pesticide use guidelines. For treating wetland areas or infestations near water, contact a certified pesticide applicator. Always apply pesticides according to the label directions; it’s the law.

New York Distribution Map

This map shows confirmed observations (green points) submitted to the NYS Invasive Species Database. Absence of data does not necessarily mean absence of the species at that site, but that it has not been reported there. For more information, please visit iMapInvasives.

Japanese Stiltgrass

Problem  |  History  |  Habitat  |  Biology and Description  |  Management and Control  |  Restoration  |  New York Distribution Map

Rebekah D. Wallace, University of Georgia, Bugwood.org

Problem

Japanese stiltgrass (Microstegium vimineum), also known as Nepalese browntop and Asian stiltgrass, replaces native vegetation in a wide range of ecosystems including forested floodplains, forest edges, stream banks, fields, trails, and ditches. It thrives as a weed in lawns and gardens. Japanese stiltgrass grows well in many light conditions (from deeply shaded hemlock forests to sunny open fields), prefers damp conditions, and often can be found in disturbed areas. It expands into dense stands of grass that prevent desirable vegetation from growing.

Japanese Stiltgrass in a wooded understory.
Japanese stiltgrass in a wooded understory. Chris Evans, River to River CWMA, Bugwood.org
Japanese Stiltgrass along a forest road.
Japanese stiltgrass along a forest road. Chris Evans, River to River CWMA, Bugwood.org

Areas infested with Japanese stiltgrass have decreased biodiversity. In addition to the early-season plants that are typically crowded out by invasive species, late-season grasses, sedges, and herbs are also affected. Infested areas also have an increased occurrence of other invasive plants and decreased native wildlife habitat and can provide good habitat for invasive animals including the cotton rat which can further affect local wildlife.

Japanese stiltgrass is not preferred by grazers such as white-tailed deer, goats and horses, which adds to its ability to outcompete native, preferred vegetation. A 2010 study by Pisula and Meiners indicates that Japanese stiltgrass has allelopathic potential to inhibit seed germination.

History

Japanese stiltgrass is an annual grass that is native to China, India, Japan, Korea, Malaysia, and the Caucasus Mountains. Around 1919, it was found to have been introduced to North America, in Tennessee, most likely through its use as a packing material for porcelain. It is considered invasive in Europe, Africa, Australia, New Zealand, South America, Mexico, and many island nations. Japanese Stiltgrass has extended its range into several Asian countries surrounding its native range, including Turkey, Nepal, and Pakistan.

It could be found in 24 eastern states and territories, from New York to Florida, to Texas, and Puerto Rico (2011). New York State had 16 counties reporting stiltgrass invasions (also in 2011). Japanese stiltgrass is commonly found in association with other invasive plants including garlic mustard (Alliaria petiolata), Lady’s thumb (Persicaria maculosa), Japanese honeysuckle (Lonicera japonica), and Japanese barberry (Berberis thunbergii).

Habitat

Japanese stiltgrass is able to establish and thrive in a wide range of habitats, and is most often associated with acidic to neutral, moist soils that are high in nitrogen. After disturbance, Japanese stiltgrass readily takes advantage of shaded areas, but can proliferate in sunny openings as well. Causes of disturbance include scouring floods and soil disturbing activity such as the use of heavy equipment (especially logging), tilling, mowing, construction activities, and heavy animal impact, including that from white-tailed deer.

Access road and clearing invaded with Japanese Stiltgrass
Access road and clearing invaded with Japanese Stiltgrass John M. Randall, The Nature Conservancy, Bugwood.org

Biology and Description

Japanese stiltgrass resembles a small, delicate bamboo and has a sprawling habit. It grows up to 3.5 feet tall. The leaves are 1-3 inches long, asymmetrical with an off-center mid-rib, and are alternately arranged on the stalk. Each lance-shaped leaf has a noticeable stripe of silvery, reflective hairs down the length of the upper leaf surface. Unlike most native grass leaves which are rough in one direction when rubbed, Japanese stiltgrass leaves are smooth in both directions.

Japanese Stiltgrass leaves. Note silvery mid-rib and asymmetrical leaf shape.
Japanese stiltgrass leaves. Note silvery mid-rib and asymmetrical leaf shape. James H. Miller, USDA Forest Service, Bugwood.org

In late summer and early fall, one or two delicate flower spikes form at the top of each stem. Each spike of flowers (inflorescence) can either require pollination or be self-fertile depending on soil moisture and sunlight availability. Individual plants can produce between 100 and 1000 seeds. Once those seeds mature the plant dies. Seeds can remain in the soil bank for at least 3 years. Japanese stiltgrass seeds readily germinate after a disturbance.

Foliage and Flower Spikes
Foliage and Flower Spikes James H. Miller & Ted Bodner, Southern Weed Science Society, Bugwood.org

Japanese stiltgrass spreads over large areas through transportation of those seeds, primarily through the movement of soil, overland water movement, water movement through ditches and streams, and on the feet of animals and humans. Japanese stiltgrass also stolons; rooting at the node joints along the stem, producing new stems. Stolon (or tillering) spread does die off each year, but increases the number of flower spikes on a plant.

Management and Control

Before enacting management practices, be sure to properly identify the grass. There are a few native look-alikes that can be found in association with Japanese stiltgrass (or on their own). Virginia cutgrass (white grass), Leersia virginica, Pennsylvania knotweed, Polygonum persicaria, and some other fine grasses have similar morphology. The unique line of silvery hairs found on the midrib of Japanese stiltgrass is a quick identifier.

Prevention

To minimize the chances of a Japanese stiltgrass infestation, limit disturbing areas and remediate disturbed soils quickly.

Manual/Mechanical Control

Hand pulling of Japanese stiltgrass can be effective for small populations, which is why early detection and rapid response is so important. It is shallow rooted and generally easy to pull. Pull in late summer, ideally before seed set. Pulled plants without seeds can be left on-site; if seeds have formed the plants should be removed. Pulling in late summer allows Japanese stiltgrass seeds in the seed bank to germinate but does not leave enough growing season for them to establish. Do not pull before July as seeds previously left in the seed bank can grow and go to seed.

Populations of Japanese stiltgrass can also be mowed while the plants are in flower but before seed set, late summer to early fall. Mowing will set the plants back, but mowing too early will result in the plants still being able to flower and go to seed.

Soil tilling of infested areas may also be effective. Proceed with the same restrictions as above. Tilling may not be appropriate for all sites.

Due to the length of time seeds are viable in the seed bank sites must be managed and monitored for multiple years. Hand pulling, mowing, and tilling all create disturbances and should be followed with site remediation practices.

Chemical Control

Systemic herbicides can be an interim control of larger Japanese stiltgrass infestations. In the long term, conditions must be altered to prevent reintroduction of Japanese stiltgrass and other invasive plants. Choosing grass specific herbicides over broad-spectrum herbicides can help prevent mortality of non-target plants.

Post-emergent and pre-emergent herbicides have been proven effective. Post-emergent herbicides are applied when the plant is in full leaf and ideally before seed set. Pre-emergent herbicides can be applied at intervals throughout the growing season to prevent germination of Japanese Stiltgrass seeds in the spring as well as when the soil is disturbed so there is potential for additional germination times. Combinations of post and pre-emergent herbicides are viewed as a good tactic, along with continual monitoring for seed germination.

There are reports of Japanese stiltgrass populations becoming resistant to herbicides over time as natural selection allows the more resistant plants to survive and reproduce.

Alternative Methods of Control

The New York State Office of Parks, Recreation, and Historic Preservation has been battling Japanese stiltgrass for many years in some of its parks and has developed some experimental control techniques. Park biologists have proven that covering stiltgrass with 4-6 inches of mulch (chips, leaf litter) will prevent stiltgrass from emerging (OPRHP Minnewaska State Park Preserve Experiment, 2010, 2011, and Connequot State Park Preserve, 2011). They found that seeding directly into the decomposing layer will reduce future Japanese stitgrass invasions. This treatment is suitable for treating trailside infestations and easily-accessible, small- and mid-sized patches.

Japanese stiltgrass is also not very cold tolerant. Experiments show that using cold temperatures, or dry ice, in late August kills Japanese stiltgrass and may prevent reinvasion for a few years (OPRHP Minnewaska SPP, 2006). Positively, natives are able to recover in the same year as treatment. This experiment has not yet been replicated on a large scale.

Restoration

Seeding with annual rye can be a temporary restoration practice and is a recommended first stage of complete restoration. Annual rye competes with Japanese stiltgrass enough to allow natives in the seed bank to propagate. Once Japanese stiltgrass has been suppressed for a number of years and natives have a chance to outcompete it, a formal native planting should occur. If applicable to the site, Virginia cutgrass (Leersia virginica ) and jewelweed (Impatiens capensis) are competitive native plants to consider during restoration.

Reviewed by:

Alyssa Reid, Invasive Species Field Supervisor, and Robert T. O’ Brien, Invasive Species Control Field Director, NYS OPRHP – Environmental Management Bureau, Minnewaska State Park Preserve.

New York Distribution Map

This map shows confirmed observations (green points) submitted to the NYS Invasive Species Database. Absence of data does not necessarily mean absence of the species at that site, but that it has not been reported there. For more information, please visit iMapInvasives.

Multiflora Rose

Introduction  |  Description  |  Impact  |  Biology  |  Habitat  |  Management Options  |  New York Distribution Map

Introduction

Multiflora rose, Rosa multiflora, also known as rambler rose and baby rose, is native to eastern China, Japan, and Korea. It was introduced to the U.S. from Japan in 1866 as rootstock for grafted ornamental rose cultivars. The spread of multiflora rose increased in the 1930s, when it was introduced by the U.S. Soil Conservation Service for use in erosion control and as living fences, or natural hedges, to confine livestock. It was also discovered to provide effective habitat and cover protection for pheasant, northern bobwhite, and cottontail rabbit and food for animals such as songbirds and deer. These uses encouraged its distribution, usually via root cuttings, to landowners through State Conservation departments. Mulitflora rose has recently been planted in highway median strips to provide crash barriers and reduce headlight glare from oncoming traffic.  Its extensive, pervasive growth was soon discovered as a problem on pasture lands and fallow fields. Currently, mulitflora rose is found in 41 states and is classified as either a noxious weed, prohibited invasive species or banned, in 13 states, including Connecticut, Massachusetts, New Hampshire, New Jersey, and Pennsylvania.  It is also ranked among the top forest invasive plant species for the northeastern area by the US Forest Service.

Description

Multiflora rose, in the rose family (Rosaceae), is a vigorous perennial shrub. Canes (stems) root at the tips and may reach heights of up to 10 feet. The red-to-green twigs may have numerous recurved thorns; other thornless specimens occur infrequently in the eastern United States. Its pinnately compound leaves grow alternately with 5, 7, 9, or 11 oval, saw-toothed leaflets. The leaflets are nearly smooth on the upper surface and paler with short hairs on the underside. The base of each leaf stalk bears a pair of fringed bracts or stipules. The fringed stipules are the best characteristic to use to distinguish multiflora rose from other species. Multifora rose shrubs can grow to a height of 10-15 feet and to a width of 9-13 feet.

Plant
Plant James H. Miller, USDA Forest Service, Bugwood.org
Stem
Stem James H. Miller, USDA Forest Service, Bugwood.org

Clusters of showy, fragrant, white to white-pink, half-inch to one-inch diameter flowers, bloom in panicles, inflorescences with side stems, in late May or June. The flowers produce copious quantities of sweet pollen. Six to 100 hips develop in the inflorescence in summer and turn red by middle September, containing one to 21 seeds. The hypanthium, the large, fleshy cup-like structure on the underside of the flower, softens after early frosts, becoming tough, remaining on the plant in winter. Seed color is variable yellow to tan. The seeds themselves measure about 0.16 inches and are contained in sharp, thin-pointed structures called spicules. Seed germination is high; seeds can also remain viable in the soil for as long as 20 years. Roots are wide-ranging and capable of resprouting. In addition, stem tips that contact the soil surface are capable of rooting, through a process known as layering, to form new plants. Extensive thickets are formed this way.

Flower
Flower James H. Miller, USDA Forest Service, Bugwood.org

Impact

Multiflora rose is extremely prolific and can form dense thickets, excluding native plant species. This non-native invasive rose invades open woodlands, forest edges, early succession pastures and fields. It also invades fence rows, right-of-ways, roadsides, and margins of swamps and marshes.

James H. Miller, USDA Forest Service, Bugwood.org

Biology

Each cane on a large plant may contain 40 to 50 panicles. Each panicle can contain as many as 100 hypanthia or hips (average of about 50) and each hip, an average of seven seeds (range of one to 22). Thus each large cane can potentially produce up to 17,500 seeds. Seeds remain viable for a number of years. It has been found that as many as 90% of the seeds are viable, in the absence of drought and stress. Multiflora rose is moderately winter-hardy, and is tolerant to many North American insects and diseases.

Habitat

Multiflora rose thrives in full and partial sun with well-drained soils. It cannot tolerate winter temperatures below -28 F. While it grows most vigorously in full sun, it can also grow in the shade, and will persist for many years under a tree canopy although it may not flower or fruit very heavily.

Management Options

Note: Mechanical and chemical methods are currently the most widely used methods for managing infestations of multiflora rose.

Mechanical: Seedlings can be pulled by hand. Small plants can be dug out or larger ones can be pulled using a chain or cable and a tractor, but care needs to be taken to remove all roots. Frequent, repeated cutting or mowing at the rate of three to six times per growing season, for two to four years, has been shown to be effective in achieving high mortality of mulitflora rose. In valuable, natural communities, cutting of individual plants is preferred to site mowing to minimize habitat disturbance. Some success has resulted from the use of goats in controlling multiflora rose.

Plant pulls are hard work. Just ask these Weir Farm National Historic Site volunteers in Connecticut who are tangling with barberry and multiflora rose.
Photo: Todd Meier  From Fine Gardening 65, pp. 34-37

Chemical: Herbicides have been used successfully in controlling mulitflora rose, but because of long-lived stores of seed in the soil, follow-up treatments are likely to be necessary. Applications of systemic herbicides, such as glyphosate or triclopyr, to freshly cut stomp or to re growth, may be the most effective method, especially if conducted late in the growing season. The same chemicals can be employed as a foliar spray. It is important to note that multiflora rose has the typical regenerative power of members of the rose family, and control programs must be monitored and followed up if necessary by repeated herbicide application or used in conjunction with other control methods such as mowing or burning. Plant growth regulators have been used to control the spread of mulitflora rose by preventing fruit set.

Biological: Rose rosette disease is a sometimes fatal viral disease that attacks multifora rose and other roses. The virus is spread naturally by a tiny mite. Plants affected by rose rosette disease develop witches’ brooms and small reddish leaves and shoots. The disease can kill plants in two years. This disease is not considered a useful biological control at this time because it may infect native roses and plums, as well as commercially important plants in the rose family such as apples, some types of berries, and ornamental roses.

Another biological control method involves the use of European rose chalcid (Megastigmus aculeatus), a wasp. During May and June the female deposits her eggs in the seed and the larvae overwinter. Pupa formation occurs in April to June and the adult wasps appear from the rose hip in early summer, thus completing the cycle. More research needs to be completed before considering this method of control.

New York Distribution Map

This map shows confirmed observations (green points) submitted to the NYS Invasive Species Database. Absence of data does not necessarily mean absence of the species at that site, but that it has not been reported there. For more information, please visit iMapInvasives.

Asian Shore Crab

Identification  |  Impacts  | New York Distribution Map

Photo: USGS, nas.er.usgs.gov

The Asian shore crab, Hemigrapsus sanguineus, a native of the western Pacific Ocean from Russia to Hong Kong and the Japanese archipelago, is also known as Japanese shore crab and Pacific crab. Its known New York range includes the Hudson River and its lower tributaries and Oyster Bay National Wildlife Refuge on the north shore of Long Island. The crab’s means of introduction to the U.S. Atlantic coast is unknown, but it is theorized that adults or larvae were introduced via ballast water discharge from international shipping.

Identification

This shore crab has a square-shaped shell with 3 spines on each side of the carapace. Males have a fleshy, bulb-like structure at the base of the moveable claw finger. Carapace colors can be green, red, orangish brown or purple. Claws have red spots; legs are light and dark banded. Adult carapace width ranges from 1.4 inches to 1.7 inches. This species is highly reproductive, breeding from May to September, with females capable of producing three to four clutches per season, each containing up to 50,000 eggs. Free-floating larvae can be transported over long distances during the month that it takes them to develop into juveniles and settle out of the water column.

Photo: USGS, nas.er.usgs.gov

Impacts

Owing to this crab being an opportunistic omnivore (it feeds on macroalgae, salt marsh grass, larval and juvenile fish, and small invertebrates), it could potentially negatively impact populations of such native species as fish, shellfish and other crabs by predation and by general food web effects. It could also out-compete native mud crabs, blue crabs and lobsters.

New York Distribution Map

This map shows confirmed observations (green points) submitted to the NYS Invasive Species Database. Absence of data does not necessarily mean absence of the species at that site, but that it has not been reported there. For more information, please visit iMapInvasives.

Swede Midge

Introduction

The Swede midge (Contarinia nasturtii), an invasive agricultural pest (also known as the cabbage crowngall fly and cabbage gall midge) was first detected in New York in 2004 in Niagara County. Although the insect is a native of Europe and southwestern Asia, it is believed the midge was introduced into NY from the Canadian province of Ontario where it was first found on broccoli in 1996. By the end of 2007, the Swede midge had been confirmed in 12 NY counties (Allegany, Chenango, Franklin, Herkimer, Jefferson, Livingston, Onondaga, Otsego, Rensselaer, Steuben, Suffolk, and Yates).

Biology

This species is a small (1.5 – 2 mm), light brown fly that is indistinguishable from many other midges except by an expert entomologist. Adult midges emerge in the spring from pupae that have over-wintered in the soil. Adult flies mate soon after and females search for suitable host plants. Each female can lay about 100 eggs during their one to five day lifespan. The females lay their eggs on the growing point of young plants. Larvae hatch from the eggs after a few days and begin to feed in groups on the growing plant tissue. Larvae complete their development in 7 – 21 days after which they drop to the ground and pupate in the soil. Adults can emerge within two weeks, restarting the cycle. Depending on temperature and length of growing season, there can be up to five overlapping generations of Swede midge per year.

 

Damage

As they feed, Swede midge larvae produce a secretion that breaks down the surface of the growing point of the plant and liquefies the cell contents, resulting the formation of leaf and flower galls and a misshapen growing point. Damage caused by Swede midge larvae feeding results in distorted growing tips and may produce multiple (or no) growing tips; young leaves may become swollen or crumpled and leaf petioles or stems may exhibit brown scarring. Swede midges feed only on cruciferous vegetable crops, such as cabbage, cauliflower, broccoli, and Brussels sprouts, frequently causing severe losses. The insect also damages canola, collard, horseradish, kale, mustard, rutabaga, turnip, and radish.

Swede midge damage

Management

Insecticides can be used to kill adults or prevent them from laying viable eggs. However, controlling larvae is much more difficult because insecticide would have to enter the plant tissue upon which the larvae are feeding. Currently, the best way to manage Swede midge damage is to limit the spread of the insect into new areas. Adults are very weak fliers, so the primary vector of introduction is believed to be the movement of transplants which may contain eggs or larvae, or movement of soil which may contain pupae. Repeated working of infested soil can reduce the number of viable pupae. Also, because adult Swede midges cannot travel far, crop rotation using noncruciferous plants can help to reduce the likelihood of spreading an infestation.

Round Goby

Background | New York Distribution Map

Photo: Dave Jude, University of Michigan

Background

The round goby (Neogobius melanostomus), a native of freshwater and marine waters of Eurasia (particularly the Black and Caspian Seas and the Sea of Azov), was first observed in the Great Lakes Basin in 1990 when recreational anglers caught a specimen in the St. Clair River. It is believed that the species was introduced via international shipping ballast water discharge. Since that time, the fish has spread to all of the Great Lakes (Lake Erie, 1993; Lake St. Clair, 1994; Lake Michigan, 1994; Lake Superior, 1995; Lake Ontario, 1996; Lake Huron, 1998), where it is undergoing a dramatic population explosion (densities of several dozen per square meter of lakebed have been reported). Spread upstream to Lake Superior is believed to have been a result of interlake ballast water transport; downstream spread is most likely attributable to both ballast discharge and natural migration. Round gobies may prey on small fish such as darters, as well as lake trout, sculpin, and darter eggs and fry.

Adult gobies take over prime nearshore spawning sites and aggressively prevent use by native species. Long-term impacts are expected to include declines in native species populations. N. melanostomus has a well-developed lateral line which may give it a competitive advantage over native species feeding in turbid waters. Round gobies are also prolific breeders, spawning every 20 days during the spawning season.

Round gobies are problematic to anglers in that gobies are proficient bait thieves.

N. melanostomus has the beneficial impact of consuming large numbers of zebra mussels; however, given the contamination found in some populations of zebra mussels, this may result in bioaccumulation of toxics in gobies and biomagnification up the food chain to shorebirds and other species which consume the fish.

A link has been suggested between round gobies and the recent outbreaks of Type E avian botulism on Lakes Erie and Ontario.

New York Distribution Map

This map shows confirmed observations (green points) submitted to the NYS Invasive Species Database. Absence of data does not necessarily mean absence of the species at that site, but that it has not been reported there. For more information, please visit iMapInvasives.

Hemlock Woolly Adelgid


Origin & Spread  |  Biology  |  Impacts  |  Detection  |  Management | New York Distribution Map

Introduction

The hemlock woolly adelgid (HWA, Adelges tsugae) is an aphid-like, invasive insect that poses a serious threat to forest and ornamental hemlock trees (Tsuga spp.) in eastern North America. HWA are most easily recognized by the white “woolly” masses of wax, about half the size of a cotton swab, produced by females in late winter. These fuzzy white masses are readily visible at the base of hemlock needles attached to twigs and persist throughout the year, even long after the adults are dead.

Here’s a handy Hemlock Woolly Adelgid ID video from UMass Amherst:

 

Origin and Spread

Hemlock woolly adelgid is native to Japan and possibly China where it is considered a common inhabitant of both forest and ornamental hemlock and spruce trees. It rarely achieves pest outbreak densities or inflicts significant damage to host trees in its native Asian habitat because natural enemies and host plant resistance help keep HWA populations in check.

Hemlock woolly adelgid was first detected on the east coast of North America in Richmond, Virginia, in the mid-1950s (Souto et al. 1995). Since its likely accidental introduction from southern Japan (Havill et al. 2006), HWA has spread to 18 eastern states from Georgia to Maine, devastating populations of native eastern (Tsuga canadensis) and Carolina (T. caroliniana) hemlock. HWA now covers nearly half the range of native hemlocks and appears to be spreading about 10 miles a year. It has reached its southern limit, but continues to expand its range to the west and north.

HWA was first detected in New York State in the early 1980s (Souto et al. 1995). Outbreaks have expanded from initial infestations on Long Island and in the Hudson Valley to the Rochester area, the Catskill Mountains, and recently into the Finger Lakes region.

HWA was first detected on the west coast of North America in British Columbia in the 1920s, and now also has a range from northern California to southeastern Alaska. There, it occurs on both mountain hemlock (Tsuga mertensiana) and western hemlock (T. heterophylla) trees. However, HWA does not cause extensive mortality or damage on West Coast hemlocks. Recent comparative genetic analyses suggest that populations in the Pacific Northwest may actually be endemic to that region or originated from very early introductions.

Biology

The hemlock woolly adelgid has a complex life cycle, involving two different tree host species as well as asexual and sexual life stages. On eastern hemlock, HWA produces two generations a year, an overwintering generation (sistens) and a spring generation (progrediens); these two generations overlap in the spring. The progrediens has two forms, a wingless form that remains on the hemlock and a winged form (sexuparae) that flies in search of a suitable host spruce tree upon which to start a sexual reproductive cycle (McClure 1995). In New York, there are no suitable spruce, thus the winged HWA are not successful. Each generation has six stages of development: egg, four juvenile (nymph) stages, and the adult.

Hemlock woolly adelgid annual life cycle on hemlock in North America. (From Cheah et al. 2004)

Overwintering adult females are black, oval, and soft-bodied (approximately 2mm long). They are usually concealed under the white woolly masses of wax (ovisacs) they secrete from special glands on their back-side. From March through May, these females lay 50 to 300 eggs in the woolly masses. The eggs are brownish-orange and very small (0.25mm long by 0.15mm wide). Depending on spring temperatures, eggs hatch from April – June.                                         

 Adult female HWA with woolly ovisacs and eggs
HWA with woolly ovisacs and eggs
Adult female HWA, wax removed
Adult female HWA, wax removed
Hemlock woolly adelgid nymph in the crawler stage
Hemlock woolly adelgid nymph in the crawler stage


Newly hatched nymphs – also known as crawlers – are reddish-brown with a small white fringe near the front (less than 0.5mm long). Crawlers search for suitable sites to settle, usually at the base of the hemlock needles, where they begin to feed and will remain attached to the tree with their specialized sucking mouthparts for the rest of their lives. Crawlers, an important dispersal phase of HWA on hemlocks, can be spread by wind, on the feet of birds, or in the fur of small mammals (McClure 1990). Once settled, these HWA crawlers quickly develop through the four nymph life stages, and mature in June.

Some of the adults of the spring generation (progrediens) are wingless and remain on the hemlock tree, feeding and producing eggs protected by woolly masses just like the overwintering generation, but during June-July. Their offspring hatch into crawlers, quickly settle onto hemlock branches, begin to feed and then enter a dormant period for several months until late October when feeding and development resumes. These nymphs become the next overwintering generation (sistens). The other portion of spring adults has wings and leaves the hemlock trees in June in search of spruce trees to complete the sexual phase of HWA reproduction. However, in North America, no spruce species (Picea spp.) are suitable hosts and any offspring produced die within a few days of feeding. Thus, the winged adult form can be a significant source for HWA population reduction. This is particularly important considering the number of winged adults produced in the spring generation increases with the density of overwintering adelgids, likely a result of changes in nutritional quality in the hemlock host tree.

Impacts

The hemlock woolly adelgid feeds deep within plant tissues by inserting its long sucking mouthparts (stylets) into the underside of the base of hemlock tree needles. It taps directly into the tree’s food storage cells, not the sap. The tree responds by walling off the wound created by the insertion of the stylets. This disrupts the flow of nutrients to the needles and eventually leads to the death of the needles and twigs. Needles will dry out and lose color, turning gray and eventually dropping from the tree. Terminal buds will also die resulting in little to no new shoot growth. Dieback of major limbs can occur within two years and generally progresses from the bottom of the tree upward (McClure et al 2001).

The hemlock woolly adelgid has an impressive reproductive potential: consider that one female in the winter generation produces an average of 200 eggs which in turn mature and each female of this adult spring generation produces on average another 200 eggs each. That’s 40,000 eggs in one year, starting from one individual female! Thus, HWA populations can grow rapidly in a relatively short period of time. Heavy HWA infestations, particularly in the southern Appalachian Mountains, can kill hemlock trees in as little as four years, with older trees dying more quickly. However, for reasons still under investigation, some infested trees in parts of New England survive for 10 years or more.

HWA damage to needles and branches after 2-3 years of infestation
HWA damage to needles and branches after 2-3 years of infestation
Decline and mortality in infested hemlock in North Carolina

 

HWA infestation resulting in thinning of hemlock crown
HWA infestation resulting in thinning of hemlock crown

Eastern hemlocks play a unique ecological role in eastern forests. Long-lived and shade tolerant, hemlocks may grow in single-species stands or in combination with deciduous hardwood species. They are frequently found growing on exposed slopes as well as protected gorges and stream bottoms. Eastern hemlocks create a cool, damp and shaded microclimate that supports unique terrestrial plant communities, maintains cool stream water temperatures for fish and stream salamanders, and provides important winter habitat structure and food resources for wildlife. Research, particularly in the hard-hit southern hemlock forests, has indicated that declines in hemlock from HWA can result in losses of unique plant and animal assemblages and drastic changes to ecosystem processes (Ellison et al. 2005).

Climate change, particularly warmer summer temperatures, will affect the suitability of habitat for eastern hemlock in the Northeast. Perhaps more troublesome are projected increases in overwintering temperatures that may promote the range expansion of HWA into more northern hemlock forests, areas previously considered unsuitable for HWA survival (Paradis et al. 2008).

Light infestation of hemlock woolly adelgid
Light infestation of hemlock woolly adelgid
Heavy infestation of hemlock woolly adelgid
Heavy infestation of hemlock woolly adelgid

Detection

Detecting new HWA infestations at the leading edge of its range is critically important for slowing the spread of HWA. Unfortunately, HWA is difficult to detect at low population levels. The first signs of HWA are the presence of the white, woolly ovisacs on the underside of twigs, most often on the newest growth. This white, waxy wool is most easy to observe with the naked eye or through binoculars January through June. Other signs of infestation include graying and dropped needles and limb dieback.

Winter is the optimal time to detect HWA, as the ovisacs are most apparent and the leaves from adjacent deciduous trees that could interfere with observations are absent. An inexperienced observer may confuse several look-alikes with HWA. Spider sacs may look superficially similar but are constructed of much stronger fibers and are usually not closely pressed to hemlock twigs. Spittlebugs, never found in the winter, produce watery, white foam, not wooly and waxy fibers. Scale insects are common, but are found directly on the hemlock needles, not the twigs. Pine pitch and bird droppings may also confuse an untrained observer.

Hemlock woolly adelgid look-alikes that may confuse untrained observers
Hemlock woolly adelgid look-alikes that may confuse untrained observers

 

For more information about examining hemlock trees and surveying hemlock stands, please see Whitmore (2009) “Early Detection of the Hemlock Woolly Adelgid (Adelges tsugae) in Small Northeastern Hemlock (Tsuga canadensis) Woodlots

Management

Sasajiscymnus tsugae adult feeding on HWA eggs
Sasajiscymnus tsugae adult feeding on HWA eggs

Currently, the two approaches for managing HWA infestations are chemical insecticides and the use of natural enemy predator species as biological control.

Infested hemlock trees can be protected individually with chemical, systemic insecticides. These insecticides, typically applied as a soil drench or an injection into the soil below the organic layer or as a basal bark spray, are incorporated by sap flow into the tree’s tissues and can provide multiple years of protection from a single treatment. However, the costs associated with application, environmental safety concerns about applying insecticides near water resources, and the tremendous reproductive potential of HWA makes this approach less feasible on a broad scale in natural areas. For insecticide guidlines for New York State see Cornell University’s Crop and Pest Management Guidelines http://ipmguidelines.org/. And, consult a certified pesticide applicator.

Laricobius nigrinus adults feeding on HWA
Laricobius nigrinus adults feeding on HWA

To manage HWA at the landscape scale, researchers have been investigating the use of biological control agents. Over the last 10 years, scientists have evaluated the effectiveness of several HWA predators from Japan and the Pacific Northwest including the beetles, Sasajiscymnus tsugae, Scymnus spp., and Laricobius nigrinus as well as fungal pathogens. Some promising evidence has emerged, but further study is needed to test the effectiveness of biological control at larger geographical scales and over the long-term (Cheah et al. 2004).


           

Scymnus sinuanodulus adults, a biological control agent under consideration
Scymnus sinuanodulus adults, a biological control agent under consideration

Homeowners would be wise to take an integrated management approach for HWA-infested hemlock trees on their property. In lieu of systemic insecticides, spraying hemlock foliage with properly labeled horticultural oils and insecticidal soaps may be effective when trees are small enough to be saturated in order to ensure that the insecticide comes in contact with the adelgid. Owners can reduce hemlock tree stress by watering during drought periods and pruning dead and dying limbs and branches. Avoid the use of nitrogen fertilizers on infested hemlocks as it will actually enhance HWA survival and reproduction. Take care moving plants, logs, and mulch from infested to uninfested areas, particularly when HWA eggs and crawlers are present (March – June). Actions such as moving bird feeders away from hemlocks and removing isolated infested trees from a woodlot may also help prevent further infestations.

For more information about hemlock woolly adelgid, visit:

https://henderson.ces.ncsu.edu/hemlockwoollyadelgididentificationandcontrol/
https://blogs.cornell.edu/nyshemlockinitiative/

Woodlot owners should consult Orwig & Kittredge (2005) for available silvicultural options.

Remember, when using a pesticide, first consult your local CCE office or State pesticide guide to identify insecticides that are registered for use in your state and the proper timing for chemical application.

New York Distribution Map

This map shows confirmed observations (green points) submitted to the NYS Invasive Species Database. Absence of data does not necessarily mean absence of the species at that site, but that it has not been reported there. For more information, please visit iMapInvasives.

 

Garlic Mustard

Biology     Identification     Impacts     Prevention & Control New York Distribution Map

Background

Garlic mustard (Alliaria petiolata) is an invasive herb that has spread throughout much of the United States over the past 150 years, becoming one of the worst invaders of forests in the American Northeast and Midwest. While it is usually found in the undergrowth of disturbed woodlots and forest edges, recent findings have shown that garlic mustard has the ability to establish and spread even in pristine areas. This spread has allowed it to become the dominant plant in the undergrowth of some forests, greatly reducing the diversity of all species. Garlic mustard is one of very few non-native plants to be able to successfully invade forest understories.

Origin and Expansion

Garlic mustard is a non-native species originating from Europe and parts of Asia. It is believed that garlic mustard was introduced into North America for medicinal purposes and food. The earliest known report of it growing in the United States dates back to 1868 on Long Island, NY. It has since spread throughout the eastern United States and Canada as far west as Washington, Utah, and British Columbia.

First year garlic mustard basal flower rosette – Jil M. Swearingen, USDI National Park Service, Bugwood.org
Second year flowers – David Cappaert, Michigan State University, Bugwood.org

Biology

Garlic mustard has a biennial life cycle, that is, it takes two years to fully mature and produce seeds. Seeds germinate in February to early March of the first year and grow into a short rosette by the middle of the summer. In the plant’s second year, a stalk develops, flowers form, and the plant dies by June. Siliques, four-sided seedpods, develop in May, containing small black seeds lined up in a row. On average, a garlic mustard plant will produce 22 siliques, each of which can contain as many as 28 seeds. A particularly vigorous plant may produce as many as 7,900 seeds (Nuzzo, 1993) although the average is more likely to be in the 600 seed range. The seeds generally germinate within one to two years, but may remain viable for up to five years in the seed bank. Seed dispersal is mainly by humans or wildlife carrying the seeds.

 

Characteristics and Identification

Identification of first year plants can be difficult; the task is made easier by smelling the garlic odor produced when the leaves of the plant are crushed. The basal leaves of an immature plant are dark-green and kidney shaped with round teeth (scalloped) along the edges; average size of the leaves is 6 to 10 cm in diameter. The petiole, or leaf stalk, of first year plants are 1 to 5 cm long. In its second year, the alternating stem leaves become more triangular shaped, 1 to 5 cm long, and have sharper teeth, with leaves becoming gradually smaller towards the top of the stalk. Leaf stalks of mature plants are hairy. As with the younger plants, second year plants have a garlic odor when crushed but the odor is less obvious with increasing age.

Garlic mustard flowers arrive in early April and die by June. Flowers develop on an unbranched (occasionally weakly branched) stalk and have 4 small white petals arranged symmetrically. Flowers are approximately 6 to 7 mm in diameter with 3 to 6 mm petals. Individual flowers contains six stamens, two shorter and four longer. Mature flowering plants reach 3.5 feet tall, although shorter flowering specimens may be found.

 

Impacts

Garlic mustard has the potential to form dense stands that choke out native plants in the understory by controlling light, water, and nutrient resources. Plants most affected by these dense stands are herbaceous species that occur in similar moist soil forest habitats and grow during the spring and early summer season. Although unsupported by the lack of long-term research into garlic mustard impacts, the plant has been circumstantially tied to decreased native herbaceous species richness in invaded forests. Researchers have found that garlic mustard is allelopathic (it releases chemicals that hinder the growth of other plant species) and has inhibited growth of both grasses and herbs in laboratory settings (Michigan State University, 2008). Some researchers also believe that these compounds may hinder the beneficial relationships some plant species have with soil fungi (Roberts and Anderson, 2001). Experimental trials have shown that removal of garlic mustard leads to increased diversity of other species, including annuals and tree seedlings (MSU, 2008).

Garlic mustard is one of the few invasive plants able to dominate the understory of forests in the Northeast and Midwest – Victoria Nuzzo, Natural Area Consultants, Bugwood.org

Other aspects of the forest ecosystem may be altered due to the change in the vegetative community tied to garlic mustard invasion. While the impacts to wildlife are not completely understood, altering the plant diversity can cause a change in leaf litter availability, potentially impacting salamanders and mollusks (MSU, 2008). Insects, including some butterflies, may be affected through the lost diversity in plants and loss of suitable egg-laying substrate (MSU, 2008). Garlic mustard may also affect the tree composition by creating a selective barrier that some seedlings, such as the chestnut oak (Quercus prinus), may not be able to overcome (MSU, 2008). These changes in tree composition could have significant long-term effects.

Prevention, Control and Management    

There are few effective natural enemies of garlic mustard in North America. Herbivores, or animals that eat plant material, such as deer (Odocoileus virginianus) and woodchucks (Marmota monax) only remove up to 2% of the leaf area in a stand of garlic mustard (Evans et al. 2005). This level of herbivory is ineffective in controlling reproduction or survival of garlic mustard. Although 69 herbivorous insects have been found to be associated with garlic mustard in Europe, less than a dozen have been found on North American infestations of the species (Hinz and Gerber, 1998).

Manual removal of plant has been shown to prevent the spread of garlic mustard. Pulling by hand must remove at least the upper half of the root to prevent a new stalk from forming; this is most easily accomplished in the spring when the soil is soft. Hand-pulling should be performed before seeds are formed and needs to be continued for up to five years in order to deplete any established seed bank. This method works best in smaller pockets of invasion or in areas recently invaded to help prevent the development of a seed bank.

Chemical applications can also be effective for controlling garlic mustard, particularly in areas too large for removal by hand. In dense stands where other plant species are not present, a glyphosate-based herbicide such as Roundup® can be an effective method for removal. Glyphosate herbicides are non-selective, so caution must be used when non-target species are in the area. Chemical applications are most affective during the spring (March-April) when garlic mustard is one of the few plants actively growing. Fall applications may be used; however other plant species still in their growing season may be harmed. Readers are advised to check with local regulatory agencies to determine the regulations involved with chemical treatments.

The best method for controlling garlic mustard, or any other invasive plant, is to prevent its establishment. Disturbances in the forest understory that would allow for rapid invasion should be minimized. This would include limiting foot traffic, grazing, and erosion-causing activities. Monitoring the forest understory and removing any garlic mustard plants as soon as they are introduced will help to prevent the establishment and spread of this invader.

New York Distribution Map

This map shows confirmed observations (green points) submitted to the NYS Invasive Species Database. Absence of data does not necessarily mean absence of the species at that site, but that it has not been reported there. For more information, please visit iMapInvasives.

Asian Longhorned Beetle

Biology        Hosts        Impacts

Introduction

The Asian longhorned beetle (Anoplophora glabripennis) is a wood-boring beetle believed to have been introduced into the U.S. on wood pallets and wood packing material in cargo shipments from Asia (the beetle’s native range includes China and Korea). Asian longhorned beetle (ALB) larvae bore through wood of a wide variety of hardwood species, most notibly maples, elm, horsechestnut, willow, sycamore and birch. ALB boring phsycially weakens the trees and disrupts sap flow. Branches with boring damage are more likely to break off, creating a public saftey hazard. Trees will eventually be killed by ALB boring damage.

Asian long-horned beetle adult – Kenneth R. Law, USDA APHIS PPQ, Bugwood.org

ALB was first discovered in the US in 1996 on several hardwood trees in Brooklyn, NY. Additional infestations were found in Long Island, Manhattan and Queens. In 1998, the beetle was discovered in Chicago, IL. Asian Longhorned beetles were later found in Jersey City, NJ, in 2002 and in Middlesex and Union counties, NJ, in 2004. In 2007 the insect’s NYC range was found to extend to Staten Island and Prall’s Island in the Hudson River. To our north, the beetle was discovered in Toronto, Canada, in 2003. In 2008, a large number of Asian longhorned beetles were discovered in and around Worcester, MA in urban and rural forests. In 2011, ALB was found in Tate Township Ohio.

Asian long-horned beetle historic and current NY infestations (USDA APHIS 2014)
2014 ALB Brooklyn, Manhattan, and Queens historic and current infestations (USDA APHIS 2014)
2014 ALB Central Long Island quaranteen area (USDA APHIS 2014)

To view maps of all current quarantine and infestation zones visit the USDA APHIS ALB Page.

 

Asian long-horned beetle adults with dime and exit holes – Kenneth R. Law, USDA APHIS PPQ, Bugwood.org

Biology

Asian longhorned beetle adults can reach 1½ inch in length with very long antennae (reaching up to twice the length of the insect’s body). The beetle is shiny black with small, irregular white markings on its body and antennae. Adult Asian longhorned beetles are active during the summer and early-autumn months. After mating, females deposit their eggs in depressions chewed into the bark of hardwood trees (females can lay 35 to 90 eggs in a season). After hatching (typically 10-15 days), beetle larvae feed by tunneling under the tree bark into the cambium (fresh sapwood) for several weeks. The larvae then tunnel into the xylem (heartwood) were they feed through the winter, forming galleries in the trunk and branches of infested trees. Adult beetles chew their way out through round holes approximately 3/8 inch in diameter, emerging from June through October (presence of the adult emergence can often be detected from sawdust around and beneath these holes, and by sap oozing from the holes).

 

Hosts

Asian longhorned beetles prefer such hardwood trees as: red maple (Acer rubrum), sugar maple (Acer saccharum), boxelder (Acer negundo), Norway maple (Acer plantanoindes), sycamore maple (Acer pseudoplatanus),  silver maple (Acer saccharinum),  horsechestnut (Aesculus hippocastanum), willows (Salix spp.), and American elm (Ulmus Americana). They will also attack birches (Betula spp.) and sycamores (Platanus spp.).

 

Impacts

Asian longhorned beetle gallery development and exit holes weaken the integrity of infested trees and can eventually result in death of severely infested trees. It is theorized that if the beetle spreads beyond its current North American range, millions of acres of hardwoods could be killed, potentially causing more damage than the combined impact of Dutch elm disease, chestnut blight, and gypsy moths. National and State forests, parks,and private backyards could be impacted, as could such forest dependent industries as lumber, maple syrup, house and furniture manufacturing, and commercial horticulture nursery stock.

 

Asian long-horned beetle larva and damage – Steven Katovich, USDA Forest Service, Bugwood.org

Common Buckthorn

Biology & Identification | Impacts | Prevention & Control | New York Distribution Map

 

Background

Common buckthorn (Rhamnus cathartica) is a small deciduous tree or large shrub that can grow to six meters in height. It has dull green oval or egg shaped leaves and is easily identified by the small thorns at the tip of its branches. It is also known as European buckthorn, European waythorn, and Hart’s thorn. Common buckthorn is considered an invasive species throughout most of the northeastern and central United States and southeastern Canada because of the dense thickets it forms.

Origin

Common buckthorn is native to most of Europe (except Iceland and Turkey) and western Asia. It was brought to North America some time in the 1800s for use as an ornamental shrub and wind break but did not have wide spread distribution until the early 1900s. It is found in hedgerows, along roadsides and on ravine slopes.

Common buckthorn summer foliage
Berries ripen in August or September

Biology and Identification

Common buckthorn is a perennial shrub or small tree. It is found in lightly shaded areas and is tolerant of many soil types from well-drained sand to clay. Branches are tipped with a short thorn; a thorn may also be found in the fork between two branches. The leaves may be opposite or in an alternating pattern (both may be found on the same branch). The leaves are oval or egg shaped with small, serrated teeth. The leaf may be a dull green or a dark green with a lighter green on the under side. Flowers are small with four sepals (a modified leaf that encloses the petals and other parts of the flower) and four petals and they form small clusters from the axils (the space between a leaf or branch and the stem/stalk of the plant) of leaves or on short twigs along the stem. The flowers are a yellowish to green color. Each flower is unisexual with either four stamens or one pistil with a plant being either male or female (dioecious). The fruit or berries are small (5-6 mm in diameter) and are a dark purplish or black color. Each berry will contain four hard seeds. The common buckthorn flowers during late spring (May-June) while leaves are emerging. The berries ripen during August and September and can be found still attached to the plant throughout the winter.

Common buckthorn leaves may be opposite or alternating with both possible on the same branch. Leaves are oval or egg shaped with small, serrated teeth

Buckthorn seeds are easily spread by birds and other wildlife. It is fast growing and will reproduce from seeds or by stump sprouting. The seeds may remain viable in the soil for up to five years.

Common buckthorn can be distinguished from native and other non-native buckthorns by its sharp, thorn-tipped branches and from native Hawthorns (Crataegus spp.) on which the thorns grow from the sides of branches. It also has noticeable forward-curved side veins on its leaves and clusters of purplish-black berries that have 4 hard seeds.

Impacts

Common buckthorns form thick hedges with long branches that crowd out and shade out native shrub and herbaceous species, preventing regeneration of native plants. In fire prone areas the lack of herbaceous ground cover underneath the buckthorn hedge may prevent fires from spreading.

The common buckthorn is a host for the crown rust fungus (Puccinia coronata), an agricultural pest that inhibits the yield and quality of oats. It may also serve as a overwintering host for the Asian soybean aphid (Aphis glycines Matsumura), a pest known to damage soybeans and can spread a variety of horticultural viruses. Buckthorn leaves have a high concentration of nitrogen and the decomposition of leaf litter changes soil nitrogen content and can increase the pH levels in the soil. These changes create better growth conditions for the common buckthorn perpetuating their persistence.

Prevention and Control

There are several methods available for control of common buckthorn. These controls include mowing, excavation, cutting and burning. Repeated mowing and cutting has been shown to reduce the vigor of the plants. The plants may be removed by hand or with heavy equipment depending on the size of the shrubs. Care should be taken to not disturb the roots of other plants. The disturbed area, now devoid of the invasive plant, may become the home for new common buckthorn seedlings or other opportunistic invasive plants. As noted earlier, the seeds may persist in the ground for five years resulting in new growth.

Prescribed burns are another way to control buckthorns in fire-adapted ecosystems. Fires will top-kill mature plants; however sprouting can occur from the roots and trunks.

There are also several chemical methods (Table 1) available for controlling common buckthorn. These are generally applied to the stumps after cutting to prevent sprouting. There are no currently known biological controls for common buckthorn. Research into biological controls for common buckthorn is in progress.

Table 1. Herbicides effective on Common buckthorn (Rhamnus cathartica)

Chemical Name Use
Triclopyr amine Cut stump
Triclopyr ester Cut stump or basal bark
Glyphosate Cut stump

(MNDNR 2008)

New York Distribution Map

This map shows confirmed observations (green points) submitted to the NYS Invasive Species Database. Absence of data does not necessarily mean absence of the species at that site, but that it has not been reported there. For more information, please visit iMapInvasives.