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Abstract: Species distribution modeling (SDM) is currently the primary tool for predicting suitable
habitats for species. In this study, we used Abies kawakamii, a species endemic to Taiwan. Being the
only Abies species distributed in high mountains, it acts as an ecological indicator on the subtropical
island. We analyzed a vegetation map derived from remote sensing and ground surveys using SDM.
The actual distribution of A. kawakamii in Taiwan has a total area of 16,857 ha distributed at an altitude
of 2700–3600 m, and it often forms a monodominant forest at 3100–3600 m with the higher altitude
edge as a forest line. Exploring the potential distribution of A. kawakamii through MaxEnt showed
that the suitable habitat was 73,151 ha under the current climate. Under the scenarios of temperature
increases of 0.5, 1.0, 1.5, and 2.0 ◦C, suitable habitat for A. kawakamii will gradually decrease to 70.2%,
47.1%, 30.2%, and 10.0% of this area, respectively, indicating that A. kawakamii will greatly decline
under these climate warming scenarios. Fire burning disturbance may be the most significant damage
to A. kawakamii at present. Although A. kawakamii has been protected by conservation areas and its
natural regeneration is in good condition, it rarely has the opportunity to migrate upwards during
climate warming. We suggest that in the future, research on the natural regeneration and artificial
restoration of A. kawakamii should be emphasized, especially in the forest line ecotone.

Keywords: Abies kawakamii; endemic species; species distribution modeling; Taiwan; climate warming

1. Introduction

Species distribution modeling (SDM) is currently the primary tool for predicting
suitable habitats for species [1–4]. SDM links the ecological theory of species–environment
relationships with statistical learning methods and geospatial data to understand and
predict species distributions and habitats [5]. It is widely used in biogeography, biological
conservation, and environmental change research [6–8]. In recent years, the number of
SDM-related studies has increased in number each year [9,10]. SDM is a powerful tool
to support forest management, and it can be used to forecast climate change impacts on
forests [11]. To date, many different methods have been developed to predict species
occurrences based on environmental characteristics [11–13]. Among these SDM methods,
MaxEnt (maximum entropy) [14–16] is the most commonly used. Many studies have used
MaxEnt to explore habitat suitability and climate change [17,18]. Compared with the more
complex ensemble SDM, the MaxEnt model’s performance is comparable to the ensemble
approach, and MaxEnt has the advantages of reduced calculation time and simplicity [19].
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The genus Abies is composed of approximately 50 species globally, which are dis-
tributed in the subalpine to alpine regions of Europe, Asia, North America, Central Amer-
ica, and the northernmost part of Africa, mostly in cold and temperate climates in the
Northern Hemisphere [20,21]. Only four Abies species (i.e., Abies kawakamii (Hayata) T.Itô,
A. webbiana (Wall. ex D.Don) Lindl., A. religiosa (Kunth) Schltdl. & Cham., and A. fansi-
panensis Q.P.Xiang) are distributed in subtropical regions, and all of them are ecological
indicators of the genus [20–22]. Among them, A. kawakamii is an endemic and relic tree
species that composes monodominant forest and builds forest lines in high mountain
areas in subtropical Taiwan [23–27]. It plays an essential role in the subalpine ecosystem
and presents a unique forest landscape [28,29]. Plants at high altitudes are susceptible to
climate change [30,31] and rarely have the opportunity to migrate upwards under warming
conditions [32–34]. Abies tree species that grow on the island’s high mountains, such as
A. koreana [35–37], may face a more severe decline. Unfortunately, both past observations
and future predictions show a clear warming trend for Taiwan [38–40], and it is necessary
to understand the spatial distribution of A. kawakamii in the high mountain areas of this
subtropical island. This study analyzed a vegetation map derived from remote sensing
and ground surveys of A. kawakamii using SDM. Evaluating actual and potential spatial
distribution, we predict the future trend of the distribution area of A. kawakamii under
climate warming scenarios.

2. Results
2.1. Current Actual Distribution of A. kawakamii

Table 1 reveals the actual area of A. kawakamii in each 100 m altitude zone. The current
actual distribution of A. kawakamii was extracted from the FC21 polygon (A. kawakamii
formation represented as a black polygon in Figure 1) of the TVDIM vegetation map [41].
The results show that the total area of the actual area distribution of A. kawakamii is 16,857
ha, which is only 0.47% of the total area on the island of Taiwan (Figure 1a). No particular
difference was detected in the distribution of A. kawakamii in different directions (Figure 1).
The actual distribution of A. kawakamii is mainly concentrated on high mountains such as
Mount Jade (Figure 1b) and Mount Xue (Figure 1c).

Table 1. The current actual area of A. kawakamii forest at each altitude range.

Elevation Zone (m) Area (ha) % of Total Area

2200–2299 0 0.0%
2300–2399 8 0.0%
2400–2499 26 0.2%
2500–2599 118 0.7%
2600–2699 284 1.7%
2700–2799 501 3.0%
2800–2899 986 5.9%
2900–2999 1874 11.1%
3000–3099 3262 19.4%
3100–3199 3736 22.2%
3200–3299 2770 16.4%
3300–3399 1666 9.9%
3400–3499 951 5.6%
3500–3599 489 2.9%
3600–3699 168 1.0%
3700–3799 15 0.1%
3800–3899 0 0.0%

Total 16,857 100.0%
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Figure 1. Actual distribution of Abies kawakamii (FC21 formation, black polygon) in Taiwan. Red 
line: 3100 m contour; blue line: 3600 m contour. (a) Taiwan island, (b) Mount Xue, and (c) Mount 
Jade. 

2.2. Potential Distribution Modeling Using MaxEnt 
After calculating the correlation coefficients of 21 pre-selected environmental varia-

bles, for the 8 environmental variables selected and used in MaxEnt (Table 2), EWI occu-
pied absolute importance, which means that the distribution of A. kawakamii is mainly 
controlled by altitude or a more precise thermal index. 

The AUC value of our model was 0.9628, which indicates excellent accuracy [42]. The 
potential distribution or the occurrence probability of A. kawakamii simulated by MaxEnt 
is shown in the orange tone in Figure 2, and its Cloglog log value ranged from 0.0000 to 
0.8580. Two commonly used thresholds of species presence/absence [43–45] were calcu-
lated. Threshold 1 (equal training sensitivity and specificity = 0.4046) was more reasonable 
than threshold 2 (maximum training sensitivity plus specificity = 0.0972). Therefore, we 
used a threshold of 0.4046 to determine the presence or absence of A. kawakamii (Figure 2). 

Figure 3 shows the results of predicting the distribution of A. kawakamii using 3100–
3600 m contours [23,24] and EWI (effective warmth index) = 12–32 [24,46], and overlap-
ping its actual and potential distributions. 

Figure 1. Actual distribution of Abies kawakamii (FC21 formation, black polygon) in Taiwan. Red line:
3100 m contour; blue line: 3600 m contour. (a) Taiwan island, (b) Mount Xue, and (c) Mount Jade.

2.2. Potential Distribution Modeling Using MaxEnt

After calculating the correlation coefficients of 21 pre-selected environmental variables,
for the 8 environmental variables selected and used in MaxEnt (Table 2), EWI occupied
absolute importance, which means that the distribution of A. kawakamii is mainly controlled
by altitude or a more precise thermal index.

The AUC value of our model was 0.9628, which indicates excellent accuracy [42]. The
potential distribution or the occurrence probability of A. kawakamii simulated by MaxEnt is
shown in the orange tone in Figure 2, and its Cloglog log value ranged from 0.0000 to 0.8580.
Two commonly used thresholds of species presence/absence [43–45] were calculated.
Threshold 1 (equal training sensitivity and specificity = 0.4046) was more reasonable than
threshold 2 (maximum training sensitivity plus specificity = 0.0972). Therefore, we used a
threshold of 0.4046 to determine the presence or absence of A. kawakamii (Figure 2).

Figure 3 shows the results of predicting the distribution of A. kawakamii using 3100–
3600 m contours [23,24] and EWI (effective warmth index) = 12–32 [24,46], and overlapping
its actual and potential distributions.
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Figure 2. Potential (occurrence probability under the current climate, orange tone) and actual (FC21 
formation, black polygon) distribution of Abies kawakamii forest. (a) Taiwan island, (b) Mount Xue, 
and (c) Mount Jade. 
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Figure 3. Predictive distribution of Abies kawakamii, using EWI = 12–32 (green polygon), overlapping 
its actual (FC21, block polygon) and potential (occurrence probability, orange tone) distribution. (a) 
Mt. Xue and (b) Mt. Jade. 

  

Figure 2. Potential (occurrence probability under the current climate, orange tone) and actual (FC21
formation, black polygon) distribution of Abies kawakamii forest. (a) Taiwan island, (b) Mount Xue,
and (c) Mount Jade.
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Table 2. Percent contribution and permutation importance of the eight variables used in MaxEnt.

Variables Description and Reference Percent Contribution Permutation Importance

EWI Effective warmth index [46] 97.6 99.6
PER Potential evapotranspiration ratio [47] 1.0 0.0

bio15 Precipitation seasonality [48] 0.4 0.0
WLS Whole light sky space [49] 0.4 0.1
PWR Ratio of winter half-year precipitation to Bio12 [23] 0.2 0.1
bio12 Annual precipitation [48] 0.2 0.0
bio4 Precipitation of driest month [48] 0.1 0.0
bio9 Precipitation of coldest quarter [48] 0.0 0.1

2.3. Potential Distribution under Climate Warming Scenarios

A. kawakamii will gradually lose suitable habitats at lower altitudes under increasing
temperatures of 0.5, 1.0, 1.5, and 2.0 ◦C. Using equal training sensitivity and specificity
as the threshold to convert the occurrence probability value to presence–absence binary
data, when the temperature increased by 0.5, 1.0, 1.5, and 2.0 ◦C, the presence areas of
A. kawakamii were 51,323, 34,476, 22,106, and 7338 ha, respectively (Table 3); that is, the
suitable habitats of A. kawakamii will gradually decrease to 70.2%, 47.1%, 30.2%, and 10.0%
of the current area. This illustrates the loss and gain of A. kawakamii habitat areas under the
+0.5~+2.0 ◦C climate warming scenario. Overall, A. kawakamii is migrating and shrinking to
high-altitude areas as the temperature rises. In other words, it loses its original habitats in
lower places and gains new habitats in higher places, and the area lost is much larger than
the area gained. Table 4 further explains the loss and gain changes in Figure 4. We defined
Cloglog ± 0.1–0.3 as a low loss or gain change, Cloglog ± 0.3–0.5 as a medium change, and
Cloglog ± 0.5–0.7 as a high change.

Table 3. Summary of the spatial distribution layers of A. kawakamii.

Layer Area (ha) Habitat Meaning and Reference

Actual distribution 16,857 Actual

Combining the ground survey of existing vegetation
and the interpretation of remote sensing images to
map the current actual distribution polygons of A.

kawakamii-dominant forests [41]

Range of 3100–3600 m contours 25,571 Potential The altitude range of A. kawakamii forests observed
in the field [24,50]

Range of EWI (effective warmth
index) = 12–32 20,922 Potential

Use of the more ecologically significant thermal
index (relative to the altitude) to estimate the

temperature niche of the A. kawakamii forest belt [46]

Range of WI (warmth index) = 12–36 20,989 Potential
Use of the more ecologically significant thermal

index (relative to the altitude) to estimate the
temperature niche of the A. kawakamii forest belt [50]

Presence range of potential
distribution for the current climate 73,151 Potential

A species-suitable index value [51] or predicted
probability of occurrence [16] of A. kawakamii

individuals is higher than the presence threshold

Presence range of potential
distribution for the +0.5 ◦C scenario 51,323 Potential Predicted distribution of A. kawakamii by MaxEnt

under the +0.5 ◦C scenario [52]

Presence range of potential
distribution for the +1.0 ◦C scenario 34,476 Potential Predicted distribution of A. kawakamii by MaxEnt

under the +1.0 ◦C scenario [52]

Presence range of potential
distribution for the +1.5 ◦C scenario 22,106 Potential Predicted distribution of A. kawakamii by MaxEnt

under the +1.5 ◦C scenario [52]

Presence range of potential
distribution for the +2.0 ◦C scenario 7338 Potential Predicted distribution of A. kawakamii by MaxEnt

under the +2.0 ◦C scenario [52]
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Figure 4. Changes in suitable habitat areas of A. kawakamii on Mount Xue (a) under different climate 
warming scenarios, (b) current climate, (c) under the +0.5 °C scenario, (d) under the +1.0 °C scenario, 
(e) under the +1.5 °C scenario, and (f) under the +2.0 °C scenario. 

Figure 4. Changes in suitable habitat areas of A. kawakamii on Mount Xue (a) under different climate
warming scenarios, (b) current climate, (c) under the +0.5 ◦C scenario, (d) under the +1.0 ◦C scenario,
(e) under the +1.5 ◦C scenario, and (f) under the +2.0 ◦C scenario.
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Table 4. Under the +0.5~+2.0 ◦C warming scenario, the loss and gain of A. kawakamii potential
distributions in Taiwan.

Scenario Actual Distribution (16,857 ha) Potential Distribution (73,151 ha)

+0.5 ◦C

Low loss: 3991 ha
Medium loss: 0 ha

High loss: 0 ha
The total area of loss: 3991 ha (23.7%)

Low loss: 35,368 ha
Medium loss: 0 ha

High loss: 0 ha
The total area of loss: 35,368 ha (48.3%)

Low gain: 276 ha

+1.0 ◦C

Low loss: 7704 ha
Medium loss: 2153 ha

High loss: 0 ha
Total area of loss: 9857 ha (58.5%)

Low loss: 33,644 ha
Medium loss: 22,571 ha

High loss: 0 ha
Total area of loss: 56,216 ha (76.8%)

Low gain: 580 ha

+1.5 ◦C

Low loss: 5925 ha
Medium loss: 7102 ha

High loss: 59 ha
Total area of loss: 13,086 ha (77.6%)

Low loss: 13,238 ha
Medium loss: 50,624 ha

High loss: 185 ha
Total area of loss: 64,047 ha (87.6%)

Low gain: 545 ha

+2.0 ◦C

Low loss: 2923 ha
Medium loss: 4588 ha

High loss: 8709 ha
Total area of loss: 16,220 ha (96.2%)

Low loss: 4992 ha
Medium loss: 25,904 ha

High loss: 40,282 ha
Total area of loss: 71,178 ha (97.3%)

Low gain: 475 ha

3. Discussion
3.1. Current Actual Distribution of A. kawakamii

A. kawakamii grows in the altitude zone of 2300–3800 m asl (Table 1), and the total
actual area of A. kawakamii is 16,857 ha, which is less than the 20,000 ha claimed by the
Taiwan Forest Bureau in previous investigations [42]. In the past, the low-altitude limit of
A. kawakamii has been overestimated [20,50,53]. The area of A. kawakamii forest appearing
in the 2700–3100 m altitude zone is 39.30%, and it is 57.0% in the 3100–3600 m zone and
96.3% in the 2700–3600 m zone. Many reports [24,26,50] have mentioned that A. kawakamii
is mainly distributed at an altitude of 3100–3600 m asl. Therefore, we overlapped these two
contour lines, and Figure 1b,c show that most A. kawakamii fall within this altitude range.
Through field observation and investigation [25], it was determined that A. kawakamii exist
as monodominant forests (Figure 5a) at 3100–3600 m, often mixing with Tsuga chinensis
below 3100 m asl and mixing with Juniperus morrisonicola to form the forest line (Figure 5d)
above 3600 m. The current actual distribution of A. kawakamii is located in the region of
latitude 23.05120–24.47351 N and longitude 120.86114–121.49303 E (Figure 1a). Compared
with A. fansipanensis, which is distributed in the southernmost limits of Eurasian Abies
species and only occurs on mountains of 2900–3100 m in northern Vietnam (latitude 22◦18′

N and longitude 103◦48′ E [22]), A. kawakamii is the second southernmost species in Asia.
Both A. fansipanensis and A. kawakamii are isolated from the other Asian Abies in distribution
and confined to the alpine range.
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Figure 5. Abies kawakamii forests in Taiwan: (a) monodominant species forest, (b) cone of A. kawa-
kamii, (c) gap regeneration (on the left), (d) forest line, (e) fire disturbance, (f) regeneration after 
fire disturbance, (g) topographic sheltering, and (h) seedling in understory, Yushania niitakayamen-
sis. 

Figure 5. Abies kawakamii forests in Taiwan: (a) monodominant species forest, (b) cone of A. kawakamii,
(c) gap regeneration (on the left), (d) forest line, (e) fire disturbance, (f) regeneration after fire
disturbance, (g) topographic sheltering, and (h) seedling in understory, Yushania niitakayamensis.
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3.2. Potential Distribution Modeling by MaxEnt

Out of 21 pre-selected environmental variables, 13 variables were deleted in order to
reduce redundancy and collinearity between variables [54] and to consider their contribu-
tion and ecological significance [10,55]. The AUC value of modeling A. kawakamii potential
distribution by Maxent was 0.9628, which uses eight important environmental variables
(Table 2) and indicates excellent accuracy [56].

3.2.1. Range of EWI = 12–32 vs. Actual Distribution of A. kawakamii

Su [50] used the warmth index (WI = 12–36) to define the A. kawakamii forest belt
(with an area of 20,989 ha; in Table 3), which is widely used in Taiwan ecological fields.
Meanwhile, Chiu et al. [46] further associated the temperature sum with thermal seasonality
to propose the effective warmth index (EWI), and EWI = 12–32 can slightly better fit the A.
kawakamii forest belt (area of 20,922 ha), as shown in Figure 3. When converting altitude
into the thermal index, 3100–3600 m is approximately equivalent to EWI 12–32 (Figure 3).
In order to cover the actual distribution of A. kawakamii, the lower limit of EWI should be
further revised in the future.

3.2.2. Potential vs. Actual Distribution of A. kawakamii

Most research on the spatial distribution of plants is based on the equilibrium as-
sumption; that is, analyzing the natural distribution of species to assess the actual living
needs of the species [7]. However, due to the facts of chance, isolation, fundamental niche,
realized niche [4,57], etc., the actual distribution of plants is often smaller than the poten-
tially suitable distribution area. Thus, Figure 2 and Table 3 clearly show that the potential
distribution area of A. kawakamii (73,151 ha; orange tone in Figure 2) is larger than the actual
distribution area of A. kawakamii (16,857 ha; black polygon in Figure 2). As an example, in
Figure 3a, the arrow indicates a suitable habitat for A. kawakamii, but they do not currently
exist there due to the fact of past fire disturbances.

3.2.3. Distributions of Dominant Stands vs. Individuals of A. kawakamii

In Table 3, we use A. kawakamii individual, A. kawakamii-dominant forest, and A.
kawakamii forest belt to represent the species growing in scattered individuals, sometimes
isolated [16,51], in forest formations [24], and in the altitudinal vegetation belt [46,50],
respectively. When a species forms a dominant forest, it is usually within its optimum
ecological amplitude, and individual plants sometimes extend to the two ends of the envi-
ronmental amplitude [58]. Our results clearly show that the present area of the simulated
A. kawakamii individual (73,151 ha; Table 3) is wider than that of the A. kawakamii-dominant
forest (16,857 ha; actual) or the A. kawakamii forest belt (20,922 or 20,989 ha predicted by
EWI or WI).

3.2.4. The Influence of Non-Climatic Factors on the Distribution of A. kawakamii

Although the climatic climax theory can explain most or large-scale plant distributions,
the interaction of factors such as soil, topography, and interspecies competition will modify
the actual distribution of A. kawakamii. Therefore, the actual distribution of A. kawakamii
does not appear in the potentially suitable areas near the tops of Mount Xue and Mount
Jade (Figure 2b,c), where wind and rock avalanches are strong. On the other hand, the
distribution of actual A. kawakamii in places with sheltered wind and good soil conditions
may exceed its potential range, as indicated by the arrow at the bottom left in Figure 3b.

3.3. Potential Distribution under Climate Warming Scenarios

As can be seen from the overlapped map in Figure 4, A. kawakamii shrinks in distri-
bution area under warming scenarios and shows a trend of gradual migration to higher
altitudes. The decline in area and upward migration of A. kawakamii affected by climate
warming are consistent with other Abies species or alpine and subalpine plants [35,36,59,60].
The potential distributions of A. kawakamii in the +0.5~+2.0 ◦C warming situations show
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different degrees of losses of 35,368–71,178 ha and gains of 276–580 ha (Table 4). The loss
and gain of these potential distributions mean the upward movement of A. kawakamii
toward suitable habitats. The range gained at +1.0 ◦C is not much different from that at +1.5
and +2.0 ◦C, because the only place where A. kawakamii can migrate upward is to the area
above 3600 m asl. In addition to the aforementioned substantial decline in the potential
habitats of A. kawakamii (Figure 4), its current actual distribution is also highly precarious.
Due to the Abies sensitivity to warming [35,61], the loss of current actual habitats of A.
kawakamii is likely to occur. Figure 6 reveals that the actual distributions of A. kawakamii
in the +0.5~+2.0 ◦C warming scenarios show different degrees of losses of 3991–16,220
ha (also, see Table 4). With the time lag between warming and plant migration [62] and
topographic disintegration and interspecies competition when up-shifting [63] (see the A.
kawakamii forest line in Figure 5d), the gaining of new habitat (Figure 6) by A. kawakamii will
be quite difficult; in particular, when the temperature rises by 2.0 ◦C, A. kawakamii will have
lost 16,220 ha, leaving only 637 ha of habitat. That is, A. kawakamii will have lost almost all
of its original habitat areas. These few opportunities to migrate to higher altitudes are a
common predicament for alpine and subalpine plants [32–34,54] and for a variety of Asian
subtropical and temperate Abies species [35,36].

Plants 2022, 11, x FOR PEER REVIEW 10 of 16 
 

 

warming are consistent with other Abies species or alpine and subalpine plants 
[35,36,59,60]. The potential distributions of A. kawakamii in the +0.5~+2.0 °C warming situ-
ations show different degrees of losses of 35,368–71,178 ha and gains of 276–580 ha (Table 
4). The loss and gain of these potential distributions mean the upward movement of A. 
kawakamii toward suitable habitats. The range gained at +1.0 °C is not much different from 
that at +1.5 and +2.0 °C, because the only place where A. kawakamii can migrate upward is 
to the area above 3600 m asl. In addition to the aforementioned substantial decline in the 
potential habitats of A. kawakamii (Figure 4), its current actual distribution is also highly 
precarious. Due to the Abies sensitivity to warming [35,61], the loss of current actual hab-
itats of A. kawakamii is likely to occur. Figure 6 reveals that the actual distributions of A. 
kawakamii in the +0.5~+2.0 °C warming scenarios show different degrees of losses of 3991–
16,220 ha (also, see Table 4). With the time lag between warming and plant migration [62] 
and topographic disintegration and interspecies competition when up-shifting [63] (see 
the A. kawakamii forest line in Figure 5d), the gaining of new habitat (Figure 6) by A. kawa-
kamii will be quite difficult; in particular, when the temperature rises by 2.0 °C, A. kawaka-
mii will have lost 16,220 ha, leaving only 637 ha of habitat. That is, A. kawakamii will have 
lost almost all of its original habitat areas. These few opportunities to migrate to higher 
altitudes are a common predicament for alpine and subalpine plants [32–34,54] and for a 
variety of Asian subtropical and temperate Abies species [35,36]. 

(a)  (b)  

(c)  (d)  

Figure 6. Loss (warm color) and gain (blue) of A. kawakamii habitat areas on Mount Xue under the 
+0.5~+2.0 °C warming scenarios: (a) +0.5, (b) +1.0, (c) +1.5, and (d) +2.0 °C. 

3.4. Conservation and Challenges in the Future 
In terms of the in situ conservation of A. kawakamii, it is basically only necessary to 

pay attention to fire disturbance. At present, almost all A. kawakamii are protected by na-
tional parks and wildlife refuges and have natural regeneration in monodominant forests 

Figure 6. Loss (warm color) and gain (blue) of A. kawakamii habitat areas on Mount Xue under the
+0.5~+2.0 ◦C warming scenarios: (a) +0.5, (b) +1.0, (c) +1.5, and (d) +2.0 ◦C.

3.4. Conservation and Challenges in the Future

In terms of the in situ conservation of A. kawakamii, it is basically only necessary to
pay attention to fire disturbance. At present, almost all A. kawakamii are protected by
national parks and wildlife refuges and have natural regeneration in monodominant forests
(Figure 5c) and forest margins (Figure 5f), indicating that the in situ conservation of A.
kawakamii is good. The most serious damage to A. kawakamii in recent years has been caused
by man-made fires (Figure 5e), so it is necessary to strengthen fire prevention awareness.
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No serious pests, diseases, or ungulate animals have been found to harm A. kawakamii
regeneration [64–67].

However, the sustainability of A. kawakamii is full of crises in the future. Our results
point out that both the actual and potential A. kawakamii distribution will severely decline
in the context of climate warming. In terms of ex situ conservation strategies, A. kawakamii
seed storage is feasible. Abies species are classified as true orthodox seeds [68]. The Taiwan
Forest Bureau (TFB) and Taiwan Forest Research Institute (TFRI) currently have a long-term
store of A. kawakamii seeds. However, seeds for the preservation of marginal and genetically
distinct A. kawakamii populations should be emphasized, and more biotechnology means
have been proposed [69]. Due to the fact that A. kawakamii is limited to the highest mountain
areas, the escape space available for migration is extremely limited. A. kawakamii that
has uniform genetic diversity, low differentiation, low numbers of population-specific
haplotypes, and neutral evolution characterizes contemporary refuge populations [70].
More is needed than just the ex situ planting that was recommended by Shao et al. [36]. Due
to the various obstacles near the A. kawakamii forest line, such as topographic disintegration
(the grey rubble in Figure 5d), interspecies competition when up-shifting [63], migration
speed [59], and warming affecting seedling establishment, relevant research on A. kawakamii
in the nursery and afforestation settings, suitable habitat availability, colonization, and
migration will be necessary. Future climate warming could lead to tree-line advances if
viable seeds and suitable substrates for recruitment are available [71]. Based on the fact
that A. kawakamii is promoted by microclimate and topographic sheltering [72] (Figure 5g)
and seedlings appear under Yushania niitakayamensis in the transition zone (Figure 5h),
we suggest that long-term ecological monitoring programs and regeneration trials of A.
kawakamii should be carried out in the valleys close to the forest line.

4. Materials and Methods
4.1. Study Area and Target Species

Taiwan is a mountain island in the continental shelf of East Asia (Figure 1). Its total
area is approximately 35,889 km2. The highest peak is Mount Jade (3952 m asl), and the
second highest is Mount Xue (3886 m asl). There are 268 high mountains above 3000 m asl,
which is rare globally. The climate is dominated by the East Asian monsoon, with annual
rainfall ranging from 1023 to 4880 mm and the annual average temperature ranging from
4.0 to 25.0 ◦C [73]. It has alternating winter and summer monsoons, and steep and complex
terrain forms diverse plant habitats [50]. During the Ice Age, Taiwan became a refuge for
many plants when a large land bridge extended from eastern China to Taiwan. Our target
tree species, A. kawakamii, migrated from the Eurasian continent to Taiwan island through
the Taiwan Strait [22].

Our target species, A. kawakamii, is a coniferous relic tree endemic in the high-altitude
mountains of Taiwan [50]. It is the only Abies tree species that grows on subtropical islands
and is close to the southernmost limit of Abies species [21,22]. In Taiwan, A. kawakamii
exists in high-altitude areas, and it is almost a pure forest type (Figure 5a) with good
fruiting conditions (Figure 5b). The A. kawakamii of today have good natural regeneration
in gaps (Figure 5c). At approximately 3600 m asl, A. kawakamii has reached the upper limit
of its distribution due to the facts of topography, geology, wind, and competition from
krummholz species to form a forest line (Figure 5d).

In the past, the understanding of A. kawakamii spatial distribution was limited. There
were descriptive reports of A. kawakamii altitude ranges such as 2400–3600 [20], 2800–3500 [53],
and 3100–3600 m [24,50]. Until the completion of the Taiwan Vegetation Diversity Inventory
and Mapping Project (TVDIM) [41], a vegetation map of A. kawakamii formation (FC21
polygon) was not available, and there is still no detailed analysis of its spatial distribution
characteristics. The TVDIM project focused on the mapping of the existing natural vegeta-
tion. We extracted the FC21 polygon of the TVDIM vegetation map to further explore the
actual distribution of A. kawakamii and its relationship with the environment.
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4.2. SDM Calibration

In brief, SDM consists of three parts [10,74], namely, a dependent variable (species
occurrence data), explanatory variables (environmental predictors), and an algorithm or
function for representing species–environment relationships (modeling methods). In this
article, we used a standard and robust SDM method for presence-only species data [19,75]—
MaxEnt—to predict the suitable or potential distribution of A. kawakamii. The effectiveness
of MaxEnt modeling depends on the appropriate sample sizes and prevalence of species
occurrence points [76,77], and on the identification of environmental variables that can
explain the species distribution [78,79].

The sources of species occurrence data of A. kawakamii included the following: (1) Indi-
vidual coordinate records from our field survey, all herbariums, and the GBIF database [80].
After filtering for duplicate points and unreasonable coordinates (such as those located in
the ocean), a total of 230 points of A. kawakamii were used for SDM. (2) Points extracted from
the National Vegetation Diversity Inventory and Mapping Project (NVDIMP) database [41]
at a fixed distance of 500 m were also used. In this way, 683 occurrence points of A. kawakamii
were obtained. The 230 points of the former set were extremely unevenly distributed, and
most of them were near hiking trails. Therefore, we selected the 683 evenly distributed
occurrence points of the latter set as the dependent variable of SDM.

We evaluated a comprehensive set of 62 environmental variables (Table S1), and their
consistent spatial resolution was a 40 m grid [10]. Based on our prior knowledge [80], we
preselected 21 environmental variables that may affect the distribution of A. kawakamii.
In order to reduce the redundancy and collinearity of variables [32,54], we adapted the
synthetic strategy for integrating the correlation coefficient, contribution level, and expert
choice of predictors to select the suitable environmental variables [10]. In addition, Taiwan
shows a clear warming trend (1.0–1.4 ◦C/100 years) and no evidence supporting the
possibility of precipitation changes [38]. Thus, we simulated the environment of climate
warming with temperature increases of 0.5, 1.0, 1.5, and 2.0 ◦C and calculated the relevant
climate variables in the four scenarios. Currently available high-resolution layers of global
climate warming scenarios mainly include three databases: (1) CliMond [81,82] with a
maximum resolution of 30 s, (2) WorldClim [51,83] with a maximum resolution of 10 s, and
(3) CHELSA [84], although the spatial resolution of this database is too low for A. kawakamii.
Therefore, in this study, a temperature increase of 2 ◦C was used as the climate warming
scenario, and the 40 m spatial grid layer with temperature increases of 0.5, 1.0, 1.5, and
2.0 ◦C was recalculated for the environmental variables of MaxEnt. These layers were used
as predictors of the influence of the warming scenario on A. kawakamii. MaxEnt [16,73,85]
was adopted to predict the suitable or potential distribution of A. kawakamii in current and
warming environments. The operating parameters were random 25-fold cross-validation,
5000 maximum iterations, and in the Cloglog output format with other default settings.

4.3. Accuracy Evaluation

The area under the receiver operating characteristic curve (AUC) [86] was used to
evaluate the accuracy of MaxEnt. AUC measures the model’s ability to correctly classify
a species as present or absent [87]. AUC values range between 0 and 1, with maximum
accuracy achieved with values of 1, accuracy no better than random with values of 0.5,
and values of <0.5 indicating performance worse than random [85]. The rough guide for
classifying MaxEnt modeling accuracy [42] is excellent (AUC > 0.9), good (AUC = 0.8–0.9),
average (AUC = 0.7–0.8), poor (AUC = 0.6–0.7), and insufficient (AUC = 0.5–0.6).

4.4. Threshold of Species Presence/Absence

MaxEnt produces continuous predictions, namely a Cloglog output, which can be
regarded as a species-suitable index value [51] or predicted probability of presence [16].
There are several thresholds, including minimum training presence, 10 percentile training
presence, equal training sensitivity and specificity, maximum training sensitivity plus
specificity, equate entropy of threshold and original distributions, balance training omission,
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predicted area, and threshold value, to convert the continuous Cloglog suitability scores
predictions of MaxEnt to species presence or absence [16]. The specific thresholds can
convert the continuous probability to a binary (presence/absence) map that is easier to
apply to species conservation and climate change impacts [88]. In this article, we adopted
the recommendations of several reports [43,47,48,53] to use the equal training sensitivity
and specificity and the maximum training sensitivity plus specificity as the threshold to
reclassify the continuous Cloglog as the presence/absence map of A. kawakamii.

5. Conclusions

Taiwan is the only habitat of the relic species A. kawakamii globally. The detailed
distribution and the impact of climate warming on A. kawakamii have been unclear in the
past. This article explored the actual distribution of A. kawakamii. It is concentrated at an
altitude of 2700–3600 m asl, covering only 16,857 ha. Its upper edge forms the forest line. In
climate warming, the potential habitats of A. kawakamii will decline significantly, especially
when the temperature rises by 2 ◦C, it will lose 97.3% of its area. Today, A. kawakamii is
mainly protected by conservation areas, and its natural regeneration is good. However, it
has minimal opportunities to move upwards under climate warming scenarios because it
is on the highest mountain in Taiwan. In response to the impact of warming, research on
the natural regeneration and artificial restoration of the upper edge of A. kawakamii should
be strengthened in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11101346/s1, Table S1: List of the 62 environmental variables;
Table S2: The pairwise Pearson correlation coefficients of 21 pre-selected environmental variables.
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