Skip to main content

Abstract

Interaction of plants with environmental factors and microbial world is a dynamic process. As part of this ever-changing process new disease emerges or minor disease may become major with time. This chapter presents a very brief account of well-studied old diseases of sorghum and emphasizes on emerging diseases with particular reference to India. Description of sorghum diseases caused by fungi, bacteria, and their transmission through seed implies quarantine significance. Thus, awareness about the quarantine pests of different countries is essential for facilitation of smooth germplasm exchange. Diseases distribution, losses, symptomatology, and management options have been discussed in detail. In this chapter, we have generated environmental (ecological) niche model for the pathogens causing sorghum diseases due to fluctuations in environment caused by climate change. Ecological Niche Model using Maxent is a class of method that uses occurrence data in conjunction with environmental parameters to make a correlative model of the environmental conditions that meet pathogens’ ecological requirements and predicts the relative suitability of habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adorada D, Vaghefi N, Sparks A (2019) Revisiting management options for charcoal rot in sorghum. GRDC Grains Research and Development Corporation, Barton, ACT. https://communities.grdc.com.au/field-crop-diseases/re-visiting-management-options-charcoal-rot-sorghum

    Google Scholar 

  • Ahamad S, Lal B, Kher D (2015) Screening of maize germplasm against stalk rot diseases in the Intermediate Zone of Jammu Region. Int J Innov Sci Eng Tech 2:828–831

    Google Scholar 

  • AICRP-Sorghum (2017) Annual progress report of All India Coordinated Research Project on Sorghum, Indian Council of Agricultural Research – Indian Institute of Millets Reserch Hyderabad. https://aicrp.icar.gov.in/sorghum/achievements-2/crop-protection/sorghum-pathology/

  • AICSIP (2014) Progress report. All-India Coordinated Sorghum Improvement Project, Indian Council of Agricultural Research, Hyderabad

    Google Scholar 

  • Akhtar MA (1985) Effect of temperature and relative humidity on bacterial stripe and bacterial leaf blight of sorghum. Pak J Agr Res 6:216–217

    Google Scholar 

  • Akosambo Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor (L.) Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afr J Biotecnol 10:3659–3670

    Google Scholar 

  • Akpa AD, Manzo SK (1991) Chemical seed treatment for the control of loose smut disease of sorghum. Tests Agrochem Cult 12:56–57

    Google Scholar 

  • Alice CL, Churchill DLD, Silbert W, Kennedy KJ, Macko V (2001) Differential synthesis of peritoxins and precursors by pathogenic strains of the fungus Periconia circinata. Appl Environ Microbiol 67:5721–5728

    Article  CAS  Google Scholar 

  • Anahosur KH (1986) Chemical control of foliar diseases of sorghum. Indian Phytopathol 39:526–528

    CAS  Google Scholar 

  • Anitha K, Chakrabarty SK, Prasada Rao RDVJ, Sarath Babu B, Abraham B, Varaprasad KS, Khetarpal RK (2005) Quarantine processing of exotic cereals and millets germplasm during 1986-2003. Indian J Plant Prot 33:105–110

    Google Scholar 

  • Anon (2002) Crop protection compendium, global module, 4th version. Commonwealth Agricultural Bureau International, Wallingford

    Google Scholar 

  • Ashok Kumar A, Reddy BVS, Ramaiah B, Sharma R (2011) Heterosis in white-grained grain mold resistant sorghum hybrids. J SAT Agric Res 9:6. ISSN 0973-3094

    Google Scholar 

  • Audilakshmi S, Stenhouse JW, Reddy TP (2005) Genetic analysis of grain mold resistance in white seed sorghum genotypes. Euphytica 145:95–101

    Article  Google Scholar 

  • Bandyopadhyay R (1992) Sorghum ergot. In: WAJ De Milliano, Frederiksen RA, Bengston GD Sorghum and millet diseases: a second world review. ICRISAT, Patancheru, 235–244

    Google Scholar 

  • Bandyopadhyay R (2000) Rust. In: Frederiksen RA, Odvody GN (eds) Compendium of sorghum diseases, 2nd edn. APS, St Paul, MN, pp 23–24

    Google Scholar 

  • Bandyopadhyay R, Butler DR, Chandrashekar A, Reddy RK, Navi SS (2000) Biology, epidemiology, and management of sorghum grain mold. In: Chandrashekar A, Bandyopadhyay R, Hall AJ (eds) Technical and institutional options for sorghum grain mold management: proceedings of an international consultation, 18–19 May 2000. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru

    Google Scholar 

  • Barbosa FCR, Casela CR, Pfenning LH, Santos FG (2004) Identification of sources of resistance in sorghum to Peronosclerospora sorghi. Fitopatol Bras 30:522–524

    Article  Google Scholar 

  • Barrera JAS, Frederiksen RA (1994) Evaluation of sorghum hybrid mixtures for controlling sorghum leaf blight. Plant Dis 78:499–502

    Article  Google Scholar 

  • Basu Chaudhary KC, Mathur SB (1979) Infection of sorghum seeds by Colletotrichum graminicola 1. Survey, location in seed and transmission of the pathogen. Seed Sci Technol 7:87–92

    Google Scholar 

  • Bergquist RR (1974) The determination of physiologic races of sorghum rust in Hawai. Proc Amer Phytopathol Soc 1:67

    Google Scholar 

  • Bergquist RR (1986) Leaf blight. In: Compendium of sorghum diseases. Am Phytopathol Soc 48:56–58

    Google Scholar 

  • Beshir MM, Ali AM, Okori P (2012) Inheritance of resistance to turcicum leaf blight in sorghum. Afr Crop Sci J 20:155–161

    Google Scholar 

  • Bock CH, Jeger MJ, Mughoho LK, Cardwell KF, Adenle V, Mtisi E, Akpa AD, Kaula G, Mukasambina D, Blair-Myers C (1998) Occurrence and distribution of Peronosclerospora sorghi [Weston and Uppal (Shaw)] in selected countries of West and Southern Africa. Crop Prot 17:427–439

    Article  Google Scholar 

  • Bock CH, Jeger MJ, Mughogho LK, Cardwell KF, Mtisi E, Kaula G, Mukansabimana D (2000) Variability of Peronosclerospora sorghi isolates from different geographic locations and hosts in Africa. Mycol Res 104:61–68

    Article  Google Scholar 

  • Bunker RN, Mathur K (2005) Biology and management of Exserohilum turcicum (Pass.) Leonard and Suggs. inciting sorghum [Sorghum bicolor (L.) Moench] leaf blight. Ph.D thesis, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajastana, India

    Google Scholar 

  • Bunker RN, Mathur K (2006) Host range of leaf blight pathogen (Exserohilum turcicum) of sorghum. Indian Phytopathol 59:370–372

    Google Scholar 

  • Bunker RN, Mathur K (2010) Pathogenic and morphological variability of Exserohilum turcicum isolates causing leaf blight in sorghum (Sorghum bicolor). Indian J Agr Sci 80:888–892

    Google Scholar 

  • Canama AO, Hautea DM (2010) Molecular mapping of resistance to bacterial stalk rot in tropical white maize (Burk, Mcfad and Dim). Philipp Agric Sci 93:429–438

    Google Scholar 

  • Cardwell KF, Hepperly PR, Frederiksen RA (1989) Pathotypes of Colletotrichum graminicola and seed transmission of sorghum anthracnose. Plant Dis 73:255–257

    Article  Google Scholar 

  • Casela CR, Ferreira AS (1995) Virulence associations in the sorghum anthracnose fungus Colletotrichum graminicola. Fitopatol Bras 20:33–38

    Google Scholar 

  • Casela CR, Frederiksen RA (1993) Survival of Colletotrichum graminicola sclerotia in sorghum stalk residue. Plant Dis 77:825–827

    Article  Google Scholar 

  • Chalkley D (2019) Systematic mycology and microbiology laboratory, ARS, USDA. Invasive fungi. Sugary disease or Asian ergot of sorghum – Claviceps sorghi. /sbmlweb/fungi/index.cfm

    Google Scholar 

  • Chavan RG, Perane RR, Gawade DB, Shete PP (2016) Field effects of fungicides on rust severity and yield in sorghum. Indian Phytopathol 69:614–617

    Google Scholar 

  • Claflin LE, Ramundo BA, Leach JE, Qhobela M (1992) Bacterial diseases of sorghum. In: De Milliano WAJ, Frederiksen RA, Bengston GD (eds) Sorghum and millets diseases: a second world review. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 135–151

    Google Scholar 

  • Cother EJ, Noble D, Peters BJ, Albiston A, Ash GJ (2004) A new bacterial disease of jojoba (Simmondsia chinensis) caused by Burkholderia andropogonis. Plant Pathol 53:129–135

    Article  Google Scholar 

  • Craig J (2000) Sorghum downy mildew. In: Frederiksen RA, Odvody GN (eds) Compendium of sorghum diseases, 2nd edn. APS Press, St. Paul, MN, pp 25–27

    Google Scholar 

  • Craig J, Odvody GN (1992) Current status of sorghum downy mildew control. In: De Milliano WAJ, Frederiksen RA, Bengston GD Sorghum and millets diseases: a second world review. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 213–217

    Google Scholar 

  • Craig J, Odvody GN, Wall GC, Meckenstock DH (1989) Sorghum downy mildew loss assessment with near-isogenic sorghum populations. Phytopathology 79:448–451

    Article  Google Scholar 

  • Craven M (2016) A look at Exserohilum leaf blight of sorghum. https://www.grainsa.co.za/a-look-at-exserohilum-leaf-blight-of-sorghum

  • Cuevas HE, Prom LK, Erpelding JE (2014) Inheritance and molecular mapping of anthracnose resistance genes present in sorghum line SC112-14. Mol Breed 34:1943–1953

    Article  CAS  Google Scholar 

  • Da Costa RV, Casela CR, Zambolim L, Ferreira AS (2003) The sorghum anthracnose. Fitopatol Bras 28:345–354

    Article  Google Scholar 

  • Dahlberg J, Bandyopadhyay R, Rooney B, Odvody G, Frederickson D (1998) Host-plant strategies within the United States. Proceedings of the conference on the status of sorghum ergot in North America, 24–26 Jun, Corpus Christi, TX

    Google Scholar 

  • Dalmacio SC, Dayan MP, Pascual CB (1981) Identification of sources of resistance to some major diseases of sorghum in the Philippines. Philipp Phytopathol 17:38–46

    Google Scholar 

  • Das IK (2016) Sorghum diseases – importance and management options. In: Best practices for sorghum cultivation and importance of value-addition 20–27 Sept 2016 (Eds: Rajendra R Chapke and Vilas Tonapi) Training Manual 2016–17. ICAR-Indian Institute of Millets Research, Hyderabad. ISBN: 81-89335-65-0

    Google Scholar 

  • Das IK, Patil JV (2013) Assessment of economic loss due to grain mold of sorghum in India. In: Rakshit S, Das IK, Shyamprasad G, Mishra JS, Ratnavathi CV, Chapke RR, Tonapi VA, Rao BD, Patil JV (eds) Compendium of papers and abstracts: global consultation on millets promotion for health and nutritional security. Society for Millet Research, Directorate of Sorghum Research, Hyderabad, pp 59–63

    Google Scholar 

  • Das IK, Rajendrakumar P (2016) Disease resistance in sorghum. In: Breeding sorghum for diverse end uses. Woodhead Publishing Series in Food Science, Technology and Nutrition, New York, NY, pp 23–67

    Google Scholar 

  • Das IK, Indira S, Annapurna A, Prabhakar SN (2008) Biocontrol of charcoal rot in sorghum by fluorescent Pseudomonads associated with the rhizosphere. Crop Prot 27:1407–1414

    Article  Google Scholar 

  • Das IK, Talwar HS, Annapurna A, Rakshit S, Gomashe S, Ganapathy KN (2011) Pokkah Boeng – an emerging disease of sorghum. 64th IPS annual meeting and national symposium, on “biology of infection, immunity and disease control in pathogen-plant interactions”. University of Hyderabad, Hyderabad, p 105

    Google Scholar 

  • Das IK, Rakshit S, Patil JV (2015) Assessment of artificial inoculation methods for development of sorghum pokkah boeng caused by Fusarium subglutinans. Crop Prot 77:94–101

    Article  Google Scholar 

  • Day JL, Duncan RR, Raymer PL, Thompson DS, Zummo N (1995) Registration of ‘Top 76-6’ sweet sorghum. Crop Sci 35:1211–1213

    Article  Google Scholar 

  • Desai SA (1998) A note on the epiphytotic outbreak of leaf blight of sorghum in India. Karnataka J Agric Sci 11:511

    Google Scholar 

  • Diourte M, Starr JL, Jeger MJ, Stack JP, Rosenow DT (1995) Charcoal rot (Macrophomina phaseolina) resistance and the effects of water-stress on disease development in sorghum. Plant Pathol 44:196–202

    Article  Google Scholar 

  • EPPO Global Database (2019). https://gd.eppo.int/taxon/PERCCI/categorization. Accessed Jul 2019

  • Fernandes FT, Schaffert RE (1983) The reaction of several sorghum cultivars to a new race of sorghum downy mildew (Peronosclerospora sorghi) in southern Brazil in 1982–1983. Agron Abstr 27:63

    Google Scholar 

  • Forbes G, Crespo L (1983) Screening for resistance to bacterial stripe on sorghum with dried infested leaf material. Sorghum Newsl 26:106–107

    Google Scholar 

  • Frank AS, Arfang B, Thomas O, Richard E, Mildred O-S, Dianah N, Geoffrey T, Moses B, Patrick R (2018) Incidence and distribution of downy mildew disease (Peronosclerospora sorghi) of sorghum in Uganda. Int J Adv Res 6:954–965

    Article  Google Scholar 

  • Frederiksen RA (1986) Compendium of sorghum diseases. American Phytopathological Society, Texas, p 82

    Google Scholar 

  • Frederiksen RA, Duncan RR (1992) Sorghum diseases in North America. In: De Milliano WAJ, Frederiksen RA, Bengston GD (eds) Sorghum and millets diseases: a second world review. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 85–88

    Google Scholar 

  • Frederiksen RA, Franklin D (1980) Sources of re-sistance to foliar diseases of sorghum in the international disease and insect nursery. In: Williams RJ, Frederiksen RA, Mughogho LK, Bengston GD (eds) Sorghum diseases: a world review. ICRISAT, Patancheru, pp 265–268

    Google Scholar 

  • Garud TB, Kohire OD, Choudhari SD (1990) Pokkah boeng or twisted top a new disease to rabi sorghum in Maharashtra. J Maha Agric Univ 15:127

    Google Scholar 

  • Gaudet DA, Kokko EG (1986) Seedling disease of sorghum grown in southern Alberta caused by seedborne Pseudomonas syringae pv. syringae. Can J Plant Pathol 8:208–217

    Article  Google Scholar 

  • Gopalakrishnan S, Humayun P, Kiran BK, Kanana IGK, Vidya MS, Deepthi K (2011a) Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomonia phaseolina (Tassi) Goid. World J Microbiol Biotechnol 27:1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Kiran BK, Humayun P, Vidya MS, Deepthi K, Rupela O (2011b) Biocontrol of charcoal-rot of sorghum by actinomycetes isolated from herbal vermi-compost. Afr J Biotechnol 10:18142–18152

    Google Scholar 

  • Gwary DM, Asala SW (2006) Chemical control of Colletotrichum graminicola of sorghum. Nigerian J Plant Protect 23:123–132

    Google Scholar 

  • Gwary DM, Rabo TD, Gwary SD (2001) Effects of Striga hermonthica and anthracnose on the growth and yield of sorghum in the sudan savanna of Nigeria. Nigerian J Weed Sci 14:47–51

    Google Scholar 

  • Gwary DM, Ali O, Gwary SD (2007) Management of sorghum smuts and anthracnose using cultivar selection and seed dressing fungicides in Maiduguri, Nigeria. Int J Agric Biol 2007:1560-8530/2007/09-2-324-328. http://www.fspublishers.org

    Google Scholar 

  • Hepperly PR (1990) Sorghum rust: II. Control and losses. J Agric Univ Puerto Rico 74(1):37–44. Retrieved from https://revistas.upr.edu/index.php/jaupr/article/view/6526

    Article  Google Scholar 

  • Hepperly PR, Davila R (1987) Erwinia chrysanthemi Burk., McFaddan Dimock: a bacterial whorl and stalk rot pathogen of sorghum [Sorghum bicolor (L.) Moench]. J Agric Univ Puerto Rico 71:265–275

    Article  Google Scholar 

  • Hernandez J, Garrido MJ, Lopez O, Trujillo GE (1992) The bacterial leaf spot of sorghum caused by Pseudomonas syringae pv. syringae in Venezuela. Fitopatol Venez 5:39–42

    Google Scholar 

  • Hess DE, Bandyopadhyay R, Sissoko I (2001) Reactions of sorghum genotypes to leaf, panicle and grain anthracnose (Colletotrichum graminicola) under field conditions in Mali. In: Akintayo I, Sedgo J (eds) Towards sustainable sorghum production, utilization, and commercialization in West Africa. West and Central African Sorghum Research Network (WCASRN), Bamako, pp 120–140

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high-resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hseu SH, Kuo KC, Lin HF, Lin CY (2008) Bacterial stalk rot of sorghum occurred in Kimmen area caused by Erwinia chrysanthemi. Plant Patho Bul 17:257–262

    Google Scholar 

  • Hulluka M, Esele JPE (1992) Sorghum diseases in eastern Africa. In: de Milliano WJA, Frederiksen RA, Bergston GD (eds) Sorghum and millets diseases: a second world review. ICRISAT, Patancheru, pp 21–24

    Google Scholar 

  • ICRISAT (1984) Sorghum root and stalk rots, a critical review: proceedings of the consultative group discussion on research needs and strategies for control of sorghum root and stalk rot diseases, 27 Nov to 2 Dec 1983, Bellagio, Italy. ICRISAT, Patancheru

    Google Scholar 

  • ICRISAT (1992) Medium term plan 1994–98. Research theme datasets, vol 3. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 229

    Google Scholar 

  • Indira S, Muthusubramanian V, Tonapi VA, Seetharama N (2004) Role of Biocontrol agents in the supression of seed borne pathogenic mycoflora and their effect on seed quality in Sorghum (Sorghum bicolor (L Moench)). ISTA seed symposium, 17–19 May, 2004 Budapest, Hungary (Abstr). ISTA, Budapest, p 111

    Google Scholar 

  • Iqbal U, Mukhtar T, Iqbal SM, Ul-Haque I, Malik SR (2010) Host plant resistance in blackgram against charcoal rot (Macrophomina phaseolina (Tassi) Goid). Pak J Phytopathol 22:126–129

    Google Scholar 

  • Isakeit T, Odvody G, Jahn R, Deconini L (2003) Peronosclerospora sorghi resistant to metalaxyl treatment of sorghum seed in Texas. Phytopathology 93:S39

    Google Scholar 

  • Jahagirdar S, Patil MS, Indira S (2001) Biological control of charcoal rot of sorghum caused by Macrophomina phaseolina. Agric Sci Digest 21:153–156

    Google Scholar 

  • Jamadar MM, Desai SA (1996) Management of charcoal rot caused by Macrophomina phaseolina (Tassi.) Goid in sorghum, Sorghum bicolor (L.) Moench. J Biol Control 10:93–96

    Google Scholar 

  • Janke GD, Pratt RG, Arnold JD, Odvody GN (1983) Effects of deep tillage and roguing of diseased plants on oospore populations of Peronosclerospora sorghi in soil and on incidence of downy mildew in grain sorghum. Phytopathology 73:1674–1678

    Article  Google Scholar 

  • Janse JD (2005) Phytobacteriology: principles and practice. Cabi Publishing, London

    Book  Google Scholar 

  • Jeffers D, Cordova H, Vasal S, Srinivasan G, Beck D, Barandiaran M (2000) Status in breeding for resistance to maize diseases at CIMMYT. In: Vasal SK, Gonzalez Ceniceros F, Fan XM (eds) Proceedings of the 7th Asian Regional maize workshop. PCARRD, Los Baos, pp 257–266

    Google Scholar 

  • Jeger MJ (1998) The effect of sowing date on the incidence of sorghum downy mildew in Zimbabwe. Trop Sci 39:194–203

    Google Scholar 

  • Jeger MJ, Gilijamsea E, Bock CH, Frinkinga HD (1998) The epidemiology, variability and control of the downy mildews of pearl millet and sorghum, with particular reference to Africa. Plant Pathol 47:544–569

    Article  Google Scholar 

  • Jiang Y, Xu J, Hu L, Liu KJ, Xu XD, Liu Z, Meng WL (2018) First report of sorghum zonate leaf spot caused by Gloeocercospora sorghi in China. Plant Dis. https://doi.org/10.1094/PDIS-08-17-1217-PDN

  • Karkouri AE, El Hassani FZ, El Mzibri M, Benlemlih M, El Hassouni M (2010) Isolation and identification of an actinomycete strainwith a biocontrol effect on the phytopathogenic Erwinia chrysanthemi 3937VIII responsible for soft rot disease. Ann Microbiol 60:263–268. https://doi.org/10.1007/s13213-010-0036-1

    Article  CAS  Google Scholar 

  • Karunakar RI, Pande S, Thakur RP (1996) A greenhouse screening technique to assess rust resistance in sorghum. Int J Pest Manag 42:221–225

    Article  Google Scholar 

  • Kaur S, Dhillon GS, Brar SK, Vallad GE, Chand R, Chauhan VB (2012) Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Crit Rev Microbiol 38:136–151

    Article  CAS  PubMed  Google Scholar 

  • Kharayat B, Singh Y (2012a) Evaluation of efficacy of fungicides against zonate leaf spot of sorghum caused by Gloeocercospora sorghi. Department of Plant Pathology, G.B.P.U.A&T, Pantnagar, U. S. Nagar, 263145, Uttarakhand, India. Int J Plant Res 25:136–142

    Google Scholar 

  • Kharayat B, Singh Y (2012b) Biological control of zonate leaf spot of sorghum caused by Gloeocercospora sorghi. Int J Plant Protec 5:401–404

    Google Scholar 

  • Kharayat B, Singh Y (2013) Unusual occurrence of Erwinia stalk rot of sorghum in tarai region of Uttarakhand. Int J Agric Sci 9:809–813

    Google Scholar 

  • Kharayat B, Singh Y (2015) Characterization of Erwinia chrysanthemi isolates inciting stalk rot disease of sorghum. Afr J Agric Res 10:2309–2314

    Article  Google Scholar 

  • Khetarpal R, Gupta K (2008) Plant Quarantine in India in the wake of international agreements: a review. Annu Rev Plant Pathol 4:367–391

    Google Scholar 

  • Kiran BM, Patil PV (2019) Integrated management of leaf blight of sweet sorghum caused by Exserohilum turcicum (Pass.) Leonard and Suggs. Indian Phytopathol 72:63–69

    Article  Google Scholar 

  • Kloppers A, Tweer S (2009) Maize diseases: Erwinia stalk rot. Erwinia stalk rot fact sheet, version 1. PANNAR Seed (Pty) Ltd, Greytown. https://www.cabi.org/ISC/FullTextPDF/2011/20117800342.pdf

    Google Scholar 

  • Kumar S, Spaulding SA, Stohlgren TJ, Hermann K, Schmidt T, Bahls L (2009) Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Front Ecol Environ 7:415–420

    Article  Google Scholar 

  • Kumar A, Hunjan MS, Kaur H, Singh PP, Kaur R (2016) Evaluation of management of bacterial stalk rot of maize (Dickeya zeae) using bioagents and chemical agents. J Appl Nat Sci 8:1146–1151

    Article  CAS  Google Scholar 

  • Kumari N, Sharma I, Alam A, Sharma V (2015) Screening of sorghum genotypes and biochemical changes for resistance to damage caused by Macrophomina phaseolina. Arch Phytopathol Plant Protect 48(9–12):760–775

    Article  CAS  Google Scholar 

  • Lakshmanan P, Mohan S (1988) Studies on the effect of various fungicides on Sphacelia sorghi. Pesticides 22:27

    CAS  Google Scholar 

  • Lang JM, DuCharme E, Ibarra Caballero J, Luna E, Hartman T, Ortiz-Castro M, Korus K, Rascoe J, Jackson-Ziems TA, Broders K, Leach JE (2017) Detection and characterization of Xanthomonas vasicola pv.vasculorum (Cobb 1894) comb. nov. causing bacterial leaf streak of corn in the United States. Phytopathology 107:1312–1321. https://doi.org/10.1094/PHYTO-05-17-0168-R

    Article  CAS  PubMed  Google Scholar 

  • Leukel RW (1948) Periconia circinata and its relation to milo disease. J Agric Res 77:201–222

    Google Scholar 

  • Li X, Boer SHD (2005) First report of Burkholderia andropogonis causing leaf spots of Bougainvillea sp. in Hong Kong and clover in Canada. Plant Dis 89:1132. http://www.apsnet.org

    Article  CAS  PubMed  Google Scholar 

  • Little EL, Bostock RM, Kirkpatrick BC (1998) Genetic characterization of Pseudomonas syringae pv. syringae strains from stone fruits in California. Appl Environ Microbiol 64:3818–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes-Santos L, Castro DB, Ottoboni LM, Park D, Weir BS, Destéfano SA (2015) Draft genome sequence of Burkholderia andropogonis type strain ICMP2807, isolated from Sorghum bicolor. Genome Announc 3:e00455–e00415

    Article  PubMed  PubMed Central  Google Scholar 

  • Madhusudhana R (2019) Marker-assisted breeding in sorghum. In: Breeding sorghum for diverse end uses. Woodhead Publishing Series in Food Science, Technology and Nutrition, New York, NY, pp 93–114

    Chapter  Google Scholar 

  • Marley PS (2004) Effects of integrating host plant resistance with time of planting or fungicides on anthracnose and grain mould and yield of sorghum (Sorghum bicolor) in the Nigerian Northern Guinea Savanna. J Agric Sci 142:345–350

    Article  Google Scholar 

  • Marley PS, Aba DA (1999) Current status of sorghum smuts in Nigeria. http://agris.fao.org/agris-search/search.do?recordID=US201302940032

  • Marley PS, Elemo KA, Aba DA, Onu I, Akintayo I (2001a) Reactions of sorghum genotypes to anthracnose and gray leaf spot under Sudan and Sahel savannah field conditions of Nigeria. J Sustain Agric 18:105–116

    Article  Google Scholar 

  • Marley PS, Thakur RP, Ajayi O (2001b) Variation among foliar isolates of Colletotrichum sublineolum of sorghum in Nigeria. Field Crops Res 69:133–142. https://doi.org/10.1016/S0378-4290(00)00128-3

    Article  Google Scholar 

  • Marley PS, Bandyopadhyay R, Tabo R, Ajayi O (2001c) Sorghum germplasm with multiple resistance to two major sorghum diseases in the Nigerian Savanna. Trop Sci 41:44–49

    Google Scholar 

  • Marley PS, Diourte M, Neya A, Nutsugah SK, Sereme P, Katile SO, Hess DE, Mbaye DF, Ngoko Z (2002a) Sorghum and pearl millet diseases in West and Central Africa. In: Leslie J (ed) Sorghum and millets diseases. Iowa State University Press, Ames, IA, pp 419–426

    Google Scholar 

  • Marley PS, Shebayan JAY, Aba DA, Onu I, Musa RS, Akintayo I (2002b) Analysis of biotic constrainsts in sorghum production in the Sudano-Sahelian ecology of Nigeria. Samaru J Agric Res 18:41–53

    Google Scholar 

  • Marley PS, Gupta SC, Aba DA (2002c) Assessment of sorghum genotypes for resistance to foliar anthracnose under field conditions. Samaru J Agric Res 18:17–24

    Google Scholar 

  • Marley PS, Sanoussi S, Anas HI (2003) Location of some grain mould fungi in sorghum seed and their possible transmission. Nigerian J Arid Agric 13:71–75

    Google Scholar 

  • Marley PS, Diourte M, Neya A, Rattunde FW (2004) Sorghum anthracnose and sustainable management strategies in West and Central Africa. J Sustain Agric 25:43–56

    Article  Google Scholar 

  • Mathur K, Thakur RP, Neya A, Marley PS, Casela CR (2002) Sorghum anthracnose-problem and management strategy. In: Leslie JF (ed) Sorghum and millets diseases. Iowa State Press, Ames, IA, pp 211–220

    Google Scholar 

  • Mathur K, Thakur RP, Rao VP, Jadone K, Rathore S, Velazhahan R (2011) Pathogenic variability in Exserohilum turcicum and resistance. Indian Phytopathol 64:32–36

    Google Scholar 

  • Mayers PE (1976) The first recordings of Milo disease and Periconia circinata on sorghum in Australia. Austr Plant Pathol Soc Newsl 5:59–60

    Article  Google Scholar 

  • McLaren NW (1992) Quantifying resistance of sorghum genotypes to the sugary disease pathogen (Claviceps africana). Plant Dis 76:986–988

    Article  Google Scholar 

  • Mehta PJ, Wiltse CC, Rooney WL, Collinsa SD, Frederiksen RA, Hess DE, Chisi M, TeBeest DO (2005) Classification and inheritance of genetic resistance to anthracnose in sorghum. Field Crops Res 93:1–9

    Article  Google Scholar 

  • Mendes MAS, Urben AF, Gonzaga V, Mattos FLF (2016) Eradication of fungi in imported plant germplasm. Pesqui Agropecu Bras 51:473–482

    Article  Google Scholar 

  • Mittal M, Boora KS (2005) Molecular tagging of gene conferring leaf blight resistance using microsatellites in sorghum {Sorghum bicolour (L.) Moench}. Indian J Exp Biol 43:462–466

    CAS  PubMed  Google Scholar 

  • Mohan S, Madhusudhana R, Mathur K, Howarth C, Srinivas G, Satish K (2009) Co-localization of quantitative trait loci for foliar disease resistance in sorghum. Plant Breed 128:532–535

    Article  Google Scholar 

  • Moore JW, Ditmore M, Te Beest DO (2008) Pathotypes of Colletotrichum sublineolum in Arkansas. Plant Dis 92:1415–1420

    Article  CAS  PubMed  Google Scholar 

  • Mtisi E (1996) Evaluation of systemic seed dressing for the control of covered kernel smut on sorghum in Zimbabwe. In: Leouschner K, Manthe CS (eds) Drought - tolerant crops for Southern Africa: proceeding of the SADC/ICRISAT regional sorghum Botswana. International Crops research Institute for the semi-Arid Tropics, Patancherus, pp 185–188

    Google Scholar 

  • Mughogho LK, Pande S (1984) Charcoal rot of sorghum. In: Mughogho LK (ed) Sorghum root and stalk rots, a critical review. ICRISAT, Patancheru, pp 11–24

    Google Scholar 

  • Muriithi LM, Claflin LE (1997) Genetic variation of grain sorghum germplasm for resistance to Pseudomonas andropogonis. Euphytica 98:129–132

    Article  Google Scholar 

  • Musabyimana T, Sehene C, Bandyopadhyay R (1995) Ergot resistance in sorghum in relation to flowering, inoculation technique and disease development. Plant Pathol 44:109–115

    Article  Google Scholar 

  • Muthusubramanian V, Bandyopadhyay R, Reddy DR, Tooley PW (2006) Cultural characteristics, morphology, and variation within Claviceps africana and C. sorghi from India. Mycol Res 110:452–464

    Article  PubMed  Google Scholar 

  • Nagaraj MS, Umashankar N, Palanna KB, Khan ANA (2012) Etiology and management of tip-over disease of banana by using biological agents. Int J Adv Biol Res 2:483–486

    Google Scholar 

  • Narayana YD (2006) Studies on epidemiology of an isolate of maize stripe virus on sorghum. Indian J Virol 17(2):121

    Google Scholar 

  • Narayana YD, Das IK, Bhagwat VR, Tonapi VA, Patil JV (2011) Viral diseases of sorghum in India. Directorate of Sorghum Research, Hyderabad, p 30. ISSN:89-335-35-9

    Google Scholar 

  • Navi SS, Bandyopadhyay R, Devi KT, Reddy DVR (2002) Bacterial leaf streak of sorghum – a new report from India. Int Sorghum Millets Newsl 43:61–63. ISSN 1023-487X

    Google Scholar 

  • Navi SS, Bandyopadhyay R, Reddy RK, Thakur RP, Yang XB (2005) Effects of wetness duration and grain development stages on sorghum grain mold infection. Plant Dis 89:872–878

    Article  CAS  PubMed  Google Scholar 

  • Ngugi HK, Julian AM, King SB, Peacocke BJ (2000) Epidemiology of sorghum anthracnose (Colletotrichum sublineolum) and leaf blight (Exserohilum turcicum) in Kenya. Plant Pathol 49:129–140

    Article  Google Scholar 

  • Ngugi HK, King SB, Holt J, Julian AM (2001) Simultaneous temporal progress of sorghum anthracnose and leaf blight in crop mixtures with disparate patterns. Phytopathology 91:720–729

    Article  CAS  PubMed  Google Scholar 

  • Nyvall RF (1999) Field crop diseases handbook, 3rd edn. Iowa State University Press, Ames, IA

    Google Scholar 

  • Odvody GN (1986) Gray leaf spot. In: Frederiksen RA (ed) Compendium of sorghum diseases. American Phytopathological Society, St. Paul, MN, pp 11–12

    Google Scholar 

  • Odvody GN (1997) Spread and importance of ergot in the western hemisphere. In: Parker RD, Livingston SD, Falconer LL (eds) Grain Sorghum for the 21st century: working together as an industry. College Station, TX, Texas Agricultural Extension Service, pp 64–71

    Google Scholar 

  • Odvody GN, Dunkle LD, Edmunds LK (1977) Characterization of the Periconia circinata population in a milo disease nursery. Phytopathology 67:1485–1489

    Article  Google Scholar 

  • Ogliaril JB, Guimarães MA, Camargo LEA (2007) Chromosomal locations of the maize (Zea mays L.) HtP and rt genes that confer resistance to Exserohilum turcicum. J Genet Mol Biol 30:630–634

    Article  Google Scholar 

  • Ogolla FO, Muraya MM, Onyango BO (2019) Variation in temperature and nutrient source Influence the growth of Exserohilum turcicum mycelia isolated from sorghum. J Sci Eng 6:93–99

    Google Scholar 

  • Okori P, Rubaihayo PR, Ekwamu A, Fahleson J, Dixelius C (2004) Genetic characterization of Cercospora sorghi from cultivated and wild sorghum and its relationship to other Cercospora fungi. Phytopathology 94:743–750

    Article  CAS  PubMed  Google Scholar 

  • Palleroni JN (1984) Family I. Pseudomonadaceae. In: Rkrieg N, Gholt J (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins Co, Baltimore, MD, pp 141–199

    Google Scholar 

  • Pande S, Harikrishnan R, Alegbejo MD, Mughogho LK, Karunakar RI, Ajayi O (1993) Prevalence of sorghum diseases in Nigeria. Int J Pest Manage 39:297–303

    Article  Google Scholar 

  • Pande S, Bock CH, Bandyopadhyay R, Narayana YD, Reddy BVS, Lenne JM, Jeger MJ (1997) Downy mildew of sorghum. Publication no 51. International Crops Research Institute for the Semi Arid Tropics (ICRISAT), Patancheru

    Google Scholar 

  • Park SD, Park KS, Kim KJ, Kim JC, Yoon JT, Khan Z (2005) Effect of sowing time on development of safflower anthracnose disease and degree of resistance in various cultivars. J Phytopathol 153:48–51

    Article  Google Scholar 

  • Patil AS, Hema S, Sharma SR, Rao GP (2007) Morphology and pathogenicity of isolates of Fusarium moniliforme causing pokkah boeng disease of sugarcane in Maharashtra. In: Ram RC, Asha S (eds) Microbial diversity: modern trends. Daya Publishing House, New Delhi, pp 234–263

    Google Scholar 

  • Pazoutova S, Frederickson DE (2005) Genetic diversity of Claviceps africana on sorghum and Hyparrhenia. Plant Pathol 54:749–763

    Google Scholar 

  • Peterschmitt M, Ratna AS, Sacks WR, Reddy DVR, Mughogho LK (1991) Occurrence of an isolate of maize stripe virus in India. Ann Appl Biol 118:57–70

    Article  Google Scholar 

  • Philips MH (1940) Physiologic specialization and genetics of the Smut fungi. III. Bot Rev 31:114–150

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Plant Quarantine Order (2003). http://plantquarantineindia.nic.in/PQISPub/pdffiles/pqorder2015.pdf

  • Prom LK (2017a) Sorghum production and anthracnose diseaseh management in future global energy and food security. J Plant Dis 1:1–3

    Google Scholar 

  • Prom LK (2017b) Sorghum production and anthracnose disease management in future global energy and food security. J Plant Dis Biomarkers 1:1–3

    Google Scholar 

  • Prom LK, Erpelding JE (2006) Ergot response for the sorghum genotype IS8525. Plant Pathol J 5:216–220

    Article  Google Scholar 

  • Prom LK, Perumal R, Erattaimuthu SR, Erpelding JE, Montes N, Odvody GN, Greenwald C, Jin Z, Frederiksen R, Magill CW (2011) Virulence and molecular genotyping studies of Sporisorium reilianum isolates in sorghum. Plant Dis 95:523–529

    Article  CAS  PubMed  Google Scholar 

  • Prom LK, Perumal R, Erattaimuthu SR (2012) Genetic diversity and pathotype determination of Colletotrichum sublineolum isolates causing anthracnose in sorghum. Eur J Plant Pathol 133:671–685

    Article  Google Scholar 

  • Prom LK, Perumal R, Montes-Garcia N, Isakeit T, Odvody GN, Rooney WL, Little CR, Magill C (2015) Evaluation of Gambian and Malian sorghum germplasm against downy mildew pathogen, Peronosclerospora sorghi, in Mexico and the USA. J Gen Plant Pathol 81:24–31

    Article  CAS  Google Scholar 

  • Prom LK, Cuevas H, Isakeit T, Droleskey R (2016) Excised leaf method for high volume evaluation of sorghum germplasm for resistance against Colletotrichum sublineolum. Plant Pathol 15:11–16

    Article  CAS  Google Scholar 

  • Purohit J, Singh Y, Holeyachi PB, Gupta N (2014) Field reaction of sorghum germplasm to zonate leaf spot disease. Environ Ecol 32:174–177

    Google Scholar 

  • Rajkumar FB, Kuruvinashetti MS (2007) Genetic variability of sorghum charcoal rot pathogen (Macrophomina phaseolina) assessed by random DNA markers. Plant Pathol J 23:45–50

    Article  Google Scholar 

  • Ramakrishnan TS (1941) Top rot (twisted top or pokkah bong) of sugarcane, sorghum and cumbu. Letter to the Editor. Curr Sci 10:406–408

    Google Scholar 

  • Ramathani I, Biruma M, Martin T, Dixelius C, Okori P (2011) Disease severity, incidence and races of Setosphaeria turcica on sorghum in Uganda. Eur J Plant Pathol. https://doi.org/10.1007/s10658-011-9815-1

  • Rao RDVJP, Chakrabarty SK, Ratna RS, Reddy JR (1990) Detection of Xanthomonas campestris pv. holcicola in sorghum by dot immunobinding assay. Indian Phytopathol 43:213–214

    Google Scholar 

  • Ravindran A, Jalan N, Yuan JS, Wang N, Gross DC (2015) Comparative genomics of Pseudomonas syringae pv. syringae strains B301D and HS191 and insights into intrapathovar traits associated with plant pathogenesis. Microbiol Open 4:553–573

    Article  CAS  Google Scholar 

  • Reddy BVS, Sanjana Reddy P, Sadananda AR, Dinakaran E, Ashok Kumar A, Deshpande SP, Srinivasa Rao P, Sharma HC, Sharma R, Krishnamurthy L, Patil JV (2012) Post rainy season sorghum: constraints and breeding approaches. J SAT Agric Res 10:1–12

    Google Scholar 

  • Reed JD, Tuinstra MR, McLaren NW, Kofoid KD, Ochanda NW, Claflin LE (2002) Analysis of combining ability for ergot resistance in grain sorghum. Crop Sci 42:1818–1823

    Google Scholar 

  • Rooney WL, Collins SD, Klein RR, Mehta PJ, Frederiksen RA, Rodriquez-Herrera R (2002) Breeding sorghum for resistance to anthracnose, grain mold, downy mildew and head smut. In: Leslie JF (ed) Sorghum and millets diseases. Iowa State Press, Ames, IA, pp 273–279

    Google Scholar 

  • Ryley MJ, Persley DM, Jordan DR, Henzell RG (2002) Status of sorghum and pearl millet diseases in Australia. In: Leslie JF (ed) Sorghum and millet diseases. Iowa State Press, Ames, pp 441–448

    Google Scholar 

  • Saxena SC, Mughogho LK, Pande S (1991) Stalk rot and top rot of sorghum caused by Erwinia chrysanthemi. Indian J Microbiol 31:435–441

    Google Scholar 

  • Schnippenkoetter W, Lo C, Liu G, Dibley K, Chan WL, White J, Milne R, Zwart A, Kwong E, Keller B, Godwin I, Krattinger SG, Lagudah E (2017) The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnol J 15:1387–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah DA, Dillard HR (2010) Managing foliar diseases of processing sweet corn in New York with strobilurin fungicides. Plant Dis 94:213–220

    Google Scholar 

  • Sharma R, Thakur RP, Senthilvel S, Nayak S, Reddy SV, Rao VP, Varshney RK (2010) Identification and characterization of toxigenic fusaria associated with sorghum grain mold complex in India. Mycopathologia 171:223–230

    Article  PubMed  Google Scholar 

  • Sharma R, Upadhyaya HD, Manjunatha SV, Rao VP, Thakur RP (2012) Resistance to foliar diseases in a mini-core collection of sorghum germplasm. Plant Dis 96:1629–1633

    Article  PubMed  Google Scholar 

  • Sharma I, Kumari N, Sharma V (2015) Sorghum fungal diseases. In: Lichtfouse E, Goyal A (eds) Sustainable agriculture reviews, vol 16. Springer, Cham

    Chapter  Google Scholar 

  • Shiri M, Rahjoo V, Ebrahimi L (2017) Reaction of some sorghum varieties against grain mold and fumonisin accumulation. J Plant Phys Breed 7:91–97

    Google Scholar 

  • Sifuentes J, Frederiksen RA (1988) Inheritance of resistance to pathotypes 1, 2, and 3 of Peronosclerospora sorghi in sorghum. Plant Dis 72:332–333

    Article  Google Scholar 

  • Singh SD, Bandyopadhyay R (2000) Grain mold. In: Frederiksen RA, Odvody GN (eds) Compendium of sorghum diseases, 2nd edn. APS Press, St. Paul, MN, pp 38–40

    Google Scholar 

  • Singh P, Singh Y, Purohit J, Maharshi A (2018) A comparative evaluation of bioagents and chemicals for the control of stalk rot of sorghum caused by Dickeya dadantii. J Appl Nat Sci 10:1053–1058

    Article  CAS  Google Scholar 

  • Sisay A, Abebe F, Wako K (2012) Evaluation of three potential botanicals against sorghum covered smut (Sphacelotheca sorghi) at Bako, Western Oromia Ethiopia. African J Plant Sci 6:226–231

    Google Scholar 

  • Smith K (2017) Evaluating the effects of fungicides for the control of Exserohilum turcicum on sorghum in South Africa. Dissertation submitted in fulfilment of the requirements for the degree Magister Scientiae in Environmental Sciences at the Potchefstroom Campus of the North-West University, p. 136

    Google Scholar 

  • Somda I, Leth V, Sarama P (2007) Evaluation of Lemongrass, Eucalyptus and Neem aqueous extracts for controlling seed-borne fungi of sorghum grown in Burkina Faso. World J Agric Sci 3:218–223

    Google Scholar 

  • Stoyanova M, Pavlina I, Moncheva P, Bogatzevska N (2007) Biodiversity and incidence of Burkholderia species. Biotechnol Biotechnol Equip 21:306–310

    Article  Google Scholar 

  • Tarr SAJ (1962) Diseases of sorghum, Sudan grass and Broomcorn. The Commonwealth Mycological Institute Kew, Surrey, pp 196–218

    Google Scholar 

  • Tegegne G, Bandyopadhyay R, Mulatu T, Kebede Y (1994) Screening for ergot resistance in sorghum. Plant Dis 78:873–876

    Article  Google Scholar 

  • Tesso T, Perumal R, Little CR, Adeyanju A, Radwan GL, Prom LK, Magill CW (2012) Sorghum pathology and biotechnology – a fungal disease perspective: Part II. Anthracnose, stalk rot, and downy mildew. Euro J Plant Sci Biotechol 6:31–44

    Google Scholar 

  • Testa G, Reyneri A, Blandino M (2015) Foliar fungicide application to maize: yield and grain hardness enhancement in different environmental conditions. Crop Sci 55:1–9. https://doi.org/10.2135/cropsci2014.03.0262

    Article  CAS  Google Scholar 

  • Teyssandier E (1992) Sorghum diseases in South America. In: WAJ De Miliiano, Frederiksen RA, Bengston GD Sorghum and millets diseases: a second world review. Patancheru: International Crops Research institute for the Semi-Arid Tropics, 63-66

    Google Scholar 

  • Thakur RP (2007) Genetic resistance to foliar anthracnose in sorghum and pathogenic variability in Colletotrichum graminicola. Indian Phytopathol 60:13–23

    Google Scholar 

  • Thakur RP, Mathur K (2002) Downy mildews of India. Crop Prot 21:333–345

    Article  Google Scholar 

  • Thakur RP, Pande S (1995) Genetic management of major fungal pathogens of sorghum. In: Verma JP, Varma A, Kumar D (eds) Detection of plant pathogens and their management. Angkor Publishers (P) Ltd, New Delhi, pp 315–326

    Google Scholar 

  • Thakur RP, Reddy BVS, Indira S, Rao VP, Navi SS, Yang XB, Ramesh S (2006) Sorghum grain mold. Information bulletin no.72. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 32. ISBN 92-9066-488-6. Order code IBE 072

    Google Scholar 

  • Thakur RP, Rao VP, Sanjana RP (2007) Downy mildew. In: Thakur RP, BVS R, Mathur K (eds) Screening techniques for sorghum diseases. Information bulletin no 76. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, pp 31–39

    Google Scholar 

  • Thakur NS, Kushwaha BB, Girothia OP, Sinha NK, Mishra JS (2016) Effect of integrated weed management on growth and yields of rainy-season sorghum (Sorghum bicolor). Indian J Agron 61:217–222

    CAS  Google Scholar 

  • Thomas MD, Sissoko I, Sacko M (1995) Development of leaf anthracnose and its effect on yield and grain weight of sorghum in West Africa. Plant Dis 80:151–153

    Article  Google Scholar 

  • Tooley PW, Bandyopadhyay R, Carras MM, Pazoutová S (2006) Analysis of Claviceps africana and C. sorghi from India using AFLPs, EF-1alpha gene intron 4, and beta-tubulin gene intron 3. Mycol Res 110:441–451

    Article  CAS  PubMed  Google Scholar 

  • Tsedaley B, Adugna G, Lemessa F (2016) Distribution and importance of sorghum anthracnose (Colletotrichum sublineolum) in Southwestern and Western Ethiopia. Plant Pathol 15:75–85

    Article  CAS  Google Scholar 

  • Tuleen DM, Frederiksen RA, Vudhivanich P (1980) Cultural practices and the incidence of sorghum downy mildew in grain sorghum. Phytopathology 70:905–908

    Article  Google Scholar 

  • Usha Sree S, Nagaraja Reddy R, Murali Mohan S, Madhusudhana R, Mathur K, Bhat V, Rathore S (2012) Genetic diversity and pathogenic variation in the isolates of Exserohilum turcicum causing common leaf blight of sorghum. Indian Phytopathol 65(4):349

    Google Scholar 

  • Vasantha Kumari MM, Shivanna MB (2014) Biological control of sorghum anthracnose with rhizosphere and rhizoplane fungal isolates from perennial grasses of the Western Ghats of India. Eur J Plant Pathol 139:721–733

    Article  Google Scholar 

  • Wall GC, Mughogho LK, Frederiksen RA, Odvody GN (1987) Foliar disease of sorghum species caused by Cercospora fusimaculans. Plant Dis 71:759–760

    Article  Google Scholar 

  • Wang ML, Ryley M, Meinke H (2000) Prediction of sorghum downy mildew risk in Australia using daily weather data. Aust Pathol 29:108–119

    Article  Google Scholar 

  • Wang ML, Dean R, Erpelding J, Pederson G (2006) Molecular genetic evaluation of sorghum germplasm differing in response to fungal diseases: rust (Puccinia purpurea) and anthracnose (Colletotrichum graminicola). Euphytica 148:319–330. https://doi.org/10.1007/s10681-005-9040-0C

    Article  CAS  Google Scholar 

  • Wani TA, Ahmad M, Anwar A (2017) Evaluation of fungicides, bioagents and plant extracts against Exserohilum turcicum causing Turcicum leaf blight of maize. Int J Curr Microbiol App Sci 6:2754–2762. https://doi.org/10.20546/ijcmas.2017.608.329

    Article  CAS  Google Scholar 

  • White JW (2008) Pathotypes, epidemiology and economic importance of sorghum rust (Puccinia purpurea) in Australia. Ph.D. thesis. University of Queensland, Brisbane, QLD

    Google Scholar 

  • White JW, Ryley MJ, George DL, Kong GA, White SC (2012) Yield losses in grain sorghum due to rust infection. Australas Plant Pathol 41:85–91

    Article  Google Scholar 

  • White JW, Ryley MJ, George DL, Kong GA (2014) Optimal environmental conditions for infection and development of Puccinia purpurea on sorghum. Australas Plant Pathol 43:447–457

    Article  CAS  Google Scholar 

  • White JW, Ryley MJ, George DL, Kong GA (2015) Identification of pathotypes of the sorghum rust pathogen, Puccinia purpurea, in Australia. Australas Plant Pathol 44:1–4

    Article  Google Scholar 

  • Williams RJ (1984) Downy mildews of tropical cereals. In: Ingram DS, Williams PH (eds) Advances in plant pathology, 2nd edn. Academic Press, London, pp 1–103

    Google Scholar 

  • Williams RJ, Frederiksen RA, Girard JC (1978) Sorghum and pearl millet disease identification handbook. Information bulletin no 2. ICRISAT, Patancheru, p 88

    Google Scholar 

  • Wollenweber HW, Reinking OA (1935) Fusarien, ihre Beschreibung. Schadwirkung und Bekampfung, Paul Parey, Berlin

    Google Scholar 

  • Zummo N (1972) External Fusarium moniliforme var. subglutinans associated with right angle bending and twisting of sweet sorghum stalks (Abstract). Phytopathology 62:800

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Anitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anitha, K., Das, I.K., Holajjer, P., Sivaraj, N., Reddy, C.R., Balijepalli, S.B. (2020). Sorghum Diseases: Diagnosis and Management. In: Tonapi, V.A., Talwar, H.S., Are, A.K., Bhat, B.V., Reddy, C.R., Dalton, T.J. (eds) Sorghum in the 21st Century: Food – Fodder – Feed – Fuel for a Rapidly Changing World. Springer, Singapore. https://doi.org/10.1007/978-981-15-8249-3_23

Download citation

Publish with us

Policies and ethics