Skip to main content

The Developmental History of Ustilago maydis: A Saprophytic Yeast, a Mycelial Fungus, Mushroom-Like, and a Smut

  • Chapter
  • First Online:
Advancing Frontiers in Mycology & Mycotechnology

Abstract

Ustilago maydis is a basidiomycete fungus of the subphylum Ustilaginomycotina. U. maydis is a biotrophic phytopathogen that causes common smut in maize (Zea mays L) and its ancestor teozintle (Zea mays ssp. parviglumis and ssp. mexicana). The economical importance of U. maydis is not as significant as other smuts because it does not cause heavy losses in agriculture but is considered a classic fungal model for studying the mechanism of DNA recombination and mating, other important aspects of fungal development, and the molecular mechanisms of fungal pathogenesis. The life cycle of U. maydis involves one saprophytic phase of haploid yeast form (sporidia) and a hyphal virulent dikaryon formed by mating of two sexually compatible sporidia. This invades the host growing in the hyphal form and finally forms tumors full of diploid teliospores that germinate with the formation of a phragmobasidium and four basidiospores. This cycle has been analyzed at the molecular level. Importantly, it was found that U. maydis may be pathogenic under axenic conditions for plants unrelated to maize, but does not complete the sexual cycle. The dimorphic yeast-to-hypha transition occurs also in vitro induced by growth with fatty acids or acetate and at acidic pH, developing into multicellular individuals, and unexpectedly forms basidiocarps in vitro completing the sexual cycle with the formation of holobasidia instead of phragmobasidia, septal pores, and fibulae. Interestingly, laboratory and natural strains of U. maydis harbor a bacterial symbiont that fixes N2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexopoulos CJ, Mims CW (1962) Introductory mycology. Wiley, New York, p 613

    Google Scholar 

  • Bakkeren G, Kruzel EK, Hull CM (2012) Sex and virulence in basidiomycete pathogens. In: Sibley LD, Howlett BJ, Heitman J (eds) Evolution of virulence in eukaryotic microbes. Wiley-Blackwell & Sons Inc., Hoboken, pp 437–460

    Google Scholar 

  • Banuett F (1995) Genetics of Ustilago maydis a fungal pathogen that induces tumors in maize. Genetics 29:179–208

    Article  CAS  Google Scholar 

  • Banuett F (2002) Pathogenic development in Ustilago maydis. In: Osiewacz HD (ed) Molecular biology of fungal development. CRC Press, Boca Raton, pp 349–398

    Google Scholar 

  • Banuett F, Herskowitz I (1994a) Morphological transition in the life cycle of Ustilagomaydis and their genetic control by the a and bloci. Exp Mycol 18:247–266

    Article  Google Scholar 

  • Banuett F, Herskowitz I (1994b) Identification of Fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev 8:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Banuett F, Herskowitz I (1996) Discrete developmental stages during teliospore formation in the corn smut fungus Ustilago maydis. Development 122:2965–2976

    CAS  PubMed  Google Scholar 

  • Banuett F, Quintanilla RH Jr, Reynaga-Peña CG (2008) The machinery for cell polarity, cell morphogenesis, and the cytoskeleton in the Basidiomycete fungus Ustilago maydis-a survey of the genome sequence. Fungal Genet Biol 45:3–14

    Article  CAS  Google Scholar 

  • Basse CW, Steinberg G (2004) Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol Plant Pathol 5:83–92

    Article  PubMed  Google Scholar 

  • Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98:906–916

    Article  PubMed  Google Scholar 

  • Benevenuto J, Teixeira-Silva NS, Kuramae EE, Croll D, Monteiro-Vitorello CB (2018) Comparative genomics of smut pathogens: insights from orphans and positively selected genes into host specialization. Front Microbiol 9:660–677

    Article  PubMed  PubMed Central  Google Scholar 

  • Bölker M, Urban M, Kahmann R (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell 68:441–450

    Article  PubMed  Google Scholar 

  • Brachmann A, Weinzierl G, Kamper J, Kahmann R (2001) Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42:1047–1063

    Article  CAS  PubMed  Google Scholar 

  • Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R (2009) Ustilago maydis as a pathogen. Annu Rev Phytopathol 47:423–445

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Ponce JL, León-Ramírez CG, Verver-Vargas A, Palma-Tirado L, Ruiz-Herrera J (2012) Metamorphosis of the BasidiomycotaUstilago maydis: transformation of yeast-like cells into basidiocarps. Fungal Genet Biol 10:765–771

    Article  Google Scholar 

  • Calvo-Méndez C, Martínez-Pacheco M, Ruiz-Herrera J (1987) Regulation of ornithine decarboxylase activity in Mucor bacilliformis and Mucor rouxii. Exp Mycol 11:270–277

    Article  Google Scholar 

  • Chavan S, Smith SM (2014) A rapid and efficient method for assessing pathogenicity of Ustilago maydis on maize and teosinte lines. J Vis Exp 83:1–7

    Google Scholar 

  • Cheng CK et al (2013) 5′-Serial analysis of gene expression studies reveal a transcriptomic switch during fruiting body development in Copriniopsis cinerea. BMC Genomics 14:1–17

    Article  Google Scholar 

  • Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807

    Article  CAS  PubMed  Google Scholar 

  • Christenssen JJ (1963) Corn smut caused by Ustilago maydis. Am Phytopathol Soc Monogr 2:1–41

    Google Scholar 

  • Conrath U, Beckers GJ, Flors V et al (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119

    Article  CAS  PubMed  Google Scholar 

  • Cristancho M, Giraldo W, Botero D, Tabima J, Ortiz D, Peralta A, Gaitán A, Restrepo S, Riaño D (2014) Application of Genome Studies of Coffee Rust. In: Castillo LF, Gustavo-Isaza MC, Andrés Pinzón JM, Corchado R (eds) Advances in Intelligent Systems and Computing volume 232, Advances in Computational Biology Proceedings of the 2nd Colombian Congress on Computational Biology and Bioinformatics (CCBCOL). Springer, New York, pp 133–139

    Google Scholar 

  • Flor-Parra I, Vranes M, Kämper J, Pérez-Martin J (2006) Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell 18:2369–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froeliger EH, Leong SA (1991) The a mating type genes of Ustilago maydis are idiomorphs. Gene 100:113–122

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pedrajas MD, Steven JK, Andrews DL, Gold SE (2004) The Ustilago maydis–maize interaction. In: Talbot NJ (ed) Plant-pathogen interactions. Blackwell Publishing Ltd, Oxford, pp 166–201

    Google Scholar 

  • Garrido E, Voss U, Müller P, Castillo-Lluva S, Kahmann R, Pérez-Martín J (2004) The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes Dev 18:3117–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillissen B, Bergmann J, Sandman C, Schoeer M, Bölker M, Kahmann R (1992) A two component regulatory system for self nonself recognition in U. maydis. Cell 68:647–657

    Article  CAS  PubMed  Google Scholar 

  • Gold S, Duncan G, Barrett K, Kronstad J (1994) cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev 8:2805–2816

    Article  CAS  PubMed  Google Scholar 

  • Guevara-Olvera L, Calvo-Méndez C, Ruiz-Herrera J (1993) The role of polyamine metabolism in dimorphism of Yarrowia lipolytica. J Gen Microbiol 139:485–493

    Article  CAS  PubMed  Google Scholar 

  • Guevara-Olvera L, Xoconostle-Cázares B, Ruiz-Herrera J (1997) Cloning and disruption of the ornithine decarboxylase gene of Ustilago maydis: evidence for a role of polyamines in its dimorphic transition. Microbiology 143:2237–2245

    Article  CAS  PubMed  Google Scholar 

  • Inada K, Morimoto Y, Arina T, Murata Y, Kamada T (2001) The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 157:133–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juárez-Montiel M, Ruiloba de León S, Chávez-Camarillo G, Hernández-Rodríguez C, Villa-Tanaca L (2011) Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food. Rev Iberoam Micol 28:69–73

    Article  PubMed  Google Scholar 

  • Kahmann R, Schirawski J (2007) Mating in the smut fungi: from a to b to the downstream cascades. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC, pp 377–387

    Google Scholar 

  • Kämper J, Reichman M, Romeis T, Bölker M, Kahmann R (1995) Multiallelic recognition: Nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81:73–83

    Article  PubMed  Google Scholar 

  • Kämper J, Kahmann R et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101

    Article  PubMed  CAS  Google Scholar 

  • Klose J, Moniz de Sá MM, Kronstad JW (2004) Lipid-induced filamentous growth in Ustilagomaydis. Mol Microbiol 52:823–835

    Article  CAS  PubMed  Google Scholar 

  • Kretschmer M, Lambie S, Croll D, Kronstad JW (2018) Acetate provokes mitochondrial stress and cell death in Ustilago maydis. Mol Microbiol 107:488–507

    Article  CAS  PubMed  Google Scholar 

  • Kües U, Timothy YJ, Heitman J (2011) Mating type in basidiomycetes: unipolar, bipolar, and tetrapolar patterns of sexuality. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal-like organisms, The mycota XIV. Springer, Berlin Heidelberg, pp 97–160

    Chapter  Google Scholar 

  • Lanver D, Müller AN, Happe P, Schweizer G, Haas FB, Franitza M, Pellegrin C, Reissmann S, Altmüller J, Rensing SA, Kahmann R (2018) The biotrophic development of Ustilago maydis studied by RNA-Seq Analysis. Plant Cell 30:300–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León-Ramírez CG, Cabrera-Ponce JL, Martínez-Espinoza AD, Herrera-Estrella L, Méndez L, Reynaga-Peña CG, Ruiz-Herrera J (2004) Infection of alternative host plant species by Ustilago maydis. New Phytol 164:337–346

    Article  PubMed  Google Scholar 

  • León-Ramírez CG, Sánchez-Arreguín JA, Ruiz-Herrera J (2014) Ustilago maydis, a delicacy of the aztec cuisine and a model for research. Nat Resour 5:256–267

    Google Scholar 

  • Leung GSW, Zhang M, Xie WJ, Kwan HS (2000) Identification by RNA fingerprinting of genes differentially expressed during the development of the basidiomycete Lentinula edodes. Mol Gen Genet 262:977–990

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Srivilai P, Loos S, Aebi M, Kües U (2006) An essential gene for fruiting body initiation in the basidiomycete Coprinopsis cinerea is homologous to bacterial cyclopropane fatty acid synthase genes. Genetics 172:873–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Espinosa AD, Ruiz-Herrera J, Gold SE (2000) Las vías de transducción de señales en la patogénesis y la morfogénesis de hongos: los casos de Ustilago maydis y Magnaporthe grisea. Rev Mex Fitopatol 18:55–60

    Google Scholar 

  • Martínez-Espinoza AD, León C, Elizarraraz G, Ruiz-Herrera J (1997) Monomorphic nonpathogenic mutants of Ustilago maydis. Phytopathology 87:259–265

    Article  PubMed  Google Scholar 

  • Martínez-Espinoza AD, García-Pedrajas MD, Gold SE (2002) The Ustilaginales as plant pests and model systems. Fungal Genet Biol 35:1–20

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Espinoza AD, Ruiz-Herrera J, León-Ramírez CG, Gold SE (2004) MAP Kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis. Curr Microbiol 49:274–281

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Pacheco M, Rodríguez G, Reyna G, Calvo-Méndez C, Ruiz-Herrera J (1988) Inhibition of the yeast-mycelial transition and the phorogenesis of Mucorales by diaminobutanone. Arch Microbiol 151:10–14

    Article  Google Scholar 

  • Martínez-Soto D, Ruiz-Herrera J (2013) Transcriptomic analysis of the dimorphic transition of Ustilago maydis induced in vitro by a change in pH. Fungal Genet Biol 58:116–125

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Soto D, Ruiz-Herrera J (2016) Induced resistance to Ustilago maydis in Zea mays inoculated in non-sterile conditions. Int J Biotech Well Ind 5:51–59

    Article  CAS  Google Scholar 

  • Martínez-Soto D, Ruiz-Herrera J (2017) Functional analysis of the MAPK pathways in fungi. Rev Iberoam Micol 34:192–202

    Article  PubMed  Google Scholar 

  • Martínez-Soto D, Robledo-Briones AM, Estrada-Luna A, Ruiz-Herrera J (2013) Transcriptomic analysis of Ustilago maydis infecting Arabidopsis reveals important aspects of the fungus pathogenic mechanisms. Plant Signal Behav 8:1–13

    Article  CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Méndez-Morán L, Reynaga-Peña CG, Springer PS, Ruiz-Herrera J (2005) Ustilagomaydis infection of the non-natural host Arabidopsis thaliana. Phytopathology 95:480–488

    Article  PubMed  Google Scholar 

  • Müller P, Weinzierl G, Brachmann A, Feldbrügge M, Kahmann R (2003) Mating and pathogenic development of the Smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot Cell 2:1187–1199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muraguchi H, Kamada T (1998) The ich1 gene of the mushroom Coprinus cinereus is essential for pileus formation in fruiting. Development 125:3133–3141

    CAS  PubMed  Google Scholar 

  • Muraguchi H, Kamada T (2000) A mutation in the eln2 gene encoding a cytochrome P450 of Coprinus cinereus affects mushroom morphogenesis. Fungal Genet Biol 29:49–59

    Article  CAS  PubMed  Google Scholar 

  • Nagy LG, Kovács GM, Krizsán K (2018) Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 93:1778–1794

    Article  PubMed  Google Scholar 

  • Oberwinkler F (2012) Evolutionary trends in Basidiomycota. Stapfia 96:45–104

    Google Scholar 

  • Pérez-Nadales E, Almeida-Nogueira MF, Baldin C et al (2014) Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 7:42–67

    Article  CAS  Google Scholar 

  • Perkins DD (1949) Biochemical mutants in the smut fungus, Ustilago maydis. Genetics 64:607–626

    Google Scholar 

  • Petersen JH (2013) The kingdom of fungi. Princeton University Press, Princeton, p 282

    Book  Google Scholar 

  • Pétriacq P, López A, Luna E (2018) Fruit decay to diseases: can induced resistance and priming help? Plants 7:1–16

    Article  Google Scholar 

  • Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci U S A 98:2101–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piperno DR, Moreno JE, Iriarte J, Holst I, Lachniet M, Jones JG, Ranere AJ, Castanzo R (2007) Late Pleistocene and Holocene environmental history of the Iguala Valley, Central Balsas Watershed of Mexico. Proc Natl Acad Sci U S A 104:11874–11881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puhalla JE (1970) Genetic studies of the b incompatibility locus of Ustilago maydis. Genet Res 16:229–232

    Article  Google Scholar 

  • Ratcliff WC, Denison RF, Borrello M, Travisano M (2012) Experimental evolution of multicellularity. Proc Natl Acad Sci U S A 109:1595–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redkar A, Hoser R, Schilling L, Zechmann B, Krzymowska M, Walbot V, Doehlemann G (2015a) A secreted effector protein of Ustilago maydis guides maize leaf cells to form tumors. Plant Cell 27:1332–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redkar A, Villajuana-Bonequi M, Doehlemann G (2015b) Conservation of the Ustilago maydis effector See1 in related smuts. Plant Signal Behav 10:1–5

    Article  CAS  Google Scholar 

  • Rowell JB (1955a) Functional role of compatibility factors and in vitro test for sexual compatibility with haploid lines of Ustilago zeae. Phytopathology 45:370–374

    Google Scholar 

  • Rowell JB (1955b) Segregation of sex factors in a diploid line of Ustilago zeae induced by alpha radiation. Science 121:304–306

    Article  CAS  PubMed  Google Scholar 

  • Roy A (1972) Some microstructures in relation to Polyporaceae. Mycopathol Appl 48:11–119

    Google Scholar 

  • Ruiz-Herrera J (1994) Polyamines, DNA methylation, and fungal differentiation. Crit Rev Microbiol 20:143–150

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Herrera J, León CG, Guevara-Oivera G, Cárabez-Trejo A (1995) Yeast-mycelial dimorphism of haploid and diploid strains of Ustiago maydis. Microbiology 141:695–703

    Article  CAS  Google Scholar 

  • Ruiz-Herrera J, León-Ramírez CG, Martínez-Espinoza AD (2000) Morphogenesis and pathogenesis in Ustilago maydis. Recent Res Dev Microbiol 4:585–596

    Google Scholar 

  • Ruiz-Herrera J, León-Ramírez C, Vera-Nuñez A, Sánchez-Arreguín A, Ruiz-Medrano R, Salgado-Lugo H, Sánchez-Segura L, Peña-Cabriales JJ (2015) A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp. New Phytol 7:769–777

    Article  CAS  Google Scholar 

  • Saville BJ, Donaldson ME, Doyle CE (2012) Investigating host induced meiosis in a fungal plant pathogen. In: Swan A (ed) Meiosis-molecular mechanisms and cytogenetic diversity. InTech, Croatia, pp 411–450

    Google Scholar 

  • Schirawski J, Mannhaupt G, Münch K, Brefort T et al (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:1546–1548

    Article  CAS  PubMed  Google Scholar 

  • Seitner D, Uhse S, Gallei M, Djamei A (2018) The core effector Cce1 is required for early infection of maize by Ustilago maydis. Mol Plant Pathol 19(10): 2277–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg G (2007) On the move: endosomes in fungal growth and pathogenicity. Nat Rev Microbiol 5:309–316

    Article  CAS  PubMed  Google Scholar 

  • Stoll M, Piepenbring M, Begerow D, Oberwinkler F (2003) Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences. Can J Bot 81:976–984

    Article  CAS  Google Scholar 

  • Taylor JW, Spatafora J, O’Donnell K, Lutzoni F, Hibbet DS, Geiser D, Bruns TD, Blackwell M (2004) The fungi. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, New York, pp 171–194

    Google Scholar 

  • Trueheart J, Herskowitz I (1992) The a locus governs cytoduction in Ustilago maydis. J Bacteriol 174:7831–7833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdés-Santiago L, Ruiz-Herrera J (2015) Polyamines in fungi. Their distribution, metabolism, and role in cell differentiation and morphogenesis. CRC Press, Boca Raton, p 202

    Book  Google Scholar 

  • Valdés-Santiago L, Cervantes-Chávez J, Ruiz-Herrera J (2009) Ustilago maydis spermidine synthase is encoded by a chimeric gene, required for morphogenesis, and indispensable for survival in the host. FEMS Yeast Res 9:923–935

    Article  PubMed  CAS  Google Scholar 

  • Valdés-Santiago L, Cervantes-Chávez JA, León-Ramírez CG, Ruiz-Herrera J (2012a) Polyamine metabolism in fungi with emphasis on phytopathogenic species. J Amino Acids 2012:1–13

    Article  CAS  Google Scholar 

  • Valdés-Santiago L, Cervantes-Chávez JA, Winkler R, León-Ramírez CG, Ruiz-Herrera J (2012b) Phenotypic comparison of samdc and spe mutants reveals complex relationships of polyamine metabolism in Ustilago maydis. Microbiology 158:674–684

    Article  PubMed  CAS  Google Scholar 

  • Wösten HAB, Wessels JGH (2006) The emergence of fruiting bodies in Basidiomycetes. In: Fisher K (ed) The mycota I. Growth, differentiation and sexuality. Springer, Berlin/Heidelberg, pp 393–414

    Chapter  Google Scholar 

  • Zhang J et al (2015) Transcriptome analysis and its applications in identifying genes associated with fruiting body development in basidiomycete Hypsizygus marmoreus. PLoS One 10:1–21

    Google Scholar 

Download references

Acknowledgments

The experimental work of the authors described in the text was partially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ruiz-Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruiz-Herrera, J. et al. (2019). The Developmental History of Ustilago maydis: A Saprophytic Yeast, a Mycelial Fungus, Mushroom-Like, and a Smut. In: Satyanarayana, T., Deshmukh, S., Deshpande, M. (eds) Advancing Frontiers in Mycology & Mycotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9349-5_2

Download citation

Publish with us

Policies and ethics