Skip to main content

Abstract

The conifers are a diverse and ancient group of seed plants of monophyletic origin that arose more than 300 million years ago (Rothwell and Scheckler 1988). They are uniformly distinguished by their naked or exposed ovules during pollination, a trait they share with the cycads, the monotypic genus Ginkgo, and the gnetophytes. Collectively, these four taxa comprise the gymnosperms, which, along with the flowering plants (angiosperms), constitute the seed-bearing plants (Fig. 1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, W. T., & Burczyk, J. (2000). Magnitude and implications of gene flow in gene conservation reserves. In A. Young, D. Boshier, & T. Boyle (Eds.), Forest conservation genetics: Principles and practice (pp. 215–244). Oxon/Collingwood: Commonwealth Scientific and Industrial Research Organization (CSIRO) Publishing/CABI Publishing.

    Chapter  Google Scholar 

  • Adie, H., & Lawes, M. J. (2011). Podocarps in Africa: Temperate zone relicts or rainforest survivors? In B. L. Turner & L. A. Cernusak (Eds.), Ecology of the Podocarpaceae in tropical forests (Smithsonian Contributions to Botany, No. 95) (pp. 79–100). Washington, D.C.: Smithsonian Institution Scholarly Press.

    Google Scholar 

  • Axelrod, D. I. (1959). Late tertiary evolution of the Sierran big-tree forest. Evolution, 13, 9–23.

    Article  Google Scholar 

  • Axelrod, D. I. (1964). The Miocene Trapper Creek flora of southern Idaho: University of California Publications in Geological. Science, 51, 1–148.

    Google Scholar 

  • Bannister, M. (1965). Forest Research Institute, Rotorua, New Zealand. In The genetics of colonizing species: proceedings (p. 353). New York: Academic Press.

    Google Scholar 

  • Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54(1), 519–549.

    Article  CAS  Google Scholar 

  • Brown, P. M. (2013). Rocky Mountain tree-ring research, OldList, a database of old trees. http://www.rmtrr.org/oldlist.htm. Accessed 21 Oct 2017.

  • Brundrett, M. C. (2008). Evolution of mycorrhizas. In Mycorrhizal associations: The web resource. http://mycorrhizas.info/evol.html. Accessed 21 Oct 2017.

  • Burczyk, J., Lewandowski, A., & Chalupka, W. (2004a). Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.). Forest Ecology and Management, 197(1), 39–48.

    Article  Google Scholar 

  • Burczyk, J., DiFazio, S. P., & Adams, W. T. (2004b). Gene flow in forest trees: How far do genes really travel? Forest Genetics, 11(3/4), 179.

    CAS  Google Scholar 

  • Christenhusz, M. J. M., Reveal, J. L., Farjon, A., Gardner, M. F., Mill, R. R., & Chase, M. W. (2011). A new classification and linear sequence of extant gymnosperms. Phytotaxa, 19, 55–70.

    Article  Google Scholar 

  • Coomes, D. A., Allen, R. B., Bentley, W. A., Burrows, L. E., Canham, C. D., Fagan, L., Forsyth, D. M., Gaxiola-Alcantar, A., Parfitt, R. L., Ruscoe, W. A., Wardle, D. A., Wilson, D. J., & Wright, E. F. (2005). The hare, the tortoise and the crocodile: The ecology of angiosperm dominance, conifer persistence and fern filtering. Journal of Ecology, 93, 918–935.

    Article  Google Scholar 

  • Critchfield, W. B. (1985). The late quaternary history of lodgepole and jack pines. Canadian Journal of Forest Research, 15(5), 749–772.

    Article  Google Scholar 

  • Critchfield, W. B., & Little, E. L., Jr. (1966). Geographic distribution of the pines of the world (no. 991). Washington, D.C.: US Department of Agriculture, Forest Service.

    Google Scholar 

  • Cronquist, A., Takhtajan, A., & Zimmermann, W. (1966). On the higher taxa of Embryobionta. Taxon, 15(4), 129–134.

    Article  Google Scholar 

  • Dallimore, W., Jackson, A. B., & Harrison, S. G. (1967). A handbook of Coniferae and Ginkgoaceae (4th ed.). New York: St. Martin’s Press.

    Google Scholar 

  • Daubenmire, R. (1968). Plant communities: A textbook of plant synecology. New York: Harper and Row, Publishers.

    Google Scholar 

  • Debazac, E. F. (1964). Manuel des Coniferes. Nancy: Ecole Nationale des Eaus et Forets.

    Google Scholar 

  • Di-Giovanni, F., & Kevan, P. (1991). Factors affecting pollen dynamics and its importance to pollen contamination: A review. Canadian Journal of Forest Research, 21, 1155–1170.

    Article  Google Scholar 

  • Earle, C. J. (Ed.). (1997–2017). Gymnosperm database. http://www.conifers.org/index.php. Accessed 21 Oct 2017.

  • Earle, C. J. (2011). Conifer longevity. In C. J. Earle (Ed.) (1997–2017) Gymnosperm database. http://www.conifers.org/topics/longevity.htm. Accessed 21 Oct 2017.

  • Eckenwalder, J. E. (2009). Conifers of the world. Portland: Timber Press.

    Google Scholar 

  • Erickson, V. J., & Adams, W. T. (1989). Mating success in a coastal Douglas-fir seed orchard as affected by distance and floral phenology. Canadian Journal of Forest Research, 19, 1248–1255.

    Article  Google Scholar 

  • Farjon, A. (2001). World checklist and bibliography of conifers (2nd ed.). Kew: Royal Botanic Gardens.

    Google Scholar 

  • Farjon, A. (2005). A monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.

    Google Scholar 

  • Farjon, A. (2008). A natural history of conifers. Portland: Timber Press.

    Google Scholar 

  • Farjon, A. (2010). A handbook of the world’s conifers. Leiden, The Netherlands: Brill Academic Publishers.

    Book  Google Scholar 

  • Farjon, A., & Filer, D. (2013). An atlas of the world’s conifers: An analysis of their distribution, biogeography, diversity and conservation status. Leiden, The Netherlands: Brill Academic Publishers.

    Book  Google Scholar 

  • Farjon, A., Hiep, N. T., Harder, D. K., Loc, P. K., & Averyanov, L. (2002). A new genus and species in Cupressaceae (Coniferales) from northern Vietnam, Xanthocyparis vietnamensis. Novon, 12(2), 179–189.

    Article  Google Scholar 

  • Fowler, D. P., & Park, Y. S. (1983). Population studies of white spruce. I. Effects of self-pollination. Canadian Journal of Forest Research, 13, 1133–1138.

    Article  Google Scholar 

  • Gernandt, D. S., Willyard, A., Syring, J. V., & Liston, A. (2011). The conifers (Pinophyta). In C. Plomion, J. Bousquet, & C. Kole (Eds.), Genetics, genomics and breeding of conifers (pp. 1–39). Enfield: Science Publishers.

    Google Scholar 

  • Griffin, J. R., & Critchfield, W. B. (1976). The distribution of forest trees in California. USDA Forest Service Res Paper PSW-82.

    Google Scholar 

  • He, C. Y., Zhang, J. G., & Duan, A. G. (2012b). Physiological and protein responses to drought in four pine seedlings. Silvae Genetica, 61(3), 93–103.

    Article  Google Scholar 

  • Howe, G. T., Aitken, S. N., Neale, D. B., Jermstad, K. D., Wheeler, N. C., & Chen, T. H. H. (2003). From genotype to phenotype: Unraveling the complexities of cold adaptation in forest trees. Canadian Journal of Botany, 81, 1247–1266.

    Article  CAS  Google Scholar 

  • IUCN. (2017). The IUCN red list of threatened species. http://www.iucnredlist.org/search

  • Jones, W. G., Hill, K. D., & Allen, J. M. (1995). Wollemia nobilis, a new living Australian genus and species in the Araucariaceae. Telopea, 6, 173–176.

    Article  Google Scholar 

  • Kauffmann, M. E. (2012). Conifer country. Kneeland: Backcountry Press.

    Google Scholar 

  • Keeley, J. E. (2012). Ecology and evolution of pine life histories. Annals of Forest Science, 69(4), 445–453.

    Article  Google Scholar 

  • Keeley, J. E., & Zedler, P. H. (1998). Evolution of life histories in Pinus. In D. M. Richardson (Ed.), Ecology and biogeography of Pinus (pp. 219–249). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16, 406–411.

    Article  CAS  Google Scholar 

  • Koski, V. (1970). A study of pollen dispersal as a mechanism of gene flow in conifers. Communicationes Instituti Forestalis Fenniae, 70(4), 1–78.

    Google Scholar 

  • Lamant, T. (2012). Vegetative reproduction in gymnosperms. Bulletin de l’Association des Parcs Botaniques de France, n 53.

    Google Scholar 

  • Lamont, B., Lemaitre, D., Cowling, R., & Enright, N. (1991). Canopy seed storage in woody-plants. The Botanical Review, 57(4), 277–317.

    Article  Google Scholar 

  • Lanner, R. M. (1966). Needed: A new approach to the study of pollen dispersion. Silvae Genetica, 15, 50–52.

    Google Scholar 

  • Leslie, A. B., Beaulieu, U. J. M., Rai, H. S., Crane, P. R., Donoghue, M. J., & Mathews, S. (2012). Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences of the United States of America, 109(40), 16217–16221.

    Article  CAS  Google Scholar 

  • Li, M., & Ritchie, G. A. (1999a). Eight hundred years of clonal forestry in China: I. traditional afforestation with Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). New Forests, 18, 131–142.

    Article  CAS  Google Scholar 

  • Li, M., & Ritchie, G. A. (1999b). Eight hundred years of clonal forestry in China: II. Mass production of rooted cuttings of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). New Forests, 18, 143–159.

    Article  Google Scholar 

  • MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography (Vol. 1). Princeton: Princeton University Press.

    Google Scholar 

  • Malloch, D. W., Pirozynski, K. A., & Raven, P. H. (1980). Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proceedings of the National Academy of Sciences of the United States of America, 77(4), 2113–2118.

    Article  CAS  Google Scholar 

  • Mao, K., Milne, R. I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R. R., & Renner, S. S. (2012). Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7793–7798.

    Article  CAS  Google Scholar 

  • Mirov, N. T. (1967). The genus Pinus. New York: The Ronald Press Co.

    Google Scholar 

  • Molina, R., & Trappe, J. M. (1984). Mycorrhiza management in bareroot nurseries. In M. L. Duryea & T. D. Landis (Eds.), Forestry nursery manual: Production of bareroot seedlings (pp. 211–223). The Netherlands: Springer.

    Chapter  Google Scholar 

  • Moss, S. J., & Wilson, M. E. J. (1998). Biogeographic implications from the Tertiary palaeogeographic evolution of Sulawesi and Borneo. In R. Hall & J. D. Holloway (Eds.), Biogeography and geological evolution of SE Asia (pp. 133–163). Leiden: Backhuys.

    Google Scholar 

  • Muir, P. S., & Lotan, J. E. (1985). Disturbance history and serotiny in Pinus contorta in Western Montana. Ecology, 66, 1658–1668.

    Article  Google Scholar 

  • Nakamura, R. R., & Wheeler, N. C. (1992a). Pollen competition and paternal success in Douglas-fir. Evolution, 46(3), 846–851.

    Article  Google Scholar 

  • Nakamura, R. R., & Wheeler, N. C. (1992b). Self-fertility variation and paternal success through outcrossing in Douglas-fir. Theoretical and Applied Genetics, 83, 851–854.

    Article  CAS  Google Scholar 

  • Neale, D. B., Wegrzyn, J. L., Stevens, K. A., Zimin, A. V., Puiu, D., Crepeau, M. W., et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 15(3), R59. http://genomebiology.com/2014/15/3/R59.

    Article  Google Scholar 

  • Owens, J. N. & Blake, M. D. (1985). Forest tree seed production. A review of the literature and recommendations for future research. Information Report – Petawawa National Forestry Institute, Canadian Forestry Service No. PI-X-53 pp.vi + 161 pp.

    Google Scholar 

  • Pausas, J. G., & Keeley, J. E. (2009). A burning story, the role of fire in the history of life. Bioscience, 59, 593–601.

    Article  Google Scholar 

  • Peattie, D. C. (1953). A natural history of western trees. Bonanza Books/Crown Publ, New York.

    Google Scholar 

  • Pharis, R. P., & Morf, W. (1967). Experiments on the precocious flowering of western red cedar and four species of Cupressus with gibberellins A3 and A4/A7 mixture. Canadian Journal of Botany, 45(9), 1519–1524.

    Article  CAS  Google Scholar 

  • Piesch, R. F., & Stettler, R. F. (1971). The detection of good selfers for haploid induction in Douglas-fir. Silvae Genetica, 20(4), 144–148.

    Google Scholar 

  • Pojar, J., & MacKinnon, A. (Eds.). (2004). The plants of the Pacific Northwest Coast (Revised). Vancouver: Lone Pine Publishing.

    Google Scholar 

  • Raubeson, L. A., & Jansen, R. K. (1992). A rare chloroplast-DNA structural mutation is shared by all conifers. Biochemical Systematics and Ecology, 20, 17–24.

    Article  CAS  Google Scholar 

  • Richardson, D. M., & Rundel, P. W. (1998). Ecology and biogeography of Pinus: An introduction. In D. M. Richardson (Ed.), Ecology and biogeography of Pinus. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Ritchie, G. A. (1991). The commercial use of conifer rooted cuttings in forestry: A world overview. New Forests, 5, 247–275.

    Article  Google Scholar 

  • Rothwell, G. W., & Scheckler, S. E. (1988). Biology of ancestral gymnosperms. In C. B. Beck (Ed.), Origin and evolution of gymnosperms. New York: Columbia University Press.

    Google Scholar 

  • Sawyer, J. O. (2006). Northwest California. Berkeley: University of California Press.

    Google Scholar 

  • Smith, W. K., & Brewer, C. A. (1994). The adaptive importance of shoot and crown architecture in conifer trees. The American Naturalist, 143(3), 528–532.

    Article  Google Scholar 

  • Sorensen, F. (1969). Embryonic genetic load in coastal Douglas-fir, Pseudotsuga menziesii var. menziesii. The American Naturalist, 103, 389–398.

    Article  Google Scholar 

  • Sorensen, F., & Miles, R. S. (1974). Self-pollination effects on Douglas-fir and ponderosa pine seeds and seedlings. Silvae Genetica, 23, 135–138.

    Google Scholar 

  • Stevenson, D. (1991). Flora of the Guianas, Series A: Phanerogams, Fascicle 9, Sections 208 Cycadaceae, 208.1 Zamiaceae, and 211 Podocarpaceae. Koeltz Scientific Books, USA/Germany.

    Google Scholar 

  • Stewart, G. H. (2002). Structure and canopy tree species regeneration requirements in indigenous forests, Westland, New Zealand (Doc Science Internal Series 66). Wellington: Department of Conservation.

    Google Scholar 

  • Strauss, S. H., & Doerksen, A. H. (1990). Restriction fragment analysis of pine phylogeny. Evolution, 44, 1081–1096.

    Article  CAS  Google Scholar 

  • Strauss, S. H., Palmer, J. D., Howe, G. T., & Doerksen, A. H. (1988). Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proceedings of the National Academy of Sciences, 85(11), 3898–3902.

    Article  CAS  Google Scholar 

  • Takhtajan, A. (1986). (T. J. Crovello, Trans.). In A. Cronquist (Ed.). Floristic regions of the world. Berkeley: University of California Press.

    Google Scholar 

  • Toda, R. (1974). Vegetative propagation in relation to Japanese forest tree improvement. New Zealand J For Sci, 4, 410–417.

    Google Scholar 

  • Van Pelt, R. (2001). Forest giants of North America. Seattle: University of Washington Press.

    Google Scholar 

  • Vander Wall, S. B., & Balda, R. P. (1977). Coadaptation of the Clark’s Nutcracker and the pinon pine for efficient seed harvest and dispersal. Ecological Monographs, 47, 89–111.

    Article  Google Scholar 

  • Verkaik, E., Gardner, R. O., & Braakhekke, W. G. (2007). Site conditions affect seedling distribution below and outside the crown of kauri trees (Agathis australis). New Zealand J Ecol, 31(1), 13–21.

    Google Scholar 

  • Wallace, A. R. (1876). The geographical distribution of animals. London: Harper and Brothers.

    Google Scholar 

  • Wheeler, N. C., & Bramlett, D. (1990). Operational flower stimulation treatments in a young loblolly pine (Pinus taeda L.) seed orchard. Southern Journal of Applied Forestry, 15(1), 44–50.

    Google Scholar 

  • Wheeler, N. C., & Jech, K. S. (1992). The use of electrophoretic markers in seed orchard research. New Forests, 6, 311–328.

    Article  Google Scholar 

  • Wheeler, N. C., Wample, R. L., & Pharis, R. P. (1980). Promotion of flowering in the Pineaceae by gibberellins. IV. Seedlings and sexually mature grafts of lodgepole pine. Physiologia Plantarum, 50, 340–346.

    Article  CAS  Google Scholar 

  • Wheeler, N. C., Masters, C. J., Cade, S. C., Ross, S. D., Keeley, J. W., & Hsin, L. Y. (1985). Girdling: An effective and practical treatment for enhancing seed yields in Douglas-fir seed orchards. Canadian Journal of Forest Research, 15(3), 505–510.

    Article  Google Scholar 

  • White, T. L., Adams, W. T., & Neale, D. B. (2007a). Forest genetics. Cambridge, MA: CABI Publishing.

    Book  Google Scholar 

  • Wikipedia contributors (2017) Árbol del Tule. Wikipedia, The Free Encyclopedia, 19 May 2017. https://en.wikipedia.org/wiki/%C3%81rbol_del_Tule. Accessed 21 Oct 2017.

  • Wilcox, M. D. (1983). Inbreeding depression and genetic variances estimated from self- and cross-pollinated families of Pinus radiata. Silvae Genetica, 32, 89–96.

    Google Scholar 

  • Williams, C. G. (2009). Conifer reproductive biology. Dordrecht/Heidelberg/London/New York: Springer.

    Book  Google Scholar 

  • Yang, Y., Zhang, D., Luscombe, D., Liao, W., Farjon, A., Katsuki, T., Xiang, Q., & Li, N. (2013). Abies beshanzuensis. The IUCN red list of threatened species 2013: e.T32318A2814360. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32318A2814360.en. Accessed 19 Oct 2017.

  • Zhao, G., Sun, M., Wilde, S. A., & Li, S. Z. (2004). A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67, 91–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neale, D.B., Wheeler, N.C. (2019). The Conifers. In: The Conifers: Genomes, Variation and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-46807-5_1

Download citation

Publish with us

Policies and ethics