Skip to main content

Bioinformatics Approaches in Studying the Fungal Endophyte-Derived Bioactive Compounds with Pharmacological Relevance

  • Chapter
  • First Online:
Endophytic Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

  • 133 Accesses

Abstract

Fungal endophytes (FEs) are endosymbionts that live inside the plant and produce compounds that protect the host from predators like grazing animals, pests, and insects. FEs are the repository of novel bioactive compounds, potentially treating various lifestyle and communicable diseases like microbial diseases, viral diseases, parasitic diseases, etc. Bioinformatics plays an essential role in the high-throughput screening of thousands and millions of compounds in a single click at a short time. Several tools and web servers are available to explore compounds, library preparation, protein and ligand preparation, grid generation for specific docking, ADME prediction to predict drug-like properties, docking for high-throughput ligand screening, and finally, molecular dynamics simulation to check the stability of docked protein-ligand complexes. Because of the occurrence of widespread drug resistance as a result of unprescribed and misused antibiotics, there is an urgent need for novel bioactive compounds, and bioinformatics is the first prominent choice for researchers in this strategy. Virtual screening through bioinformatics decreases the number of compounds. Hence, it will be very straightforward for researchers to test a limited number of compounds against specific diseases in in vitro and in vivo studies and reduce prerequisite validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  • Agrawal K (2007) Vinblastine. In: Enna SJ, Bylund DB (eds) xPharm: the comprehensive pharmacology reference. Elsevier, New York, pp 1–4

    Google Scholar 

  • Al-Ani L (2017) Potential of utilizing biological and chemical agents in the control of Fusarium wilt of banana (School of Biology Science). Universiti Sains Malaysia Pulau, Pinang, p 259

    Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88(3):541–549

    Article  PubMed  Google Scholar 

  • Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20(3):200–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. https://doi.org/10.1021/jm901137j

    Article  CAS  PubMed  Google Scholar 

  • Bailey D, Brown D (2001) High-throughput chemistry and structure-based design: survival of the smartest. Drug Discov Today 6(2):57–59. https://doi.org/10.1016/s1359-6446(00)01596-8

    Article  CAS  PubMed  Google Scholar 

  • Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L (2018) Fungal endophytes: beyond herbivore management. Front Microbiol 9:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(W1):W257–W263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett C, Senapathi T, Bray S (2021) Analysis of molecular dynamics simulations (Galaxy Training Materials)

    Google Scholar 

  • Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C et al (2018) Community-driven data analysis training for biology. Cell Syst 6(6):752–758. e751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayat A (2002) Science, medicine, and the future: bioinformatics. BMJ (Clin Res ed) 324(7344):1018–1022. https://doi.org/10.1136/bmj.324.7344.1018

    Article  Google Scholar 

  • Bischoff J, White J (2005) Evolutionary development of the Clavicipitaceae. Mycol Ser 23:505

    Google Scholar 

  • Bitencourt-Ferreira G, de Azevedo WF (2019) Molegro virtual docker for docking. In: Docking screens for drug discovery. Springer, pp 149–167

    Chapter  Google Scholar 

  • Bitencourt-Ferreira G, de Azevedo WF Jr (2019) Docking with GemDock. Methods Mol Biol 2053:169–188. https://doi.org/10.1007/978-1-4939-9752-7_11

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos FF, Rosa LH, Cota BB, Caligiorne RB, Teles Rabello AL, Alves TMA et al (2008) Leishmanicidal metabolites from Cochliobolus sp., an Endophytic fungus isolated from Piptadenia adiantoides (Fabaceae). PLoS Negl Trop Dis 2(12):e348. https://doi.org/10.1371/journal.pntd.0000348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ChemAxon L (2013) Marvinsketch. In: ChemAxon Cambridge

    Google Scholar 

  • Cremasco M, Hritzko B, Linda Wang N-H (2009) Experimental purification of paclitaxel from a complex mixture of taxanes using a simulated moving bed. Braz J Chem Eng 26(1):207–218

    Article  CAS  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  • Dallakyan, S. J. R. S. (2010). MGLTools

    Google Scholar 

  • Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. In: Chemical biology. Springer, pp 243–250

    Chapter  Google Scholar 

  • David TI, Adelakun NS, Omotuyi OI, Metibemu DS, Ekun OE (2018) Molecular docking analysis of phyto-constituents from Cannabis sativa with pfDHFR. Bioinformation 14(9):574

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong J, Wang N-N, Yao Z-J, Zhang L, Cheng Y, Ouyang D et al (2018) ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Chem 10(1):29. https://doi.org/10.1186/s13321-018-0283-x

    Article  CAS  Google Scholar 

  • Egbuna C, Sawicka B (2019) Natural remedies for pest, disease and weed control. Academic

    Google Scholar 

  • Falcón-Cano G, Molina C, Cabrera-Pérez MÁ (2020) ADME prediction with KNIME: development and validation of a publicly available workflow for the prediction of human Oral bioavailability. J Chem Inf Model 60(6):2660–2667. https://doi.org/10.1021/acs.jcim.0c00019

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 49(21):6177–6196

    Article  CAS  PubMed  Google Scholar 

  • Gao K, Mendgen K (2006) Seed-transmitted beneficial endophytic Stagonospora sp. can penetrate the walls of the root epidermis, but does not proliferate in the cortex, of Phragmites australis. Can J Bot 84(6):981–988

    Article  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G et al (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc Natl Acad Sci U S A 105(12):4928–4932. https://doi.org/10.1073/pnas.0710618105

    Article  PubMed  PubMed Central  Google Scholar 

  • Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39(suppl_2):W270–W277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zhang J, Hu CQ, Zhang X, Ma B, Zhang P (2019) In silico ADME and toxicity prediction of Ceftazidime and its impurities. Front Pharmacol 10:434. https://doi.org/10.3389/fphar.2019.00434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    Article  CAS  PubMed  Google Scholar 

  • Hemtasin C, Kanokmedhakul S, Kanokmedhakul K, Hahnvajanawong C, Soytong K, Prabpai S, Kongsaeree P (2011) Cytotoxic Pentacyclic and tetracyclic aromatic Sesquiterpenes from Phomopsis archeri. J Nat Prod 74(4):609–613. https://doi.org/10.1021/np100632g

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Carillo Z, Torres MS, Singh AP, Vorsa N, Gianfagna T, Meyer W, White JF Jr (2009) Phenolic, flavonoid and antioxidant profiling for cool-season grasses with and without endophyte. Paper presented at the proceedings of the 18th annual Rutgers Turfgrass symposium

    Google Scholar 

  • Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99(6):1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G, Jin Q, Peng H, Zhu T, Ye H (2019) Effect of a fungus, Hypoxylon spp., on endophytes in the roots of asparagus. FEMS Microbiol Lett 366(16):fnz207

    Article  CAS  PubMed  Google Scholar 

  • Iakovou G, Alhazzazi M, Hayward S, Laycock SD (2020) DockIT: a tool for interactive molecular docking and molecular complex construction. Bioinformatics 36(24):5698–5700. https://doi.org/10.1093/bioinformatics/btaa1059

    Article  CAS  Google Scholar 

  • Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55(2):351–367

    Article  CAS  PubMed  Google Scholar 

  • Jayaram B, Singh T, Mukherjee G, Mathur A, Shekhar S, Shekhar V (2012) Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinf 13(17):S7. https://doi.org/10.1186/1471-2105-13-S17-S7

    Article  Google Scholar 

  • Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol 1(3):291–309

    Article  Google Scholar 

  • Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11(4):487–505. https://doi.org/10.1007/s11101-012-9260-6

    Article  CAS  Google Scholar 

  • Kaur T (2020) Fungal endophyte-host plant interactions: role in sustainable agriculture. Sustain Crop Prod 211. https://doi.org/10.5772/intechopen.92367

  • Kogel K-H, Franken P, Hückelhoven R (2006) Endophyte or parasite–what decides? Curr Opin Plant Biol 9(4):358–363

    Article  PubMed  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174(3):648–657

    Article  PubMed  Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 15(6):279–289

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee I, Kim H, Chang G, Chung J, No K (2003) The PreADME approach: web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. In: EuroQSAR 2002 designing drugs and crop protectants: processes, problems and solutions. Blackwell Publishing, pp 418–420

    Google Scholar 

  • LigPrep (2018) LigPrep. In: Schrödinger, LLC

    Google Scholar 

  • LigPrep_Schrödinger_2017 (2017) 2: LigPrep. Schrödinger, LLC, New York

    Google Scholar 

  • Malathi K, Ramaiah S (2018) Bioinformatics approaches for new drug discovery: a review. Biotechnol Genet Eng Rev 34(2):243–260

    Article  CAS  PubMed  Google Scholar 

  • Miteva MA, Guyon F, Tufféry P (2010) Frog2: efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res 38(suppl_2):W622–W627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153(S1):S7–S26

    Article  CAS  PubMed  Google Scholar 

  • Moreno E, Varughese T, Spadafora C, Arnold AE, Coley PD, Kursar TA et al (2011) Chemical constituents of the new endophytic fungus Mycosphaerella sp. nov. and their anti-parasitic activity. Nat Prod Commun 6(6):1934578X1100600620

    Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(Web Server issue):W182–W185. https://doi.org/10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik B, Gupta N, Ojha R, Singh S, Prajapati VK, Prusty D (2020) High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. Int J Biol Macromol 160:1–17. https://doi.org/10.1016/j.ijbiomac.2020.05.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik B, Mattaparthi VSK, Gupta N, Ojha R, Das P, Singh S, Prajapati VK, Prusty D (2021) Chemical system biology approach to identify multi-targeting FDA inhibitors for treating COVID-19 and associated health complications. J Biomol Struct Dyn 40:1–25

    Google Scholar 

  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: An open chemical toolbox. J Chem 3(1):33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  Google Scholar 

  • O’dell T, Massicotte H, Trappe J (1993) Root colonization of Lupinus latifolius AGARDH. and Pinus contorta DOUGL. by Phialocephala fortinii WANG & WILCOX. New Phytol 124(1):93–100

    Article  Google Scholar 

  • Paramashivam SK, Elayaperumal K, Bhagavan Natarajan B, Devi Ramamoorthy M, Balasubramanian S, Dhiraviam KN (2015) In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases. Bioinformation 11(2):73

    Article  PubMed  PubMed Central  Google Scholar 

  • Pattar SV, Adhoni SA, Kamanavalli CM, Kumbar SS (2020) In silico molecular docking studies and MM/GBSA analysis of coumarin-carbonodithioate hybrid derivatives divulge the anticancer potential against breast cancer. Beni-Suef Univ J Basic Appl Sci 9(1):36. https://doi.org/10.1186/s43088-020-00059-7

    Article  Google Scholar 

  • Phillips JC, Hardy DJ, Maia JD, Stone JE, Ribeiro JV, Bernardi RC et al (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153(4):044130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • QikProp (2017) Schrödinger release 2017-1: QikProp. In: Schrödinger, LLC, New York

    Google Scholar 

  • QikProp (2021) Schrödinger release 2021-4: QikProp. Schrödinger, LLC, New York

    Google Scholar 

  • Rayhan F, Ahmed S, Shatabda S, Farid DM, Mousavian Z, Dehzangi A, Rahman MS (2017) iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting. Sci Rep 7(1):17731. https://doi.org/10.1038/s41598-017-18025-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581–1581

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez R, Redman RJ (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59(5):1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez R, White J Jr, Arnold A, Redman AR (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  • Ropp PJ, Spiegel JO, Walker JL, Green H, Morales GA, Milliken KA et al (2019) Gypsum-DL: an open-source program for preparing small-molecule libraries for structure-based virtual screening. J Chem 11(1):34. https://doi.org/10.1186/s13321-019-0358-3

    Article  Google Scholar 

  • Roy S, Samant LR, Chowdhary A (2015) In silico pharmacokinetics analysis and ADMET of phytochemicals of Datura metel Linn. and Cynodon dactylon Linn. J Chem Pharm Res 7:385–388

    CAS  Google Scholar 

  • Rudgers JA, Koslow JM, Clay K (2004) Endophytic fungi alter relationships between diversity and ecosystem properties. Ecol Lett 7(1):42–51

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29(1):319–343

    Article  Google Scholar 

  • Samdani A, Vetrivel U (2018) POAP: a GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening. Comput Biol Chem 74:39–48

    Article  CAS  PubMed  Google Scholar 

  • Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234

    Article  PubMed  Google Scholar 

  • Schardl CL, Liu J-S, White JF, Finkel RA, An Z, Siegel MR (1991) Molecular phylogenetic relationships of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens. Plant Syst Evol 178(1):27–41

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004

    Article  CAS  Google Scholar 

  • Sharma AK, Srivastava GN, Roy A, Sharma VK (2017) ToxiM: a toxicity prediction tool for small molecules developed using machine learning and chemoinformatics approaches. Front Pharmacol 8:880

    Article  PubMed  PubMed Central  Google Scholar 

  • Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M (2007) Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21(12):681–691

    Article  CAS  PubMed  Google Scholar 

  • Singh SB, Ondeyka JG, Tsipouras N, Ruby C, Sardana V, Schulman M et al (2004) Hinnuliquinone, a C2-symmetric dimeric non-peptide fungal metabolite inhibitor of HIV-1 protease. Biochem Biophys Res Commun 324(1):108–113. https://doi.org/10.1016/j.bbrc.2004.08.234

    Article  CAS  PubMed  Google Scholar 

  • Singh T, Biswas D, Jayaram B (2011) AADS – An automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J Chem Inf Model 51(10):2515–2527. https://doi.org/10.1021/ci200193z

    Article  CAS  PubMed  Google Scholar 

  • Sohlenius-Sternbeck A-K, Terelius Y (2022) Evaluation of ADMET predictor in early discovery drug metabolism and pharmacokinetics project work. Drug Metab Dispos 50(2):95–104

    Article  CAS  PubMed  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–216

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Jones LH, Mathews FS, Davidson VL (2001) Active-site residues are critical for the folding and stability of methylamine dehydrogenase. Protein Eng Des Sel 14(9):675–681. https://doi.org/10.1093/protein/14.9.675

    Article  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459

    Article  CAS  PubMed  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2020) AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol Direct 15(1):1–12

    Article  Google Scholar 

  • van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2(3):192–204. https://doi.org/10.1038/nrd1032

    Article  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254

    Article  CAS  PubMed  Google Scholar 

  • White JF Jr, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138(4):440–446

    Article  CAS  PubMed  Google Scholar 

  • Wooller SK, Benstead-Hume G, Chen X, Ali Y, Pearl FM (2017) Bioinformatics in translational drug discovery. Biosci Rep 37(4):BSR20160180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1):W5–W14. https://doi.org/10.1093/nar/gkab255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z et al (2018) admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 35(6):1067–1069. https://doi.org/10.1093/bioinformatics/bty707

    Article  CAS  Google Scholar 

  • Yu H, Zhang L, Li L, Zheng C, Guo L, Li W et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165(6):437–449. https://doi.org/10.1016/j.micres.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang JD, Liu CX, Yuan JH, Wang XJ, Xiang WS (2014) A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Nat Prod Res 28(7):431–437. https://doi.org/10.1080/14786419.2013.871546

    Article  CAS  PubMed  Google Scholar 

  • Zhu K, Borrelli KW, Greenwood JR, Day T, Abel R, Farid RS (2014) Docking covalent inhibitors: a parameter free approach to pose prediction and scoring. J Chem Inf Model 54(7):1932–1940

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SS is thankful to the Central University of Rajasthan for the fellowship. VKP is thankful to the University of Delhi, South Campus for providing lab facility.

Competing Interest

The authors have declared no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Prajapati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Kumar, K., Rao, A., Prajapati, V.K. (2024). Bioinformatics Approaches in Studying the Fungal Endophyte-Derived Bioactive Compounds with Pharmacological Relevance. In: Singh, B.P., Abdel-Azeem, A.M., Gautam, V., Singh, G., Singh, S.K. (eds) Endophytic Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-49112-2_9

Download citation

Publish with us

Policies and ethics