Skip to main content

Digging Up Convergence in Fossorial Rodents: Insights into Burrowing Activity and Morpho-Functional Specializations of the Masticatory Apparatus

  • Chapter
  • First Online:
Convergent Evolution

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Fossorial habits are tightly related to digging abilities in vertebrates and the most extreme fossorial specialization is being restricted to conducting the entire life underground. Many mammals, especially rodents, show behavioural, morphological and physiological adaptations to fossorial life, mainly for gaining access to sources of food and escaping predators and extreme climatic fluctuations. Adaptations to fossorial life are found in more than ten families of extant and extinct rodents, on most continents. Examples are Eurasian mole voles (Cricetidae), African mole-rats (Bathyergidae) and root-rats, Asian zokors and bamboo rats (Spalacidae), North American pocket gophers (Geomyidae) and mountain beavers (Aplodontidae), and South American tuco-tucos (Ctenomyidae) and cururos (Octodontidae). The constraints imposed by digging and living underground have led to strong behavioural and morphological convergences, notably involving the functioning of the rodent masticatory apparatus. Whereas most mammals use their claws for digging, rodents are unique in that some species use their ever-growing incisors for this purpose, with most subterranean species having become chisel-tooth diggers. Here, we review examples of convergence found in the main morphological and functional components of the rodent digging apparatus in relation to burrowing activity. We first present the different modes of digging in rodents, focusing on the chisel-tooth digging mechanisms and their associated burrowing behaviours. Following this, several morphological specializations of the skull and the main jaw adductor muscles are described in relation to their associated contribution to biting efficiency. Specialized incisors allow subterranean rodents to dig in hard soil and to consume hard subterranean parts of plants, and their morphological and structural characteristics are considered in the last part of this chapter. Data on incisor bite force of fossorial rodents are also compiled to highlight the enhanced efficacy of the masticatory apparatus of chisel-tooth digging species. Despite the different cranial and muscular morphotypes in rodents, we underscore the fact that multiple modifications of the different components of the masticatory apparatus have led to similar overall morphologies and functions, overcoming phylogenetic inheritance. This remarkable example of convergence needs further scrutiny at both the micro- and macroevolutionary level to more fully understand how different rodent families evolved to deal with such external constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, V. C. (1967). Skull adaptations in fossorial rodents. Mammalia, 31, 300–312.

    Article  Google Scholar 

  • Airoldi, J.-P., Altrocchi, R., & Meylan, A. (1976). Le comportement fouisseur du Campagnol terrestre, Arvicola terrestris scherman Shaw. Revue Suisse de Zoologie, 83, 282–286.

    Google Scholar 

  • Bacigalupe, L. D., Iriarte-Díaz, J., & Bozinovic, F. (2002). Functional morphology and geographic variation in the digging apparatus of cururos (Octodontidae: Spalacopus cyanus). Journal of Mammalogy, 83, 145–152.ù.

    Article  Google Scholar 

  • Ball, S. S., & Roth, V. L. (1995). Jaw muscles of new world squirrels. Journal of Morphology, 224, 265–291.

    Article  CAS  PubMed  Google Scholar 

  • Barčiová, L., Šumbera, R., & Burda, H. (2009). Variation in the digging apparatus of the subterranean silvery mole-rat, Heliophobius argenteocinereus (Rodentia, Bathyergidae): The role of ecology and geography. Biological Journal of the Linnean Society, 97, 822–831.

    Article  Google Scholar 

  • Becerra, F., Echeverría, A. I., Casinos, A., & Vassallo, A. I. (2014). Another one bites the dust: Bite force and ecology in three caviomorph rodents (Rodentia, Hystricognathi). Journal of Experimental Zoology, 321, 220–232.

    Article  PubMed  Google Scholar 

  • Becerra, F., Echeverría, A. I., Vassallo, A. I., & Casinos, A. (2011). Bite force and jaw biomechanics in the subterranean rodent Talas tuco-tuco (Ctenomys talarum) (Caviomorpha: Octodontoidea). Canadian Journal of Zoology, 89, 334–342.

    Article  Google Scholar 

  • Becerra, F., Vassallo, A. I., Echeverría, A. I., & Casinos, A. (2012). Scaling and adaptations of incisors and cheek teeth in caviomorph rodents (Rodentia, Hystricognathi). Journal of Morphology, 273, 1150–1162.

    Article  PubMed  Google Scholar 

  • Becerra, F., Casinos, A., & Vassallo, A. I. (2013). Biting performance and skull biomechanics of a chisel tooth digging rodent (Ctenomys tuconax; Caviomorpha; Octodontoidea). The Journal of Experimental Zoology, 319, 74–85.

    Article  Google Scholar 

  • Begall, S., Burda, H., & Schleich, C. E. (2007). Subterranean rodents: News from underground. Springer.

    Book  Google Scholar 

  • Begall, S., & Gallardo, M. H. (2000). Spalacopus cyanus (Rodentia: Octodontidae): An extremist in tunnel constructing and food storing among subterranean mammals. Journal of Zoology, 251, 53–60.

    Article  Google Scholar 

  • Bekele, A. (1983). The comparative functional morphology of some head muscles of the rodents Tachyoryctes splendens and Rattus rattus. II. Cervical muscles. Mammalia, 47, 549–572.

    Google Scholar 

  • Beolchini, F., & Corti, M. (2004). The taxonomy of the genus Tachyoryctes: A geometric morphometric approach. Italian Journal of Zoology, 71, 35–43.

    Article  Google Scholar 

  • Berkovitz, B. K. B., & Faulkes, C. G. (2001). Eruption rates of the mandibular incisors of naked mole-rats (Heterocephalus glaber). Journal of Zoology, 255, 461–466.

    Article  Google Scholar 

  • Brett, R. A. (1991). The ecology of naked mole-rat colonies: Burrowing, food and limiting factors. In P. W. Shermann, J. U. M. Jarvis, & R. D. Alexander (Eds.), Biology of the naked mole-rat (pp. 137–184). Princeton University Press.

    Google Scholar 

  • Bryant, J. D., & MacKenna, M. C. (1995). Cranial anatomy and phylogenetic position of Tsaganomys altaicus (Mammalia: Rodentia) from the Hsanda Gol Formation (Oligocene), Mongolia. American Museum Novitates, 3156, 1–42.

    Google Scholar 

  • Buezas, G. N., Becerra, F., Echeverría, A. I., Cisilino, A., & Vassallo, A. I. (2019). Mandible strength and geometry in relation to bite force: a study in three caviomorph rodents. Journal of Anatomy, 234, 564–575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burda, H., Šumbera, R., & Begall, S. (2007). Microclimate in burrows of subterranean rodents – revisited. In S. Begall, H. Burda, & C. E. Schleich (Eds.), Subterranean rodents: News from underground (pp. 21–33). Springer.

    Chapter  Google Scholar 

  • Camin, S., Madoery, L., & Roig, V. (1995). The burrowing behavior of Ctenomys mendocinus (Rodentia). Mammalia, 59, 9–18.

    Article  Google Scholar 

  • Carotenuto, A. R., Guarracino, F., Šumbera, R., & Fraldi, M. (2020). Burrowing below ground: Interaction between soil mechanics and evolution of subterranean mammals. Journal of the Royal Society Interface, 17, 20190521.

    Article  Google Scholar 

  • Casinos, A., Gasc, J.-P., Renous, S., & Bou, J. (1983). Les modalités de fouissage de Pitymys duodecimcostatus (Mammalia, Arvicolidae). Mammalia, 47, 27–36.

    Article  Google Scholar 

  • Cook, J. A., Lessa, E. P., & Hadly, E. A. (2000). Paleontology, phylogenetic patterns, and macroevolutionary processes in subterranean rodents. In E. A. Lacey, J. L. Patton, & G. N. Cameron (Eds.), Life underground: The biology of subterranean rodents (pp. 332–369). University of Chicago Press.

    Google Scholar 

  • Cox, P. G., & Baverstock, H. (2016). Masticatory muscle anatomy and feeding efficiency of the American Beaver, Castor canadensis (Rodentia, Castoridae). Journal of Mammalian Evolution, 23, 191–200.

    Article  Google Scholar 

  • Cox, P. G., & Faulkes, C. G. (2014). Digital dissection of the masticatory muscles of the naked mole-rat, Heterocephalus glaber (Mammalia, Rodentia). PeerJ, 2, e448.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox, P. G., Faulkes, C. G., & Bennett, N. C. (2020). Masticatory musculature of the African mole-rats (Rodentia: Bathyergidae). PeerJ, 8, e8847.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cubo, J., Ventura, J., & Casinos, A. (2006). A heterochronic interpretation of the origin of digging adaptations in the northern water vole, Arvicola terrestris (Rodentia: Arvicolidae). Biological Journal of the Linnean Society, 87, 381–391.

    Article  Google Scholar 

  • Cuthbert, K. (1975). Burrowing and the associated modifications in the mole-rats Bathyergus suillus and Georychus capensis - A comparative study (University of Cape Town). Zoology honours project.

    Google Scholar 

  • Czaplewski, N. J. (2012). A Mylagaulus (Mammalia, Rodentia) with Nasal Horns from the Miocene (Clarendonian) of Western Oklahoma. Journal of Vertebrate Paleontology, 32, 139–150.

    Article  Google Scholar 

  • d’Elia, G., Fabre, P.-H., & Lessa, E. P. (2019). Rodent systematics in an age of discovery: Recent advances and prospects. Journal of Mammalogy, 100, 852–871.

    Article  Google Scholar 

  • Druzinsky, R. E. (2010). Functional anatomy of incisal biting in Aplodontia rufa and Sciuromorph rodents – Part 1: Masticatory muscles, skul shape and digging. Cells, Tissues, Organs, 191, 510–522.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durão, A. F., Ventura, J., & Muñoz-Muñoz, F. (2019). Comparative post-weaning ontogeny of the mandible in fossorial and semi-aquatic water voles. Mammalian Biology, 97, 95–103.

    Article  Google Scholar 

  • Echeverría, A. I., Becerra, F., Buezas, G. N., & Vassallo, A. I. (2017). Bite it forward … bite it better? Incisor procumbency and mechanical advantage in the chisel-tooth and scratch-digger genus Ctenomys (Caviomorpha, Rodentia). Zoology, 125, 53–68.

    Article  PubMed  Google Scholar 

  • Ellerman, J. R. (1956). The subterranean mammals of the world. Transactions of the Royal Society of South Africa, 35, 11–20.

    Article  Google Scholar 

  • Fang, X., et al. (2014). Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nature Communications, 5, 3966.

    Article  CAS  PubMed  Google Scholar 

  • Flynn, L. J. (2009). Chapter 4: The antiquity of Rhizomys and independent acquisition of fossorial traits in subterranean muroids. In Systematic Mammalogy: Contributions in Honor of Guy G. Musser, (Bulletin of the American Museum of Natural History) (pp. 128–156).

    Google Scholar 

  • Flynn, L. J., Nevo, E., & Heth, G. (1987). Incisor enamel microstructure in blind mole rats: Adaptive and phylogenetic significance. Journal of Mammalogy, 68, 500–507.

    Article  Google Scholar 

  • Fournier, M., Hautier, L., & Gomes Rodrigues, H. (2021). Evolution towards fossoriality and morphological convergence in the skull of Spalacidae and Bathyergidae (Rodentia). Journal of Mammalian Evolution, 28, 979–993.

    Article  Google Scholar 

  • Freeman, P. W., & Lemen, C. A. (2008). A simple morphological predictor of bite force in rodents. Journal of Zoology, 275, 418–422.

    Article  Google Scholar 

  • Gambaryan, P. P., & Gasc, J.-P. (1993). Adaptive properties of the musculoskeletal system in the mole-rat Myospalax myospalax (Mammalia, Rodentia), cinefluorographical, anatomical, and biomechanical analyses of burrowing. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere, 123, 363–401.

    Google Scholar 

  • Gasc, J.-P., Renous, S., Casinos, A., Laville, E., & Bou, J. (1985). Comparison of diverse digging patterns in some small mammals. In H. R. Duncker & G. Fleischer (Eds.), Fortschritte der Zoologie, Band 30 (pp. 35–38). Gustav Fischer Verlag.

    Google Scholar 

  • Giannoni, S. M., Borghi, C. E., & Roig, V. G. (1996). The burrowing behavior of Ctenomys eremophilus (Ctenomyidae, Rodentia) in relation with substrata hardness. Mastozoología Neotropical, 3, 5–12.

    Google Scholar 

  • Ginot, S., Le Noëne, C., & Cassaing, J. (2018). Comparative bite force in two syntopic murids (Rodentia) suggests lack of competition for food resources. Canadian Journal of Zoology, 96, 633–638.

    Article  Google Scholar 

  • Gomes Rodrigues, H. (2015). The great disparity of dental structures and dynamics in rodents: new insights into their ecological diversity. In P. G. Cox & L. Hautier (Eds.), Evolution of the rodents: Advances in phylogeny, functional morphology and development (pp. 424–447). Cambridge University Press.

    Chapter  Google Scholar 

  • Gomes Rodrigues, H., Marangoni, P., Šumbera, R., Tafforeau, P., Wendelen, W., & Viriot, L. (2011). Continuous dental replacement in a hyper-chisel tooth digging rodent. Proceedings of the National Academy of Science United States of America, 108, 17355–17359.

    Article  Google Scholar 

  • Gomes Rodrigues, H., & Šumbera, R. (2015). Dental peculiarities in the silvery mole-rat: An original model for studying the evolutionary and biological origins of continuous dental generation in mammals. PeerJ, 3, e1233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes Rodrigues, H., Šumbera, R., & Hautier, L. (2016). Life in burrows channelled the morphological evolution of the skulls in rodents: The case of African mole-rats (Bathyergidae, Rodentia). Journal of Mammalian Evolution, 23, 175–189.

    Article  Google Scholar 

  • He, Y., Hu, S., Ge, D., Yang, Q., Connor, T., & Zhou, C. (2020). Evolutionary history of Spalacidae inferred from fossil occurrences and molecular phylogeny. Mammal Review, 50, 11–24.

    Article  Google Scholar 

  • Herrel, A., Spithoven, L., Van Damme, R., & De Vree, F. (1999). Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analysis. Functional Ecology, 13, 289–297.

    Article  Google Scholar 

  • Heth, G. (1989). Burrow patterns of the mole rat Spalax ehrenbergi in two soil types (terra-rossa and rendzina) in Mount Carmel, Israel. Journal of Zoology, 217, 39–56.

    Article  Google Scholar 

  • Hiiemae, K. (1971). The structure and function of the jaw muscles in the rat (Rattus norvegicus L.) III. The mechanics of the muscles. Zoological Journal of the Linnean Society, 50, 111–132.

    Article  Google Scholar 

  • Hildebrand, M. (1985). Chapter 6. Digging of quadrupeds (pp. 89–109). Harvard University Press.

    Google Scholar 

  • Hite, N. J., Germain, C., Cain, B. W., Sheldon, M., Perala, S. S. N., & Sarko, D. K. (2019). The better to eat you with: Bite force in the naked mole-rat (Heterocephalus glaber) is stronger than predicted based on body size. Frontiers in Integrative Neuroscience, 13, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopkins, S. S. B. (2005). The evolution of fossoriality and the adaptive role of horns in the Mylagaulidae (Mammalia: Rodentia). Proceedings of the Royal Society B: Biological Sciences, 272, 1705–1713.

    Article  PubMed Central  Google Scholar 

  • Jardine, P. E., Janis, C. M., Sahney, S., & Benton, M. J. (2012). Grit not grass: Concordant patterns of early origin of hypsodonty in Great Plains ungulates and Glires. Palaeogeography, Palaeoclimatology, Palaeoecology, 1–10, 365–366.

    Google Scholar 

  • Jarvis, J. U. M., Bennett, N. C., & Spinks, A. C. (1998). Food availability and foraging by wild colonies of Damaraland mole-rats (Cryptomys damarensis): Implications for sociality. Oecologia, 113, 290–298.

    Article  PubMed  Google Scholar 

  • Jarvis, J. U. M., & Sale, J. B. (1971). Burrowing and burrow patterns of East African mole-rats Tachyoryctes, Heliophobius and Heterocephalus. Journal of Zoology, 163, 451–479.

    Article  Google Scholar 

  • Kalthoff, D. (2000). Die Schmelzmikrostruktur in den Incisiven der hamsterartigen Nagetiere und anderer Myomorpha (Rodentia, Mammalia). Palaeontographica Abteilung A, 259, 1–193.

    Article  Google Scholar 

  • Kerr, E., Cornette, R., Gomes Rodrigues, H., Renaud, S., Chevret, P., Tresset, A., & Herrel, A. (2017). Can functional traits help explain the coexistence of two species of Apodemus? Biological Journal of the Linnean Society, 122, 883–896.

    Article  Google Scholar 

  • Kim, E. B., Fang, X., Fushan, A. A., Huang, Z., Lobanov, A. V., Han, L., Marino, S. M., et al. (2011). Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature, 479, 223–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby, A. M., Fairman, G. D., & Pamenter, M. E. (2018). Atypical behavioural, metabolic and thermoregulatory responses to hypoxia in the naked mole rat (Heterocephalus glaber). Journal of Zoology, 305, 106–115.

    Article  Google Scholar 

  • Korbin, J. P., Bancroft, A., Dunnum, J., & Cook, J. (2020). X-ray CT Scans - Set 1 (United States).

    Google Scholar 

  • Krapp, F. (1965). Beobachtungen an Kaumuskulatur und Schädel von Spalax leucodon (Nordmann, 1840) (Rodentia, Mammalia). Revue Suisse de Zoologie, 72, 604–609.

    Article  Google Scholar 

  • Kryštufek, B., Janžekovič, F., Hutterer, R., & Klenovšek, T. (2016). Morphological evolution of the skull in closely related bandicoot rats: A comparative study using geometric morphometrics. Hystrix, the Italian Journal of Mammalogy, 27, 163–169.

    Google Scholar 

  • Lacey, E. A., Patton, J. L., & Cameron, G. N. (2000). Life underground: The biology of subterranean rodents. University of Chicago Press.

    Google Scholar 

  • Lacey, E. A., & Shermann, P. W. (1991). Social organization of naked mole-rat colonies: Evidence for divisions of labor. In P. W. Shermann, J. U. M. Jarvis, & R. D. Alexander (Eds.), Biology of the naked mole-rat (pp. 275–336). Princeton University Press.

    Google Scholar 

  • Landry, S. O., Jr. (1957). Factors affecting the procumbency of rodent upper incisors. Journal of Mammalogy, 38, 223–234.

    Article  Google Scholar 

  • Laville, E. (1989). Etude cinématique du fouissage chez Arvicola terrestris scherman (Rodentia, Arvicolidae). Mammalia, 53, 177–190.

    Article  Google Scholar 

  • Laville, E., Casinos, A., Gasc, J.-P., Renous, S., & Bou, J. (1989). The mechanism of digging in Arvicola terrestris and Spalax ehrenbergi: Functional and evolutional studies. Anatomischer Anzeiger, 169, 131–144.

    CAS  PubMed  Google Scholar 

  • Lessa, E. P. (1987). Functional morphology and allometry of the digging apparatus in pocket gophers of the genera Thomomys, Geomys, and Cratogeomys (Rodentia: Geomyidae). New Mexico State University.

    Google Scholar 

  • Lessa, E. P. (2000). The evolution of subterranean rodents: A synthesis. In E. A. Lacey, J. L. Patton, & G. N. Cameron (Eds.), Life underground: The biology of subterranean rodents (pp. 389–420). University of Chicago Press.

    Google Scholar 

  • Lessa, E. P., & Patton, J. L. (1989). Structural constraints, recurrent shapes, and allometry in pocket gophers (genus Thomomys). Biological Journal of the Linnean Society, 36, 349–363.

    Article  Google Scholar 

  • Lessa, E. P., & Stein, B. R. (1992). Morphological constraints in the digging apparatus of pocket gophers (Mammalia: Geomyidae). Biological Journal of the Linnean Society, 47, 439–453.

    Article  Google Scholar 

  • Lessa, E. P., & Thaeler, C. S. (1989). A reassessment of morphological specializations for digging in pocket gophers. Journal of Mammalogy, 70, 689–700.

    Article  Google Scholar 

  • Lessa, E. P., Vassallo, A. I., Verzi, D. H., & Mora, M. S. (2008). Evolution of morphological adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biological Journal of the Linnean Society, 95, 267–283.

    Article  Google Scholar 

  • Luo, Z.-X., & Wible, J. R. (2005). A new Late Jurassic digging mammal and early mammalian diversification. Science, 308, 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Manaro, A. J. (1959). Extrusive incisor growth in the rodent genera Geomys, Peromyscus, and Sigmodon. Quarterly Journal of the Florida Academy of Sciences, 22, 25–31.

    Google Scholar 

  • Manov, I., Hirsh, M., Iancu, T. C., Malik, A., Sotnichenko, N., Band, M., Avivi, A., & Shams, I. (2013). Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: In vivo and in vitroevidence. BMC Biology, 11, 91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcolini, F., Piras, P., Kotsakis, T., Claude, J., Michaux, J., Ventura, J., & Cubo, J. (2011). Phylogenetic signal and functional significance of incisor enamel microstructure in Arvicola (Rodentia, Arvicolinae). Comptes Rendus Palevol, 10, 479–487.

    Article  Google Scholar 

  • Marcy, A. E., Hadly, E. A., Sherratt, E., Garland, K., & Weisbecker, V. (2016). Getting a head in hard soils: Convergent skull evolution and divergent allometric patterns explain shape variation in a highly diverse genus of pocket gophers (Thomomys). BMC Evolutionary Biology, 16, 207.

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntosh, A. F., & Cox, P. G. (2016a). Functional implications of craniomandibular morphology in African mole-rats (Rodentia: Bathyergidae). Biological Journal of the Linnean Society, 117, 447–462.

    Article  Google Scholar 

  • McIntosh, A. F., & Cox, P. G. (2016b). The impact of digging on craniodental morphology and integration. Journal of Evolutionary Biology, 29, 2383–2394.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh, A. F., & Cox, P. G. (2016c). The impact of gape on the performance of the skull in chisel-tooth digging and scratch digging mole-rats (Rodentia: Bathyergidae). Royal Society Open Science, 3, 160568.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mein, P., & Pickford, M. (2008). Early Miocene Rodentia from the northern Sperrgebiet, Namibia. Memoir of the Geological Survey of Namibia, 20, 235–290.

    Google Scholar 

  • Miller, R. S. (1958). Rate of incisor growth in the mountain pocket gopher. Journal of Mammalogy, 39, 380–385.

    Article  Google Scholar 

  • Mora, M., Olivares, A. I., & Vassallo, A. I. (2003). Size, shape and structural versatility of the skull of the subterranean rodent Ctenomys (Rodentia, Caviomorpha): Functional and morphological analysis. Biological Journal of the Linnean Society, 78, 85–96.

    Article  Google Scholar 

  • Morlok, W. F. (1983). Vergleichend- und funktionell-anatomische Untersuchungen an Kopf, Hals und Vorderextremität subterraner Nagetiere (Mammalia, Rodentia). Forschungsinstitut Senckenberg, 64, 1–237.

    Google Scholar 

  • Nevo, E. (1979). Adaptive convergence and divergence of subterranean mammals. Annual Review of Ecology, Evolution, and Systematics, 10, 269–308.

    Article  Google Scholar 

  • Nevo, E. (1999). Mosaic evolution of subterranean mammals: Regression, progression and global convergence. Oxford University Press.

    Google Scholar 

  • Partha, R., Chauhan, B. K., Ferreira, Z., Robinson, J. D., Lathrop, K., Nischal, K. K., Chikina, M., & Clark, N. L. (2017). Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling. eLife, 6, e25884.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichman, O. J., & Jarvis, J. U. M. (1989). The influence of three sympatric species of fossorial mole-rats (Bathyergidae) on vegetation. Journal of Mammalogy, 70, 763–771.

    Article  Google Scholar 

  • Rodríguez-Serrano, E., Palma, R. E., & Hernández, C. E. (2008). The evolution of ecomorphological traits within the Abrothrichini (Rodentia: Sigmodontinae): A bayesian phylogenetics approach. Molecular Phylogenetics and Evolution, 48, 473–480.

    Article  PubMed  Google Scholar 

  • Samuels, J. X., & van Valkenburgh, B. (2009). Craniodental adaptations for digging in extinct burrowing beavers. Journal of Vertebrate Paleontology, 29, 254–268.

    Article  Google Scholar 

  • Šklíba, J., Mazoch, V., Patzenhauerová, H., Hrouzková, E., Lövy, M., Kott, O., & Šumbera, R. (2012). A maze-lover’s dream: Burrow architecture, natural history and habitat characteristics of Ansell’s mole-rat (Fukomys anselli). Mammalian Biology, 77, 420–427.

    Article  Google Scholar 

  • Šklíba, J., Šumbera, R., Chitaukali, W. N., & Burda, H. (2009). Home-range dynamics in a solitary subterranean rodent. Ethology, 115, 217–226.

    Article  Google Scholar 

  • Stein, B. R. (2000). Morphology of subterranean rodents. In E. A. Lacey, J. L. Patton, & G. N. Cameron (Eds.), Life underground: The biology of subterranean rodents (pp. 19–61). University of Chicago Press.

    Google Scholar 

  • Šumbera, R. (2019). Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) - A review. Journal of Thermal Biology, 79, 166–189.

    Article  PubMed  Google Scholar 

  • Šumbera, R., Burda, H., Chitaukali, W. N., & Kubová, J. (2003). Silvery mole-rats (Heliophobius argenteocinereus, Bathyergidae) change their burrow architecture seasonally. Naturwissenschaften, 90, 370–373.

    Article  PubMed  Google Scholar 

  • Šumbera, R., Mazoch, V., Patzenhauerová, H., Lövy, M., Šklíba, J., Bryja, J., & Burda, H. (2012). Burrow architecture, family composition and habitat characteristics of the largest social African mole-rat: the giant mole-rat constructs really giant burrow systems. Acta Theriologica, 57, 121–130.

    Article  Google Scholar 

  • Thomas, O. (1919). The method of taking the incisive index in rodents. Annals and Magazine of Natural History, 4, 289–290.

    Article  Google Scholar 

  • Van Daele, P. A. A. G., Desmet, N., Šumbera, R., & Adriaens, D. (2019). Work behaviour and biting performance in the cooperative breeding Micklem’s mole-rat Fukomys micklemi (Bathyergidae, Rodentia). Mammalian Biology, 95, 69–76.

    Article  Google Scholar 

  • Van Daele, P. A. A. G., Herrel, A., & Adriaens, D. (2009). Biting performance in teeth-digging African mole-rats (Fukomys, Bathyergidae, Rodentia). Physiological and Biochemical Zoology, 82, 40–50.

    Article  PubMed  Google Scholar 

  • Van der Merwe, M., & Botha, A. J. (1998). Incisors as digging tools in molerats (Bathyergidae). South African Journal of Zoology, 33, 230–235.

    Article  Google Scholar 

  • Van Wassenbergh, S., Heindryckx, S., & Adriaens, D. (2017). Kinematics of chisel-tooth digging by African mole-rats. Journal of Experimental Biology, 220, 4479.

    PubMed  Google Scholar 

  • Vassallo, A. I., Becerra, F., Echeverría, A. I., Díaz, A. O., Longo, M. V., Cohen, M., & Buezas, G. N. (2021). Analysis of the form-function relationship: Digging behavior as a case study. Journal of Mammalian Evolution, 28, 59–74.

    Article  Google Scholar 

  • Vieytes, E. C., Morgan, C. C., & Verzi, D. H. (2007). Adaptive diversity of incisor enamel microstructure in South American burrowing rodents (family Ctenomyidae, Caviomorpha). Journal of Anatomy, 211, 296–302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, B. (2001). On Tsaganomyidae (Rodentia, Mammalia) of Asia. American Museum Novitates, 3317, 1–50.

    Article  Google Scholar 

  • Williams, S., Peiffer, E., & Ford, S. (2009). Gape and bite force in the rodents Onychomys leucogaster and Peromyscus maniculatus: Does jaw-muscle anatomy predict performance? Journal of Morphology, 270, 1338–1347.

    Article  PubMed  Google Scholar 

  • Wood, A. E. (1965). Grades and clades among rodents. Evolution, 19, 115–130.

    Article  Google Scholar 

  • Zelová, J., Šumbera, R., Okrouhlík, J., & Burda, H. (2010). Cost of digging is determined by intrinsic factors rather than by substrate quality in two subterranean rodent species. Physiology & Behavior, 99, 54–58.

    Article  Google Scholar 

  • Zuri, I., Kaffe, I., Dayan, D., & Terkel, J. (1999). Incisor adaptation to fossorial life in the blind mole-rax Spalax ehrenbergi. Journal of Mammalogy, 80, 734–741.

    Article  Google Scholar 

Download references

Acknowledgement

We warmly thank the curators V. Nicolas-Colin, C. Denys (MNHN, Paris), and R. Portela-Miguez (NHM, London) for providing us access to the osteological collections of rodents. We acknowledge staff from the UAR2700 2AD (MNHN, Paris) for providing access to their X-ray microtomography facilities (AST-RX platform). We also acknowledge P.-H. Fabre and Q. Martinez (ISEM, Montpellier) for sending us scans of some rodents from the NHM, and S. Ginot (ISEM, Montpellier) for providing bite force data. We are grateful to J. Okrouhlík and M. Lövy (University of South Bohemia, Ceske Budejovice) for their help in collecting bite force data. We acknowledge the editors V. Bels and A. Russell for having invited us to contribute to this book. We also thank the reviewer, P. Cox, for his helpful comments on the manuscript. The project was supported by the Labex BCDiv (Laboratoire d’Excellence Biological and Cultural Diversities, http://labex-bcdiv.mnhn.fr/) to H.G.R. and by the Czech Science Foundation project GAČR [n. 20-10222S] to R.Š.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helder Gomes Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues, H.G., Šumbera, R., Hautier, L., Herrel, A. (2023). Digging Up Convergence in Fossorial Rodents: Insights into Burrowing Activity and Morpho-Functional Specializations of the Masticatory Apparatus. In: Bels, V.L., Russell, A.P. (eds) Convergent Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-11441-0_3

Download citation

Publish with us

Policies and ethics