Skip to main content

The Impact of Climate Change on Forest Tree Species Dieback and Changes in Their Distribution

  • Chapter
  • First Online:
Climate Change and the Microbiome

Part of the book series: Soil Biology ((SOILBIOL,volume 63))

Abstract

The paper presents the impact of climate change on the process of range change and tree species dieback in European conditions. In southern Europe, the tree species range is expected to shrink, in particular in the case of Scots pine and Norway spruce. As a result of global warming, the processes of tree stand disturbance and dieback, especially due to drought, occur more and more frequently in European forests. At the same time, due to rising air temperature, carbon dioxide concentration and nitrogen deposition, tree species display a faster growth rate and higher productivity. A faster growth rate translates into earlier culmination of growth and more dynamic tree ageing processes, and furthermore, stress associated with drought weakens stands. For these reasons, in Central Europe of the future, in protected forests of national parks and reserves, a greater rotation of stands should be expected, which will result in a lower felling age in managed forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen MR, Dube OP, Solecki W, Aragon-Durand F, Cramer W, Humphreys S, Kainuma M, Kala J, Mahowald N, Mulugetta Y, Perez R, Wairiu M, Zickfeld K (2018) Framing and Context. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [V. Masson-Delmotte, P. Zhai, H. O. Portner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. onnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. In Press

    Google Scholar 

  • Altman J, Fibich P, Santruckova H, Dolezal J, Stepanek P, Kopacek J, Hunova I, Oulehle F, Tumajer J, Cienciala E (2017) Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Sci Total Environ 609:506–516

    Article  CAS  PubMed  Google Scholar 

  • Attorre F, Alfò M, De Sanctis M, Francesconi F, Valenti R, Vitale M, Bruno F (2011) Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Appl Veg Sci 14(2):242–255

    Article  Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343

    Article  Google Scholar 

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity – evidence since the middle of the 20th century. Glob Chang Biol 12(5):862–882

    Article  Google Scholar 

  • Bottero A, D'Amato AW, Palik BJ, Bradford JB, Fraver S, Battaglia MA, Asherin LA (2016) Density-dependent vulnerability of forest ecosystems to drought. J Appl Ecol 54(6):1605–1614

    Article  Google Scholar 

  • Brooker RW, Travis JMJ, Clark EJ, Dytham C (2007) Modelling species’ range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change. J Theor Biol 245(1):59–65

    Article  PubMed  Google Scholar 

  • Camarero JJ, Guada G, Sánchez-Salguero R, Cervantes E (2016) Winter drought impairs xylem phenology, anatomy and growth in Mediterranean scots pine forests. Tree Physiol 36(12):1536–1549

    Article  CAS  PubMed  Google Scholar 

  • Castagneri D, Petit G, Carrer M (2015) Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient. Tree Physiol 35(12):1378–1387

    Article  PubMed  Google Scholar 

  • Cheaib A, Badeau V, Boe J, Chuine I, Delire C, Dufrêne E, François C, Gritti ES, Legay M, Pagé C, Thuiller W, Viovy N, Leadley P (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol Lett 15(6):533–544

    Article  PubMed  Google Scholar 

  • Ciceu A, Popa I, Leca S, Pitar D, Chivulescu S, Badea O (2020) Climate change effects on tree growth from Romanian forest monitoring level II plots. Sci Total Environ 698:134129

    Article  CAS  PubMed  Google Scholar 

  • Cienciala E, Altman J, Doležal J, Kopáček J, Štěpánek P, Ståhle G, Tumajer J (2018) Increased spruce tree growth in Central Europe since 1960s. Sci Total Environ 619–620:1637–1647

    Article  PubMed  CAS  Google Scholar 

  • Dobbertin M, Rigling A (2006) Pine mistletoe (Viscum album ssp. austriacum) contributes to scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. For Pathol 36(5):309–322

    Article  Google Scholar 

  • Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018) How much does climate change threaten European forest tree species distributions? Glob Chang Biol 24(3):1150–1163

    Article  PubMed  Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Graf Pannatier E, Rigling A (2011) Drought alters timing, quantity, and quality of wood formation in scots pine. J Exp Bot 62(8):2763–2771

    Article  CAS  PubMed  Google Scholar 

  • Fleischer P, Godzik B, Bicarova S, Bytnerowicz A (2005) Effects of air pollution and climate change on forests of the Tatra Mountains, Central Europe. In: Omasa K, Nouchi I, De Kok LJ (eds) Plant responses to air pollution and global change. Springer, Tokyo, pp 111–121

    Chapter  Google Scholar 

  • Galiano L, Martínez-Vilalta J, Lloret F (2010) Drought-induced multifactor decline of scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13:978–991

    Article  CAS  Google Scholar 

  • Garzón MB, de Dios RS, Ollero HS (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11(2):169–178

    Article  Google Scholar 

  • Gatti RC, Callaghan T, Velichevskaya A, Dudko A, Fabbio L, Battipaglia G, Liang J (2019) Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Sci Rep 9:7678

    Article  CAS  Google Scholar 

  • Gazda A, Kościelniak P, Hardy M, Muter E, Kędra K, Bodziarczyk J, Frączek M, Chwistek K, Różański W, Szwagrzyk J (2019) Upward expansion of distribution ranges of tree species: contrasting results from two national parks in Western Carpathians. Sci Total Environ 653:920–929

    Article  CAS  PubMed  Google Scholar 

  • Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11

    Article  Google Scholar 

  • Giordano L, Gonthier P, Varese GC, Miserere L, Nicolotti G (2009) Mycobiota inhabiting sapwood of healthy and declining scots pine (Pinus sylvestris L.) trees in the Alps. Fungal Divers 38:69–83

    Google Scholar 

  • Giuggiola A, Bugmann H, Zingg A, Dobbertin M, Rigling A (2013) Reduction of stand density increases drought resistance in xeric scots pine forests. For Ecol Manag 310:827–835

    Article  Google Scholar 

  • Gonthier P, Giordano L, Nicolotti G (2010) Further observations on sudden diebacks of scots pine in the European Alps. For Chron 86(1):110–117

    Article  Google Scholar 

  • Hamann A, Wang T (2006) Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 87(11):2773–2786

    Article  PubMed  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207

    Article  Google Scholar 

  • Hess C, Niemeyer T, Fichtner A, Jansen K, Kunz M, Maneke M, von Wehrden H, Quantec M, Walmsley D, von Oheimb G, Härdtle W (2018) Anthropogenic nitrogen deposition alters growth responses of European beech (Fagus sylvativa L.) to climate change. Environ Pollut 233:92–98

    Article  CAS  PubMed  Google Scholar 

  • Hevia A, Sánchez-Salguero R, Camarero JJ, Querejeta JI, Sangüesa-Barreda G, Gazol A (2019) Long-term nutrient imbalances linked to drought-triggered forest dieback. Sci Total Environ 690:1254–1267

    Article  CAS  PubMed  Google Scholar 

  • Holeksa J, Zielonka T, Żywiec M, Fleischer P (2016) Identifying the disturbance history over a large area of larch–spruce mountain forest in Central Europe. For Ecol Manag 361:318–327

    Article  Google Scholar 

  • Holeksa J, Jaloviar P, Kucbel S, Saniga M, Svoboda M, Szewczyk J, Szwagrzyk J, Zielonka T, Żywiec M (2017) Models of disturbance driven dynamics in the west Carpathian spruce forests. For Ecol Manag 388:79–89

    Article  Google Scholar 

  • Iverson LR, Prasad AM (1998) Predicting abundance of 80 tree species following climate change in the eastern United States. Ecol Monogr 68(4):465–485

    Article  Google Scholar 

  • Iverson LR, Schwartz MW, Prasad AM (2004) How fast and far might tree species migrate in the eastern United States due to climate change? Glob Ecol Biogeogr 13(3):209–219

    Article  Google Scholar 

  • Jaime L, Batllori E, Margalef-Marrase J, Navarro MAP, Lloret F (2019) Scots pine (Pinus sylvestris L.) mortality is explained by the climatic suitability of both host tree and bark beetle populations. For Ecol Manag 448:119–129

    Article  Google Scholar 

  • Jamroz E, Kocowicz A, Bekier J, Weber J (2014) Properties of soil organic matter in Podzols under mountain dwarf pine (Pinus mugo Turra.) and Norway spruce (Picea abies (L.) karst.) in various stages of dieback in the east Sudety Mountains, Poland. For Ecol Manag 330:261–270

    Article  Google Scholar 

  • Jonášová M, Prach K (2004) Central-European mountain spruce (Picea abies (L.) karst.) forests: regeneration of tree species after a bark beetle outbreak. Ecol Eng 23(1):15–27

    Article  Google Scholar 

  • Krejza J, Cienciala E, Světlík J, Bellan M, Noyer E, Horáček P, Štěpánek P, Marek MV (2020) Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees (in press, published online)

    Google Scholar 

  • Kubiak K, Żółciak A, Damszel M, Lech P, Sierota Z (2017) Armillaria pathogenesis under climate changes. Forests 8(4):100

    Article  Google Scholar 

  • Kupferschmid AD, Brang P, Schönenberger W, Bugmann H (2006) Predicting tree regeneration in Picea abies snag stands. Eur J For Res 125:163–179

    Article  Google Scholar 

  • Li G, Huang J, Guo H, Du S (2020) Projecting species loss and turnover under climate change for 111 Chinese tree species. For Ecol Manag 477:118488

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259(4):698–709

    Article  Google Scholar 

  • Mäkinen H, Nöjd P, Mielikäinen K (2001) Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) karst.] in southern Finland. Trees 15:177–185

    Article  Google Scholar 

  • Malcolm JR, Markham A, Neilson RP, Garaci M (2002) Estimated migration rates under scenarios of global climate change. J Biogeogr 29(7):835–849

    Article  Google Scholar 

  • Marqués L, Madrigal-González J, Zavala MA, Camarero JJ, Hartig F (2017) Last-century forest productivity in a managed dry-edge scots pine population: the two sides of climate warming. Ecol Appl 28(1):95–105

    Article  PubMed  Google Scholar 

  • Martínez-vilalta J, López BC, Adell N, Badiella L, Ninyerola M (2008) Twentieth century increase of scots pine radial growth in NE Spain shows strong climate interactions. Glob Chang Biol 14(12):2868–2881

    Article  Google Scholar 

  • Messinger J, Güney A, Zimmermann R, Ganser B, Bachmann M, Remmele S, Aas G (2015) Cedrus libani: a promising tree species for central European forestry facing climate change? Eur J For Res 134:1005–1017

    Article  Google Scholar 

  • Michelot A, Bréda N, Damesin C, Dufrêne E (2012) Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For Ecol Manag 265:161–171

    Article  Google Scholar 

  • Pastirčáková K, Adamčíková K, Pastirčák M, Zach P, Galko J, Kováč M, Laco J (2018) Two blue-stain fungi colonizing scots pine (Pinus sylvestris) trees infested by bark beetles in Slovakia, Central Europe. Biologia 73:1053–1066

    Article  CAS  Google Scholar 

  • Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967

    Article  CAS  PubMed  Google Scholar 

  • Prietzel J, Falk W, Reger B, Uhl E, Pretzsch H, Zimmermann L (2020) Half a century of scots pine forest ecosystem monitoring reveals long-term effects of atmospheric deposition and climate change. Global change biology, early view (online version of record before inclusion in an issue)

    Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier HEM, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31

    Article  Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9

    Article  Google Scholar 

  • Rigling A, Eilmann B, Koechli R, Dobbertin M (2010) Mistletoe-induced crown degradation in scots pine in a xeric environment. Tree Physiol 30(7):845–852

    Article  PubMed  Google Scholar 

  • Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M (2012) Driving factors of a vegetation shift from scots pine to pubescent oak in dry alpine forests. Glob Chang Biol 19(1):229–240

    Article  PubMed  Google Scholar 

  • Sánchez-Salguero R, Camarero JJ, Gutiérrez E, Rouco FG, Gazol A, Sangüesa-Barreda G, Andreu-Hayles L, Linares JC, Seftigen K (2016) Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges. Glob Chang Biol 23(7):2705–2719

    Article  PubMed  Google Scholar 

  • Schelhaas M-J, Nabuurs G-J, Hengeveld G, Reyer C, Hanewinkel M, Zimmermann NE, Cullmann D (2015) Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Reg Environ Chang 15:1581–1594

    Article  Google Scholar 

  • Socha J, Tymińska-Czabańska L, Grabska E, Orzeł S (2020) Site index models for Main Forest-forming tree species in Poland. Forests 11(3):301

    Article  Google Scholar 

  • Spiecker H (2000) Growth of Norway spruce (Picea abies [L.] karst.) under changing environmental conditions in Europe. In: Klimo E, Hager H, Kulhavý J (eds.) Spruce monocultures in Central Europe – problems and prospects. EFI proceedings no. 33, pp. 11–26

    Google Scholar 

  • Stagge JH, Kingston DG, Tallaksen LM, Hannah DM (2017) Observed drought indices show increasing divergence across Europe. Sci Rep 7:14045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sykes MT, Prentice IC (1996) Climate change, tree species distributions and forest dynamics: a case study in the mixed conifer/northern hardwoods zone of northern Europe. Clim Chang 34:161–177

    Article  Google Scholar 

  • Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83(3):383–402

    Article  Google Scholar 

  • Vertui F, Tagliaferro F (1998) Scots pine (Pinus sylvestris L.) die-back by unknown causes in the Aosta Valley, Italy. Chemosphere 36(4–5):1061–1065

    Article  CAS  Google Scholar 

  • Voltas J, Camarero JJ, Carulla D, Aguilera M, Ortiz A, Ferrio JP (2013) A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of scots pine. Plant Cell Environ 36(8):1435–1448

    Article  CAS  PubMed  Google Scholar 

  • Wang WJ, He HS, Thompson FR, Fraser JS, Dijak WD (2017) Changes in forest biomass and tree species distribution under climate change in the northeastern United States. Landsc Ecol 32:1399–1413

    Article  Google Scholar 

  • Wermelinger B, Rigling A, Schneider Mathis D, Dobbertin M (2008) Assessing the role of bark- and wood-boring insects in the decline of scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecological Entomology 33(2):239–249

    Article  Google Scholar 

Download references

Acknowledgements

The study was financed by National Science Centre, Poland, grant No. 2018/31/D/ST10/02137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej Woś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pietrzykowski, M., Woś, B. (2021). The Impact of Climate Change on Forest Tree Species Dieback and Changes in Their Distribution. In: Choudhary, D.K., Mishra, A., Varma, A. (eds) Climate Change and the Microbiome. Soil Biology, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-030-76863-8_23

Download citation

Publish with us

Policies and ethics