Skip to main content

Spatial and Individual-Based Modelling

  • Chapter
  • First Online:
Individual-based Methods in Forest Ecology and Management
  • 908 Accesses

Abstract

Since its beginnings in the late 18th century the result of modelling in forest science has always been intriguing, because it allows studying plant populations as they travel through space and time in a time-lapse mode, whereas field and lab-based studies of plant development usually take much time. On the other hand models can only approximate reality. For individual-based forest ecology and management models are of particular importance, since this field involves large, complex ecological systems with slow dynamics, where the main lessons can only be learned from simulations based on agent- or individual based models that pull theory and experimental results together and synthesise them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adami C, Schossau J, Hintze A (2016) Evolutionary game theory using agent-based methods. Phys Life Rev 19:1ā€“26

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Adams T, Ackland G, Marion G, Edwards C (2011) Understanding plantation transformation using a size-structured spatial population model. Forest Ecol Manag 261:799ā€“809

    ArticleĀ  Google ScholarĀ 

  • Adler FR (1996) A model of self-thinning through local competition. Proc Natl Acad Sci USA 93:9980ā€“9984

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ɓlvarez-GonzĆ”lez JG, Zingg A, Gadow Kv (2010) Estimating growth in beech forests: a study based on long-term experiments in Switzerland. Ann Forest Sci 67:307

    ArticleĀ  Google ScholarĀ 

  • Baccelli F, Blaszczyszyn B (2001) On a coverage process ranging from the Boolean model to the Poisson-Voroni tesselation. Adv Appl Probab 33:293ā€“323

    ArticleĀ  Google ScholarĀ 

  • Baddeley A, Rubak E, Turner R (2016) Spatial point patterns. Methodology and applications with R. CRC Press, Boca Raton, 810 p

    Google ScholarĀ 

  • Baptestini EM, de Aguiar MAM, Bolnick DI, AraĆŗjo MS (2009) The shape of the competition and carrying capacity kernels affects the likelihood of disruptive selection. J Theor Biol 259:5ā€“11

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Batista JLF, Maguire DA (1998) Modeling the spatial structure of tropical forests. Forest Ecol Manag 110:293ā€“314

    ArticleĀ  Google ScholarĀ 

  • Bauer S, Wyszomirski T, Berger U, Hildenbrandt H, Grimm V (2004) Asymmetric competition as a natural outcome of neighbour interactions among plants: results from the field-of-neighbourhood modelling approach. Plant Ecol 170:135ā€“145

    ArticleĀ  Google ScholarĀ 

  • BƤuerle H, Nothdurft A (2011) Spatial modeling of habitat trees based on line transect sampling and point pattern reconstruction. Can J Forest Res 41:715ā€“727

    ArticleĀ  Google ScholarĀ 

  • Bella IE (1971) A new competition model for individual trees. Forest Sci 17:364ā€“372

    Google ScholarĀ 

  • Berger U, Hildenbrandt H (2000) A new approach to spatially explicit modelling of forest dynamics: spacing, ageing and neighbourhood competition of mangrove trees. Ecol Model 132:287ā€“302

    ArticleĀ  Google ScholarĀ 

  • Berger U, Hildenbrandt H, Grimm V (2002) Towards a standard for the individual-based modelling of plant populations: self-thinning and the field-of-neighbourhood approach. Nat Res Model 15:39ā€“54

    ArticleĀ  Google ScholarĀ 

  • Berger U, Adams M, Grimm V, Hildenbrandt H (2006) Modelling secondary succession of neotropical mangroves: causes and consequences of growth reduction in pioneer species. Perspect Plant Ecol Evol Syst 7:243ā€“252

    ArticleĀ  Google ScholarĀ 

  • Bigler C, Bugmann H (2003) Growth-dependent tree mortality models based on tree rings. Can J Forest Res 33:210ā€“221

    ArticleĀ  Google ScholarĀ 

  • Botkin DB, Janak JF, Wallis JR (1972) Some ecological consequences of a computer model of forest growth. J Ecol 60:849

    ArticleĀ  Google ScholarĀ 

  • Boyden S, Binkley D, Shepperd W (2005) Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado front range. Forest Ecol Manag 219:43ā€“55

    ArticleĀ  Google ScholarĀ 

  • Brown C, Law R, Illian JB, Burslem DFRP (2011) Linking ecological processes with spatial and non-spatial patterns in plant communities. J Ecol 99:1402ā€“1414

    ArticleĀ  Google ScholarĀ 

  • Bugmann H (2001) A review of forest gap models. Clim Chang 51:259ā€“305

    ArticleĀ  Google ScholarĀ 

  • Bugmann F, Yan A, Sykes MT, Martin P, Lindner M, Desanker PV, Cumming SG (1996) A comparison of forest gap models: model structure and behaviour. Clim Chang 34:289ā€“313

    Google ScholarĀ 

  • Bullock JM, Mallada GonzĆ”lez L, Tamme R, Gƶtzenberger L, White SM, PƤrtel M, Hooftman DAP (2017) A synthesis of empirical plant dispersal kernels. J Ecol 105:6ā€“19

    ArticleĀ  Google ScholarĀ 

  • Burkhart HE, TomĆ© M (2012) Modeling forest trees and stands. Springer, New York, 457 p

    BookĀ  Google ScholarĀ 

  • Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 8:412ā€“420

    ArticleĀ  Google ScholarĀ 

  • Canham CD, LePage PT, Coates KD (2004) A neighbourhood analysis of canopy tree competition: effects of shading versus crowding. Can J Forest Res 34:778ā€“787

    ArticleĀ  Google ScholarĀ 

  • Chen BW, Gadow Kv (2002) Timber harvest planning with spatial objectives, using the method of simulated annealing. Forstwissenschaftliches Centralblatt 121:25ā€“34

    ArticleĀ  Google ScholarĀ 

  • ChilĆØs J-P, Delfiner P (1999) Geostatistics. Modeling spatial uncertainty. Wiley, New York, 695 p

    Google ScholarĀ 

  • Chiu SN, Stoyan D, Kendall WS, Mecke J (2013) Stochastic geometry and its applications, 3rd edn. Wiley, Chichester, 544 p

    Google ScholarĀ 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology 35:445ā€“453

    ArticleĀ  Google ScholarĀ 

  • Comas C, Mateu J (2007) Modelling forest dynamics: a perspective from point process methods. Biom J 49:176ā€“196

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Crawford J, Torquato S, Stillinger FG (2003) Aspects of correlation function realizability. J Chem Phys 119:7065ā€“7073

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cronie O, SƤrkkƤ A (2011) Some edge-correction methods for marked spatio-temporal point process models. Comput Stat Data 55:2209ā€“2220

    ArticleĀ  Google ScholarĀ 

  • Cronie O, Nystrƶm K, Yu J (2013) Spatiotemporal modeling of Swedish Scots pine stands. Forest Sci 9:505ā€“516

    ArticleĀ  Google ScholarĀ 

  • Cukier RI, Levine HB, Shuler KE (1978) Nonlinear sensitivity analysis of multiparameter model systems. J Comput Phys 26:1ā€“42

    ArticleĀ  Google ScholarĀ 

  • DeAngelis DL, Grimm V (2014) Individual-based models in ecology after four decades. F1000Prime Rep 6:39

    Google ScholarĀ 

  • DeAngelis DL, Mooij WM (2005) Individual-based modeling of ecological and evolutionary processes. Annu Rev Ecol Evol Syst 36:147ā€“168

    ArticleĀ  Google ScholarĀ 

  • Degenhardt A (1999) Description of tree distribution patterns and their development through marked Gibbs processes. Biom J 41:457ā€“470

    ArticleĀ  Google ScholarĀ 

  • Degenhardt A, Pofahl U (2000) Simulation of natural evolution of stem number and tree distribution pattern in a pure pine stand. Environmetrics 11:197ā€“208

    ArticleĀ  Google ScholarĀ 

  • Diggle PJ (2014) Statistical analysis of spatial and spatio-temporal point patterns, 3rd edn. CRC Press, Boca Raton, 267 p

    Google ScholarĀ 

  • Diggle PJ, Gates DJ, Stibbard A (1987) A nonparametric estimator for pairwise-interaction point processes. Biometrika 74:763ā€“770

    ArticleĀ  Google ScholarĀ 

  • Eddelbuettel D (2013) Seamless R and C++ integration with Rcpp. Springer, New York, 220 p

    ChapterĀ  Google ScholarĀ 

  • Falster DF, Westoby M (2003) Plant height and evolutionary games. Trends in Ecol Evol 18:337ā€“343

    ArticleĀ  Google ScholarĀ 

  • Fibich P, LepÅ” J (2011) Do biodiversity indices behave as expected from traits of constituent species in simulated scenarios? Ecol Model 222:2049ā€“2058

    ArticleĀ  Google ScholarĀ 

  • GarcĆ­a O (2014) A generic approach to spatial individual-based modelling and simulation of plant communities. Math Comput For Nat Res Sci 6:36ā€“47

    Google ScholarĀ 

  • Gerrard DJ (1969) Competition quotient - a new measure of the competition affecting individual forest trees. Michigan State University Research Bulletin, Agricultural Experiment Station, p 20

    Google ScholarĀ 

  • Gillner S, RĆ¼ger N, Roloff A, Berger U (2013) Low relative growth rates predict future mortality of common beech (Fagus sylvatica L.). Forest Ecol Manag 2013:372ā€“378

    ArticleĀ  Google ScholarĀ 

  • Grabarnik P, SƤrkkƤ A (2001) Interacting neighbour point processes: some models for clustering. J Stat Comput Simul 68:103ā€“125

    ArticleĀ  Google ScholarĀ 

  • Grabarnik P, SƤrkkƤ A (2009) Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions. Ecol Model 220:1232ā€“1240

    ArticleĀ  Google ScholarĀ 

  • Grabarnik P, SƤrkkƤ A (2011) Modelling the spatial and space-time structure of forest stands: how to model asymmetric interaction between neighbouring trees. Procedia Environ Sci 7:62ā€“67

    ArticleĀ  Google ScholarĀ 

  • Grimm V (1999) Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol Model 115:129ā€“148

    ArticleĀ  Google ScholarĀ 

  • Grimm V, Berger U (2016) Robustness analysis: deconstructing computational models for ecological theory and applications. Ecol Model 326:162ā€“167

    ArticleĀ  Google ScholarĀ 

  • Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton, 448 p

    Google ScholarĀ 

  • Grimm V, Railsback SF (2012) Pattern-oriented modelling: a ā€˜multi-scopeā€™ for predictive systems ecology. Philos Trans R Soc Lond B Biol Sci 367:298ā€“310

    ArticleĀ  Google ScholarĀ 

  • Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987ā€“991

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G, Huth A, Jepsen JU, JĆørgensen C, Mooij WM, MĆ¼ller B, Peā€™er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, RĆ¼ger N, Strand E, Souissi S, Stillman RA, VabĆø R, Visser U, DeAngelis DL (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115ā€“126

    ArticleĀ  Google ScholarĀ 

  • Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF (2010) The ODD protocol: a review and first update. Ecol Model 221:2760ā€“2768

    ArticleĀ  Google ScholarĀ 

  • Grimm V, Augusiak J, Focks A, Frank BM, Gabsi F, Johnston ASA, Liu C, Martin BT, Meli M, Radchuk V, Thorbeck P, Railsback SF (2014) Towards better modelling and decision support: documenting model development, testing, and analysis using TRACE. Ecol Model 280:129ā€“139

    ArticleĀ  Google ScholarĀ 

  • GrĆ¼ters U, Seltmann T, Schmidt H, Horn H, Pranchai A, Vovides AG, Peters R, Vogt J, Dahdouh-Guebas F, Berger U (2014) The mangrove forest dynamics model mesoFON. Ecol Model 291:28ā€“41

    ArticleĀ  Google ScholarĀ 

  • HƤbel H, MyllymƤki M, Pommerening A (2019) New insights on the behaviour of alternative types of individual-based tree models for natural forests. Ecol Model (In print)

    Google ScholarĀ 

  • Hasenauer H (1997) Dimensional relationships of open-grown trees in Austria. Forest Ecol Manag 96:197ā€“206

    ArticleĀ  Google ScholarĀ 

  • Hƶgmander H, SƤrkkƤ A (1999) Multitype spatial point patterns with hierarchical interactions. Biometrics 55:1051ā€“1058

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Hugershoff R (1936) Die mathematischen Hilfsmittel des Kulturingenieurs und Biologen. II. Teil: Herleitung von gesetzmƤƟigen ZusammenhƤngen [Mathematical tools for forest engineers and biologists. Part II: Deriving relationships based on natural laws]. Dresden, unpublished manuscript

    Google ScholarĀ 

  • Huston M, DeAngelis D, Post W (1988) New computer models unify ecological theory. BioScience 38:682ā€“691

    ArticleĀ  Google ScholarĀ 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, Chichester, 534 p

    Google ScholarĀ 

  • Kirkpatrick S, Gellat CD, Vecchi MP (1983) Optimisation by simulated annealing. Science 220:671ā€“680

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Koenker R, Park BJ (1994) An interior point algorithm for nonlinear quantile regression. J Econom 71:265ā€“283

    ArticleĀ  Google ScholarĀ 

  • Law R, Dieckmann U (2000) A dynamical system for neighborhoods in plant communities. Ecology 81:2137ā€“2148

    Google ScholarĀ 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earthā€™s climate system. Proc Natl Acad Sci USA 105:1786ā€“1793

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lewandowski A, Gadow Kv (1997) Ein heuristischer Ansatz zur Reproduktion von WaldbestƤnden [A method for reproducing uneven-aged forest stands]. Allgemeine Forst- und Jagdzeitung 168:170ā€“174

    Google ScholarĀ 

  • Lewis PAW, Shedler GS (1979) Simulation of non-homogeneous Poisson processes by thinning. Nav Res Logist 26:403ā€“413

    ArticleĀ  Google ScholarĀ 

  • Li B, Wu H, Zou G (2000) Self-thinning rule: a causal interpretation from ecological field theory. Ecol Model 132:167ā€“173

    ArticleĀ  Google ScholarĀ 

  • Li Y, Ye S, Hui G, Hu Y, Zhao Z (2014) Spatial structure of timber harvested according to structure-based forest management. Forest Ecol Manag 322:106ā€“116

    ArticleĀ  Google ScholarĀ 

  • Lilleleht A, Sims A, Pommerening A (2014) Spatial forest structure reconstruction as a strategy for mitigating edge-bias in circular monitoring plots. Forest Ecol Manag 316:47ā€“53

    ArticleĀ  Google ScholarĀ 

  • MatĆ©rn B (1960) Spatial variation. Meddelanden fran Statens Skogsforskningsinstitut 49:1ā€“144

    Google ScholarĀ 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge, 234 p

    Google ScholarĀ 

  • McNickle GG, Dybzinski R (2013) Game theory and plant ecology. Ecol Lett 16:545ā€“555

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Miina J, Pukkala T (2002) Application of ecological field theory in distance-dependent growth modelling. Forest Ecol Manag 161:101ā€“107

    ArticleĀ  Google ScholarĀ 

  • Motz K, Sterba H, Pommerening A (2010) Sampling measures of tree diversity. Forest Ecol Manag 260:1985ā€“1996

    ArticleĀ  Google ScholarĀ 

  • Murrell DJ, Law R (2003) Heteromyopia and the spatial coexistence of similar competitors. Ecol Lett 6:48ā€“59

    ArticleĀ  Google ScholarĀ 

  • Nanos N, Larson K, MillerĆ³n M, Sjƶstedt-de Luna S (2010) Inverse modelling for effective dispersal: do we need tree size to estimate fecundity? Ecol Model 221:2415ā€“2424

    ArticleĀ  Google ScholarĀ 

  • Nash JF (1950) Equilibrium points in N-person games. Proc Natl Acad Sci USA 36:48ā€“49

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Neumann Jv, Morgenstern O (1944) Theory of games and economic behaviour. Princeton University Press, Princeton, 776 p

    Google ScholarĀ 

  • Newnham RM (1964) The development of a stand model for Douglas fir. PhD thesis, University of British Columbia, Vancouver, 201 p

    Google ScholarĀ 

  • Nord-Larson T (2006) Modeling individual-tree growth from data with highly irregular measurement intervals. Forest Sci 52:198ā€“208

    Google ScholarĀ 

  • Nord-Larson T, Johannsen VK (2007) A state-space approach to stand growth modelling of European beech. Ann Forest Sci 64:365ā€“374

    ArticleĀ  Google ScholarĀ 

  • Nothdurft A, Saborowski J, Nuske RS, Stoyan D (2010) Density estimation based on \(k\)-tree sampling and point pattern reconstruction. Can J Forest Res 40:953ā€“967

    ArticleĀ  Google ScholarĀ 

  • Ogata Y, Tanemura M (1985) Estimation of interaction potentials of marked spatial point patterns through the maximum likelihood method. Biometrics 41:421ā€“433

    ArticleĀ  Google ScholarĀ 

  • Oā€™Sullivan AP, Perry JD (2013) Spatial simulation. Exploring pattern and process. Wiley-Blackwell, Chichester, 305 p

    BookĀ  Google ScholarĀ 

  • Perry DA, Oren R, Hart SC (2008) Forest ecosystems, 2nd edn. The Johns Hopkins University Press, Baltimore, 632 p

    Google ScholarĀ 

  • Pianosi F, Beven K, Freer J, Hall JW, Rougier J, Stephenson DB, Wagener T (2016) Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ Model Softw 79:214ā€“232

    ArticleĀ  Google ScholarĀ 

  • Picard N, Bar-Hen A, Mortier F, Chadaeuf J (2009) The multi-scale marked area-interaction point process: a model for the spatial pattern of trees. Scand J Stat 36:23ā€“41

    Google ScholarĀ 

  • Pienaar LV, Turnbull KJ (1973) The Chapman-Richards generalization of von Bertalanffyā€™s growth model for basal area growth and yield in even-aged stands. Forest Sci 19:2ā€“22

    Google ScholarĀ 

  • Piou C, Berger U, Grimm V (2009) Proposing an information criterion for individual-based models developed in a pattern-oriented modelling framework. Ecol Model 220:1957ā€“1967

    ArticleĀ  Google ScholarĀ 

  • Pommerening A (2000) Neue Methoden zur rƤumlichen Reproduktion von WaldbestƤnden und ihre Bedeutung fĆ¼r forstliche Inventuren und deren Fortschreibung [New methods of spatial simulation of forest structures and their implications for updating forest inventories]. Allgemeine Forst- und Jagd-Zeitung [German J Forest Res] 171:164ā€“169

    Google ScholarĀ 

  • Pommerening A (2006) Evaluating structural indices by reversing forest structural analysis. Forest Ecol Manag 224:266ā€“277

    ArticleĀ  Google ScholarĀ 

  • Pommerening A, Maleki K (2014) Differences between competition kernels and traditional size-ratio based competition indices used in forest ecology. Forest Ecol Manag 331:135ā€“143

    ArticleĀ  Google ScholarĀ 

  • Pommerening A, SĆ”nchez Meador AJ (2018) Tamm review: tree interactions between myth and reality. Forest Ecol Manag 428:164ā€“176

    ArticleĀ  Google ScholarĀ 

  • Pommerening A, SƤrkkƤ A (2013) What mark variograms tell about spatial plant interactions. Ecol Model 251:64ā€“72

    ArticleĀ  Google ScholarĀ 

  • Pommerening A, Stoyan D (2006) Edge-correction needs in estimating indices of spatial forest structure. Can J Forest Res 36:1723ā€“1739

    ArticleĀ  Google ScholarĀ 

  • Pommerening A, Stoyan D (2008) Reconstructing spatial tree point patterns from nearest neighbour summary statistics measured in small subwindows. Can J Forest Res 38:1110ā€“1122

    ArticleĀ  Google ScholarĀ 

  • Pommerening A, LeMay V, Stoyan D (2011) Model-based analysis of the influence of ecological processes on forest point pattern formation. Ecol Model 222:666ā€“678

    ArticleĀ  Google ScholarĀ 

  • Pommerening A, GonƧalves AC, RodrĆ­guez-Soalleiro R (2011) Species mingling and diameter differentiation as second-order characteristics. Allgemeine Forst- und Jagd-Zeitung [German J Forest Res] 182:115ā€“129

    Google ScholarĀ 

  • Pommerening A, Svensson B, Zhao D, Wang H, MyllymƤki M (2019) Spatial species diversity in species-rich forest ecosystems: revisiting and extending the concept of spatial species mingling. Ecol Indic (In print)

    Google ScholarĀ 

  • Pretzsch H (1997) Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-larch stands in Lower Saxony. Forest Ecol Manag 97:237ā€“253

    ArticleĀ  Google ScholarĀ 

  • Redenbach C, SƤrkkƤ A (2013) Parameter estimation for growth interaction processes using spatio-temporal information. Comput Stat Data Anal 57:672ā€“683

    ArticleĀ  Google ScholarĀ 

  • Renshaw E, SƤrkkƤ A (2001) Gibbs point processes for studying the development of spatial-temporal stochastic processes. Comput Stat Data 36:85ā€“105

    ArticleĀ  Google ScholarĀ 

  • Rice SO (1945) Mathematical analysis of random noise. Bell Syst Tech J 24:46ā€“156

    ArticleĀ  Google ScholarĀ 

  • Saloranta TM, Andersen T (2007) MyLake - a multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations. Ecol Model 207:45ā€“60

    ArticleĀ  Google ScholarĀ 

  • Saltelli A, Tarantola S, Chan KP-S (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41:39ā€“56

    ArticleĀ  Google ScholarĀ 

  • Saltelli A, Chan K, Scott EM (eds) (2009) Sensitivity analysis. Wiley, Chichester, 494 p

    Google ScholarĀ 

  • SƤrkkƤ A, Renshaw E (2006) The analysis of marked point patterns evolving through space and time. Comput Stat Data 51:1698ā€“1718

    ArticleĀ  Google ScholarĀ 

  • Schmolke A, Thorbek P, DeAngelis DL, Grimm V (2010) Ecological models supporting environmental decision making: a strategy for the future. Trends Ecol Evol 25:479ā€“486

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Schneider MK, Law R, Illian JB (2006) Quantification of neighbourhood-dependent plant growth by Bayesian hierarchical modelling. J Ecol 94:310ā€“321

    ArticleĀ  Google ScholarĀ 

  • Shimatani K, Kubota Y (2004) Spatial analysis for continuously changing point patterns along a gradient and its application to an Abies sachalinensis population. Ecol Model 180:359ā€“369

    ArticleĀ  Google ScholarĀ 

  • Snyder RE, Chesson P (2004) How the spatial scales of dispersal, competition and environmental heterogeneity interact to affect coexistence. Am Nat 164:633ā€“650

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Stillman RA, Railsback SF, Giske J, Berger U, Grimm V (2015) Making predictions in a changing world: the benefits of individual-based ecology. BioScience 65:140ā€“150

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Stoyan D (1987) Statistical analysis of spatial point processes: a soft-core model and cross-correlations of marks. Biom J 29:971ā€“980

    ArticleĀ  Google ScholarĀ 

  • Stoyan D, Penttinen A (2000) Recent applications of point process methods in forestry statistics. Stat Sci 15:61ā€“78

    ArticleĀ  Google ScholarĀ 

  • Stoyan D, Stoyan H (1998) Non-homogeneous Gibbs process models for forestry - a case study. Biom J 5:521ā€“531

    ArticleĀ  Google ScholarĀ 

  • StrĆ®mbu VF, Ene LT, NƦsset E (2016) Spatially consistent imputations of forest data under a semivariogram model. Can J Forest Res 46:1145ā€“1156

    ArticleĀ  Google ScholarĀ 

  • Thiele JC, Grimm V (2010) NetLogo meets R: linking agent-based models with a toolbox for their analysis. Environ Model Softw 25:972ā€“974

    ArticleĀ  Google ScholarĀ 

  • TomĆ© M, Burkhart HE (1989) Distance-dependent competition measures for predicting growth of individual trees. Forest Sci 35:816ā€“831

    Google ScholarĀ 

  • Tomppo E (1986) Models and methods for analysing spatial patterns of trees. Communicationes Instituti Forestalis Fenniae, vol 138. Helsinki, 65 p

    Google ScholarĀ 

  • Torquato S (2002) Random heterogeneous materials. Microstructure and macroscopic properties. Springer, New York, 701 p

    Google ScholarĀ 

  • Tscheschel A, Stoyan D (2006) Statistical reconstruction of random point patterns. Comput Stat Data Anal 51:859ā€“871

    ArticleĀ  Google ScholarĀ 

  • Vanclay JK (1994) Modelling forest growth and yield. Applications to mixed tropical forests. CABI Publishing, Wallingford, 312 p

    Google ScholarĀ 

  • Vogt DR, Murrell DJ, Stoll P (2010) Testing spatial theories of plant coexistence: no consistent differences in intra- and interspecific interaction distances. Am Nat 175:73ā€“84

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Weiskittel AR, Hann DW, Kerschaw JA, Vanclay JK (2011) Forest growth and yield modeling. Wiley Blackwell, Chichester, 415 p

    BookĀ  Google ScholarĀ 

  • Wenk G, Antanaitis V, Å melko Å  (1990) Waldertragslehre [Forest growth and yield science]. Deutscher Landwirtschaftsverlag, Berlin, 448 p

    Google ScholarĀ 

  • Wiegand T, Jeltsch F, Hanski I, Grimm V (2003) Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and application. Oikos 100:209ā€“222

    ArticleĀ  Google ScholarĀ 

  • Wiegand T, Moloney KA (2014) Handbook of spatial point-pattern analysis in ecology. CRC Press, Boca Raton, 538 p

    Google ScholarĀ 

  • Wu H, Sharpe PJH, Walker J, Penridge LK (1985) Ecological field theory: a spatial analysis of resource interference among plants. Ecol Model 29:215ā€“243

    ArticleĀ  Google ScholarĀ 

  • Yeong CLY, Torquato S (1998) Reconstructing random media. Phys Rev E 57:495ā€“506

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zeide B (1993) Analysis of growth equations. Forest Sci 39:594ā€“616

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Pommerening .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pommerening, A., Grabarnik, P. (2019). Spatial and Individual-Based Modelling. In: Individual-based Methods in Forest Ecology and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-24528-3_5

Download citation

Publish with us

Policies and ethics