Skip to main content

Population Genomics Advances and Opportunities in Conservation of Kiwi (Apteryx spp.)

  • Chapter
  • First Online:
Population Genomics: Wildlife

Part of the book series: Population Genomics ((POGE))

Abstract

Kiwi (Apteryx spp.) are highly threatened flightless birds endemic to New Zealand. They are members of the most basal extant avian lineage, the paleognaths, and exhibit a suite of traits that are unusual in birds. Despite their iconic and imperiled status, there have been only four genomic studies of kiwi to date with only two of these aimed at improving conservation. There is, therefore, massive opportunity to use genomic techniques to elucidate the genetic basis and consequences of the strange ecology and evolution of kiwi and to inform their intensive management. In this chapter, we review genomic studies in paleognaths, assess prospects for the future of kiwi genomics, and define some lessons for population genomics and conservation of at-risk taxa generally. We also present an analysis of genomic signatures associated with the evolution of Apterygidae and the genes involved in diversification of kiwi via comparison of 3,774 orthologous protein coding genes among 28 avian species. We found strong signals of selection in genes associated with dwarfism, neurogenesis, retinal development, and temperature regulation. Our results provide clues as to why kiwi have such small body size (relative to other paleognaths), large egg size (relative to their body size), excellent olfaction, and poor vision. The data further suggest that coping with highly divergent temperature regimes may be a defining feature of the spotted kiwi clade which includes the only kiwi species that inhabits the alpine zone. Considerable genomic resources are now available for kiwi, including whole-genome sequences, transcriptome assemblies, thousands of SNP markers, and numerous candidate genes. There is also a myriad of outstanding questions about kiwi that genomic studies can inform. The challenge now is to bring these new genomic tools to bear on conservation and management of kiwi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, Miller MR. RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics. 2016;202:389–400.

    PubMed  CAS  Google Scholar 

  • Allendorf FW. Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol. 2017;26:420–30.

    PubMed  CAS  Google Scholar 

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK. The problems with hybrids: setting conservation guidelines. Trends Ecol Evol. 2001;16:613–22. https://doi.org/10.1016/S0169-5347(01)02290-X.

    Article  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11:697–709.

    PubMed  CAS  Google Scholar 

  • Álvarez-Satta M, Castro-Sánchez S, Valverde D. Bardet-Biedl syndrome as a chaperonopathy: dissecting the major role of chaperonin-like BBS proteins (BBS6-BBS10-BBS12). Front Mol Biosci. 2017;4:55.

    PubMed  PubMed Central  Google Scholar 

  • Amadon D. An estimated weight of the largest known bird. Condor. 1947;49:159–64.

    Google Scholar 

  • Andrews KR, Luikart G. Recent novel approaches for population genomics data analysis. Mol Ecol. 2014;23:1661–7. https://doi.org/10.1111/mec.12686.

    Article  PubMed  Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Beck N, Peakall R, Heinsohn R. Social constraint and an absence of sex-biased dispersal drive fine-scale genetic structure in white-winged choughs. Mol Ecol. 2008;17:4346–58.

    PubMed  CAS  Google Scholar 

  • Benestan LM, et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol Ecol. 2016;25:2967–77.

    PubMed  Google Scholar 

  • Berg PR, et al. Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes of Atlantic cod. Sci Rep. 2016;6:23246.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bernatchez L, et al. Harnessing the power of genomics to secure the future of seafood. Trends Ecol Evol. 2017;32:665–80.

    PubMed  Google Scholar 

  • Brown JW, Rest JS, García-Moreno J, Sorenson MD, Mindell DP. Strong mitochondrial DNA support for a cretaceous origin of modern avian lineages. BMC Biol. 2008;6:6.

    PubMed  PubMed Central  Google Scholar 

  • Bunce M, Worthy TH, Ford T, Hoppitt W, Willerslev E, Drummond A, Cooper A. Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis. Nature. 2003;425:172–5.

    PubMed  CAS  Google Scholar 

  • Calder WA. The kiwi and egg design: evolution as a package deal. Bioscience. 1979;29:461–7.

    Google Scholar 

  • Caniglia R, et al. Wolf outside, dog inside? The genomic make-up of the Czechoslovakian Wolfdog. BMC Genomics. 2018;19:533.

    PubMed  PubMed Central  Google Scholar 

  • Castro I, Cunningham SJ, Gsell AC, Jaffe K, Cabrera A, Liendo C. Olfaction in birds: a closer look at the kiwi (Apterygidae). J Avian Biol. 2010;41:213–8.

    Google Scholar 

  • Chan WY, Hoffmann AA, van Oppen MJ. Hybridization as a conservation management tool. Conserv Lett. 2019;12:e12652.

    Google Scholar 

  • Chang J-M, Di Tommaso P, Notredame C. TCS: a new multiple sequence alignment reliability measure to estimate alignment accuracy and improve phylogenetic tree reconstruction. Mol Biol Evol. 2014;31:1625–37.

    CAS  PubMed  Google Scholar 

  • Çilingir FG, Rheindt FE, Garg KM, Platt K, Platt SG, Bickford DP. Conservation genomics of the endangered Burmese roofed turtle. Conserv Biol. 2017;31:1469–76.

    PubMed  Google Scholar 

  • Cloutier A, Sackton TB, Grayson P, Edwards SV, Baker AJ. First nuclear genome assembly of an extinct moa species, the little bush moa (Anomalopteryx didiformis). bioRxiv. 2018; https://doi.org/10.1101/262816.

  • Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, Edwards SV. Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the presence of an empirical anomaly zone. Syst Biol. 2019;68:937–55.

    PubMed  PubMed Central  Google Scholar 

  • Colbourne R, Bassett S, Billing T, McCormick H, McLennan J, Nelson A, Robertson H. The development of Operation Nest Egg as a tool in the conservation management of kiwi. Wellington: Department of Conservation; 2005.

    Google Scholar 

  • Corfield J, Gillman L, Parsons S. Vocalisations of the North Island brown kiwi (Apteryx mantelli). Auk. 2008;125:326–35.

    Google Scholar 

  • Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996;144:2001–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cracraft J. Phylogeny and evolution of the ratite birds. Ibis. 1974;116:494–521.

    Google Scholar 

  • Crow JF, Kimura M. An introduction to population genetics theory. New York: Harper and Row; 1970.

    Google Scholar 

  • Dateki S. ACAN mutations as a cause of familial short stature. Clin Pediatr Endocrinol. 2017;26:119–25.

    PubMed  PubMed Central  Google Scholar 

  • Davies SJJF. Struthioniformes (Tinamous and Ratites). In: Hutchins M, Jackson JA, Bock WJ, Olendorf D, editors. Grzimek’s animal life encyclopedia. Birds I Tinamous and Ratites to Hoatzins, vol. 8. 2nd ed. Farmington Hills: Gale Group; 2003. p. 56–105.

    Google Scholar 

  • Dickison MR. The allometry of giant flightless birds. Durham: Duke University; 2007.

    Google Scholar 

  • Dunning LT, et al. Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives. Evolution. 2017;71:1541–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Edmands S. Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol. 2007;16:463–75. https://doi.org/10.1111/j.1365-294X.2006.03148.x.

    Article  PubMed  Google Scholar 

  • Edmonds H. Taxon plan for northern and southern Fiordland tokoeka (Apteryx australis australis): strategic plan for the recovery of northern and southern Fiordland tokoeka, for the period 2015–2025 and beyond. Te Anau: Department of Conservation; 2015.

    Google Scholar 

  • Feigin CY, et al. Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat Ecol Evol. 2018;2:182.

    PubMed  Google Scholar 

  • Fowler ME. Comparative clinical anatomy of ratites. J Zoo Wildl Med. 1991;22:204–27.

    Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB. Predicting the probability of outbreeding depression. Conserv Biol. 2011;25:465–75.

    PubMed  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol Evol. 2012;27:489–96.

    PubMed  PubMed Central  Google Scholar 

  • Funk WC, Zamudio KR, Crawford AJ. Advancing understanding of amphibian evolution, ecology, behavior, and conservation with massively parallel sequencing. In: Hohenlohe PA, Rajora OP, editors. Population genomics: wildlife. Cham: Springer International Publishing AG, part of Springer Nature; 2018. https://doi.org/10.1007/13836_2018_61.

    Chapter  Google Scholar 

  • Germano J, et al. Kiwi Recovery Plan 2018–2028 Mahere Whakaora Kiwi 2018–2028. Wellington: New Zealand Department of Conservation; 2018.

    Google Scholar 

  • Gould SJ. Of kiwi eggs and the Liberty Bell. Nat Hist. 1986;95:20–9.

    Google Scholar 

  • Grealy A, et al. Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell. Mol Phylogenet Evol. 2017;109:151–63.

    PubMed  CAS  Google Scholar 

  • Harshman J, et al. Phylogenomic evidence for multiple losses of flight in ratite birds. Proc Natl Acad Sci U S A. 2008;105:13462–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hartmann FE, Sánchez-Vallet A, McDonald BA, Croll D. A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME J. 2017;11:1189–204.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Heather BD, Robertson HA. The field guide to the birds of New Zealand. Auckland: Viking; 2005.

    Google Scholar 

  • Hoffberg SL, Kieran TJ, Catchen JM, Devault A, Faircloth BC, Mauricio R, Glenn TC. RADcap: sequence capture of dual-digest RADseq libraries with identifiable duplicates and reduced missing data. Mol Ecol Resour. 2016;16:1264–78.

    PubMed  CAS  Google Scholar 

  • Hoffman JI. Gene discovery in the Antarctic fur seal (Arctocephalus gazella) skin transcriptome. Mol Ecol Resour. 2011;11:703–10. https://doi.org/10.1111/j.1755-0998.2011.02999.x.

    Article  PubMed  Google Scholar 

  • Hoffman J, Thorne M, Trathan P, Forcada J. Transcriptome of the dead: characterisation of immune genes and marker development from necropsy samples in a free-ranging marine mammal. BMC Genomics. 2013;14:52. https://doi.org/10.1186/1471-2164-14-52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 2010a;6:e1000862.

    PubMed  PubMed Central  Google Scholar 

  • Hohenlohe PA, Phillips PC, Cresko WA. Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci. 2010b;171:1059–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Holzapfel SA, Robertson HA, McLennan JA, Sporle W, Hackwell K, Impey M. Kiwi (Apteryx spp) recovery plan 2008–2018. Wellington: Department of Conservation; 2008.

    Google Scholar 

  • Hurov KE, Cotta-Ramusino C, Elledge SJ. A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev. 2010;24:1939–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Huxley TH. On the classification of birds and on the taxonomic value of the modifications of certain of the cranial bones observable in that class. Proc Zool Soc London. 1867;415–72.

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. Version 2019-2. 2019. http://www.iucnredlist.org. Accessed 18 July 2019.

  • Jamieson IG, Allendorf FW. How does the 50/500 rule apply to MVPs? Trends Ecol Evol. 2012;27:578–84.

    PubMed  Google Scholar 

  • Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, O’Brien SJ. Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genomics. 2010;11:724.

    PubMed  PubMed Central  Google Scholar 

  • Johnson RN, et al. Adaptation and conservation insights from the koala genome. Nat Genet. 2018;50:1102.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jolly JN, Daugherty CH. Comparison of little spotted kiwi (Apteryx owenii) from Kapiti and D’Urville Islands. Wellington: Department of Conservation; 2002.

    Google Scholar 

  • Jordan G, Goldman N. The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Mol Biol Evol. 2011;29:1125–39.

    PubMed  Google Scholar 

  • Kanno Y, Vokoun JC, Letcher BH. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks. Mol Ecol. 2011;20:3711–29.

    PubMed  Google Scholar 

  • Kardos M, Luikart G, Allendorf F. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity. 2015;115:63.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW. Genomics advances the study of inbreeding depression in the wild. Evol Appl. 2016;9:1205–18.

    PubMed  PubMed Central  Google Scholar 

  • Kinsky F. The consistent presence of paired ovaries in the kiwi (Apteryx) with some discussion of this condition in other birds. J Ornithol. 1971;112:334–57.

    Google Scholar 

  • Kober KM, Pogson GH. Genome-wide signals of positive selection in strongylocentrotid sea urchins. BMC Genomics. 2017;18:555.

    PubMed  PubMed Central  Google Scholar 

  • Krishna KH, Kumar MS. Molecular evolution and functional divergence of eukaryotic translation initiation factor 2-alpha kinases. PLoS One. 2018;13:e0194335.

    PubMed  PubMed Central  Google Scholar 

  • Kummrow MS. Ratites or Struthioniformes: Struthiones, Rheae, Cassuarii, Apteryges (ostriches, rheas, emus, cassowaries, and kiwis), and Tinamiformes (tinamous). In: Miller RE, Fowler ME, editors. Fowler’s zoo and wild animal medicine, vol. 8. St. Louis: Elsevier/Saunders; 2014. p. 75–82.

    Google Scholar 

  • Le Duc D, et al. Kiwi genome provides insights into evolution of a nocturnal lifestyle. Genome Biol. 2015;16:1–15.

    Google Scholar 

  • Li R, et al. The sequence and de novo assembly of the giant panda genome. Nature. 2010;463:311.

    PubMed  CAS  Google Scholar 

  • Lim C-S, Mian IS, Dernburg AF, Campisi J. C. elegans clk-2, a gene that limits life span, encodes a telomere length regulator similar to yeast telomere binding protein Tel2p. Curr Biol. 2001;11:1706–10.

    PubMed  CAS  Google Scholar 

  • Liu J, et al. Genetic variants in the microRNA machinery gene GEMIN4 are associated with risk of prostate cancer: a case-control study of the Chinese Han population. DNA Cell Biol. 2012;31:1296–302.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Ding Q-X, Gao L-Z. The complete mitochondrial genome of North Island brown kiwi (Apteryx mantelli). Mitochondrial DNA Part B. 2017;2:1–2.

    CAS  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered. 1998;89:238–47.

    PubMed  CAS  Google Scholar 

  • Luikart G, Kardos M, Hand B, Rajora OP, Aitken S, Hohenlohe PA. Population genomics: advancing understanding of nature. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer Nature Switzerland AG; 2019. p. 3–79.

    Google Scholar 

  • Maderspacher F. Evolution: flight of the ratites. Curr Biol. 2017;27:R110–3.

    PubMed  CAS  Google Scholar 

  • Margres MJ, Jones ME, Epstein B, Kerlin DH, Comte S, Fox S, Fraik AK, et al. Large‐effect loci affect survival in Tasmanian devils (Sarcophilus harrisii) infected with a transmissible cancer. Mol Ecol. 2018;27:4189–99.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martchenko D, Prewer E, Latch EK, Kyle CJ, Shafer ABA. Population genomics of ungulates. In: Hohenlohe PA, Rajora OP, editors. Population genomics: wildlife. Cham: Springer International Publishing AG, part of Springer Nature; 2018. https://doi.org/10.1007/13836_2018_30.

    Chapter  Google Scholar 

  • Martin GR. Sensory capacities and the nocturnal habit of owls (Strigiformes). Ibis. 1986;128:266–77.

    Google Scholar 

  • Mayr G. Paleogene fossil birds. Berlin: Springer; 2009.

    Google Scholar 

  • McCall R, Nee S, Harvey P. The role of wing length in the evolution of avian flightlessness. Evol Ecol. 1998;12:569–80. https://doi.org/10.1023/A:1006508826501.

    Article  Google Scholar 

  • McLennan JA, McCann T. Genetic variability, distribution, and abundance of great spotted kiwi (Apteryx haastii). Wellington: Department of Conservation; 2002.

    Google Scholar 

  • McLennan J, et al. Role of predation in the decline of kiwi, Apteryx spp., in New Zealand. N Z J Ecol. 1996;20:27–35.

    Google Scholar 

  • McLennan J, Dew L, Miles J, Gillingham N, Waiwai R. Size matters: predation risk and juvenile growth in North Island brown kiwi (Apteryx mantelli). N Z J Ecol. 2004;28:241–50.

    Google Scholar 

  • Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 2009;38:D204–10.

    PubMed  PubMed Central  Google Scholar 

  • Miles J, Potter M, Fordham R. Northern brown kiwi (Apteryx australis mantelli) in Tongariro National Park and Tongariro Forest – ecology and threats, vol. 51. Wellington: Department of Conservation; 1997.

    Google Scholar 

  • Miller HC, Bowker-Wright G, Kharkrang M, Ramstad KM. Characterisation of class II B MHC genes from a ratite bird, the little spotted kiwi (Apteryx owenii). Immunogenetics. 2011;63:223–33. https://doi.org/10.1007/s00251-010-0503-7.

    Article  PubMed  CAS  Google Scholar 

  • Miller H, Biggs P, Voelckel C, Nelson N. De novo sequence assembly and characterisation of a partial transcriptome for an evolutionarily distinct reptile, the tuatara (Sphenodon punctatus). BMC Genomics. 2012;13:439.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell KJ, et al. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science. 2014;344:898–900.

    PubMed  CAS  Google Scholar 

  • Neel MC, et al. Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity. 2013;111:189–99.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nunziata SO, Lance SL, Scott DE, Lemmon EM, Weisrock DW. Genomic data detect corresponding signatures of population size change on an ecological time scale in two salamander species. Mol Ecol. 2017;26:1060–74.

    PubMed  CAS  Google Scholar 

  • Ogawa A, Murata K, Mizuno S. The location of Z- and W-linked marker genes and sequence on the homomorphic sex chromosomes of the ostrich and the emu. Proc Natl Acad Sci. 1998;95:4415–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oyler-McCance SJ, Oh KP, Zimmerman SJ, Aldridge CL. The transformative impact of genomics on sage-grouse conservation and management. In: Hohenlohe PA, Rajora OP, editors. Population genomics: wildlife. Cham: Springer Nature Switzerland AG; 2019. https://doi.org/10.1007/13836_2019_65.

    Chapter  Google Scholar 

  • Palstra FP, Ruzzante DE. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol. 2008;17:3428–47.

    PubMed  Google Scholar 

  • Parkes KC, Clark GA. An additional character linking ratites and tinamous, and an interpretation of their monophyly. Condor. 1966;68:459–71.

    Google Scholar 

  • Parwanto MLE. The genetic aspect and morphological appearance of achondrogenesis. Int J Reprod Contracept Obstet Gynecol. 2017;6:3203–12.

    Google Scholar 

  • Paton T, Haddrath O, Baker AJ. Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirds. Proc R Soc Lond B Biol Sci. 2002;269:839–46.

    CAS  Google Scholar 

  • Pereira SL, Baker AJ. A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol. 2006;23:1731–40.

    PubMed  CAS  Google Scholar 

  • Phillips MJ, Gibb GC, Crimp EA, Penny D. Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst Biol. 2010;59:90–107. https://doi.org/10.1093/sysbio/syp079.

    Article  PubMed  Google Scholar 

  • Pimm SL, Dollar L, Bass OL. The genetic rescue of the Florida panther. Anim Conserv. 2006;9:115–22.

    Google Scholar 

  • Prince DJ, et al. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci Adv. 2017;3:e1603198.

    PubMed  PubMed Central  Google Scholar 

  • Prinzinger R, Dietz V. Pre-and postnatal energetics of the North Island brown kiwi (Apteryx mantelli). Comp Biochem Physiol A Mol Integr Physiol. 2002;131:725–32.

    PubMed  Google Scholar 

  • Pross J, et al. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature. 2012;488:73.

    PubMed  CAS  Google Scholar 

  • Ramstad KM, Pfunder M, Robertson HA, Colbourne RM, Allendorf FW, Daugherty CH. Fourteen microsatellite loci cross-amplify in all five kiwi species (Apteryx spp) and reveal extremely low genetic variation in little spotted kiwi (A. owenii). Conserv Genet Resour. 2010;2:333–6. https://doi.org/10.1007/s12686-010-9233-2.

    Article  Google Scholar 

  • Ramstad KM, Colbourne RM, Robertson HA, Allendorf FW, Daugherty CH. Genetic consequences of a century of protection: serial founder events and survival of the little spotted kiwi (Apteryx owenii). Proc R Soc B Biol Sci. 2013;280:20130576. https://doi.org/10.1098/rspb.2013.0576.

    Article  Google Scholar 

  • Ramstad KM, Miller HC, Kolle G. Sixteen kiwi (Apteryx spp) transcriptomes provide a wealth of genetic markers and insight into sex chromosome evolution in birds. BMC Genomics. 2016;17:410.

    PubMed  PubMed Central  Google Scholar 

  • Robertson HA, Colbourne RM. Survival of little spotted kiwi (Apteryx owenii) on Kapiti Island. Notornis. 2004;51:161–3.

    Google Scholar 

  • Roux C, Fraisse C, Romiguier J, Anciaux Y, Galtier N, Bierne N. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol. 2016;14:e2000234.

    PubMed  PubMed Central  Google Scholar 

  • Ryder O. Conservation genomics: applying whole genome studies to species conservation efforts. Cytogenet Genome Res. 2005;108:6–15.

    PubMed  CAS  Google Scholar 

  • Sackton TB, et al. Convergent regulatory evolution and the origin of flightlessness in palaeognathous birds. bioRxiv. 2018; https://doi.org/10.1101/262584.

  • Sæther B-E, Bakke Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology. 2000;81:642–53.

    Google Scholar 

  • Sakaguchi M, Cai W, Wang C-H, Batista TM, Araki E, Kahn CR. FoxK1/K2 are new, important components of IR and IGF1R signaling and control of cell proliferation and metabolism. Am Diabetes Assoc. 2018;67:356.

    Google Scholar 

  • Sales J. The endangered kiwi: a review. Folia Zool. 2005;54:1–20.

    Google Scholar 

  • Salmona J, Heller R, Lascoux M, Shafer A. Inferring demographic history using genomic data. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer Nature Switzerland AG; 2019. p. 511–37.

    Google Scholar 

  • Shafer AB, et al. Genomics and the challenging translation into conservation practice. Trends Ecol Evol. 2015;30:78–87.

    PubMed  Google Scholar 

  • Shafer A, Peart CR, Tusso S, Maayan I, Brelsford A, Wheat CW, Wolf JB. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol Evol. 2016;8:907–17.

    Google Scholar 

  • Shen Y, Song R, Pe’er I. Coverage tradeoffs and power estimation in the design of whole-genome sequencing experiments for detecting association. Bioinformatics. 2011;27:1995–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Steidl C, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011;471:377.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Steimle V, Otten LA, Zufferey M, Mach B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell. 1993;75:135–46.

    PubMed  CAS  Google Scholar 

  • Steiner CC, Putnam AS, Hoeck PE, Ryder OA. Conservation genomics of threatened animal species. Annu Rev Anim Biosci. 2013;1:261–81.

    PubMed  Google Scholar 

  • Subramanian S, Huynen L, Millar C, Lambert D. Next generation sequencing and analysis of a conserved transcriptome of New Zealand’s kiwi. BMC Evol Biol. 2010;10:387.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor HR. Detecting inbreeding depression in a severely bottlenecked, recovering species: the little spotted kiwi (Apteryx owenii). Wellington: Victoria University of Wellington; 2014.

    Google Scholar 

  • Taylor HR. The use and abuse of genetic marker-based estimates of relatedness and inbreeding. Ecol Evol. 2015;5:3140–50.

    PubMed  PubMed Central  Google Scholar 

  • Taylor HR, Kardos MD, Ramstad KM, Allendorf FW. Valid estimates of individual inbreeding coefficients from marker-based pedigrees are not feasible in wild populations with low allelic diversity. Conserv Genet. 2015;16:901–13. https://doi.org/10.1007/s10592-015-0709-1.

    Article  Google Scholar 

  • Taylor HR, Colbourne RM, Robertson HA, Nelson NJ, Allendorf FW, Ramstad KM. Cryptic inbreeding depression in a growing population of a long-lived species. Mol Ecol. 2017;26:799–813.

    PubMed  Google Scholar 

  • Tennyson AJD, Palma RL, Robertson HA, Worthy TH, GILL BJ. A new species of kiwi (Aves, Apterygiformes) from Okarito, New Zealand. Records Auckland Institute Museum. 2003;40:55–64.

    Google Scholar 

  • Traka M, Millen KJ, Collins D, Elbaz B, Kidd GJ, Gomez CM, Popko B. WDR81 is necessary for purkinje and photoreceptor cell survival. J Neurosci. 2013;33:6834–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Van Wyngaarden M, et al. Identifying patterns of dispersal, connectivity and selection in the sea scallop, Placopecten magellanicus, using RADseq-derived SNPs. Evol Appl. 2017;10:102–17.

    PubMed  Google Scholar 

  • Vega R, Vázquez-Domínguez E, White TA, Valenzuela-Galván D, Searle JB. Population genomics applications for conservation: the case of the tropical dry forest dweller Peromyscus melanophrys. Conserv Genet. 2017;18:313–26.

    Google Scholar 

  • vonHoldt BM, Brzeski KE, Wilcove DS, Rutledge LY. Redefining the role of admixture and genomics in species conservation. Conserv Lett. 2018;11:e12371.

    Google Scholar 

  • Wan Q-H, et al. Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res. 2013;23:1091.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Waples RS, Luikart G, Faulkner JR, Tallmon DA. Simple life-history traits explain key effective population size ratios across diverse taxa. Proc R Soc B Biol Sci. 2013;280:20131339. https://doi.org/10.1098/rspb.2013.1339.

    Article  Google Scholar 

  • Waples RS, Antao T, Luikart G. Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics. 2014;197:769–80.

    PubMed  PubMed Central  Google Scholar 

  • Wayne RK, Shaffer HB. Hybridization and endangered species protection in the molecular era. Mol Ecol. 2016;25:2680–9.

    PubMed  Google Scholar 

  • Weir JT, Haddrath O, Robertson HA, Colbourne RM, Baker AJ. Explosive ice age diversification of kiwi. Proc Natl Acad Sci. 2016;113:E5580–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • White DJ, et al. Discovery and complete genome sequence of a novel circovirus-like virus in the endangered rowi kiwi, Apteryx rowi. Virus Genes. 2016;52:727–31.

    PubMed  CAS  Google Scholar 

  • White DJ, Ramón-Laca A, Amey J, Robertson HA. Novel genetic variation in an isolated population of the nationally critical Haast tokoeka (Apteryx australis ‘Haast’) reveals extreme short-range structure within this cryptic and flightless bird. Conserv Genet. 2018;19:1401–10.

    CAS  Google Scholar 

  • Wink M, Dyrcz A. Mating systems in birds: a review of molecular studies. Acta Ornithol. 1999;34:91–109.

    Google Scholar 

  • Worthy T, Worthy JP, Tennyson AJ, Salisbury SW, Hand SJ, Scofield RP. Miocene fossils show that kiwi (Apteryx, Apterygidae) are probably not phyletic dwarves. In: Göhlich UB, Kroh A, editors. Paleornithological research 2013 (Proceedings of the 8th International Meeting of the Society of Avian Palaeontology and Evolution). Vienna: Verlag Naturhistorisches Museum; 2013. p. 63–80.

    Google Scholar 

  • Xie T, et al. Crystal structure of the γ-secretase component nicastrin. Proc Natl Acad Sci. 2014;111:13349–54. https://doi.org/10.1073/pnas.1414837111.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu H, Tian W, Fu Y, Oyama TT, Anderson S, Cohen DM. Functional effects of nonsynonymous polymorphisms in the human TRPV1 gene. Am J Physiol Renal Physiol. 2007;293:F1865–76.

    PubMed  CAS  Google Scholar 

  • Xu L, Sin SYW, Grayson P, Janes DE, Edwards SV, Sackton TB. Evolutionary dynamics of sex chromosomes of palaeognathous birds. bioRxiv. 2018; https://doi.org/10.1101/295089.

  • Yamada M, et al. Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci. 2001;98:14096–101.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13:555–6.

    PubMed  CAS  Google Scholar 

  • Yonezawa T, et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr Biol. 2017;27:68–77.

    PubMed  CAS  Google Scholar 

  • Zhang G, et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science. 2014a;346:1311–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Lv Y, Zhang Y, Gao H. Regulation of p53 level by UBE4B in breast cancer. PLoS One. 2014b;9:e90154.

    PubMed  PubMed Central  Google Scholar 

  • Zhou Q, et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science. 2014;346:1246338.

    PubMed  PubMed Central  Google Scholar 

  • Ziesemann B. The social organisation and mating system for the brown kiwi (Apteryx mantelli): a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Albany, New Zealand. Palmerston North: Massey University; 2011.

    Google Scholar 

Download references

Acknowledgments

Thank you to the editors for the invitation to contribute to this book and guidance in preparing this chapter. Many thanks to Hugh Robertson and Rogan Colbourne, collaborators, and Kiwi Whisperers extraordinaire, for collection of and access to archived kiwi samples and for sharing their invaluable insight into kiwi ecology and management. Thanks also to Helen Taylor and Duncan Kaye for many helpful kiwi conversations. Funding for this work was provided by the Allan Wilson Centre for Molecular Ecology and Evolution (KMR), the University of South Carolina (KMR), the Natural Environment Research Council (NE/M00208X/1, LTD), and an ERC grant (ERC-2014-STG-638333, LTD). Permission for sample collection and genetic research and cultural guidance in working with tāonga was generously provided by Kaitiaki o Kapiti Trust, Te Rūnanaga Ngāi Tahu, Port Nicholson Block Settlement Trust, Te Ātiawa Manawhenua Ki Te Tau Ihu Trust, Te Rūnanga o Makaawhio, and Waiorua Bay Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina M. Ramstad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramstad, K.M., Dunning, L.T. (2020). Population Genomics Advances and Opportunities in Conservation of Kiwi (Apteryx spp.). In: Hohenlohe, P.A., Rajora, O.P. (eds) Population Genomics: Wildlife. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2019_71

Download citation

  • DOI: https://doi.org/10.1007/13836_2019_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63488-9

  • Online ISBN: 978-3-030-63489-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics