Skip to main content

Advertisement

Log in

Effects of the last glacial period on genetic diversity and genetic differentiation in Cryptomeria japonica in East Asia

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

To understand how historical and environmental factors have shaped genetic diversity and spatial genetic patterns of tree species, we characterized the genetic diversity and the genetic structure of a coniferous species, Cryptomeria japonica, which is distributed in Japan (two taxonomic groups) and some parts of southeastern China (C. japonica var. sinensis). We investigated population samples for three groups using high-throughput SNP genotyping, sequencing of multiple genes, and then estimated level of genetic diversity, the genetic differentiation, and the divergence time between the three groups. We also investigated the natural distribution during LGM using species distribution modeling. The genetic variation in the Chinese population, var. sinensis, was lower compared to Japanese populations but it harbored some unique genotypes. The species distribution modeling showed that the Chinese population has decreased since Last Glacial Maximum (LGM) because of lower precipitation than present time, but in Japan the favored environment have remained available for this species even in the LGM. Estimated divergence times of the three groups mostly correspond with the time since the Last Glacial. Our data supports the hypothesis that the glacial period, particularly limitations associated with precipitation, strongly influenced the distribution of C. japonica populations. Our findings suggest that climate change plays an important role in speciation processes of C. japonica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai WN, Liao WJ, Zhang DY (2010) Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytol 188:892–901

    PubMed  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    PubMed  PubMed Central  Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    CAS  PubMed  Google Scholar 

  • Chaney RW (1950) A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Trans Amer Philo Soc 40:171–263

    Google Scholar 

  • Chen Y, Yang SZ, Zhao MS, Ni BY, Liu L, Chen XY (2008) Demographic genetic structure of Cryptomeria japonica var. sinensis in Tianmushan nature reserve, China. J Integr Plant Biol 50:1171–1177

    CAS  PubMed  Google Scholar 

  • Cornuet J-M, Santos F, Beaumont MA, Robert CP, Marin J-M, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cornuet J-M, Ravigné V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1. 0). BMC Bioinformatics 11:401

    PubMed  PubMed Central  Google Scholar 

  • Debreczy Z, Rácz I (2011) Conifer around the world vol.1, DendroPress ltd, Budapest ISBN 978-963-219-063-1

  • Elith J, Graham C, Anderson R, Dudik M, Ferrier S, Guisan A, Hijmans R, Huettman F, Leathwick J, Lehmann A, Li J, Lohmann L, Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton M, Peterson A, Phillips S, Richardson K, Pereira R, Schapire R, Soberón J, Williams S, Wisz M, Zimmermann N (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.). Skeels] endemic to Morocco. Theo Appl Genet 92:832–839

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M (2013) Robust demographic inference from genomic and SNP data. PLoS Genet 9:e1003905

    PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK, Holderegger R, Widmer A (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18:69

    PubMed  PubMed Central  Google Scholar 

  • Goodall-Copestake WP, Tarling GA, Murphy EJ (2012) On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals. Heredity 109:50–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goudet J (2003) Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. Available via http://www2.unil.ch/popgen/softwares/fstat.htm

  • Harrison SP, Yu G, Takahara H, Prentice IC (2001) Palaeovegetation (communications arising): diversity of temperate plants in East Asia. Nature 413:129–130

    CAS  PubMed  Google Scholar 

  • Hashizume H (1980) Flowering and fructification of Cryptomeria japonica. Iden 34:4–10 (in Japanese)

    Google Scholar 

  • Hayashi Y (1960) Taxonomical and phytogeographical study of Japanese conifers. Norin-Shuppan, Tokyo

    Google Scholar 

  • Hayashi R, Takahara H, Inouchi Y, Takemura K, Igarashi Y (2017) Vegetation and endemic tree response to orbital-scale climate changes in the Japanese archipelago during the last glacial-interglacial cycle based on pollen records from Lake Biwa, western Japan. Rev Palaeobot Palynol 241:85–97

    Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    CAS  PubMed  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role, in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Howard WR (1997) A warm future in the past. Nature 388:418–419

    CAS  Google Scholar 

  • Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014

  • Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    CAS  PubMed  Google Scholar 

  • Igarashi Y, Oba T (2006) Fluctuations in the East Asian monsoon over the last 144 ka in the Northwest Pacific based on a high-resolution pollen analysis of IMAGES core MD01-2421. Quat Sci Rev 25:1447–1459

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Kimura M, Kabeya D, Saito T, Moriguchi Y, Uchiyama K, Migita C, Chiba Y, Tsumura Y (2013) Effects of genetic and environmental factors on clonal reproduction in old-growth natural populations of Cryptomeria japonica. For Ecol Manag 304:10–19

    Google Scholar 

  • Kimura M, Uchiyama K, Nakao K, Moriguchi Y, Jose-Maldia LS, Tsumura Y (2014) Evidence for cryptic northern refugia in the last glacial period of Cryptomeria japonica. Ann Bot 114:1687–1700

    PubMed  PubMed Central  Google Scholar 

  • Kusumi J, Tsumura Y, Yoshimaru H, Tachida H (2000) Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences. Am J Bot 87:1480–1488

    CAS  PubMed  Google Scholar 

  • Kusumi J, Tsumura Y, Tachida H (2015) Evolutionary rate variation in two conifer species, Taxodium distichum (L.) Rich. Var. distichum (baldcypress) and Cryptomeria japonica (Thunb. ex L.f.) D. Don (Sugi, Japanese cedar). Genes & Genetic Systems 90(5):305–315

  • Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci U S A 109:16217–16221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moriguchi N, Uchiyama K, Miyagi R, Moritsuka E, Takahashi A, Tamura K, Tsumura Y, Teshima K, Tachida H, Kusumi J (2019) Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing. Heredity 123:371–383. https://doi.org/10.1038/s41437-019-0198-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murai S (1947) Major forestry tree species in the Tohoku region and their varietal problems. In: Kokudo Saiken Zourin Gijutsu Kouenshu, Aomori-rinyukai (eds.) pp.131-151. (in Japanese)

  • Nagao A, Sasaki S Pharis PR (1989) Cryptomeria japonica. In CRC hand book of flowering. Halevy, AH (ed) vol. VL, CRC press 247-269

  • Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–233

    CAS  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Chesser RK (1983) Estimation of fixation indices and gene diversities. Ann Hum Genet 47:253–259

    CAS  PubMed  Google Scholar 

  • Pakstis AJ, Speed WC, Kidd JR, Kidd KK (2007) Candidate SNPs for a universal individual identification panel. Hum Genet 121:305–317

    PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research - an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team. R version 2.15.0. (2012) Vienna: R Foundation for Statistical Computing

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18):2496–2497

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Qiu YX, Liu YH, Qi XS, Kim SH, Han J, Takeuchi Y, Worth JR, Yamasaki M, Sakurai S, Isagi Y (2012) Climate oscillation during the quaternary associated with landscape heterogeneity promoted allopatric lineage divergence of a temperate tree Kalopanax septemlobus (Araliaceae) in East Asia. Mol Ecol 21:3823–3838

    PubMed  Google Scholar 

  • Shimizu K (2002) Forestry and Forest products industry in China. The Tropical Forestry 55: 11–20 (in Japanese)

  • Suzuki E, Susukida J (1989) Age structure and regeneration process of temperate coniferous stands in the Segiri river basin, Yakushima Island. Jpn J Ecol 39:45–51

  • Taira A (2001) Tectonic evolution of the Japanese island arc system. Annu Rev Earth Planet Sci 29:109–134

    CAS  Google Scholar 

  • Takahara H (1998) Distribution history of Cryptomeria forest. In: Yasuda Y, Miyoushi N (eds) Vegetation history of the Japanese archipelago. Asakura-Shoten, Tokyo, pp 207–223 (in Japanese)

    Google Scholar 

  • Takahara H, Kitagawa H (2000) Vegetation and climate history since the last interglacial in Kurota lowland, western Japan. Palaeogeogr Palaeoclimatol Palaeoecol 155:123–134

    Google Scholar 

  • Takahara H, Uemura Y, Danhara T (2000) The vegetation and climate history during the early and mid-last glacial period in Kamiyoshi Basin, Kyoto, Japan. Jpn J Palynology 46:133–146

    Google Scholar 

  • Tsukada M (1983) Vegetation and climate during the Last Glacial Maximum in Japan. Quat Res 19:212–235

    Google Scholar 

  • Tsukada M (1986) Altitudinal and latitudinal migration of Cryptomeria japonica for the past 20,000 years in Japan. Quat Res 26:135–152

    Google Scholar 

  • Tsumura Y, Kado T, Takahashi T, Tani N, Ujino-Ihara T, Iwata H (2007) Genome-scan to detect genetic structure and adaptive genes of natural populations of Cryptomeria japonica. Genetics 176:2393–2403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsumura Y, Uchiyama K, Moriguchi Y, Ueno S, Ihara-Ujino T (2012) Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica. Heredity 109:346–360

    Google Scholar 

  • Tsumura Y, Uchiyama K, Moriguchi Y, Kimura MK, Ueno S, Ujino-Ihara T (2014) Genetic differentiation and evolutionary adaptation in Cryptomeria japonica. G3 4:2389–2402

    PubMed  PubMed Central  Google Scholar 

  • Uchiyama K, Ujino-Ihara T, Ueno TY, Futamura N, Shinohara K, Tsumura Y (2012) Single nucleotide polymorphisms in Cryptomeria japonica: their discovery and validation for genome mapping and diversity studies. Tree Genet Genomes 8:1213–1222

    Google Scholar 

  • Uchiyama K, Miyamoto N, Takahashi M, Watanabe A, Tsumura Y (2014) Population genetic structure and the effect of historical human activity on the genetic variability of Cryptomeria japonica core collection in Japan. Tree Genet Genomes 10:1257–1270

    Google Scholar 

  • Wang W-T, Xu B, Zhang D-Y, Bai W-N (2016) Phylogeography of postglacial range expansion in Juglans mandshurica (Juglandaceae) reveals no evidence of bottleneck, loss of genetic diversity, or isolation by distance in the leading-edge populations. Mol Phylogenet Evol 102:255–264

    CAS  PubMed  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7(2):256–276

    CAS  PubMed  Google Scholar 

  • Wright S (1922) Coefficients of inbreeding and relationship. Am Nat 56:330–338

    Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations. Variability within and among natural populations, vol 4. The University of Chicago Press, Chicago

    Google Scholar 

  • Qi X-S, Chen C, Comes HP, Sakaguchi S, Liu Y-H, Tanaka N, Sakio H, Qiu Y-X (2012) Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian tertiary relict (Cercidiphyllaceae). New Phytol 196(2):617–630

    CAS  Google Scholar 

  • Qiu Y-X, Sun Y, Zhang X-P, Lee J, Cheng-Xin F, Comes HP (2009) Molecular phylogeography of East Asian Kirengeshoma (Hydrangeaceae) in relation to quaternary climate change and landbridge configurations. New Phytol 183(2):480–495

    CAS  Google Scholar 

  • Yamazaki T (1995) Cryptomeriaceae. Pp.264, Iwatsuki K, Yamazaki T, Boufford DE, Ohba H (eds) Flora of Japan. Volume I, Pteridophyta and Gymnospermae. Kodansha, Tokyo

  • Yasue M, Ogiyama K, Suto S, Tsukahara H, Miyahara F, Ohba K (1987) Geographical differentiation of natural Cryptomeria stands analyzed by diterpene hydrocarbon constituents of individual trees. J Jpn For Soc 69:152–156

    Google Scholar 

  • Yoshida S, Imanaga M (1990) The stand structure anf the growth of sugi (Cryptomeria japonica D. DON) natural forests on Yakushima. J Jpn For Soc 72:131–138

Download references

Acknowledgments

We thank Y. Taguchi and M. Koshiba for technical assistance for DNA analysis. This study was partly supported by the Program for the Promotion of Basic and Applied Research for Innovations in Bio-oriented Industry and JSPS KAKENHI program (grant nos. 26292087, 26291082 and 15H02833), the National Key Research and Development Program of China (grant no. 2016YFE0127200), and Environment Research grant of the Sumitomo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Tsumura.

Additional information

Communicated by F. Gugerli

Data archive

All SNPs information and sequence data were deposited in DDBJ (accession numbers, AB874696-AB889383 and LC477701-LC479084).

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 221 kb)

ESM 2

(DOCX 20296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsumura, Y., Kimura, M., Nakao, K. et al. Effects of the last glacial period on genetic diversity and genetic differentiation in Cryptomeria japonica in East Asia. Tree Genetics & Genomes 16, 19 (2020). https://doi.org/10.1007/s11295-019-1411-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1411-0

Keywords

Navigation