Skip to main content
Log in

Picea pungens exhibits greatest tolerance to short-time thermal stress compared to Picea abies, and Picea omorika

  • Research
  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Species in the genus Picea are well-suited for afforestation on high altitudes and latitudes, but are fairly intolerant to high temperatures. In this study, Picea pungens, Picea abies, and Picea omorika were subjected to 45 °C, 40 °C, 35 °C, and ambient temperature (CK) for 6 h, and then allowed to recover for 28 d. Changes in phenotype, relative water content (RWC), and maximal photochemical efficiency (Fv/Fm) of photosystem II (PS II) were observed to ascertain their thermal tolerance. Overall, all three species were negatively affected by exposure to 45 °C, but P. pungens exhibited full recovery, with the highest RWC, while P. omorika exhibited partial recovery, and P. abies showed minimal recovery. The PS II of all three species were damaged after 45 °C treatment, but that of P. pungens exhibited the most dramatic recovery, with Fv/Fm recovering from 0 to 0.26. In conclusion, P. pungens was found to exhibit the greatest thermal tolerance, followed by P. omorika and P. abies. Thus, thermal tolerance should be considered as a tool for species selection for future reforestation endeavor in the face of climate change that is expected to bring high summer temperature events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci U S A 106(17):7063–7066. https://doi.org/10.1073/pnas.0901438106

    Article  PubMed  PubMed Central  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climatic changes outcomes for tree populations. Evol Appl 1:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta Bioenerg 1767:1363–1371

    Article  CAS  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684. https://doi.org/10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Altman J, Fibich P, Santruckova H, Dolezal J, Stepanek P et al (2017) Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Sci Total Environ 609:506–516

    Article  PubMed  CAS  Google Scholar 

  • An S, Xu N, Du Y, Wang L, Ma J, Wang J (2018) Early evaluation of growth traits of Picea Species and Provenances. For Res (in Chinese) 31:20–26

    Google Scholar 

  • Appleton B, Rudiger ELT, Harris R, Sevebeck K, Alleman D, Swanson L (2015) Trees for Hot Sites. Virginia Cooperate Extension, Virginia Tech, Virginia State University Technical Note Publication, pp 430–024

  • Baker NR, Eva R (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55(403):1607–1621

    Article  PubMed  CAS  Google Scholar 

  • Barber VA, Juday GP, Finney BP (2000) Reduced growth of alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–673. https://doi.org/10.1038/35015049

    Article  PubMed  CAS  Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bigras FJ (2000) Selection of white spruce families in the context of climate change: heat tolerance. Tree Physiol 20(18):1227–1234. https://doi.org/10.1093/treephys/20.18.1227

    Article  PubMed  CAS  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  PubMed  Google Scholar 

  • Breshears D, Cobb N, Rich P et al (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci U S A 102:15144–15148. https://doi.org/10.1073/pnas.0505734102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Büntgen U, Krusic PJ, Piermattei A et al (2019) Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat Commun 10:2171. https://doi.org/10.1038/s41467-019-10174-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Huang J-G, Stadt KJ, Comeau PG, Zhai L et al (2017) Drought explains variation in the radial growth of white spruce in western Canada. Agr for Meteorol 233:133–142. https://doi.org/10.1016/j.agrformet.2016.11.012

    Article  Google Scholar 

  • Colombo SJ, Timmer VR (1992) Limits of tolerance to high temperature causing direct and indirect damage to black spruce. Tree Pyhsiol 11:95–104

    Article  CAS  Google Scholar 

  • Day ME (2000) Influence of temperature and leaf-to-air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce (Picea rubens). Tree Physiol 20:57–63

    Article  PubMed  Google Scholar 

  • Fan S, Grossnickle SC (1998) Comparisons of gas exchange parameters and shoot water relations of interior spruce (Picea glauca (Moench) Voss times Picea engelmannii Parry ex Engelm.) Clones under repeated soil drought. Can J for Res 28:820–830

    Article  Google Scholar 

  • Hänninen H (1990) Modeling bud dormancy release in trees from cool and temperate regions. Acta for Fenn 213:1–47

    Google Scholar 

  • Hartmann H, Adams HD, Anderegg WRL, Jansen S, Zeppel MJB (2015) Research frontiers in drought-induced tree mortality: crossing scales and disciplines. New Phytol 205:965–969

    Article  PubMed  Google Scholar 

  • Hirons A (2019) In: Sjöman H (ed) Tree species selection for green infrastructure - a guide for specifiers. Trees and Design Action Group Trust. ISBN: 978-0-9928686-4-2

  • Húdoková H, Petrik P, Petek-Petrik A et al (2022) Heat-stress response of photosystem II in five ecologically important tree species of european temperate forests. Biologia 77:671–680. https://doi.org/10.1007/s11756-021-00958-9

    Article  CAS  Google Scholar 

  • Ivetić V, Aleksić JM (2019) Serbian Spruce and Climate Change: possible outcomes and Conservation Strategy. In: Šijačić-Nikolić M, Milovanović J, Nonić M (eds) Forests of Southeast Europe under a changing climate. Advances in Global Change Research, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-95267-3_30

    Chapter  Google Scholar 

  • Jia Z, Wang Y, Ma J, An S, Hu J, Wang J (2020) Response to thermal stability of PSâ…¡ for temperature rising in Picea abies. Scientia Silvae Sinicae (in Chinese) 56:11

    Google Scholar 

  • Karen EB, Stephen JW, Richard WT (1993) Heat Tolerance, Cold Hardiness, and Bud Dormancy Relationships in seedlings of selected conifers. J AM SOC HORTIC SCI 118:840–844

    Article  Google Scholar 

  • Kempf K, Allwine E, Westberg H, Claiborn C, Lamb B (1996) Hydrocarbon emissions from spruce species using environmental chamber and branch enclosure methods. Atmospheric Environ 30(9):1381–1389

    Article  CAS  Google Scholar 

  • Kolář T, Čermák P, Trnka M et al (2017) Temporal changes in the climate sensitivity of Norway spruce and european beech along an elevation gradient in central Europe. Agr for Meteorol 239(28):24–33. https://doi.org/10.1016/j.agrformet.2017.02.028

    Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Physiol 42:313–349

    Article  CAS  Google Scholar 

  • Kunert N (2020) Preliminary indications for diverging heat and drought sensitivities in Norway spruce and Scots pine in Central Europe. iForest 13:89–91. https://doi.org/10.3832/ifor3216-012

    Article  Google Scholar 

  • Kunert N, Hajek P, Hietz P, Morris H, Rosner S, Tholen D (2022) Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers. Plant Biol 24(7):1254–1261

    Article  PubMed  CAS  Google Scholar 

  • Kurz WA et al (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990. https://doi.org/10.1038/nature06777

    Article  PubMed  CAS  Google Scholar 

  • Lamontagne, Bigras FJ, Margolis HA (2000) Chlorophyll fluorescence and CO2 assimilation of black spruce seedlings following frost in different temperature and light conditions. Tree Physiol 20(4):249–255

    Article  PubMed  Google Scholar 

  • Lee JH, Kim JY, Kim JI et al (2020) Plant Thermomorphogenic adaptation to global warming. J Plant Biol 63:1–9. https://doi.org/10.1007/s12374-020-09232-y

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1996) An introduction to the stress concept in plants. J Plant Physiol 148:0–14

    Article  Google Scholar 

  • Liu J, Shi DC (2010) Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica 48:127–134

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photoch Photobio B 137:116–126. https://doi.org/10.1016/j.jphotobiol.2014.01.010

    Article  CAS  Google Scholar 

  • Matkala L, Kulmala L, Kolari P, Aurela M, Bäck J (2021) Resilience of subarctic Scots pine and Norway spruce forests to extreme weather events. Agric for Meteorol 296:108239. https://doi.org/10.1016/j.agrformet.2020.108239

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence–a practical guide. J Exp Bot 51(345):659–668

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys acta Bioenerg 1767 6:414–421

    Article  Google Scholar 

  • Ouyang F, Ma J, Wang J, Kong L, Zhang H et al (2021) Picea species from humid continental and temperate marine climates perform better in monsoonal areas of middle latitudes of China. J for Res (Harbin) 32:1395–1408

    Article  Google Scholar 

  • Patterson TB, Dang RDGL (1997) Whole-plant nitrogen- and water-relations traits, and their associated trade-offs, in adjacent muskeg and upland boreal spruce species. Oecologia 110:160–168

    Article  PubMed  CAS  Google Scholar 

  • Percival GC (2023) Heat Tolerance of Urban Tree Species - A Review, vol 86. Urban Forestry & Urban Greening, p 128021

  • Petrik P, Petek-Petrik A, Konôpková A et al (2023) Seasonality of PSII thermostability and water use efficiency of in situ mountainous Norway spruce (Picea abies). J for Res 34:197–208. https://doi.org/10.1007/s11676-022-01476-3

    Article  CAS  Google Scholar 

  • Qin X (2020) Response of four spruce spcies to water-nitrogen coupling treatment, College of forestry northwest A&F university, [D] master thesis

  • Rosvall O (2019) Using Norway spruce clones in swedish forestry: swedish forest conditions, tree breeding program and experiences with clones in field trials. Scand J Forest Res 34(5):342–351. https://doi.org/10.1080/02827581.2018.1562566

    Article  Google Scholar 

  • Sharkey TD, Singsaas EL, Vanderveer PJ, and Geron C (1996) Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol 16:649–654

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Liu K, Zhang Y, Liu S, Kang C, Li D (2017) Convergent adaptation of PSâ…¡ photochemical characteristics of four spruce species growing in Minqin Desert Botanical Garden. Acta Ecol Sin 37:10

    Google Scholar 

  • Šijačić-Nikolić M, Milovanović J, Nonić M (2019) Forests of southeast Europe under a changing climate: conservation of genetic resources. Springer Nature Switzerland AG, Cham

    Book  Google Scholar 

  • Song L (2015) The study on growth and physiological characteristics of main species in Picea [D]. Gansu Agricultural University. (In Chinese)

  • Song Y, Chen Q, Ci D, Shao X, Zhang D (2013) Effects of high temperature on photosynthesis and related gene expression in Poplar. BMC Plant Biol 14:111–111

    Article  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) In: Papageorgiou GC, Govindjee (eds) Analysis of the Chlorophyll a fluorescence transient. A Signature of Photosynthesis, Chlorophyll a Fluorescence, pp 321–362

    Chapter  Google Scholar 

  • Tabbush PM (1986) Rough handling, soil temperature, and root development in outplanted Sitka spruce and Douglas-fir. Can J for Res 16:1385–1388

    Article  Google Scholar 

  • Tan Y, Li L, Leng C-y, Li D-m, Chen X-d, Gao D-s (2013) Respiratory response of dormant nectarine vegetative buds to high temperature stress. J Integr Agr 12(1):80–86. https://doi.org/10.1016/S2095-3119(13)60207-5

    Article  Google Scholar 

  • Tang T, Zheng G, Li W (2012) Defense mechanisms of plants photosystem to heat stress. Chin J Biochem Mol Biology (in Chinese) 28:127–132

    CAS  Google Scholar 

  • Tjoelker MG, Boratyński A, Bugała W (2007) Biology and ecology of Norway spruce. For Sci 78:23–147

    Google Scholar 

  • Trujillo-Moya C, George JP, Fluch S et al (2018) Drought sensitivity of Norway spruce at the species’ warmest fringe: quantitative and molecular analysis reveals high genetic variation among and within provenances. G3-Genes Genom Genet 8(4):1225–1245. https://doi.org/10.1534/g3.117.300524

  • Van Mantgem PJ, Stephenson NL, Byrne JC et al (2009) Widespread increase of tree mortality rates in the Western United States. Science 323(5913):521–524. https://doi.org/10.1126/science.1165000

    Article  PubMed  CAS  Google Scholar 

  • Vann DR, Johnson AH, Casper BB (1994) Effects of elevated temperatures on carbon dioxide exchange in Picea rubens. Tree Physiol 14:1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Wang MH, Wang JR, Zhang XW, Zhang AP, Zhao CM (2019) Phenotypic plasticity of stomatal and photosynthetic features of four Picea species in two contrasting common gardens. AoB PLANTS 11(4):plz034. https://doi.org/10.1093/aobpla/plz034

    Article  PubMed  PubMed Central  Google Scholar 

  • Way DA, Sage RF (2008) Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) BSP]. Plant Cell Environ 31:1250–1262

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski M, Sauter JJ, Fuchigami L, Stepien V (1997) Effects of near lethal heat stress on bud break, heat-shock proteins and ubiquitin in dormant poplar (Populus nigra Charkowiensis × P. nigra incrassata). Tree Physiol 17:453–460

    Article  PubMed  CAS  Google Scholar 

  • Yang Y (2017) Thermal Stability of PSâ…¡ of main Picea species in China[D]. Lanzhou University (Master’s thesis in Chinese)

  • Zhang S (2019) Effects of irrigation and nitrogen application on growth and photosynthesis of Catalpa bungei and Picea saplings. Northwest A&F University (Master’s thesis in Chinese)

  • Zhang XW, Ru WJ, Ji MF, Ian MR, Wang MH et al (2015) Higher thermal acclimation potential of respiration but not photosynthesis in two alpine Picea taxa in contrast to two lowland congeners. PLoS ONE 10(4):e0123248. https://doi.org/10.1371/journal.pone.0123248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Chen L, Wang J, Wang M, Yang S, Zhao C (2017) Photosynthetic acclimation to long-term high temperature and soil drought stress in two spruce species (Picea crassifolia and P. wilsonii) used for afforestation. J for Res (Harbin) 29:363–372

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Beijing Municipal Administration Center of Parks for funding the umbrella project “Spruce Species Introduction, High Temperature Resistance Evaluation and Efficient Breeding of New Excellent Germplasm” (ZX2021012) and National Forestry and Grassland Administration for funding the Forestry science and technology extension project: cultivation and breeding technology promotion demonstration of Picea pungens (Jing[2023]TG05). We also thank the Scientific Research Instrument Platform of the State Key Laboratory of Forest Genetics and Breeding. We appreciate the linguistic assistance provided by TopEdit (www.topeditsci.com) during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ouyang F wrote the main manuscript text and Sun M,Cui X,Deng J prepared the data. Wang J, Wei Y, He R prepared the experimental design.Mulualem Tigabu and Hui Zhang revised the manuscript text. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yu Wei or Ran He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, F., Sun, M., Cui, X. et al. Picea pungens exhibits greatest tolerance to short-time thermal stress compared to Picea abies, and Picea omorika. New Forests (2023). https://doi.org/10.1007/s11056-023-10002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11056-023-10002-0

Keywords

Navigation