Skip to main content

Advertisement

Log in

Development of polymorphic microsatellite markers for the Tertiary relict tree species Taiwania cryptomerioides (Cupressaceae) in East Asia

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Taiwania cryptomerioides Hayata is an endangered relict tree species which is endemic to mainland China, Taiwan, Myanmar, and northern Vietnam. It is an economically important tree species and has been used for reforestation in mountain areas of mainland China and Taiwan. In order to investigate its genetic diversity for conservation and restoration, we developed and characterized 15 nuclear microsatellite markers based on next-generation sequencing data. A total of 100 microsatellite primer pairs were initially designed and tested based on the restriction-site associated DNA sequencing data. 60 of 100 loci (60%) were successfully amplified, of which 42 loci exhibited polymorphism. Fifteen polymorphic microsatellite loci with clear peaks were selected for further analyses in four T. cryptomerioides populations sampled from China (Hubei, Fujian, Guizhou, and Yunnan). The number of alleles per locus ranged from 2 to 24, and the levels of observed and expected heterozygosity ranged from 0.000 to 0.950 and from 0.000 to 0.860, respectively. This set of microsatellite markers will be useful for future population genetic studies of T. cryptomerioides in East Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Lepage BA (2009) Earliest occurrence of Taiwania (Cupressaceae) from the Early Cretaceous of Alaska: evolution, biogeography, and paleoecology. Proc Acad Nat Sci Philad 158:129–158. https://doi.org/10.1635/053.158.0107

    Article  Google Scholar 

  2. Chou YW, Thomas PI, Ge XJ, Lepage BA, Wang CN (2011) Refugia and phylogeography of Taiwania in East Asia. J Biogeogr 38:1992–2005. https://doi.org/10.1111/j.1365-2699.2011.02537.x

    Article  Google Scholar 

  3. Li ZC, Wang XL, Ge XJ (2008) Genetic diversity of the relict plant Taiwania cryptomerioides Hayata (Cupressaceae) in mainland China. Silvae Genet 57:242–249. https://doi.org/10.1515/sg-2008-0037

    Article  Google Scholar 

  4. He LY, Tang CQ, Wu ZL et al (2015) Forest structure and regeneration of the Tertiary relict Taiwania cryptomerioides in the Gaoligong Mountains, Yunnan, southwestern China. Phytocoenologia 45:135–156. https://doi.org/10.1127/phyto/2015/0038

    Article  Google Scholar 

  5. Farjon A, Thomas P, Luu NDT (2004) Conifer conservation in Vietnam: three potential flagship species. Oryx 38:257–265. https://doi.org/10.1017/S0030605304000481

    Article  Google Scholar 

  6. Thomas P, Farjon A (2011) Taiwania cryptomerioides. IUCN Red List Threat Species 2011:e.T31255A9620141. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T31255A9620141.en

    Article  Google Scholar 

  7. He K, Zeng L, Shi G et al (1997) Bioactive compounds from Taiwania cryptomerioides. J Nat Prod 60:38–40. https://doi.org/10.1021/np960513c

    Article  CAS  PubMed  Google Scholar 

  8. Chiu CM, Nigh G, Chien CT, Ying CC (2010) Diameter distribution models for thinned taiwania (Taiwania cryptomerioides) plantations. Austral For 73:3–11. https://doi.org/10.1080/00049158.2010.10676304

    Article  Google Scholar 

  9. Lin TP, Lu CS, Chung YL, Yang JC (1993) Allozyme variation in four populations of Taiwania cryptomerioides in Taiwan. Silvae Genetica 42:278–284

    Google Scholar 

  10. Yang QJ, Chen GF, Liu XQ, Chen LQ (2009) Analysis of genetic diversity of Taiwania cryptomerioides in Xingdoushan, Hubei Province. Guihaia 29:450–454

    CAS  Google Scholar 

  11. Li YS, Chang CT, Wang CN et al (2018) The contribution of neutral and environmentally dependent processes in driving population and lineage divergence in Taiwania (Taiwania cryptomerioides). Front Plant Sci 9:1148. https://doi.org/10.3389/fpls.2018.01148

    Article  PubMed  PubMed Central  Google Scholar 

  12. Williams AV, Nevill PG, Krauss SL (2014) Next generation restoration genetics: applications and opportunities. Trends Plant Sci 19:529–537. https://doi.org/10.1016/j.tplants.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  13. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  14. Miller MR, Dunham JP, Amores A et al (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genom Res 17:240–248. https://doi.org/10.1101/gr.5681207

    Article  CAS  Google Scholar 

  15. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD Markers. PLoS ONE 3:e3376. https://doi.org/10.1371/journal.pone.0003376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genom Res 18:821–829. https://doi.org/10.1101/gr.074492.107

    Article  CAS  Google Scholar 

  17. Beier S, Thiel T, Muench T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583–2585. https://doi.org/10.1093/bioinformatics/btx198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e15. https://doi.org/10.1093/nar/gks596

    Article  CAS  Google Scholar 

  19. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  20. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  21. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  22. Van OC, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  23. Wall JD, Andolfatto P, Przeworski M (2002) Testing models of selection and demography in Drosophila simulans. Genetics 162:203–216

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 31800551 and 81903747). We thank local staff at the Gaoligong Nature Reserve for their assistance during the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, M., Zhang, N., Zhu, S. et al. Development of polymorphic microsatellite markers for the Tertiary relict tree species Taiwania cryptomerioides (Cupressaceae) in East Asia. Mol Biol Rep 48, 3031–3036 (2021). https://doi.org/10.1007/s11033-021-06287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06287-z

Keywords

Navigation