Skip to main content

Advertisement

Log in

Climate changes during the last glacial termination inferred from diatom-based temperatures and pollen in a sediment core from Längsee (Austria)

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A sediment core section from Längsee, a small meromictic lake in the southern Alpine lowland (Carinthia, Austria) close to the Würmian ice margin, was investigated by means of diatoms and pollen. The main aims of the study were to reconstruct water temperature as a signal of climate change during the last glacial termination, compare the aquatic and terrestrial response to the changing climate, and place our findings into a climatic frame on the northern hemispheric scale. A calibration data set (ALPS06) of 116 lakes was constructed using data from newly studied lakes and from two previously published data sets and we established a transfer function for predicting summer epilimnetic water temperatures (SEWT). A locally weighted weighted average regression and calibration model (R 2jack  = 0.89; RSMEP = 1.82°C) was applied to the fossil diatom assemblages in order to reconstruct SEWT. Three major sections were distinguished in the time window of approximately 19–13 cal ka BP, which fitted well with the oxygen isotope curve and the isotope-event stratigraphy from the Greenland ice-core GRIP. The first section was a warming period (SEWT range from 11.6 to 18.0°C; average 15.8°C = ca. 6°C below present) called the Längsee oscillation, which probably correlates with the warmer sub-section (GS-2b) of the Greenland Stadial 2. The subsequent section represents a climate cooling, called the Längsee cold period (SEWT range between 10.6 and 15.9°C; average 12.9°C), which probably corresponds with the sub-section GS-2a of the Greenland Stadial 2, the Heinrich 1 cold event of the North Atlantic, and partially the Gschnitz Stadial in the Alps. The Längsee cold period shows a tri-partition: Two colder phases are separated by a warmer inter-phase. The passive ordination of the core sample scores along maximum water depth indicated that the Längsee cold period was drier than the Längsee oscillation. Strong short-term fluctuations during the Längsee oscillation and the Längsee cold period indicate climate instability. The third section represented climate warming during the Längsee late glacial interstadial (=Greenland Interstadial 1, GI-1) with an average SEWT of 17.5°C. From the minor climatic fluctuations during this interstadial, mainly indicated by pollen, the fluctuation most likely related to the Gerzensee oscillation showed a SEWT decline. During the early immigration and expansion period of shrubs and trees, aquatic and terrestrial records showed distinct discrepancies that might have arose because of time lags in response and differences in sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen KK, Svensson A, Johnsen SJ, Rasmussen SO, Bigler M, Röthlisberger R, Ruth U, Siggaard-Andersen M-L, Steffensen JP, Dahl-Jensen D, Vinther BM, Clausen HB (2006) The Greenland ice core chronology 2005, 15-42 ka. Part 1: constructing the time scale. Quat Sci Rev 25:3246–3257. doi:10.1016/j.quascirev.2006.08.002

    Article  Google Scholar 

  • Anderson NJ (2000) Diatoms, temperature and climatic change. Eur J Phycol 35:307–314

    Google Scholar 

  • Avigliano R, Di Anastasio G, Improta S, Peresani M, Ravazzi C (2000) A new lateglacial to early Holocene palaeobotanical and archaeological record in the Eastern Pre-Alps: the Palughetto basin (Cansiglio Plateau, Italy). J Quat Sci 15:789–803. doi:10.1002/1099-1417(200012)15:8<789::AID-JQS556>3.0.CO;2-E

    Article  Google Scholar 

  • Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, pp 527–570

    Google Scholar 

  • Battarbee RW (2000) Palaeolimnological approaches to climate change, with special regard to the biological record. Quat Sci Rev 19:107–124. doi:10.1016/S0277-3791(99)00057-8

    Article  Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170. doi:10.1111/j.1469-8137.1996.tb04521.x

    Article  Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München, 542 pp

  • Bigler C, Hall RI (2003) Diatoms as quantitative indicators of July temperature: a validation attempt at century-scale with meteorological data from northern Sweden. Palaeogeogr Palaeoclimatol Palaeoecol 189:147–160. doi:10.1016/S0031-0182(02)00638-7

    Article  Google Scholar 

  • Birks HJB (1995) Quantitative palaeoenvironmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data, quaternary. Technical guide 5. Quaternary Research Association, Cambridge, pp 161–254

    Google Scholar 

  • Björck S, Kromer B, Johnsen S, Bennike O, Hammarlund D, Lehmdahl G, Possnert G, Rasmussen TL, Wohlfarth B, Hammer CU, Spurk M (1996) Synchronized terrestrial-atmospheric deglacial records around the North Atlantic. Science 247:1155–1160. doi:10.1126/science.274.5290.1155

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  • Drescher-Schneider R, de Beaulieu J-L, Magny M, Walter-Simonnet A-V, Bossuet G, Millet L, Brugiapaglia E, Drescher A (2007) Vegetation history, climate and human impact over the last 15,000 years at Lago dell’Accesa (Tuscany, Central Italy). Veget Hist Archaeobot 16:279–299. doi:10.1007/s00334-006-0089-z

    Article  Google Scholar 

  • Firbas F (1949) Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. Fischer, Jena, p 480

    Google Scholar 

  • Firbas F (1954) Die Synchronisierung der mitteleuropäischen Pollendiagramme. Danm Geol Unders II(80):12–21

    Google Scholar 

  • Hajdas I, Ivy SD, Beer J, Bonani G, Imboden D, Lotter AF, Sturm M, Suter M (1993) AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12,000 14C years BP. Clim Dyn 9:107–116. doi:10.1007/BF00209748

    Article  Google Scholar 

  • Håkansson H (2002) A compilation and evaluation of species in the genera Stephanodiscus, Cyclostephanos and Cyclotella with new genus in the family Stephanodiscaceae. Diatom Res 17(1):1–139

    Google Scholar 

  • Heiri O, Millet L (2005) Reconstruction of late glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). J Quat Sci 20:33–44. doi:10.1002/jqs.895

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58. doi:10.1007/BF00048870

    Article  Google Scholar 

  • Hughen KA, Lehman S, Southon J, Overpeck J, Marchal O, Herring C, Turnbull J (2004) 14C activity and global carbon cycle changes over the past 50,000 years. Science 303:202–207. doi:10.1126/science.1090300

    Article  Google Scholar 

  • Hughen KA, Southon J, Lehman S, Bertrand C, Turnbull J (2006) Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quat Sci Rev 24:3216–3227. doi:10.1016/j.quascirev.2006.03.014

    Article  Google Scholar 

  • Ivy-Ochs S, Kerschner H, Kubik PW, Schlüchter C (2006) Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial. J Quat Sci 21(2):115–130. doi:10.1002/jqs.955

    Article  Google Scholar 

  • Juggins S (2007) C2 version 1.5.0: a program for plotting and visualising stratigraphic data. University of Newcastle, UK

  • Kerschner H, Ivy-Ochs S, Schlüchter C (1999) Paleoclimatic interpretation of the early late-glacial glacier in the Gschnitz valley, Central Alps, Austria. Ann Glaciol 28:135–140. doi:10.3189/172756499781821661

    Article  Google Scholar 

  • Kiss KT, Ács É, Szabó É (2007) Morphological observations on Cyclotella distinguenda Hustedt from the core sample of a meromictic karstic lake of Spain (Lake La Cruz) with aspects of their ecology. Diatom Res 22(2):287–308

    Google Scholar 

  • Klaus W (1977) Coccus nivalis. Ein häufiges Microfossil des Spätglazials und frühen Postglazials. Linzer biol Beitr 9(1):81–84

    Google Scholar 

  • Klee R, Schmidt R, Müller J (1993) Alleröd Diatom assemblages in prealpine hardwater lakes of Bavaria and Austria as preserved by Laacher See Eruption Event. Limnologica 23(2):131–143

    Google Scholar 

  • Kupfer JA, Cairns DM (1996) The suitability of montane ecotones as indicators of globalclimatic change. Prog Phys Geogr 20(3):253–272. doi:10.1177/030913339602000301

    Article  Google Scholar 

  • Lichtenberger E (1959) Der Rückzug des Würmgletschers im mittleren Klagenfurter Becken und Krappfeld. Mitt Osterr Geogr Ges 101:37–62

    Google Scholar 

  • Lotter AF, Bigler C (2000) Do diatoms in the Swiss Alps reflect the length of ice cover? Aquat Sci 62:125–141. doi:10.1007/s000270050002

    Article  Google Scholar 

  • Lotter AF, Juggins S (1991) POLPROF, TRAN and ZONE: programs for plotting, editing and zoning pollen and diatom data. INQUA-subcommission for the study of the Holocene working group on data handling methods. Newsletter 6:4–6

    Google Scholar 

  • Lotter AF, Eicher U, Siegenthaler U (1992a) Late-glacial climate oscillations as recorded in Swiss lake sediments. J Quat Sci 7:187–204. doi:10.1002/jqs.3390070302

    Article  Google Scholar 

  • Lotter AF, Ammann B, Beer J, Hajdas I, Sturm M (1992b) A step towards an absolute time-scale for the late-glacial: annually laminated sediments from Soppensee (Switzerland). In: Bard E, Broecker WS (eds) The last deglaciation: absolute and radiocarbon chronologies, NATO ASI series 12. Springer, Berlin, pp 45–68

    Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J Paleolimnol 18:395–420. doi:10.1023/A:1007982008956

    Article  Google Scholar 

  • Lotter AF, Pienitz R, Schmidt R (1999) Diatoms as indicators of environmental change near arctic and alpine treeline. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 205–260

    Google Scholar 

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistic. Ecological modeling 62(4):275–293

    Article  Google Scholar 

  • Pienitz R, Smol JP, Birks HJB (1995) Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. J Paleolimnol 13:21–49. doi:10.1007/BF00678109

    Article  Google Scholar 

  • Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen M-L, Johnsen SJ, Larsen LB, Dahl-Jensen D, Bigler M, Röthlisberger R, Fischer H, Goto-Azuma K, Hansson ME, Ruth U (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111:D06102. doi:10.1029/2005JD006079

    Article  Google Scholar 

  • Rosén P, Hall R, Korsman T, Renberg I (2000) Diatom transfer-functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden. J Paleolimnol 24:109–123. doi:10.1023/A:1008128014721

    Article  Google Scholar 

  • Rühland K, Priesnitz A, Smol JP (2003) Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canada. Arct Antarct Alp Res 35:110–123. doi:10.1657/1523-0430(2003)035[0110:PEFDFR]2.0.CO;2

    Article  Google Scholar 

  • Salgado-Labouriau ML, Schubert C (1977) Pollen analysis of a peat bog from Laguna Victoria (Venezuelan Andes). Acta Cient Venez 28:328–332

    Google Scholar 

  • Sarnthein M, Grootes PM, Kennett JP, Nadeau M-J (2007) 14C reservoir ages show deglacial changes in ocean currents and carbon cycle. In: Schmittner A, Chiang J, Hemmings S (eds) Geophysical monograph series 173—ocean circulation: mechanisms and impacts. American Geophysical Union, Washington, DC, pp 175–196

    Google Scholar 

  • Schmidt R (1975) Pollenanalytische Untersuchungen zur spätglazialen bis mittelpostglazialen Vegetationsgeschichte im Raume Bozen. Linzer biol Beitr 7(2):225–247

    Google Scholar 

  • Schmidt R, Wunsam S, Brosch U, Fott J, Lami A, Löffler H, Marchetto A, Müller HW, Pražáková M, Schwaighofer B (1998) Late and post-glacial history of meromictic Längsee (Austria), in respect to climate change and anthropogenic impact. Aquat Sci 60:56–88. doi:10.1007/PL00001313

    Article  Google Scholar 

  • Schmidt R, Pugliese N, Müller J, Szeroczyriska K, Bogner D, Melis R, Kamenik C, Bari A, Danielopol DL (2001) Palaeoclimate, vegetation and coastal lake development, from the Pleniglacial until early Holocene, in the northern Adriatic Valun bay (Isle of Cres, Croatia). Il Quaternario–Italian J Quat Sci 14(1):61–78

    Google Scholar 

  • Schmidt R, van den Bogaard C, Merkt J, Müller J (2002a) A new Lateglacial chronostratigraphic tephra marker for the south-eastern Alps: The Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a regional biostratigraphy and palaeoclimate. Quat Int 88:45–56. doi:10.1016/S1040-6182(01)00072-6

    Article  Google Scholar 

  • Schmidt R, Psenner R, Müller J, Indinger P, Kamenik C (2002b) Impact of late glacial climate variations on strafication and trophic state of the meromictic lake Längsee (Austria): validation of a conceptual model by multi proxy studies. J Limnol 61(1):49–60

    Google Scholar 

  • Schmidt R, Kamenik C, Kaiblinger C, Hetzel M (2004a) Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen. J Paleolimnol 32:177–196. doi:10.1023/B:JOPL.0000029428.97961.43

    Article  Google Scholar 

  • Schmidt R, Kamenik C, Lange-Bertalot H, Klee R (2004b) Fragilaria and Staurosira (Bacillariophyceae) from sediment surfaces of 40 lakes in the Austrian Alps in relation to environmental variables, and their potential for palaeoclimatology. J Limnol 63(2):171–189

    Google Scholar 

  • Schultze E, Niederreiter R (1990) Paläolimnologische Untersuchungen an einem Bohrkern aus dem Profundal des Mondsees (Oberösterreich). Linzer Biol Beitr 22:231–235

    Google Scholar 

  • Schulz L (ed) (2007) Kärntner Seenbericht. Kärntner Institut für Seenforschung, Klagenfurt, pp 66

  • Smol JP, Cumming BF (2000) Tracking long-term changes in climate using algal indicators in lake sediments. J Phycol 36:986–1011. doi:10.1046/j.1529-8817.2000.00049.x

    Article  Google Scholar 

  • Sorvari S, Korhola A, Thompson R (2002) Lake Diatom response to recent Arctic warming in Finnish Lapland. Glob Change Biol 8:171–181. doi:10.1046/j.1365-2486.2002.00463.x

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Sutherland DG (1980) Problems of radiocarbon dating in newly deglaciated terrain: examples from the Scottish Lateglacial. In: Lowe JJ, Gray JM, Robinson JE (eds) Studies in the Lateglacial of north-west Europe. Pergamon, Oxford, pp 139–149

    Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179. doi:10.2307/1938672

    Article  Google Scholar 

  • ter Braak CJF (1987) The analysis of vegetation–environment relationships by canonical correspondence analysis. Vegetatio 69:69–77. doi:10.1007/BF00038688

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanocoDraw for Window’s user guide: software for canonical community ordination (version 4.5). Biometris, Wageningen and Česke Budĕjovice, 500 pp

  • van Geel B, Hallewas DP, Pals JP (1983) A Late Holocene deposite under the Westfriese Zeedijk near Enkhuizen (Prov. of N-Holland, The Netherlands): palaeoecological and archaeological aspects. Rev Palaeobot Palynol 38:269–335. doi:10.1016/0034-6667(83)90026-X

    Article  Google Scholar 

  • van Geel B, Coope GR, van Hammen T (1989) Palaeoecology and stratigraphy of the Late-glacial type section at Usselo, The Netherlands. Acta Bot Neerl 33(3):267–273

    Google Scholar 

  • van Husen D (1976) Zur quartären Entwicklung des Krappfeldes und des Berglandes um St. Veit an der Glan. Mitt Ges Geol Bergbaustud Osterr 23:55–68

    Google Scholar 

  • van Husen D (1997) LGM and late-glacial fluctuations in the Eastern Alps. Quat Int 38/39:109–118. doi:10.1016/S1040-6182(96)00017-1

    Article  Google Scholar 

  • Vescovi E, Ravazzi C, Arpenti E, Finsinger W, Pini R, Valsecchi V, Wick L, Ammann B, Tinner W (2007) Interactions between climate and vegetation during the lateglacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quat Sci Rev 26:1650–1669. doi:10.1016/j.quascirev.2007.03.005

    Article  Google Scholar 

  • von Grafenstein U, Erlenkeuser H, Brauer A, Jouzel J, Johnsen SJ (1999) A mid-European decadal isotope–climate record from 15,500 to 5,000 years B.P. Science 284:1654–1657. doi:10.1126/science.284.5420.1654

    Article  Google Scholar 

  • Walker MJC, Björk S, Lowe JJ, Cwynar LC, Johnsen S, Knudsen K-L, Wohlfarth B, INTIMATE group (1999) Isotopic “events” in the GRIP ice core: a stratotype for the Late Pleistocene. Quat Sci Rev 18:1143–1150. doi:10.1016/S0277-3791(98)00119-X

    Article  Google Scholar 

  • Weckström J, Korhola A, Blom T (1997a) The relationship between diatoms and water temperature in thirty subarctic Fennoscandian lakes. Arct Alp Res 29(1):75–92. doi:10.2307/1551838

    Article  Google Scholar 

  • Weckström J, Korhola A, Blom T (1997b) Diatoms as quantitative indicators of pH and water temperature in subarctic Fennoscandian lakes. Hydrobiologia 347:171–184. doi:10.1023/A:1003091923476

    Article  Google Scholar 

  • Wulf S (2000) Das tephrochronologische Referenzprofil des Lago Grande di Monticchio. Eine detaillierte Stratigraphie des süditalienischen explosiven Vulkanismus der letzten 100.000 Jahre. Scientific Technical Report STR01/03, Geoforschungszentrum Potsdam, pp 124

  • Wunsam S (1995) Diatomeen (Bacillariophyceae) als Bioindikatoren in Alpenseen. Transferfunktionen zwischen Diatomeen und Umweltvariablen (ALPTROPH). Diss Formal- und Naturwiss Fak Wien, pp 147

  • Wunsam S, Schmidt R (1995) A diatom–phosphorus transfer function for Alpine and pre-alpine lakes. Mem Ist Ital Idrobiol 53:85–99

    Google Scholar 

  • Wunsam S, Schmidt R, Klee R (1995) Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquat Sci 57(4):360–386. doi:10.1007/BF00878399

    Article  Google Scholar 

  • Zollitschka B, Negendank JFW (1996) Sedimentology, dating and palaeoclimatic interpretation of a 76.3 ka record from Lago Grande di Monticchio, southern Italy. Quat Sci Rev 15:101–112. doi:10.1016/0277-3791(95)00022-4

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Austrian Science Fund (FWF, project No. 18595-B17). We would like to thank Richard Niederreiter (UWITEC Mondsee) for sediment coring; Maria Pichler for technical assistance; Hannes Höllerer, Karl Maier, Monika Roth and Anneliese Wiedlroither for help in the field; Rolf Klee and Horst Lange-Bertalot for the identification of critical diatom taxa; Achim Brauer and Stefan Lauterbach for tephra evaluation; Josef Franzoi for water chemical measurements; Pieter M. Grootes and Matthias Hüls for radiocarbon dating; Liselotte Schulz for providing data of recent Längsee; Christian Kamenik and Ulrich von Grafenstein for various discussions; and two anonymous reviewer for constructive comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, K., Weckström, K., Drescher-Schneider, R. et al. Climate changes during the last glacial termination inferred from diatom-based temperatures and pollen in a sediment core from Längsee (Austria). J Paleolimnol 43, 131–147 (2010). https://doi.org/10.1007/s10933-009-9322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-009-9322-y

Keywords

Navigation