Skip to main content

Advertisement

Log in

Evolutionary Patterns of Morphology and Behavior as Inferred from a Molecular Phylogeny of New World Emballonurid Bats (Tribe Diclidurini)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

A molecular phylogeny of New World emballonurid bats based on parsimony and Bayesian analyses of loci from the three different nuclear genetic transmission pathways in mammals (autosomal, X, and Y chromosomes) is well supported and independently corroborated by each individual gene tree. This is in contrast to a single most parsimonious but poorly supported tree based on morphological data, which has only one intergeneric or higher relationship shared with the molecular phylogeny. Combining the morphological and molecular data partitions results in a tree similar to the molecular tree suggesting a high degree of homoplasy and low phylogenetic signal in the morphological data set. Behavioral data are largely incomplete and likewise produce a poorly resolved tree. Nonetheless, patterns of evolution in morphology and behavior can be investigated by using the molecular tree as a phylogenetic framework. Character optimization of the appearance of dorsal fur and preferred roosting sites maps consistently and are correlated on the phylogeny. This suggests an association of camouflage for bats with unusual appearance (two dorsal stripes in Rhynchonycteris and Saccopteryx, or pale fur in Cyttarops and Diclidurus) and roosting in exposed sites (tree trunks or under palm leaves). In contrast, the ancestral states for Old and New World emballonurids are typically uniform brown or black, and they usually roost in sheltered roosts such as caves and tree hollows. Emballonuridae is the only family of bats that has a sac-like structure in the wing propatagium, which is found in four New World genera. Mapping the wing sac character states onto the phylogeny indicates that wing sacs evolved independently within each genus and that there may be a phylogenetic predisposition for this structure. Ear orientation maps relatively consistently on the molecular phylogeny and is correlated to echolocation call parameters and foraging behavior, suggesting a phylogenetic basis for these character systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barghoorn SF (1977) New material of Vespertiliavus Schlosser (Mammalia, Chiroptera) and suggested relationships of emballonurid bats based on cranial morphology. Am Mus Novitates 2618:1–29

    Google Scholar 

  • Bradbury JW, Emmons LH (1974) Social organization of some Trinidad bats: 1. Emballonuridae. Z Tierpsychol 36:137–183

    CAS  Google Scholar 

  • Bradbury JW, Vehrencamp SL (1976) Social organization and foraging in emballonurid bats. Behav Ecol Sociobiol 1:337–381

    Article  Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity: an evolutionary voyage of discovery. The University of Chicago Press, Chicago

    Google Scholar 

  • Butler PM, Hopwood AT (1957) Insectivora and Chiroptera from the Miocene rocks of Kenya colony. Brit Mus (Nat Hist), Fossil Mammals Afr 13:1–35

    Google Scholar 

  • Cabrera A (1961) Catàlogo de los mamíferos de América del Sur. Rev Mus Arg Cienc Nat “Bernardino Rivadavia,” Cienc Zool 4:309–732

    Google Scholar 

  • Corbet GB, Hill JE (1991) A world list of mammalian species, 3rd ed. University of Oxford Press, Oxford

    Google Scholar 

  • Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Mol Biol Evol 14:733–740

    PubMed  CAS  Google Scholar 

  • Dunlop JM (1998) The evolution of behavior and ecology in Emballonuridae (Chiroptera). PhD dissertation, York University, North York, Ontario

  • Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22:1869–1886

    Article  PubMed  CAS  Google Scholar 

  • Endler JA (1981) An overview of the relationships between mimicry and crypsis. Biol J Linn Soc 16:25–31

    Article  Google Scholar 

  • Farris JS (1970) Methods for computing Wagner trees. Syst Zool 19:83–92

    Article  Google Scholar 

  • Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Naturalist 125:1–15

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Fenton MB, Rydell J, Vonhof MJ, Eklöf J, Lancaster WC (1999) Constant-frequency and frequency-modulated components in the echolocation calls of three species of small bats (Emballonuridae, Thyropteridae, and Vespertilionidae). Can J Zool 77:1891–1900

    Article  Google Scholar 

  • Freeman PW, Lemen CA (1991) Morphometrics of the family Emballonuridae. Bull Am Mus Nat Hist 206:54–61

    Google Scholar 

  • Griffiths TA, Smith AL (1991) Systematics of emballonuroid bats (Chiroptera: Emballonuridae and Rhinopomatidae) based on hyoid morphology. Bull Am Mus Nat Hist 206:62–83

    Google Scholar 

  • Griffiths TA, Koopman KF, Starrett A (1991) The systematic relationship of Emballonura nigriscens to other species of Emballonura and to Coleura (Chiroptera: Emballonuridae). Am Mus Novitates 2996:1–16

    Google Scholar 

  • Hutcheon JM, Kirsch JAW, Pettigrew JD (1998) Base compositional biases and the bat problem. III. The question of microchiropteran monophyly. Phil Trans Roy Soc B 353:607–617

    Article  CAS  Google Scholar 

  • Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21:149–156

    Article  PubMed  Google Scholar 

  • Jones JK Jr, Hood CS (1993) Synopsis of South American bats of the family Emballonuridae. Occ Pap Mus Texas Tech Univ 155:1–32

    Google Scholar 

  • Jung K, Kalko EKV, von Helversen O (2007) Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation. J Zool 212:125–137

    Article  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  PubMed  CAS  Google Scholar 

  • Koopman KF (1994) Chiroptera: systematics. Part 60 of Mammalia, volume 8, Handbook of Zoology. Walter de Gruyter, New York

    Google Scholar 

  • Koopman KF, Jones JK Jr (1970) Classification of bats. In: Slaughter BH, Walton DW (eds) About bats. Southern Methodist University Press, Dallas, pp 22–28

    Google Scholar 

  • Legendre S (1980) Un chiroptère emballouridé dans le Néogène d’Europe Occidentale; considerations paléobiogéographiques. Geobios 13:839–847

    Article  Google Scholar 

  • Lim BK (2007) Divergence times and origin of Neotropical sheath-tailed bats (Tribe Diclidurini) in South America. Mol Phylogenet Evol 45:777–791

    PubMed  Google Scholar 

  • Lim BK, Engstrom MD (2001) Species diversity of bats (Mammalia: Chiroptera) in Iwokrama Forest, Guyana, and the Guianan subregion: implications for conservation. Biodiv Conserv 10:613–657

    Article  Google Scholar 

  • Lim BK, Engstrom MD, Bickham JW, Patton JC (2008) Molecular phylogeny of New World sheath-tailed bats (Emballonuridae: Diclidurini) based on loci from the four genetic transmission systems in mammals. Biol J Linn Soc (in press)

  • Luckett WP (1980) The use of fetal membrane data in assessing chiropteran phylogeny. In: Wilson DE, Gardner AL (eds) Proceedings of the fifth international bat research conference. Texas Tech University Press, Lubbock, pp 245–265

    Google Scholar 

  • Maddison WP, Maddison DR (2006) Mesquite: a modular system for evolutionary analysis, version 1.12. http://mesquiteproject.org

  • McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New York

    Google Scholar 

  • Miller GS Jr (1907) The families and genera of bats. Bull US Natl Mus 57:1–282

    Google Scholar 

  • Muñoz J, Cuartas CA (2001) Saccopteryx antioquensis n. sp. (Chiroptera: Emballonuridae) del noroeste de Colombia. Actual Biol 23(75):53–61

    Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia, Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil Trans Roy Soc Lond Ser B Biol Sci 316:335–427

    Article  Google Scholar 

  • Nylander JAA (2004) MrModeltest, version 2. Evolutionary Biology Centre, Uppsala University, Sweden

    Google Scholar 

  • Pettigrew JD (1986) Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231:1304–1306

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Prager EM, Wilson AC (1988) Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J Mol Evol 27:326–335

    Article  PubMed  CAS  Google Scholar 

  • Reid FA, Engstrom MD, Lim BK (2000) Noteworthy records of bats from Ecuador. Acta Chiropterol 2:37–51

    Google Scholar 

  • Robbins LW, Sarich VM (1988) Evolutionary relationships in the family Emballonuridae (Chiroptera). J Mammal 69:1–13

    Article  Google Scholar 

  • Rohlf FJ (2006) A comment on phylogenetic corrections. Evolution 60:1509–1515

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Sanborn CC (1937) American bats of the subfamily Emballonuridae. Zool Ser Field Mus Nat Hist 20:321–354

    Google Scholar 

  • Sarkar IN, Thornton JW, Planet PJ, Figurski DH, Schierwater B, DeSalle R (2002) An automated phylogenetic key for classifying homeoboxes. Mol Phylogenet Evol 24:388–399

    Article  PubMed  Google Scholar 

  • Scully WMR, Fenton MB, Saleuddin ASM (2000) A histological examination of the holding sacs and glandular scent organs of some bat species (Emballonuridae, Hipposideridae, Phyllostomidae, Vespertilionidae, and Molossidae). Can J Zool 78:613–623

    Article  Google Scholar 

  • Simmons NB (1994) The case for chiropteran monophyly. Am Mus Novitates 3103:1–54

    Google Scholar 

  • Simmons NB (2000) Bat phylogeny: an evolutionary context for comparative studies. In: Adams RA, Pedersen SC (eds) Ontogeny, functional ecology, and evolution of bats. Cambridge University Press, Cambridge, pp 9–58

    Google Scholar 

  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, third ed. The Johns Hopkins University Press, Baltimore, pp 312–529

    Google Scholar 

  • Simmons NB, Conway TM (2003) Evolution of ecological diversity in bats. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago, pp 493–535

    Google Scholar 

  • Simmons NB, Handley CO Jr (1998) A revision of Centronycteris Gray (Chiroptera: Emballonuridae) with notes on natural history. Am Mus Novitates 3239:1–28

    Google Scholar 

  • Simmons NB, Voss RS (1998) The mammals of Paracou, French Guiana: a neotropical lowland rainforest fauna. Part 1, bats. Bull Am Mus Nat Hist 237:1–219

    Google Scholar 

  • Simpson GG (1945) The principals of classification and a classification of mammals. Bull Am Mus Nat Hist 85:1–350

    Google Scholar 

  • Smith JD, Madkour G (1980) Penial morphology and the question of chiropteran monophyly. In: Wilson DE, Gardner AL (eds) Proceedings of the fifth international bat research conference. Texas Tech University Press, Lubbock, pp 347–365

    Google Scholar 

  • Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci U S A 92:2647–2651

    Article  PubMed  CAS  Google Scholar 

  • Storch G, Sigé B, Habersetzer J (2002) Tachypteron franzeni n. gen., n. sp., earliest emballonurid bat from the middle Eocene of Messel (Mammalia, Chiroptera). Paläontol Z 76:189–199

    Google Scholar 

  • Swofford DL (2001) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Teeling EC, Madsen O, Van Den Bussche RA, De Jong WW, Stanhope MJ, Springer MS (2002) Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc Natl Acad Sci U S A 99:1431–1436

    Article  PubMed  CAS  Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evol 37:221–244

    Article  CAS  Google Scholar 

  • Van Den Bussche RA, Hoofer SR (2004) Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa. J Mammal 85:321–330

    Article  Google Scholar 

  • Voigt CC, von Helversen O (1999) Storage and display of odour by male Saccopteryx bilineata (Chiroptera, Emballonuridae). Behav Ecol Sociobiol 50:29–40

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mark Engstrom, Allan Baker, and Brock Fenton for reading and commenting on early drafts of this paper. The molecular study was done at Texas A&M University with the gracious invitation of John Bickham and the expert guidance of John Patton. The lab work was generously supported by funds secured through the Royal Ontario Museum, ROM Foundation, and Texas A&M University. For the morphological and behavioral study, gratitude for permission to conduct fieldwork, and for hospitality at their institutions is expressed to: Marilyn Cole and Daryl Loth (Caña Palma Biological Research Station); the staff at Tortuga Lodge; Kathy Stoner, Mauricio, and the Caballeros (Palo Verde National Park); and Drs. Marimuthu and Subbaraj (Madurai Kamaraj University). This work could not have happened if it were not for the indefatigable spirit and energy of the field assistants Colleen Fennessy, Michele Theberge, and Bill Scully. Gratitude is expressed to Nancy Simmons (AMNH) and Linda Gordon (USNM) for the hospitality received during visits to their institutions. This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Post-Graduate Scholarship, an American Museum Collection Studies Grant, and a Theodore Roosevelt Memorial Scholarship to J. M. Dunlop, as well as an NSERC operating grant to M. B. Fenton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burton K. Lim.

Appendices

Appendix 1

Table 4 The two main classifications of the family Emballonuridae, which proposed the earliest use of higher taxonomic ranks

Appendix 2

Fifty-three external and 74 osteological and cranial characters were identified based on characters cited in earlier publications (e.g., Miller 1907; Barghoorn 1977) and skeletal examination. The matrix also included the 14 hyoid characters identified by Griffiths et al. (1991) and Griffiths and Smith (1991). These 141 characters were coded to comprise 83 binary characters, 45 multistate characters (with three states), and 13 multistate characters (with > three states). Multistate characters were treated as unordered in the analysis so as not to incorporate ad hoc a priori hypotheses that might force the order of transformation among states, a bias that happens if the states are broken into additive binary characters and treated as single ordered characters. Characters were coded inapplicable (-) in taxa lacking the character and were coded missing (?) in taxa for which the character state was unknown. Where possible, at least five skins and skulls and five alcohol preserved specimens were examined for each species. A complete list of outgroup and emballonurid specimens examined is given in Appendix 3.

Character 1 Glandular sac in the wing membrane absent (0); or present on leading edge of wing, directed laterally (1); or present in middle of propatagium, directed medially (2); or present at elbow, directed medially (3).

Character 2 Gular region with no glandular structure (0); or glandular pouch present (1); or glandular pores present (2).

Character 3 No glandular sac in uropatagium (0); or a glandular sac present in uropatagium (1).

Character 4 The narial apertures are crescent-shaped (0); or round (1); or long and flat (2); or teardrop-shaped (3).

Character 5 There is a furrow between the nasal apertures (0); or no furrow is present (1).

Character 6 The nostrils are not tubular (0); or are partially tubular, well separated into tubules at the top but joined at the bottom (1); or are fully separated tubules (2).

Character 7 The anterior muzzle does not project beyond the lower lip (0); or projects slightly beyond the lower lip (1); or projects strongly beyond the lower lip (2).

Character 8 There is no bump or thickened pad on the upper lip (0); or a bump or thickened pad is present (1).

Character 9 No ridge extends from the upper lip to the nostrils (0); or there is a ridge that extends from the upper lip to the nostrils (1).

Character 10 The lower lip is smooth with no thickened pad (0); or there is a thickened pad that is indented (1); or there is a thickened pad that is split by a groove (2).

Character 11 The wing membrane attaches in the region of the tibia (0); or attaches in the region of the metatarsus (1).

Character 12 The radio-metacarpal pouch, a structure extending on the inferior surface of the wing from the radius of the forearm to the basal joint of the metacarpal, is absent (0); or is present (1).

Character 13 The apex of the pinna is rounded (0); or is triangular (1).

Character 14 The base of the pinna is narrow (0); or is wide (1). Craseonycteris, Saccolaimus and Taphozous have a wide base to the pinna (state 1).

Character 15 The lateral edge of the pinna originates far from the mouth, high up on the head (0); or originates level with the outer corner of the mouth (1); or originates below the outer corner of the mouth (2).

Character 16 The lateral edge of the pinna is convex (0); or is concave (1).

Character 17 The medial edge of the pinna originates lateral to the eye (0); or originates between the eyes (1); or originates above the outer corner of the eye (2); or originates above the middle of the eye (3); or originates above the inner corner of the eye (4).

Character 18 The shape of the medial edge of the pinna is concave (0); or is convex (1); or is straight (2).

Character 19 The medial edge of the pinna is smooth (0); or is papillated (1).

Character 20 The base of the tragus is smooth and even (0); or there is a small distinct lobe at the lateral base of the tragus (1).

Character 21 The top edge of the tragus is smooth (0); or is uneven (1).

Character 22 The anterior surface of the tragus is smooth (0); or is papillate (1).

Character 23 The anterior surface of the tragus is almost or totally hairless (0); or is densely haired (1).

Character 24 The tragus is rectangular (0); or is triangular (1); or is hatchet shaped (2).

Character 25 The tragus is flat in cross-section (0); or is semi-circular in cross-section (1).

Character 26 The dorsal fur is unicolored (0); or is bicolored (1); or is tricolored (2).

Character 27 The dorsal fur has no parallel stripes (0); or parallel dorsal stripes are present (1).

Character 28 The dorsal fur is uniformly colored (0); or is not uniformly colored, and there are light spots and speckles on the fur (1).

Character 29 The ventral fur is unicolored (0); or bicolored (1).

Character 30 There is low or no contrast between the colors of the ventral and dorsal fur (0); or there is high contrast between the colors of the ventral and dorsal fur (1).

Character 31 The forehead is furred evenly (0); or there is a bald patch of skin on the forehead or rostrum (1).

Character 32 The forehead has no external concavity (0); or there is a large, deep concavity externally on the forehead located between the eyes (1); or there is a small, shallow concavity present externally on the forehead located between the eyes (2).

Character 33 There is no concavity in the nasals (0); or there is a deep concavity in the nasals (1).

Character 34 The chin is furred (0); or is naked (1).

Character 35 There is fur on the abdomen (0); or the abdomen is naked (1).

Character 36 There is fur on the rump (0); or the rump is naked (1).

Character 37 Color of wing membrane is dark brown (0); or is completely or partly pale or white (1).

Character 38 The ventral surface of the wing membrane is bare or sparsely haired along the forearm to the wrist (0); or there is a dense band of fur present (1).

Character 39 The ventral fur is uniformly colored (0); or there is a band of pale fur between the chest and the wing (1).

Character 40 The wing is furred dorsally (0); or the dorsal surface of the wing is sparsely furred or naked (1).

Character 41 The uropatagium is naked or sparsely furred dorsally (0); or is densely furred dorsally (1).

Character 42 The uropatagium is naked or sparsely furred ventrally (0); or is densely furred ventrally (1).

Character 43 There are no bristles on the ventral surface of the uropatagium (0); or there is a dense covering of short stiff bristles on the ventral surface of the uropatagium (1).

Character 44 The forearm is naked or sparsely furred (0); or is lightly furred (1); or is densely furred (2).

Character 45 The upper tibial region is naked or sparsely furred (0); or is densely furred (1).

Character 46 The dorsal propatagium is sparsely furred or is naked (0); or is densely furred (1).

Character 47 The feet and toes have scattered sparse hairs or are naked (0); or are densely haired (1).

Character 48 The wrist and thumb are naked or sparsely furred (0); or are lightly furred (1); or there is dense hair on the wrist and thumb (2).

Character 49 There are > 5 caudal vertebrae projecting dorsally from the uropatagium (0); or there are 3–4 caudal vertebrae projecting from the uropatagium (1); or there are 1–2 caudal vertebrae projecting from the uropatagium (2).

Character 50 The thumb is not enclosed in the wing membrane (0); or is enclosed in the membrane (1).

Character 51 There is no calcar supporting the uropatagium (0); or there is a calcar supporting the back edge of the uropatagium (1).

Character 52 The length of calcar is less than 1.5 times the length of foot (0); or is approximately 2 times the length of foot (1); or is greater than 2.5 times the length of foot (2).

Character 53 There is no lobule on the posteromedial surface of the ankle (0); or there is a lobule on the ankle, posterior to the origin of the calcar (1).

Character 54 The clavicle has no marked expansion (0); or is expanded (1).

Character 55 There is no groove in the tibia (0); or there is a long groove present on the lateral surface of the tibia (1).

Character 56 There are two pair of upper incisors present (0); or there is one pair of upper incisors present (1).

Character 57 There are three pair of lower incisors present (0); or there are two pair of lower incisors present (1).

Character 58 The anterior premolar is a spicule (0); or is a cup and cusp (1).

Character 59 There is no diastema between the upper premolars (0); or there is a diastema present (1).

Character 60 There is no hypocone on the upper molars (0); or there is a hypocone present (1).

Character 61 In lateral view, the anterior margin of the dentary at the mandibular symphysis is straight (0); or the profile of the anterior dentary is concave (1).

Character 62 In dorsal view, the angular process of the dentary does not extend lateral to the mandibular condyle (0); or extends lateral to the mandibular condyle (1).

Character 63 The angular process of the mandible is thick and not well separated from the mandibular condyle (0); or is thin and is well separated from the mandibular condyle (1).

Character 64 The angular process is blunt and rounded posteriorly (0); or has a sharp hook posteriorly (1).

Character 65 When the mandible is articulated, the top of the coronoid process is much higher than the level of the zygomatic arch (0); or is only slightly higher than the zygomatic arch (1); or is even with the zygomatic arch (2).

Character 66 There is no process at the insertion point of the genioglossus on the inferior surface of the dentary (0); or the process at the insertion point is on the inferior dentary under the canine and first premolar (1); or the process at the insertion point is under the second premolar (2).

Character 67 There is a supraoccipital crest or ridge present (0); or there is no supraoccipital ridge or crest (1).

Character 68 There is a sagittal crest or ridge present (0); or there is no sagittal crest or ridge present (1).

Character 69 There is no occipital helmet present (0); or there is a distinct occipital helmet present (1).

Character 70 The angle of the forehead between the rostrum and the braincase is steep (0); or is shallow (1).

Character 71 There is no cavity in the rostral area (0); or the rostrum is modified such that it forms a deep square or hexagonal pit (1).

Character 72 There is a deep depression or concavity in the frontal bone between the orbits (0); or there is no depression or concavity in the frontal bone (1); or there is a slight concavity present (2).

Character 73 There are depressions in the maxillae lateral to the nasals (0); or there are no depressions in the maxillae (1).

Character 74 A rostral trough is present, terminating before it reaches the anterior edge of the nasals (0); or is present, terminating at the anterior edge of the nasals (1); or a rostral trough is absent in the nasals (2).

Character 75 There are no globular swellings within the maxilla on the anterior lateral rostrum (0); or there are globular swellings on the anterior lateral rostrum (1).

Character 76 The rostrum is smooth and not fenestrated (0); or the maxilla is fenestrated (1).

Character 77 The anterior root of the zygoma is expanded posteriorly so that the last molar is not visible in dorsal view (0); or is not expanded, and the last molar is visible in dorsal view (1).

Character 78 The premaxillae are slightly reduced (0); or are very reduced, resembling bony splints (1).

Character 79 In lateral view, the premaxillae lie against the rostrum at an angle of 45 degrees (0); or are vertical against the anterior rostrum (1).

Character 80 The premaxillae do not contact the nasals (0); or contact the nasals (1).

Character 81 The lateral edge of the premaxilla is curved (0); or is straight (1).

Character 82 The medial edge of the premaxilla does not twist (0); or twists (1).

Character 83 The premaxillae widen distally (0); or widen proximally (1); or are of a uniform width (2); or widen distally and proximally (3).

Character 84 A postorbital process is present (0); or there is no postorbital process present (1).

Character 85 The supraorbital ridge does not extend onto the postorbital processes (0); or extends onto the postorbital process (1).

Character 86 A supraorbital foramen, located at or posterior to the base of postorbital processes, is absent (0); or is present (1).

Character 87 The anterior edge of the postorbital process is smooth and bears no processes (0); or has an anteriorly directed process (1).

Character 88 The position of the lacrimal foramen is inside the orbit (0); or is outside the orbit (1); or is on the orbital rim or ridge (2).

Character 89 The orbital rim in the area of the lacrimal foramen is smooth (0); or the orbital rim in the area of the lacrimal foramen has distinct processes (1).

Character 90 The turbinates are fully enclosed inside the rostrum (0); or extend anteriorly beyond the narial cavity (1); or extend posteriorly beyond the narial cavity (2).

Character 91 The zygomatic arch is the same width from its anterior to its posterior end (0); or is expanded in width anteriorly (1); or is expanded in width medially (2); or is expanded both anteriorly and medially (3).

Character 92 There is no lip along the upper edge of the zygomatic arch (0); or there is a lip for more than half of the length of the zygomatic arch (1).

Character 93 There are two openings in the region of the foramen ovale (0); or there is one opening (1).

Character 94 There are no pits or depressions in the basisphenoid region of the cranium (0); or deep pits are present (1); or shallow depressions are present (2).

Character 95 The basisphenoid pit has no medial division (0); or there is a median septum dividing the pit into two halves (1); or there is a median ridge dividing the pit into two halves (2); or both conditions, medially divided and not divided, may be present in different individuals (3).

Character 96 The basisphenoid pits have no lateral septa or ridges in them (0); or there are lateral septa or ridges anteriorly in the pit (1).

Character 97 The basisphenoid pits have no lateral septa or ridges in them (0); or there are lateral septa or ridges posteriorly in the pit (1); or posterolateral septa may be present and absent within a species (2).

Character 98 The anterior basisphenoid pit ends at the posterior border of the mesopterygoid fossa (0); or continues slightly anteriorly over the mesopterygoid fossa (1); or continues deeply, anteriorly over the mesopterygoid fossa (2).

Character 99 The lateral border of the basisphenoid pit is even with the alisphenoid (0); or expands slightly, laterally over the alisphenoid (1); or expands deeply, laterally over the alisphenoid (2).

Character 100 The posterior border of the basisphenoid pit abuts the basioccipital (0); or expands slightly, posteriorly over the basioccipital (1); or expands deeply, posteriorly over the basioccipital (2).

Character 101 The presphenoid and the basisphenoid meet in a smooth suture (0); or are disjunct, with a lip separating them (1); or are disjunct, with a ridge of bone separating them (2).

Character 102 The alisphenoid and the basisphenoid meet in a smooth suture (0); or are disjunct, with a definite lip separating them (1); or are disjunct, with a ridge of bone separating them (2).

Character 103 The basioccipital and the basisphenoid meet in a smooth suture (0); or are disjunct with a lip separating them (1); or are disjunct with a ridge of bone separating them (2).

Character 104 The anterior portion of the basioccipital is even (0); or there are a pair of sharp processes on the anterior portion of the basioccipital, directly in front of the basisphenoid pit (1).

Character 105 The anterior end of the basioccipital bone is even (0); or there are paired flanges anterior and medially on the basioccipital, leading into the basisphenoid pit (1).

Character 106 The anterior end of the basioccipital lacks a depression (0); or has a depression present (1).

Character 107 The posterior edge of the palate is u-shaped (0); or is v-shaped (1).

Character 108 The posterior edge of the palate is smooth (0); or has a median spine (1); or has a median cleft (2).

Character 109 The posterior emargination of the palate lies anterior to the last molar (0); or lies even with the posterior edge of the last molar (1); or lies posterior to the last molar (2).

Character 110 The anterior emargination of the palate is smooth (0); or has a median spine (1); or has a median cleft (2).

Character 111 The anterior edge of the palate lies in front of the anterior edge of the nasals in dorsal view (0); or lies posterior to the anterior edge of the nasals in dorsal view (1); or is even with the anterior edge of the nasals (2).

Character 112 In ventral view, the hamulus extends to the level of the middle of the glenoid fossa (0); or lies anterior to the level of the glenoid fossa (1).

Character 113 In profile, the posterior border of the pterygoid flange is concave (0); or is straight (1); or is convex (2).

Character 114 In lateral view, the hamulus points dorsally (0); or is sharply hooked posteriorly (1); or straight posteriorly (2).

Character 115 In lateral view, the pterygoid flange is broad (0); or is narrow (1).

Character 116 The posterior margin of the pterygoid flange originates at the alisphenoids (0); or originates at the pterygoids (1); or originates on the pterygoid/alisphenoid border (2); or originates on the alisphenoid/cochlear boundary (3).

Character 117 The roof of the mesopterygoid fossa is smooth and flat (0); or there is a deep medial canal, partially constricted over the top by a medial swelling of the pterygoid bones (1); or there is a deep canal that is open on top (2); or there is a foramen indicating the exit of a deep canal (3); or there is a shallow canal (4).

Character 118 In cross-section, the mesopterygoid fossa roof is squared (0); or is v-shaped (1); or is u-shaped (2).

Character 119 There is no extension of the internarial septum from the posterior nares into the mesopterygoid fossa (0); or the internarial septum extends from the posterior nares into the mesopterygoid fossa (1).

Character 120 There is a basicochlear fissure (0); or there is no basicochlear fissure and the basisphenoid contacts the cochlea (1).

Character 121 The basioccipital does not contact the cochlea (0); or contacts and fuses with the cochlea (1).

Character 122 Cochlear process on the basisphenoid is absent (0); or is present and thin (1); or is present and thick (2).

Character 123 The cochlear process on the basisphenoid does not fuse with the bulla (0); or fuses with the bulla (1).

Character 124 The cochlear process on the basisphenoid is not fused to the basioccipital (0); or extends onto and fuses with the basioccipital (1).

Character 125 The cochlear process on the basisphenoid does not create a wall or fill any space between the cochlea and the bulla (0); or creates a bony medial wall to the tympanic bulla, filling <½ the open space (1); or creates a bony medial wall to the bulla, filling >½ the open space (2); or it fills all of the open space, creating a complete bony medial wall to the bulla (3).

Character 126 The ectotympanic bone does not form part of the medial edge of the auditory bulla (0); or forms part of the medial edge of the auditory bulla (1).

Character 127 The auditory bulla is incomplete with the entotympanic incompletely enclosing the middle ear cavity (0); or is an almost complete bony capsule with the entotympanic forming a bony medial wall that encloses the middle ear region (1).

Character 128 There is no tracheal expansion (0); or there is expansion in rings 6–16 (1); or there is expansion in rings 9–10 (2); or there is expansion in ring 1 (3); or there is expansion in rings 2–10 (4).

Character 129 The mylohyoideus inserts on the basihyal and the thyrohyal (0); or inserts onto the basihyal only (1).

Character 130 The sternohyoideus is not attached to the first tracheal ring or the cricoid cartilage (0); or is loosely attached at this point (1); or is strongly attached at this point (2).

Character 131 The geniohyoideus is robust and not fused to its antimere (0); or is reduced and fused to its antimere (1).

Character 132 The jugulohyoideus is present (0); or is extremely reduced to fibers embedded in connective tissue (1); or is reduced (2).

Character 133 The ceratohyoideus inserts on both the ceratohyal and the epihyal (0); or inserts on the ceratohyal only (1); or inserts on the epihyal only (2); or inserts onto the ceratohyal, the epihyal, and the stylohyal (3).

Character 134 The hyoglossus has one belly (0); or has two bellies (1).

Character 135 If the hyoglossus is separated into two bellies, the separation is small (0); or the two bellies are well separated (1).

Character 136 The stylohyoideus inserts onto the thyrohyal (0); or inserts onto the lateral basihyal (1); or is absent (2).

Character 137 The mylohyoideus is aponeurotic (0); or is fleshy (1).

Character 138 The sternohyoideus does not originate from the clavicle (0); or the clavicle is involved in the origin of the sternohyoid (1).

Character 139 The origin of the sternothyroideus is from the lateral manubrium (0); or is entirely from the anterior surface of the clavicle (1); or is from the lateral manubrium and the medial clavicle (2).

Character 140 The ceratohyal is present and large (0); or is absent or small (1); or is present and moderate in size (2).

Character 141 The stylohyal is a curved bar (0); or has an expanded tip (1); or has a cleaved tip (2); or there is very little expansion of the stylohyal (3).

Appendix 3

Specimens examined from the American Museum of Natural History (AMNH), Royal Ontario Museum (ROM), and United States National Museum (USNM).

Outgroup:

Rousettus aegypticus: USNM 184437♀; 184438♀; 184439♀; 184440♀; 184441♀; 265620♀; 265619?; 265629?; 265633?

Craseonycteris thonglongyai: USNM 528306?

Rhinopoma hardwickei: ROM 36716♂; 36243♂; 36242♂; 68580♀; 65901♀; 85761♀; 78112♀; 48670♂; 85336♂; 85335♂; 85339♀; 85342♀; 77183♀

Rhinopoma microphyllum: ROM 62614♂; 62615♂; 62617♂; 62618♂; 62626?; 62628♀; 62629?; 62630♀

Rhinopoma muscatellum: AMNH 244390?

Ingroup:

Taphozous australis: AMNH 154731♂; 154730♂; 154729♂; 154716♀; 154717♂; 154714♂; 108827♀; 108826♀; 108828♀; ROM 58405♂; 58406♂

Taphozous georgianus: USNM 284159♂; 284161♂; 578480♂; 578481♀; 284158♀; 238612♂; 578478♂; 578479♂; ROM 58408♂; 58407♂; 58410♀; 58409♀

Taphozous hamiltoni: USNM 368868♂

Taphozous hildegardeae: ROM 36260♂; 76593♀; 74498♂; 74497♀; 76582♀; 74494♂; 76695♂; 76630♀; 78059♂; 78068♂; 73498♂; 66813♂; 66826♀; 73522♀; 73515♀; AMNH 219130♀

Taphozous hilli: AMNH 256863♂; 160450♂; 256863♂; 160450♂

Taphozous longimanus: ROM 31198?; 31196♂; 37971♀; 37968♂; 37969♂; 37970♀; 31194♂; 31195♀; 300835♂; 317161♂; 37974♀; 37975♀; 37976♀; 37972♂; 37977♂ (juv); 37973♂

Taphozous mauritianus: ROM 36262♂; 36263♀; 36264♂; 36265♀; 36267♂; 36268♂; 36270♀; 48510♀; 78075♂; 63352♀; 40118♀; 63353♂; 63354♂; 63351♂

Taphozous melanopogon: ROM 39338♂; 39339♂; 36187♂; 39340♀; 36184♀; 77330♂; 77331♀; 78094♀; 40954♂; 41467♀; 43698♀; 39785♂; 43723♂; 43717♀; 43722♂; 43718♀; 39769♂; 39768♂; 44079♀; 44088♀; 44084♀; 44134♂; 44061♂

Taphozous nudiventris: ROM 65862♀; 68105♀; 68106♂; 83955♀; 85256♀; 48716♀; 77516♀; 78104♀; 85282♀; 85264♀; 85284♀; 85301♀; 85297♀

Taphozous perforatus: ROM 62619♂; 77205♀; 62625♀; 38414♂; 62621♀; 38416♀; 36278♂; 36271♀; 36272♀; 45946♂; 71244♀; 71245♀; 63329♂; 63324♂

Taphozous theobaldi: USNM 356780♂; 356837♂; 540821♀; 540820♂; 356837♂; 540827♂; 540828♀; 540826♀

Taphozous troughtoni: AMNH 197200♂; 197194♂; 197182♂; 197199♀; 197183♀; 197175♀

Saccolaimus flaviventris: USNM 284163♂; 284164♂; 284165♀; 172722♀; 172723♀; 578477♂; 578476?; AMNH 107760♀; 197201♂; 197202♂; 197174♀

Saccolaimus peli: ROM 65863♂; 46544♂; 46657♀; 46598♂; 46719♀; 46599♀; USNM 414086♂; 414087♂; 414792♂; 424842♀; 481705♀; 237221♀

Saccolaimus pluto: ROM 39790♂; 39797♀; 39801♀; 39798♂; 39793♂; 39794♂; 39795♀; 39802♂; 39789♀; 39792♂; 39800♂; 39791♂

Saccolaimus saccolaimus: ROM 39327♂; 39328♀; 39329♀; 39330♀; 39331♀; 87696♀; 87697♀; 86428♀; 86429♀; 86425♀; 86440♂; 86433♂

Balantiopteryx io: ROM 34591♀; 33270♀; 33269♂; 33268♂; 98425♂; 98427♀; 98428♂; 78052 ♀; 33220♂; 34609♂; 34677♂; 34718♀; 34712♀; 34711♀; AMNH 172734♂; 185766♀; 172735♀

Balantiopteryx plicata: ROM 98236♂; 98237♀; 98238♂; 78048♀; 61942♀; 61944♀; 78049♂; 63153♂; 67518♂; 67516♂; 67517♂; 59125♀; 67519♀; AMNH 189552♂; 189550♀

Centronycteris maximiliani: KUMNH 32088?; LASUMZ 9338♂; MCZ 7092♀; MHNJP 1078♀; ??108943; FNMH 41558♂; AMNH 267397♂; 63663?; 78858♂; CNHM 63949♀; TTU 30670?; USNM 514956♀; 503827♀; 535021♂; ROM 107081♀; 107082♀

Coleura afra: ROM 71066♀; 71246♂; 68505♀; 75476♂; 68506♀; 78087♂; 81269♀; 91157♀; 75457♀; 71246♀; 73499♂; 73492♂; 66739♂; 66803♀; 75424♀ AMNH 83394♀

Cormura brevirostris: ROM 33031♂; 33111♀; 57434♂; 35596?; 60440♂; 97984♂; 97981♂; 35597?;100214♀; 97984♂; 68128♀; 68129♀; 68126♀; 68123♂; 68125♂; AMNH 267071♂; 267389♀

Cyttarops alecto: USNM 566432♀; USNM 566433?; USNM 566434♂

Diclidurus ingens: ROM 31981♂; USNM 407092♀; 407091♀

Diclidurus isabellus: USNM 388547♂; 388548♀; 388542♂; 388549♀; 388544♂; 407075♂; 407076♂; 388543♀; ROM 107390♀; 107439♀

Diclidurus albus (= virgo): ROM 75741♂;AMNH 214183♀; 7947?; 99310? (damaged); 149167♀; 176293?; 99478?; USNM 407098♂; 407097♀; 407094♀; 418688♂; 418689♂; 317572♀; 407096♀; 418690♂; 317573♂; 407099♂; 490792♀; ROM 107434♀

Diclidurus scutatus: USNM 444111♀; 407102♀; 444108♂; 407103♂; 444106♀; 444107♀; 444110♀; ROM 38505♀; 442910♀(damaged); 34575♂; 38505♀

Emballonura atrata: ROM 42056♀; USNM 577062♂; 63331♂; 577063♂; 577257♂; 577258♀

Emballonura alecto: ROM 43697♂; 43693♀; 43674♀; 43689♀; 40647♂; 43694♂; 43695♀; 43696♂; 43813♂; 51291♂; 44102♂; 43817♀; 67620♀

Emballonura beccarii: AMNH 152423♂; 192817♀; 191314♀; 191315♀; 191316♀; 191317♂; 191318♀; 191310♂; 191311♂

Emballonura furax: AMNH 221958♂

Emballonura raffrayana: AMNH 99485♀

Emballonura semicaudata: ROM 791915?; 82968♂; 82967♂; 77428♀; 82967♂; 82968♂

Emballonura monticola: ROM 40903♂; 38772♀; 40902♂; 38771♂; 40901♂; 38770♂; 38769♀; 40906♂; 87724♂; 87723♀; 38029♀; 40904♀

Mosia nigriscens: AMNH 226803 ♂; 105342 ♂; 221957♂; 152411♂; 152409♂; 153421♀; 152420♂; 152419♀; USNM 277113♂; 277114♂; 580037♂; 277120♂; 277121♀; 277122♂; 018537♀; 122168♂; 122169♂; 122170?; 217008♂; 538429?; 538432?; 538430?; 538431?

Peropteryx leucopterus: AMNH 266011♀; 266010♀; 97072♀; 97073♀; 94481♂; ROM 41530♀; 97240♀; 41530♀; 70688♂

Peropteryx kappleri: ROM 78055♂; 68048♂; 68051♀; 68055♂; 68047♀; 68049♀; 85001?; 68071♀; 68068♂; 69864♂; 69860♀; 69849♀; 68023♀; AMNH 265992♀; 265989♂

Peropteryx macrotis: ROM 33086♀?; 32955♀; 33076♂; 32960♂; 33068♂; 31884♀; 32952♀; 33075♂; 41483♂; 41489♀; 52112♂; 52109♂; 53854♀; 52098♀; 53858♀; AMNH 267396♀; 266005♂

Rhynchonycteris naso: ROM 31490♀; 31492♂; 31493♂; 91158♂; 31577♀; 31582♂; 97821♂; 98016♀; 98093♂; 51751♂; 55047♂; 55238♀; 71528♀; 52210♀; AMNH 265986♂; 265981♂

Saccopteryx bilineata: ROM 91156♂; 46352♂; 46350♀; 46351♂; 97855♀; 95829♂; 96376♀; 97940♀; 97820♀; 35074♀; 60375♂; 53795♂; 50341♀; 53792♀; 53797♀; AMNH 265996♂; 265965♀

Saccopteryx canescens: ROM 66612♀; 66893♂; 97899♀; 66603♂; 31821♀; 31849♂; 31850♀?; 33124?;100207♀; 63650♀; 66214♀; 55073♀; 74084♂; 36854♂

Saccopteryx gymnura: AMNH 265967♂; USNM 392995♂; 460080♀; ROM 66603♂; 66612♀; 33124♀; 102952♀

Saccopteryx leptura: ROM 59654♀; 57283♂; 31609♂; 31730♂; 97920♂; 31454♂; 31479♀; 31772♂; 57307♂; 63609♂; 35926♂; 72403♀; 57328♀; AMNH 265968♂; 265973♂

Appendix 4

Twenty-eight discrete behavioral and ecological characteristics were distinguished on the basis of direct observations and observations taken from the literature (Dunlop 1998). There are several species of emballonurids for which an extensive amount of behavioral and ecological information has been collected, but for the majority of emballonurids much less is known. As a result of this uneven distribution of data, some characters have been coded for almost all members of Emballonuridae, whereas others have been coded for only a few species. This is unavoidable in the present study, but hopefully the data base will continue to grow as more information becomes available about these bats, and character states for unscored traits will be included in future analyses.

Character 142 Typical dayroost in caves (0); or in hollow trees (1); or in crevices and shallow caves (2); or in leaves and palms (3); or in tree boles (4).

Character 143 Typical group size is one (solitary) (0); or small (1); or medium (2); or large (3).

Character 144 Thumbs used in roosting posture (0); or both thumbs and pendant posture seen (1).

Character 145 Full or partial sunlight tolerated in roost (0); or twilight tolerated in roost (1); or no light tolerated in roost (2); or usually dark but may tolerate twilight in roost (3).

Character 146 Clustering behavior present in roost (0); or no clusters, bats always spaced (1).

Character 147 Bats cluster dorsoventrally (0); or dorsoventral clustering absent (1).

Character 148 Spatial organization of bats is absent in the roost (0); or bats are organized in a linear pattern (1); or bats are organized in an ovoid pattern (2).

Character 149 Sexes segregate in the roost (0); or do not segregate in the roost (1); or occasionally segregate in the roost (2).

Character 150 Commonly share roost with other species of bat (0); or never share roost with other species of bat (1).

Character 151 Take flight when disturbed (0); or crawl away when disturbed (1); or either flight or crawling likely when disturbed (2).

Character 152 Disturbed flight characterized by circling in flight then return to roost (0); or bats fly to alternate roost, then return to original roost (1); or bats fly to an alternate and stay at that roost (2).

Character 153 Bats emerge before dusk (0); or emerge at dusk (1); or emerge after dark (2).

Character 154 Forage over canopy (0); or in upper canopy (1); or in subcanopy (2); or at edges (3); or in open yards and gaps (4); or close to ground (5); or over water (6).

Character 155 No audible sounds while flying (0); or audible sounds apparent during flight (1).

Character 156 Flight speed intermediate (0); or flight fast (1); or flight slow (2).

Character 157 Characteristic flight straight (0); or spiral (1); or acrobatic (2); or erratic (3).

Character 158 No day flights (0); or day flights common (1).

Character 159 No migratory habits (0); or known to migrate (1).

Character 160 Position changes in day roost are common (0); or are rare (1).

Character 161 Flight in day-roost is common (0); or is rare (1).

Character 162 Individual bats shake in day-roost (0); or never shake in day-roost (1).

Character 163 Group of bats commonly shake in day-roost (0); or may shake in day-roost (1); or never shake in day-roost (2).

Character 164 Wing lifts and wing flicks are common in day-roost (0); or are rare in day-roost (1).

Character 165 Hovering behavior in roost is common (0); or is rare (1) or is absent (2).

Character 166 Salting behavior in roost is common (0); or is absent (1).

Character 167 Monogamous breeding system (0); or polygamous breeding system (1); or harem breeding system (2).

Character 168 Monoestrous (0); or polyestrous (1).

Character 169 Fat deposits absent (0); or fat deposits present (1).

Appendix 5

Data matrix.

Rousettus

00000 00002 10000 1-00- ----- 00000 00000 00101 11021 11010 0-000 01010 00000 00001 0-100 00001 00000 10000 0000- ----- 00000 00021 10020 00010 00--- 00000 0?010 ?0000 0???0 ????? ????? ????? ????? ????

Craseonycteris

01001 00001 00111 01001 00010 00000 00010 00001 00000 000-0 0-000 11--1 01002 11001 00001 01001 0031- 0-000 2010- ----- 00000 00120 10000 00000 10--- 00400 00-0- ?0001 1???2 ????? ????? ????? ????? ????

Rhinopoma

000-1 00000 00101 11000 00000 00000 01011 10000 00000 00000 0-000 01--0 01100 00000 00001 00000 0001- 0--00 0010- ----- 00000 00000 00000 00000 00--- 00100 0200- 000-1 2??22 ????? 2?1?? ????? ????2 202?

Saccolaimus flaviventris

01010 00002 00111 12001 10121 00001 01010 00101 00000 00010 11000 11100 00000 00001 00120 01101 01201 10110 00111 00012 21100 01010 00021 02211 02113 01??? ????? ????? ?1111 ???1? 0??0? 1???? ??10? ????

Saccolaimus mixtus

01010 00102 01112 12001 10121 10000 00010 00101 00000 00010 10000 11100 00110 00001 01120 01101 01000 10110 10111 00020 21100 01000 00020 02201 12113 01??? ????? ????? 10??? ????? ??10? ????? ???0? ????

Saccolaimus pluto

01010 00102 01111 13000 10121 00100 00010 10101 00000 00010 10000 11100 00110 00011 00120 01101 01001 10?10 10111 00020 01000 01000 01011 01211 12113 01??? ????? ????? 1???? ????? ????? ????? ???0? ????

Saccolaimus peli

01030 00102 00111 13001 11121 00000 00011 10101 00000 00010 10000 11100 00000 00011 01120 01101 01101 10110 30111 00010 01200 10012 11011 02211 02113 01001 0000- 21112 110?? 0-?0? ??231 12??? ?010? ????

Saccolaimus saccolaimus

01010 00102 00111 13000 11021 00101 00010 11101 00000 00010 10000 11100 00010 00011 00120 01101 01201 10110 10111 00020 01200 01010 01011 01011 12113 01??? ????? ????? 11212 0-?12 1?1?1 10??? ?200? ????

Taphozous australis

01030 00100 11112 14110 00020 10010 11010 01100 10010 00110 11000 11100 10110 20001 00100 01100 11100 01110 10111 00222 11101 01000 10011 12010 00--- 00??? ????? ????? 301?2 ????0 1?2?? ????? ???0? ????

Taphozous georgianus

00030 00100 01111 14110 01020 10010 11010 01100 10010 00110 10000 11100 00110 00001 00100 01101 11100 00110 10111 00120 11201 11000 00011 12211 00--- 00??? ????? ????? 30111 21??0 1?20? 20?0? ?201? ????

Taphozous hamiltoni

01030 00102 01111 13111 01020 10010 02011 11101 00000 00010 10100 1111? ????? ?0011 0???0 ??1?? ???0? ????? ???1? ????? ????? ????? ????? ????? ????? ????? ????? ????? ????3 ????? ????? ????? ???0? ????

Taphozous hildegardeae

02030 00102 01112 14111 01020 10001 12010 01100 10000 00010 11000 11110 00110 001-0 01100 01100 11100 00110 10111 00111 11100 10000 10021 11210 00--- 00??? ????? ????? 30213 20?00 0???? ???0? ?201? ????

Taphozous hilli

01030 00102 01111 13111 00020 10010 12000 01100 10000 01110 11100 11100 00110 001-1 01100 01101 01100 00110 00111 00220 11201 10000 00011 12211 10--- 00??? ????? ????? ?0??? ????0 ????? ????? ???0? ????

Taphozous longimanus

01030 00102 01112 13101 01020 10010 11010 01110 10011 00110 11100 11110 00110 00000 00100 01100 11100 00110 30111 00111 11100 00000 10011 12210 00--- 00??? ????? ????? 3?120 11?22 2?2?? 11??? ??10? ???2

Taphozous mauritianus

01030 00102 01112 14101 01020 20001 02010 01100 10021 11210 11100 11110 00110 001-0 00100 01101 11100 00110 30111 00110 11200 11000 00011 12201 12010 00??? ????? ????? 31110 0-0?2 11221 1??0? ?210? ????

Taphozous melanopogon

02030 00102 01112 11111 010201 00101 10100 11000 00200 02101 11001 11100 01100 01-00 01000 11011 11000 01103 01110 01111 11010 00001 00111 22010 0---0 0?010 000-2 11123 04101 00001 12??1 0??00 200? ?0??

Taphozous perforatus

01030 00102 01112 11111 01020 10010 11010 01100 00011 01210 11100 11100 00110 001-0 01100 01100 11100 00110 00111 00111 11100 00100 21021 12210 00--- 00??? ????? ????? 30311 10?10 0?1?? 1???? ?211? ????

Taphozous theobaldi

00030 00102 01112 14110 00020 10010 11011 10101 00000 00110 10100 11110 00010 00000 00100 01101 01100 00110 30111 00111 111011 00021 10111 22111 0---0 0???? ????? ????3 03?20 -??0? ????? ????? ??0?? ????

Taphozous troughtoni

00030 00102 01112 13111 00020 10010 1?010 00101 10000 01?10 11100 11100 10110 00001 00100 01100 11100 01110 00111 00121 11101 11000 00011 12211 00--- 00??? ????? ????? ????? ????? ????? ????? ???0? ????

Taphozous nudiventris

01030 00101 01111 14011 00020 00000 02011 11111 00001 00210 10000 11100 10110 10011 01120 01101 01101 00110 00111 00010 11100 01000 01011 12211 00--- 00001 00-0- 21112 30310 20010 111?? 11?10 0201? ????

Mosia nigrescens

00010 20111 10101 03000 01000 00000 00010 00000 00101 00010 11000 00010 11002 10001 01000 00100 00200 00000 00113 00010 01010 00000 10120 03211 00--- 00202 1010- 01112 ?0?10 11?1? ??010 ????? ???0? ????

Coleura afra

00010 21100 00101 14001 00000 10000 00000 01000 01111 00010 10000 10111 11002 10000 01110 00100 11100 00110 11113 10001 01110 00012 11021 13011 11-01 00202 1010- 01112 20313 00000 0?0?0 ????? ??10? ???2

Emballonura alecto

00010 21111 10101 03001 00001 00000 00000 01000 00100 00020 10000 00011 11002 110-0 01110 00100 0100- 00100 21112 10000 01101 00110 00120 23011 10--- 10?02 1010- 01112 20??? ???10 ????0 ????? ???0? ????

Emballonura atrata

00010 21111 00101 03001 01001 10010 00000 00000 00100 00020 11000 00011 11012 10000 01110 00100 01100 00000 21012 00000 02000 00002 00100 23011 10--- 10?02 1010- 01112 1???? ????? ????0 ????? ???0? ????

Emballonura raffrayana

00010 21101 10102 03000 00000 00010 00000 00000 10100 00020 10000 00011 11012 10000 00110 10100 00200 01100 21112 10011 02110 00111 10-00 23011 00--- ?0?02 1010- 01112 201?1 ???1? ????0 ????? ???0? ????

Emballonura monticola

00010 21111 10101 03001 00001 10000 00000 00001 10110 00020 10000 00011 11012 10000 00110 00100 00200 00000 21111 10021 02210 00002 00120 03011 10--- 10?02 1010- 01112 202?0 ????0 ??110 ??1?? ???0? ????

Emballonura furax

00010 21??? 10101 03001 00001 00000 00000 00001 00100 00020 10000 00011 11002 00000 01110 00100 00100 ??000 01110 00010 02210 10021 ????? 0?011 12000 00202 1010- 01112 ?0111 ???1? ??1?0 ????? ???0? ????

Emballonura beccarii

00010 21102 10102 04001 00001 00000 00000 00000 00100 00020 11000 00011 11002 10000 01110 00100 00100 ??002 21120 01020 02210 10002 11001 23010 00--- 00202 1010- 01112 ?0??1 ???10 ????0 ????? ???0? ????

Emballonura semicaudata

00010 21102 10101 04001 01001 00000 00000 00000 10110 00020 11000 00011 11012 10000 01120 10100 01100 01000 21122 00000 00000 00012 00120 23000 00--- 00?02 1010- 01112 20221 0-??? 0?1?0 231?? ???0? ????

Cyttarops alecto

00021 0???? 1000? 1?001 01000 00000 10100 00100 11000 10220 12011 10101 11002 20000 11000 00100 10100 01001 21022 00010 00000 00102 00011 20101 00--- 00??? ????? ????? ?21?1 ??001 ?1?4? ???0? ???0? ????

Diclidurus isabellus

00121 00102 10002 11000 01010 10010 10100 00100 11010 10221 11011 10111 01002 20000 11000 00100 01100 01111 20011 0212? 11100 10000 01011 20011 02001 00??? ????? ????? ????? ????? ????? ????? ???0? ????

Diclidurus scutatus

00121 00101 10002 11000 01100 10000 10100 01100 11010 10221 12011 10101 11002 20000 11000 00100 11100 01111 20011 00111 11110 1-202 11020 10111 02101 00012 11010 01112 1???? ????? ???4? ????? ???0? ????

Diclidurus albus

00121 00101 10002 11000 01100 10010 10100 01100 11010 10221 12011 10111 01001 20000 11000 00100 11100 01011 20011 02220 11000 10222 01011 10011 02101 00012 11010 01112 120?? ???11 ??2?1 ???1? ???0? ????

Diclidurus ingens

00121 00102 10002 11000 01100 00010 10100 01100 11000 10221 12011 10111 11001 20000 11000 00100 10100 01011 20011 00211 11200 10222 01011 10001 021010 0???? ????? ????? ???1? ????? ??4?? ????? ??0? ????

Rhynchonycteris naso

00010 22101 10102 03000 01000 21010 00000 00000 10121 11220 12000 10011 11002 11101 01100 00110 0110- 01000 11020 00000 01000 00100 00020 0-211 00--- 00012 11010 01112 1311? 0-102 01160 23100 02001 0022

Balantiopteryx io

20010 11111 00101 04001 01010 00000 00010 00000 10100 00020 10000 10011 11112 10000 00001 00110 00200 00100 01110 10222 01100 00011 11100 33011 12011 00??? ????? ????? 20313 0-000 ??0?0 23?0? ???0? ????

Balantiopteryx plicata

20010 11101 00101 01001 01010 00000 00010 00000 11110 00020 10000 10011 01012 10000 00001 00110 00200 00000 21010 10222 11100 00100 11120 33011 01-12 00002 11010 01112 10313 20000 02020 23100 02001 1012

Saccopteryx bilineata

30010 11102 10101 02001 00000 01010 00010 00000 10100 00020 11000 10001 01002 10001 01000 00100 01100 00000 01011 00011 01110 00011 01120 00111 12001 00002 11011 01112 23110 0-200 00020 23100 03001 2000

Saccopteryx leptura

30010 11102 10101 02001 00000 01010 00010 00000 00100 00020 11000 10011 01002 10001 01000 00100 01100 00100 01011 00021 01110 00011 01120 00111 12001 00??? ????? ????? 23110 0-100 02020 0?001 10002 2112

Saccopteryx canescens

30010 11102 10101 03001 00000 11010 00000 00000 10111 00020 11000 10011 01002 10001 01000 00101 01100 01100 01011 00011 11110 00010 01020 03101 12001 00??? ????? ????? 2???? ????? ????0 ????? ???0? ????

Saccopteryx gymnura

30010 21102 10101 03001 00000 01000 00010 00000 10110 00020 11000 10011 01002 10001 01000 00101 01100 01100 01012 00111 01110 10012 01020 03101 12001 00??? ????? ????? 2???? ????? ????0 ????? ???0? ????

Cormura brevirostris

10010 12101 10102 01000 01010 00000 00010 00000 00100 00020 11000 10111 01002 00001 01100 00100 01200 00000 20110 00012 01000 01000 00020 03001 12102 00002 11011 01112 210?? ????? 0?120 ???0? ??00? ????

Peropteryx leucoptera

10010 2110- 10101 0-201 01010 00000 00010 01000 10100 00120 12000 10011 01002 00000 01120 00100 01100 01100 01010 10122 10100 00011 11100 10011 11-12 00302 11010 11112 11??? ????? ????0 ????? ???0? ????

Peropteryx kappleri

10010 01101 10102 01201 01010 00000 00010 00000 10100 00020 11000 10011 01002 00000 00020 00100 01100 01100 01010 10012 00100 00000 01120 10211 11-11 00302 11010 11112 11120 11?0? ????0 20?0? ?000? ????

Peropteryx macrotis

10010 01101 10101 01201 01010 00000 00000 00000 10110 00020 12000 10011 01002 00000 00020 00100 01100 00100 01010 10012 00100 00111 11120 12211 11-11 00302 11010 11112 10110 ????0 01?40 2??0? ???0? ????

Centronycteris maximiliani

00010 21102 10102 04001 00000 10010 00000 00000 10100 00020 12000 10111 01002 10001 01110 00110 01100 00001 01011 -0012 01100 01010 00120 02001 10--- 00302 11010 11112 11??? ????? ????0 22??? ???0? ????

Taphozous kapalgensis (chars 142–169 only) ??1?? ????? ??01? ????? ????? ???

Coleura seychellensis (chars 142–169 only) 0?11/21 1???? ?11?1 0???? ????? ?10

Balantiopteryx infusca (chars 142–169 only) 0???? ????? ????? ????? ????? ??0

Emballonura dianae (chars 142–169 only) 03?10 -?00? ????? ????? ????? ??0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, B.K., Dunlop, J.M. Evolutionary Patterns of Morphology and Behavior as Inferred from a Molecular Phylogeny of New World Emballonurid Bats (Tribe Diclidurini). J Mammal Evol 15, 79–121 (2008). https://doi.org/10.1007/s10914-007-9068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-007-9068-0

Keywords

Navigation