Skip to main content
Log in

Community convergence in bird song

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Species in similar habitats are often similar in morphology or behaviour, attributed to adaptation to similar environmental selection pressures, sometimes mediated by competitive interactions. For passerine songs, similarity of phenotype in identical habitats and character displacement have been documented, the former due to adaptation to the acoustics of the habitat, and the latter due to competition for acoustic space among species. If these phenomena are widespread, they should lead to community convergence of bird songs. Here, we test if passerine communities in similar habitats converge in song attributes or in acoustic differentiation among species. We compared the songs of European and North American Mediterranean climate passerine communities in open and closed habitats. Song frequency varied across different habitats but not continents. This was independent of both phylogeny and body size, indicating community convergence due to acoustic adaptation, rather than species sorting or similarity as a by-product of another type of ecological convergence. We found little evidence for regular spacing in song features among species, as would be expected if acoustic competition shapes within-community structure. However, for one of five song components, the open habitat communities showed a similar distribution of phenotypes on each continent. The proportion of interspecific variation in song explained by these effects was small. The fact that songs are complex signals that vary in many dimensions may explain why competition for acoustic space seems to be of small importance in structuring songs in these passerine communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alström P, Ericson PGP, Olsson U, Sundberg P (2006) Phylogeny and classification of the avian superfamily Sylvioidea. Mol Phylogenet Evol 38:381–397

    Article  PubMed  Google Scholar 

  • Barhoum DN, Burns KJ (2002) Phylogenetic relationships of the wrentit based on mitochondrial cytochrome b sequences. Condor 104:740–749

    Article  Google Scholar 

  • Barker FK, Cibois A, Schikler P, Feinstein J, Cracraft J (2004) Phylogeny and diversification of the largest avian radiation. Proc Nat Acad of Sci USA 101:11040–11045

    Article  CAS  Google Scholar 

  • Bleiweiss R (2007) On the ecological basis of interspecific homoplasy in carotenoid-bearing signals. Evolution 61:2861–2878

    Article  PubMed  Google Scholar 

  • Blondel J (1979) Biogéographie et écologie. Masson, Paris

    Google Scholar 

  • Blondel J (1981) Structure and dynamics of bird communities in Mediterranean habitats. In: di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type shrublands. Elsevier, Amsterdam, pp 361–385

    Google Scholar 

  • Blondel J, Vuilleumier F, Marcus LF, Terouanne E (1984) Is there ecomorphological convergence among mediterranean bird communities of Chile, California, and France? In: Hecht MK, Wallave B, MacIntyre RJ (eds) Evolutionary biology. Plenum Press, New York, pp 141–213

    Google Scholar 

  • Blondel J, Catzeflis F, Perret P (1996) Molecular phylogeny and the historical biogeography of the warblers of the genus Sylvia (Aves). J Evol Biol 9:871–891

    Article  Google Scholar 

  • Boncaraglio G, Saino N (2007) Habitat structure and the evolution of birdsong: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Funct Ecol 21:134–142

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, Sunderland

    Google Scholar 

  • Brumm H, Slabbekoorn, H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209

    Google Scholar 

  • Cardoso GC, Mota PG (2007) Song diversification and complexity in canaries and seedeaters (Serinus spp.). Biol J Linn Soc 92:183–194

    Article  Google Scholar 

  • Carson RJ, Spicer GS (2003) A phylogenetic analysis of the emberizid sparrows based on three mitochondrial genes. Mol Phylogenet Evol 29:43–57

    Article  CAS  PubMed  Google Scholar 

  • Catchpole CK, Slater PBJ (2008) Bird song. Biological themes and variations, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Chappuis C (1971) Un exemple de l’influence du milieu sur les émissions vocales des oiseaux: l’évolution des chants en fôret équatoriale. Terre et Vie 25:183–202

    Google Scholar 

  • Chek AA, Bogart JP, Lougheed SC (2003) Mating signal partitioning in multi-species assemblages: a null model test using frogs. Ecol Lett 6:235–247

    Article  Google Scholar 

  • Cody ML (1969) Convergent characteristics in sympatric species: a possible relation to interspecific competition and aggression. Condor 71:222–239

    Article  Google Scholar 

  • Cody ML (1975) Towards a theory of continental species diversities: bird distributions over mediterranean habitat gradients. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, MA, pp 214–257

    Google Scholar 

  • Cody ML, Mooney HA (1978) Convergence versus nonconvergence in mediterranean-climate ecosystems. Ann Rev Ecol System 9:265–321

    Article  Google Scholar 

  • Cornell Laboratory of Ornithology (1992) Peterson Field Guides, Western Bird Songs. Houghton Mifflin, Boston, MA, and Cornell Laboratory of Ornithology, Ithaca, NY

    Google Scholar 

  • Dingle C, Halfwerk W, Slabbekoorn H (2008) Habitat-dependent song divergence at subspecies level in the grey-breasted wood-wren. J Evol Biol 21:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Doutrelant C, Lambrechts MM (2001) Macrogeographic variation in song–a test of competition and habitat effects in blue tits. Ethology 107:533–544

    Article  Google Scholar 

  • Doutrelant C, Leitão A, Otter K, Lambrechts MM (2000) Effect of blue tit song syntax on great tit territorial responsiveness—an experimental test of the character shift hypothesis. Behav Ecol Sociobiol 48:119–124

    Article  Google Scholar 

  • Dunning JB (2008) CRC handbook of avian body masses. Taylor & Francis, Boca Raton

    Google Scholar 

  • Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630

    Article  PubMed  Google Scholar 

  • Espmark Y (1999) Song of the snow bunting (Plectrophenax nivalis) in areas with and without sympatric passerines. Can J Zool 77:1385–1392

    Article  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  CAS  PubMed  Google Scholar 

  • Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Phil Trans Royal Soc Lond B 326:119–157

    Article  CAS  Google Scholar 

  • Gröning J, Hochkirch A (2008) Reproductive interference between animal species. Quart Rev Biol 83:257–282

    Article  PubMed  Google Scholar 

  • Groth JG (1998) Molecular phylogenetics of finches and sparrows: consequences of character state removal in cytochrome b sequences. Mol Phylogenet Evol 10:377–390

    Article  CAS  PubMed  Google Scholar 

  • Hunter ML, Krebs JR (1979) Geographical variation in the song of the great tit (Parus major) in relation to ecological factors. J Anim Ecol 48:759–785

    Article  Google Scholar 

  • Irwin DE (2000) Song variation in an avian ring species. Evolution Int J org Evolution 54:998–1010

    CAS  Google Scholar 

  • Johnson KP, Lanyon SM (1999) Molecular systematics of the grackles and allies, and the effect of additional sequence (cyt b and nd2). Auk 116:759–768

    Google Scholar 

  • Kirschel ANG, Blumstein DT, Smith TB (2009) Character displacement of song and morphology in African tinkerbirds. Proc Nat Acad Sci USA 106:8256–8261

    Article  CAS  PubMed  Google Scholar 

  • Kroodsma DE (1985) Geographic variation in songs of the Bewick’s wren: a search for correlations with avifaunal complexity. Behav Ecol Sociobiol 16:143–150

    Article  Google Scholar 

  • Lohr B (2008) Pitch-related cues in the songs of sympatric mountain and black-capped chickadees. Behav Proc 77:156–165

    Article  Google Scholar 

  • Lovette IJ, Bermingham E (2002) What is a wood-warbler? Molecular characterization of a monophyletic Parulidae. Auk 119:695–714

    Article  Google Scholar 

  • Luther DA (2008) Signaller: receiver coordination and the timing of communication in Amazonian birds. Biol Lett 4:651–654

    Article  PubMed  Google Scholar 

  • Luther DA (2009) The influence of the acoustic community on songs of birds in a neotropical rain forest. Behav Ecol 20:864–871

    Google Scholar 

  • Miller EH (1982) Charater and variance shift in acoustic signals in birds. In: Kroodsma DE, Miller EH (eds) Acoustic Communication in Birds. Academic Press, New York & London, pp 253–295

    Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109:17–34

    Article  Google Scholar 

  • Naugler CT, Ratcliffe L (1994) Character release in bird song: a test of the acoustic competition hypothesis using American tree sparrows Spizella arborea. J Avian Biol 25:142–148

    Article  Google Scholar 

  • Nelson DA (1989) The importance of invariant and distinctive features in species recognition of bird song. Condor 91:120–130

    Google Scholar 

  • Nelson DA, Marler PE (1990) The perception of birdsong and an ecological concept of signal space. In: Berkley MA, Stebbins WC (eds) Comparative Perception Vol. II: Complex Signals. John Wiley & Sons, New York, pp 443–478

    Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  PubMed  Google Scholar 

  • Pavoine S, Dufour A-B, Chessel D (2004) From dissimilarities among species to dissimilarities among communities: a double principal coordinate analysis. J Theor Biol 228:523–537

    Article  PubMed  Google Scholar 

  • Perrins CM (ed) (1998) The Complete Birds of the Western Paleartic CD-ROM Version 1.0. Oxford University Press, Oxford

    Google Scholar 

  • Planqué R, Slabbekoorn H (2008) Spectral overlap in songs and temporal avoidance in a Peruvian bird assemblage. Ethology 114:262–271

    Article  Google Scholar 

  • Podos J (1997) A performance constraint on the evolution of trilled vocalizations in a songbird family (Passeriformes: Emberizidae). Evolution 51:537–551

    Article  Google Scholar 

  • Price TD (2008) Speciation in birds. Robert & Company Publishers, Greenwood

    Google Scholar 

  • Price JJ, Friedman NR, Omland EO (2007) Song and plumage evolution in the new world orioles (Icterus) show similar lability and convergence in patterns. Evolution 61:850–863

    Article  PubMed  Google Scholar 

  • Qvarnström A, Haavie J, Saether SA, Eriksson D, Part T (2006) Song similarity predicts hybridization in flycatchers. J Evol Biol 19:1202–1209

    Article  PubMed  Google Scholar 

  • Ryan MJ, Brenowitz EA (1985) The role of body size, phylogeny, and ambient noise in the evolution of bird song. Am Nat 126:87–100

    Article  Google Scholar 

  • Schluter D (1986) Tests for similarity and convergence of finch communities. Ecology 67:1073–1085

    Article  Google Scholar 

  • Schluter D (1990) Species-for-species matching. Am Nat 136:560–568

    Article  Google Scholar 

  • Seddon N (2005) Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine birds. Evolution 59:200–215

    Google Scholar 

  • Seibold I, Helbig AJ (1995) Evolutionary history of New and Old World vultures inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Phil Trans Royal Soc Lond B 350:163–178

    Article  CAS  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Haven

    Google Scholar 

  • Voelker G, Spellman GM (2004) Nuclear and mitochondrial DNA evidence of polyphyly in the avian superfamily Muscicapoidea. Mol Phylogenet Evol 30:386–394

    Article  CAS  PubMed  Google Scholar 

  • Wallin L (1986) Divergent character displacement in the song of two allospecies: the pied flycatcher Ficedula hypoleuca, and the collared flycather Ficedula albicollis. Ibis 128:251–259

    Article  Google Scholar 

  • Wallschläger D (1980) Correlation of song frequency and body weight in passerine birds. Experientia 36:412

    Article  Google Scholar 

  • Wink M (1994) Phylogeny of old and new world vultures (Aves: Accipitridae and Cathartidae) inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Z Naturforschung C 50:868–882

    Google Scholar 

  • Yuri T, Mindell DP (2002) Molecular phylogenetic analysis of Fringillidae, “New World nine-primaried oscines” (Aves: Passeriformes). Mol Phylogenet Evol 23:229–243

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo C. Cardoso.

Appendix

Appendix

See Table 4.

Table 4 Average values of all song measurements for each species, sample sizes, and body size

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardoso, G.C., Price, T.D. Community convergence in bird song. Evol Ecol 24, 447–461 (2010). https://doi.org/10.1007/s10682-009-9317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-009-9317-1

Keywords

Navigation