Skip to main content
Log in

Management of rice blast (Pyricularia oryzae): implications of alternative hosts

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Rice blast (Pyricularia oryzae) has become a serious disease on commercial rice (Oryza sativa) crops in northern Australia and is present there on wild rice (O. australiensis). Characterisation of the host range of P. oryzae is fundamental to both reducing disease spread and to preventing development of epidemics via better management of Poaceae inoculum reservoirs in Australia. Studies on response of three different wild O. australiensis sources toward four isolates of P. oryzae showed all genotypes very susceptible to three isolates [WAC13466 (race IA-1), BRIP53376 (race IB-3), NT2014a (race unknown)], but resistant to isolate BRIP39772 (race IA-3). Studies to investigate levels of blast disease development following inoculation on a range of Poaceae hosts showed both P. oryzae isolates (WAC13466, BRIP53376) were highly virulent on barley (disease index, DI = 100%), and on Phalaris and O. australiensis (DI = 70%). However, isolate BRIP53376 showed a significantly higher level of aggressiveness (DI ~80%) on ryegrass, wild oat and rice. Of the two wheat cultivars tested, only one cultivar showed disease and only from WAC13466 (DI ~30%). Sweet corn and goosegrass were also susceptible to both blast isolates, but DI was <50%. That P. oryzae was virulent across these diverse Poaceae hosts, highlights, for Australia, the possibility for these species in, first, harbouring P. oryzae isolates highly virulent to commercial rice, second, fostering spread of rice-attacking P. oryzae strains into regions currently free of rice blast, and third, potential for these alternative host species to encourage development of more virulent host-specific strains of P. oryzae. The current study is an important step towards facilitating improved crop protection in the medium and long term from reducing P. oryzae disease epidemics via a better understanding and management of inoculum reservoirs in Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analysed in the current study are available from the corresponding author on reasonable request.

References

  • Aghnoum, R., Bvindi, C., Menet, G., D’Hoop, B., Maciel, J. L. N., & Niks, R. E. (2019). Host/nonhost status and genetics of resistance in barley against three pathotypes of Magnaporthe blast fungi. Euphytica, 215, 116.

    Article  Google Scholar 

  • Australian Barley. (2011). Available at https://aegic.org.au/wp-content/uploads/2016/08/Australian-Barley.pdf. (2011). (Accessed 2 August 2020).

  • Australian Grains Industry. (2011). Available at https://www.pwc.com.au/industry/agribusiness/assets/australian-grains-industry-nov11.pdf. (Accessed 22 August 2020).

  • Bonos, S. A., Kubik, C., Clarke, B. B., & Meyer, W. A. (2004). Breeding perennial ryegrass for resistance to gray leaf spot. Crop Science, 44, 575–580.

    Article  Google Scholar 

  • Campbell, M., Chen, D., & Ronald, P. (2004). Development of codominant amplified polymorphic sequence markers in rice that flank the Magnaporthe grisea resistance gene Pi7 (t) in recombinant inbred line 29. Phytopathology, 94, 302–307.

    Article  CAS  Google Scholar 

  • Castroagudín, V. L., Moreira, S. I., Pereira, D. A. S., Moreira, S. S., Brunner, P. C., Maciel, J. L. N., et al. (2017). Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast. Persoonia, 37, 199–216.

    Article  Google Scholar 

  • Ceresini, P. C., Castroagudín, V. L., Rodrigues, F. Á., Rios, J. A., Aucique-Pérez, C. E., Moreira, S. I., Croll, D., Alves, E., de Carvalho, G., Maciel, J. L. N., & McDonald, B. A. (2019). Wheat blast: From its origins in South America to its emergence as a global threat. Molecular Plant Pathology, 20, 155–172.

    Article  Google Scholar 

  • Choi, W. B., Chun, S. J., & Lee, Y. H. (1996). Host range of Korean isolates of Magnaporthe grisea. Journal of Plant Pathology, 12, 453–454.

    Google Scholar 

  • Cockfield, G., Mushtaq, S., & White, N. (2012). Relocation of intensive agriculture to northern Australia: the case of the rice industry. 90 pp. Available at http://era.daf.qld.gov.au/3603/1/Output2RiceCaseStudy.pdf. (Accessed 18 August 2020).

  • Couch, B. C., Fudalm, I., Lebrun, M. H., Tharreau, D., Valent, B., van Kim, P., et al. (2005). Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics, 170, 613–630.

    Article  CAS  Google Scholar 

  • Cruz, C. D., & Valent, B. (2017). Wheat blast disease: Danger on the move. Tropical Plant Pathology, 42, 210–222.

    Article  Google Scholar 

  • Culvenor, R. (2007). Phalaris. Available at http://keys.lucidcentral.org/keys/v3/pastures/Html/Phalaris.htm. (Accessed 7 September 2019).

  • Fang, X. L., Snell, P., Barbetti, M. J., & Lanoiselet, V. (2017a). Races of Magnaporthe oryzae in Australia and genes with resistance to these races revealed through host resistance screening in monogenic lines of Oryza sativa. European Journal of Plant Pathology, 148, 647–656.

    Article  Google Scholar 

  • Fang, X. L., Snell, P., Barbetti, M. J., & Lanoiselet, V. (2017b). Rice varieties with resistance to multiple races of Magnaporthe oryzae offer opportunities to manage rice blast in Australia. Annals of Applied Biology, 170, 160–169.

    Article  CAS  Google Scholar 

  • Farman, M., Peterson, G. L., Chen, L., Starnes, J., Valent, B., Bachi, P., et al. (2017). The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Disease, 101, 684–692.

    Article  CAS  Google Scholar 

  • Gladieux, P., Condon, B., Ravel, S., Soanes, D., Maciel, J. L. N., Nhani Jr., A., et al. (2018). Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio, 9(1), e01219–e01217.

    Article  Google Scholar 

  • Hill, M. J., Mulcahy, C., & Rapp, G. G. (1996). Perennial pastures for the high rainfall zone of eastern Australia. 2. Persistence and potential adaptation zones. Australian Journal of Experimental Agriculture, 36, 165–167.

    Article  Google Scholar 

  • Inoue, Y., Vy, T. T. P., Yoshida, K., Asano, H., Mitsuoka, C., Asuke, S., et al. (2017). Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Plant Pathology, 357, 80–83.

    CAS  Google Scholar 

  • Irwin, J. A. G., Murray, G. M., & Davis, R. D. (1996). Overview of pasture and forage crop disease in Australia. In ‘Pasture and forage crop pathology’. (Eds S Chackraborty, KT Leath, RA Skipp, GA Pederson, RA Bray, GCM Latch, FM Nutter) pp. 3–22. (American Society of Agronomy: Madison, WI).

  • Jeung, J. U., Kim, B. R., Cho, Y. C., Han, S. S., Moon, H. P., Lee, Y. T., & Jena, K. K. (2007). A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theoretical and Applied Genetics, 115, 1163–1177.

    Article  CAS  Google Scholar 

  • Jones, R. A. C. (2013). Virus diseases of pasture grasses in Australia: Incidences, losses, epidemiology, and management. Crop and Pasture Science, 64, 216–233.

    Article  Google Scholar 

  • Kato, H., & Yamaguchi, T. (1980). Host ranges and interrelations of Pyricularia species from various cereals and grasses. In: Proc. Kanto-Tosan Plant Protection Soc. (Japan).

  • Kato, H., Yamamoto, M., Yamaguchi-Ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H., et al. (2000). Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. Journal of General Plant Pathology, 66, 30–47.

    Article  CAS  Google Scholar 

  • Khemmuk, W., Shivas, R. G., Henry, R. J., & Geering, A. D. W. (2016). Fungi associated with foliar diseases of wild and cultivated rice (Oryza spp.) in northern Queensland. Australasian Plant Pathology, 45, 297–308.

    Article  CAS  Google Scholar 

  • Klaubauf, S., Tharreau, D., Fournier, E., Groenewald, J. Z., Crous, P. W., de Vries, R. P., & Lebrun, M. H. (2014). Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Studies in Mycology, 79, 85–120.

    Article  CAS  Google Scholar 

  • Kusaba, M., Le Dinh, D. O. N., Urashima, A. S., Eto, Y., Tosa, Y., Nakayashiki, H., et al. (1998). Natural infection of wild grass species with rice blast fungus suggested by DNA fingerprinting. Japanese Journal of Phytopathology, 64, 125–128.

    Article  CAS  Google Scholar 

  • Kusaba, M., Hirata, K., Sumida, Y., Yamagashira, A., Konagai-Urata, H., & Yaegashiz, H. (2006). Molecular genetic characterization and host specificity of Pyricularia isolates from annual ryegrass in Japan. Plant Pathology Journal, 5, 72–79.

    Article  Google Scholar 

  • Lanoiselet, V. (2016). Characterisation of rice blast races present in Australia (48pp). Rural Industries Research and Development Corporation.

  • Lanoiselet, V. L., Cother, E. J., Ash, G. J., & Haper, J. D. I. (2005). Yield loss in rice caused by Rhizoctonia oryzae and R. oryzae-sativae in Australia. Australasian Plant Pathology, 34, 175–179.

    Article  Google Scholar 

  • Li, Y., Uddin, W., & Kaminski, E. (2014). Effects of relative humidity on infection, colonization and conidiation of Magnaporthe orzyae on perennial ryegrass. Plant Pathology, 63, 590–597.

    Article  CAS  Google Scholar 

  • Mackill, A. O., & Bonman, J. M. (1986). New hosts of Pyricularia oryzae. Plant Disease, 70, 125–127.

    Article  Google Scholar 

  • McKinney, H. H. (1923). A new system of grading plant diseases. Journal of Agricultural Research, 26, 195–218.

    Google Scholar 

  • Mehta, Y. R., & Baier, A. (1998). Variação patogênica entre isolados de Magnaporthe grisea atacando triticale e trigo no estado do Paraná. Summa Phytopatológica, 24, 119–125.

    Google Scholar 

  • Oram, R. N., & Hoen, K. (1967). Perennial grass cultivars for long term leys in the wheatbelt of southern New South Wales. Australian Journal of Agriculture and Animal Husbandry, 7, 249–254.

    Google Scholar 

  • Pak, D., You, M. P., Lanoiselet, V., & Barbetti, M. J. (2017a). Reservoir of cultivated rice pathogens in wild rice in Australia. European Journal of Plant Pathology, 147, 295–311.

    Article  Google Scholar 

  • Pak, D., You, M. P., Lanoiselet, V., & Barbetti, M. J. (2017b). Azoxystrobin and propiconazole offer significant potential for rice blast (Pyricularia oryzae) management in Australia. European Journal of Plant Pathology, 148, 1–13.

    Article  Google Scholar 

  • Pak, D., You, M. P., Lanoiselet, V., & Barbetti, M. J. (2018). Comparative colonisation by virulent versus avirulent Pyricularia oryzae on wild Oryza australiensis. European Journal of Plant Pathology, 151, 927–936.

    Article  Google Scholar 

  • Perelló, A., Martinez, I., Sanabria, A., Altamirano, R., & Sibole, J. V. (2017). Pathogenicity of isolates of Magnaporthe sp from wheat and grasses infecting seedlings and mature wheat plants in Argentina. Plant Pathology, 66, 1149–1161.

    Article  Google Scholar 

  • Petrovic, T., Burgess, L. W., Cowie, I., Warren, R., & Harvey, P. (2013). Diversity and fertility of Fusarium sacchari from wild rice (Oryza australiensis) in Northern Australia, and pathogenicity tests with wild rice, rice, sorghum and maize. European Journal of Plant Pathology, 136, 773–788.

    Article  CAS  Google Scholar 

  • Rajashekara, H., Ellur, R. K., Khanna, A., Nagarajan, M., Gopalakrishnan, S., Singh, A. K., et al. (2014). Inheritance of blast resistance and its allelic relationship with five major R genes in a rice landrace ‘Vanasurya’. Indian Phytopathology, 67, 365–369.

    Google Scholar 

  • Reed, K. (2008a). Hybrid/biennial ryegrass. Available at http://keys.lucidcentral.org/keys/v3/pastures/Html/Hybridbiennial_ryegrass.htm. (Accessed 22 July 2020).

  • Reed, K. (2008b). Italian/annual ryegrass. Available at: http://keys.lucidcentral.org/keys/v3/pastures/Html/ItalianAnnual_ryegrass.htm. (Accessed 13 July 2020).

  • Suh, J. P., Roh, J. H., Cho, Y. C., Han, S. S., Kim, Y. G., & Jena, K. K. (2009). The Pi40 gene for durable resistance to rice blast and molecular analysis of Pi40-advanced backcross breeding lines. Phytopathology, 99, 243–250.

    Article  CAS  Google Scholar 

  • Trevathan, L. E., Moss, M. A., & Blasingame, D. (1994). Ryegrass blast. Plant Disease, 78, 113–118.

    Article  Google Scholar 

  • Uddin, W., Viji, G., & Vincelli, P. (2003). Gray leaf spot (blast) of perennial ryegrass turf: An emerging problem for the turfgrass industry. Plant Disease, 87, 880–889.

    Article  Google Scholar 

  • Urashima, A. S., Igarashi, S., & Kato, H. (1993). Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil. Plant Disease, 77, 1211–1216.

    Article  Google Scholar 

  • VSN International (2019). Genstat for Windows, 20th Edition. VSN International, Hemel Hempstead, UK. Web page: Genstat.co.uk.

  • Yoshida, K., Saunders, D. G., Mitsuoka, C., Natsume, S., Kosugi, S., Saitoh, H. et al. (2016). Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomic,s 17, 370. doi: https://doi.org/10.1186/s12864-016-2690-6.

  • You, M. P., Lanoiselet, V., Wang, C., Shivas, R. G., Li, Y. P., & Barbetti, M. J. (2012). First report of rice blast (Magnaporthe oryzae) on rice (Oryza sativa) in Western Australia. Plant Disease, 96, 1228.

    Article  CAS  Google Scholar 

  • Zhang, N., Luo, J., Rossman, A. Y., Aoki, T., Chuma, I., Crous, P. W., Dean, R., de Vries, R. P., Donofrio, N., Hyde, K. D., Lebrun, M. H., Talbot, N. J., Tharreau, D., Tosa, Y., Valent, B., Wang, Z., & Xu, J. R. (2016). Generic names in Magnaporthales. IMA Fungus, 7, 155–159.

    Article  Google Scholar 

  • Zhong, Z., Norvienyeku, J., Chen, M., Bao, J., Lin, L., Chen, L., Lin, Y., Wu, X., Cai, Z., Zhang, Q., Lin, X., Hong, Y., Huang, J., Xu, L., Zhang, H., Chen, L., Tang, W., Zheng, H., Chen, X., Wang, Y., Lian, B., Zhang, L., Tang, H., Lu, G., Ebbole, D. J., Wang, B., & Wang, Z. (2016). Directional selection from host plants is a major force driving host specificity in Magnaporthe species. Scientific Reports, 6, 25591. https://doi.org/10.1038/srep25591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Sultan Mia, a PhD student in the School of Agriculture and Environment, UWA, for assistance with extracting DNA from wild Oryza australiensis leaf samples. The authors appreciate the help of Robert Creasy and Bill Piasini in the UWA Plant Growth Facilities for their technical assistance in plant growth facilities. This study was supported by the School of Agriculture and Environment at the University of Western Australia. The first author gratefully acknowledges an Australian Government Endeavour Postgraduate Scholarship funding his PhD studies. All authors state that they have no conflict of interest to declare with regard to the conduct or publication of these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Barbetti.

Ethics declarations

This research article is not submitted elsewhere for publication and this manuscript complies with the Ethical Rules applicable for this journal.

Ethical statement

This research did not involve any animal and/or human participants.

Conflict of interest

The authors declare that they have no competing interest.

Supplementary Information

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, D., You, M.P., Lanoiselet, V. et al. Management of rice blast (Pyricularia oryzae): implications of alternative hosts. Eur J Plant Pathol 161, 343–355 (2021). https://doi.org/10.1007/s10658-021-02326-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02326-4

Keywords

Navigation