Skip to main content

Advertisement

Log in

Emerging multi-pathogen disease caused by Didymella bryoniae and pathogenic bacteria on Styrian oil pumpkin

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The Styrian oil pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca Greb. is a crop of cultural, commercial, and medical importance. In the last decade, yield losses of pumpkins increased dramatically. The ascomycetous fungus Didymella bryoniae (Fuckel) Rehm was identified as main causal agent provoking gummy stem blight as well as black rot of pumpkins. We observed a remarkable phenotypic diversity of the fungal pathogen, which contrasted with a high genotypic similarity. Evidence of pathogenictiy of D. bryoniae on Styrian oil pumpkin was demonstrated in a newly developed greenhouse assay. Isolates representing the five observed phenotypic groups fulfilled the Koch’s postulates. In the field, the fungal disease was often associated with bacterial colonization by Pectobacterium carotovorum, Pseudomonas viridiflava, Pseudomonas syringae and Xanthomonas cucurbitae. The pathogenic behaviour of bacterial isolates on pumpkin was confirmed in the greenhouse assay. The high co-incidence of fungal and bacterial disease suggests mutualistic effects in pathogenesis. With a new assay, we found that bacteria can use the mycelium of D. bryoniae for translocation. We argue that the rapid rise of the multi-pathogen disease of pumpkins results from combined action of versatile pathogenic bacteria and the rapid translocation on a structurally versatile mycelium of the fungal pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Babadoost, M., & Zitter, T. A. (2009). Fruit rots of pumpkin: A serious threat to the pumpkin industry. Plant Disease, 93, 772–782.

    Article  Google Scholar 

  • Bruton, B. D. (1998). Soilborne diseases in Cucurbitaceae: Pathogen virulence and host resistance. In J. D. McCreight (Ed.), Cucurbitaceae, vol. 98 (pp. 143–166). Alexandria: ASHS.

    Google Scholar 

  • Chiu, W. F., & Walker, J. C. (1949). Morphology and variability of the cucurbit black rot fungus. Journal of Agricultural Research, 78, 81–102.

    Google Scholar 

  • Crous, P., & Gams, W. (2000). Phaeomoniella chlamydospora gen. et comb. nov., a causal organism of Petri grapevine decline and esca. Phytopathologia Mediterranea, 39, 112–118.

    Google Scholar 

  • Dreikorn, K. (2002). The role of phytotherapy in treating lower urinary tract symptoms and benign prostatic hyperplasia. World Journal of Urology, 19, 426–435.

    PubMed  Google Scholar 

  • Frühwirth, G. O., & Hermetter, A. (2007). Seeds and oil of the Styrian oil pumpkin: Components and biological activities. European Journal of Lipid Science and Technology, 109, 1128–1140.

    Article  Google Scholar 

  • Furuno, S., Päzolt, K., Rabe, C., Neu, T. R., Harms, H., & Wick, L. Y. (2010). Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environmental Microbiology, 12, 1391–1398.

    PubMed  CAS  Google Scholar 

  • Grube, M., & Berg, G. (2009). Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biology Reviews, 23, 72–85.

    Article  Google Scholar 

  • Huss, H. (2007). Didymella bryoniae im Steirischen Ölkürbis: Neben Fruchtfäule auch Verursacher der Blattdürre. Der Pflanzenarzt, 60, 10–11.

    Google Scholar 

  • Huss, H. (2009). Bakterien-Weichfäule bei Ölkürbis: Weiche Schale, keine Kern. Der Pflanzenarzt, 6, 14–15.

    Google Scholar 

  • Huss, H. (2011). Krankheiten und Schädlinge im Ölkürbisbau. Der Fortschrittliche Landwirt, 3, 30–33.

    Google Scholar 

  • Keinath, A. P. (2010). From native plants in Central Europe to cultivated crops worldwide: The emergence of Didymella bryoniae as a cucurbit Pathogen. Cucurbit, 2010, 7–9.

    Google Scholar 

  • Keinath, A. P., Farnham, M. W., & Zitter, T. A. (1995). Morphological, pathological, and genetic differentiation of Didymella bryoniae and Phoma spp. isolated from cucurbits. Phytopathology, 85, 364–369.

    Article  Google Scholar 

  • Kohlmeier, S., Smits, T. H., Ford, M., Keel, C., Harms, H., & Wick, L. Y. (2005). Taking the fungal highway: Mobilization of pollutant-degrading bacteria by fungi. Environmental Science & Technology, 39, 4640–4646.

    Article  CAS  Google Scholar 

  • Leben, C. (1984). Spread of plant pathogenic bacteria with fungal hyphae. Phytopathology, 74, 983–986.

    Article  Google Scholar 

  • Lee, D. H., Mathur, S. B., & Neergaard, P. (1983). Detection and location of seed-borne inoculum of Didymella bryoniae and its transmission in seedlings of cucumber and pumpkin. Phytopathology, 109, 301–308.

    Google Scholar 

  • Marpues, A. S. A., Marchaison, A., Gardan, L., & Samson, R. (2008). BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringae—P. viridiflava group. Genetics and Molecular Biology, 31, 106–115.

    Google Scholar 

  • Rademaker, J. L. W., & De Bruijn, F. J. (1997). Characterization and classification of microbes by REP-PCR genomic fingerprinting and computer-assisted pattern analysis. In G. Caetano-Anollés, & P. M. Gresshoff (eds.), DNA markers: Protocols, Applications and Overviews. Wiley

  • Shim, K. C., Seo, K. I., Jee, J. H., & Kim, K. H. (2006). Genetic diversity of Didymella bryoniae for RAPD profiles substantiated by SCAR marker in Korea. Plant Pathology Journal, 22, 36–45.

    Google Scholar 

  • Sitterly, W. R., & Keinath, A. P. (1996). Gummy stem blight. In T. A. Zitter, D. L. Hopkins, & C. E. Thomas (Eds.), Compendium of cucurbit disease (pp. 27–28). St. Paul: American Phytopathological Society.

    Google Scholar 

  • Somai, B. M., & Keinath, A. P. (2002). Development of PCR-ELISA for detection and differentiation of Didymella bryoniae from related Phoma species. Plant Disease, 86, 710–716.

    Article  CAS  Google Scholar 

  • Trifonova, R., Postma, J., & Van Elsas, J. D. (2009). Interactions of plant-beneficial bacteria with the ascomycete Coniochaeta ligniaria. Journal of Applied Microbiology, 106, 1859–1866.

    Article  PubMed  CAS  Google Scholar 

  • van Steekelenburg, N. A. M. (1983). Epidemiological aspects of Didymella bryoniae, the cause of stem and fruit rot of cucumber. Netherlands Journal of Plant Pathology, 89, 75–86.

    Article  Google Scholar 

  • Wick, L. Y., Remer, R., & Harms, H. (2007). Effect of fungal hyphae on the access of bacterial to phenanthrene in soil. Environmental Science & Technology, 41, 500–505.

    Article  CAS  Google Scholar 

  • Zitter, T. A., & Kyle, M. M. (1992). Impact of powdery mildew and gummy stem blight on collapse of pumpkins (Cucurbita pepo L.). Cucurbit Genetics Cooperative Rep, 15, 93–96.

    Google Scholar 

Download references

Acknowledgments

We want to thank Johanna Winkler (Saatzucht Gleisdorf, Austria) for providing us oil pumpkin seeds and good cooperation. We thank Henry Müller and Massimiliano Cardinale (Graz, Austria) for their great support. The project was funded by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (Lebensministerium) and the government of the Federal state Styria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grube, M., Fürnkranz, M., Zitzenbacher, S. et al. Emerging multi-pathogen disease caused by Didymella bryoniae and pathogenic bacteria on Styrian oil pumpkin. Eur J Plant Pathol 131, 539–548 (2011). https://doi.org/10.1007/s10658-011-9829-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9829-8

Keywords

Navigation