Skip to main content

Advertisement

Log in

Towards resolving conservation issues through historical aerial imagery: vegetation cover changes in the Central European tundra

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Mountain ecosystems are considered to be sensitive to global change and human disturbance. Our retrospective analysis of archival aerial imagery showed dynamics of arctic-alpine tundra vegetation in the Krkonoše Mountains, Czech Republic; image classification revealed a change in land cover classes in 44% of the study area over the past eighty years. This particular ecosystem holds many rare features, such as high numbers of endemic, glacial relict and rare species as well as relict geomorphological components such as sorted patterned ground. Our study revealed an accelerating expansion of the native and planted shrub, Pinus mugo, from 30.6% of the study area in 1936 to 48.6% in 2018, mostly at the expense of grasslands that decreased from 59.3% in 1936 to 44.2% in 2018. Shrub expansion represents a threat to relict periglacial landforms, covering 8% of the sorted patterned ground in 1936 and 26.5% in 2018. Shrub encroachment was shown to be due to artificial planting of the pine in the past as well as the cessation of former farming (mowing and cattle grazing) and, most probably, also by global change. Both dwarf pine stands and tundra grasslands hold high conservation value (Natura 2000 habitats); a balance between different nature protection interests must, therefore, be ensured. Detailed spatio-temporally, explicit outputs of the remote sensing analysis can serve as a baseline for nature conservation in order to prepare corresponding management plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adopted from Kociánová et al. 2015) (a). A view of tundra grasslands (b), areas of planted dwarf pine (c) and pattened ground (d)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The imagery used was provided by (i) the Czech Office of Surveying, Mapping and Cadastre, (ii) the Military Geographical and Hydrometeorological Office, (iii) the Czech Environmental Information Agency, and (iv) the Krkonoše Mountains National Park Administration under licence agreements that do not allow for its further distribution. The classification outputs are a part of the project CZ.05.4.27/0.0/0.0/17_078/0009044 and can be provided on request.

Code availability

Not applicable.

References

  • AOPK ČR (2019) Vrstva mapování biotopů/Distribution of natural and semi natural habitats in the Czech Republic. [electronic georeferenced database]. Version 2019. Praha. Agentura ochrany přírody a krajiny ČR [Accessed 2019–06–10]

  • Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspectives in Plant Ecology, Evolution and Systematics 7(3):173–183. https://doi.org/10.1016/j.ppees.2005.09.006

    Article  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. In: Diaz HF (ed) Climate variability and change in high elevation regions: Past, present & future. Springer, Netherlands, pp 5–31

    Chapter  Google Scholar 

  • Blaschke T, Lang S, Hay GJ (eds) (2008) Object-based image analysis: Spatial concepts for knowledge-driven remote sensing applications. Springer, Berlin

    Google Scholar 

  • Bowman WD, Gartner JR, Holland K, Wiedermann M (2006) Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet? Ecol Appl 16(3):1183–1193. https://doi.org/10.1890/1051-0761(2006)016[1183:NCLFAV]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Brůna J, Wild J, Svoboda M, Heurich M, Müllerová J (2013) Impacts and underlying factors of landscape-scale, historical disturbance of mountain forest identified using archival documents. For Ecol Manage 305:294–306. https://doi.org/10.1016/j.foreco.2013.06.017

    Article  Google Scholar 

  • Cannone N, Sgorbati S, Guglielmin M (2007) Unexpected impacts of climate change on alpine vegetation. Front Ecol Environ 5(7):360–364. https://doi.org/10.1890/1540-9295(2007)5[360:UIOCCO]2.0.CO;2

    Article  Google Scholar 

  • Chytrý M, Kočí M, Šumberová K, Sádlo J, Rozehnal J (2007) Vegetace České republiky 1. Travinná a keříčková společenstva/Vegetation of the Czech Republic 1. Grassland and shrub communities. Academia, Praha

  • Chytrý M, Kučera T, Kočí M, Grulich V, Lustyk P (2010) Habitat Catalogue of the Czech Republic. 2nd ed. Agentura ochrany přírody a krajiny ČR, Praha

  • Chytrý M, Hájek M, Kočí M, Pešout P, Roleček J, Sádlo J, Grulich V (2019) Red list of habitats of the Czech Republic. Ecol Ind 106:105446. https://doi.org/10.1016/j.ecolind.2019.105446

    Article  Google Scholar 

  • Chytrý M, Hájek M, Kočí M, Pešout P, Roleček J, Sádlo J, Chobot K (2020) Červený seznam biotopů České republiky/Red List of Habitats of the Czech Republic. Příroda 41:1–172

    Google Scholar 

  • Danby RK, Hik DS (2007) Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. J Ecol 95(2):352–363. https://doi.org/10.1111/j.1365-2745.2006.01200.x

    Article  Google Scholar 

  • European Commission (2013) Interpretation Manual of European Union Habitats – EUR28

  • Engel Z, Křížek M, Braucher R, Krause D, Uxa T, AsterTeam (2021) 10 Be exposure age threshold for sorted polygons in the Sudetes Mountains. Central Europe Permafrost and Periglacial Processes 32:154–168. https://doi.org/10.1002/ppp.2091

    Article  Google Scholar 

  • Fanta I (ed) (1969) Příroda Krkonošského národního parku/Nature of the Krkonoše National Park Státní zemědělské nakladatelství Praha

  • Flousek J, Hartmanová O, Štursa J, Potocki J (eds) (2007) Krkonose. Milos Uhlir, Baset Publ., Prague, Nature, History, Life

    Google Scholar 

  • Foody GM (2009) Sample size determination for image classification accuracy assessment and comparison. Int J Remote Sens 30:5273–5291. https://doi.org/10.1080/01431160903130937

    Article  Google Scholar 

  • Formica A, Farrer EC, Ashton IW, Suding KN (2014) Shrub expansion over the past 62 years in Rocky Mountain alpine tundra: possible causes and consequences. Arct Antarct Alp Res 46(3):616–631. https://doi.org/10.1657/1938-4246-46.3.616

    Article  Google Scholar 

  • French HM (2017) The periglacial environment, Fourth, edition. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  • Frost GV, Epstein HE, Walker DA, Matyshak G, Ermokhina K (2013) Patterned-ground facilitates shrub expansion in low arctic tundra. Environ Res Lett 8(1):015035. https://doi.org/10.1088/1748-9326/8/1/015035

    Article  Google Scholar 

  • Galvánek D, Janák M (2008) Management of Natura 2000 habitats. 6230 *Species-rich Nardus grasslands. European Commission

  • Gordon JE, Dvořák IJ, Jonasson C, Josefsson M, Kociánová M, Thompson D (2002) Geo–ecology and management of sensitive montane landscapes. Geogr Ann Ser B 84(3–4):193–203. https://doi.org/10.1111/j.0435-3676.2002.00174.x

    Article  Google Scholar 

  • Halada L, Evans D, Romão C, Petersen JE (2011) Which habitats of European importance depend on agricultural practices? Biodivers Conserv 20(11):2365–2378

    Article  Google Scholar 

  • Harčarik J (2007) Management výsadeb kleče na přírodovědně hodnotných lokalitách v Krkonoších/Management of the dwarf pine plantations on the naturally valuable localities in the Giant Mountains. Opera Corcontica 44:363–369

    Google Scholar 

  • Härtel H, Lončáková J, Hošek M (eds.) (2009) Habitat Mapping in the Czech Republic: Basis, Results and Future Prospects, 1st ed., Praha: Agentura ochrany přírody a krajiny ČR, 125 p. ISBN 978–80–87051–36–8

  • Hejcman M, Klaudisová M, Hejcmanová P, Pavlů V, Jones M (2009) Expansion of Calamagrostis villosa in sub-alpine Nardus stricta grassland: Cessation of cutting management or high nitrogen deposition? Agr Ecosyst Environ 129(1–3):91–96

    Article  Google Scholar 

  • Hejcman M, Češková M, Pavlů V (2010) Control of Molinia caerulea by cutting management on sub-alpine grassland. Flora-Morphology, Distribution, Functional Ecology of Plants 205(9):577–582

    Article  Google Scholar 

  • Klanderud K (2005) Climate change effects on species interactions in an alpine plant community. J Ecol 93(1):127–137. https://doi.org/10.1111/j.1365-2745.2004.00944.x

    Article  Google Scholar 

  • Kociánová M, Štursa J, Vaněk J (2015) Krkonošská tundra/Krkonoše Tundra. Správa Krkonošského národního parku, Vrchlabí

  • Krahulec F (2006) Species of vascular plants endemic to the Krkonoše Mts (Western Sudetes). Preslia 78(4):503–516

    Google Scholar 

  • Křížek M, Uxa T (2013) Morphology, Sorting and Microclimates of Relict Sorted Polygons, Krkonoše Mountains, Czech Republic: morphology, sorting and microclimates of relict sorted polygons. Permafrost and Periglac Process 24:313–321. https://doi.org/10.1002/ppp.1789

    Article  Google Scholar 

  • Křížek M, Krause D, Uxa T, Engel Z, Treml V, Traczyk A (2019) Patterned ground above the alpine timberline in the High Sudetes, Central Europe. J Maps 15:563–569. https://doi.org/10.1080/17445647.2019.1636890

    Article  Google Scholar 

  • Lokvenc T et al. (1992) Zalesňování Krkonoš/Reforestation of the Krkonoše Mountains. Správa KRNAP, Vrchlabí. VÚLHM, Opočno

  • Lokvenc T (2001) History of Giant Mts’.dwarf pine (Pinus mugo Turra ssp. pumilio Franco). Opera Corcontica 38:21–42

    Google Scholar 

  • Lavoie M, Mack MC, Schuur EAG (2011) Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. J Geophys Res. https://doi.org/10.1029/2010JG001629

    Article  Google Scholar 

  • Matthews JA, Shakesby RA, Berrisford MS, McEwen LJ (1998) Periglacial patterned ground on the Styggedalsbreen glacier foreland, Jotunheimen, southern Norway: micro-topographic, paraglacial and geoecological controls. Permafrost Periglac Process 9:147–166. https://doi.org/10.1002/(SICI)1099-1530(199804/06)9:2%3c147::AID-PPP278%3e3.0.CO;2-9

    Article  Google Scholar 

  • Müllerová J, Vítková M, Vítek O (2011) The impacts of road and walking trails upon adjacent vegetation: Effects of road building materials on species composition in a nutrient poor environment. Sci Total Environ 19:3839–3849. https://doi.org/10.1016/j.scitotenv.2011.06.056

    Article  CAS  Google Scholar 

  • Müllerová J, Pergl J, Pyšek P (2013) Remote sensing as a tool for monitoring plant invasions: Testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed). Int J Appl Earth Obs Geoinf 25:55–65. https://doi.org/10.1016/j.jag.2013.03.004

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Ropars P (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6(4):045509. https://doi.org/10.1088/1748-9326/6/4/045509

    Article  Google Scholar 

  • Natura (2000) https://ec.europa.eu/environment/nature/natura2000/index_en.htm

  • Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7(9):479–486. https://doi.org/10.1890/080072

    Article  Google Scholar 

  • Pelíšek J (1974) Půdy Krkonošského Národního Parku Opera Corcontica 11(7):7–35

    Google Scholar 

  • Reynolds JF, Tenhunen JD (Eds.) (1996) Landscape function and disturbance in Arctic tundra (Vol. 120). Springer Science & Business Media

  • Sanz-Elorza M, Dana ED, Gonzalez A, Sobrino E (2003) Changes in the high-mountain vegetation of the central Iberian Peninsula as a probable sign of global warming. Ann Bot 92(2):273–280. https://doi.org/10.1093/aob/mcg130

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarz O (1997) Management of Forest Ecosystems in the Krkonoše National Park, Black Triangle Region, Czech Republic. In: Gutkowski RM, Winnicki T (eds) Restoration of Forests. Springer, Dordrecht, pp 215–226

    Chapter  Google Scholar 

  • Sekyra J (1964) Quarternary-geological and geomorphological problems of the crystalline complexes of the Krkonoše Mountains. Opera Corcontica 1:7–24

    Google Scholar 

  • Sekyra J, Kociánová M, Štursová H, Kalenská J, Dvořák I, Svoboda M (2002) Frost phenomena in relationship to mountain pine / Mrazové jevy ve vztahu ke kosodřevině. Opera Corcontica 39:69–114

    Google Scholar 

  • Soukupová L, Kociánová M, Jeník J, Sekyra J (1995) Arctic-alpine tundra in the Krkonoše, the Sudetes. Opera Corcontica 32:5–88

    Google Scholar 

  • Suchá R, Jakešová L, Kupková L, Červená L (2016) Classification of vegetation above the treeline in the Krkonoše Mts National Park using remote sensing multispectral data. Auc Geographica 51(1):113–129. https://doi.org/10.14712/23361980.2016.10

    Article  Google Scholar 

  • Svoboda M (2002) The effect of Pinus mugo (Turra) plantations on alpine tundra microclimate, vegetation distribution and soils in Krkonoše National Park, Czech Republic. Opera Concortica 38:189–206

    Google Scholar 

  • Štursa J (1998) Research and management of the Giant Mountains’ arctic-alpine tundra (Czech Republic). Ambio 27:358–360

    Google Scholar 

  • Štursa J, Wild J (2014) Mountain Pine and Matgrass – key players in the development of the alpine treeless area of the Giant Mts (the High Sudetes, Czech Republic). Opera Corcontica 51:5–36

    Google Scholar 

  • Štursová H (1985) Antropické vlivy na strukturu a vývoj smilkových luk v Krkonoších/ Anrophic effect on the structure and development of the mat - grass meadows in the Krkonoše. Opera Corcontica 22:79–120

    Google Scholar 

  • Tape KEN, Sturm M, Racine C (2006) The evidence for shrub expansion in northern Alaska and the Pan-Arctic. Glob Change Biol 12(4):686–702. https://doi.org/10.1111/j.1365-2486.2006.01128.x

    Article  Google Scholar 

  • Tasser E, Tappeiner U (2002) Impact of land use changes on mountain vegetation. Appl Veg Sci 5(2):173–184. https://doi.org/10.1111/j.1654-109X.2002.tb00547.x

    Article  Google Scholar 

  • Traczyk A, Migoń P (2003) Cold-climate landform patterns in the Sudetes. Effects of lithology, relief and glacial history. Acta Universitatis Carolinae, Geographica 35:185–210

    Google Scholar 

  • Treml V, Křížek M (2006) Effects of dwarf pine (Pinus mugo) on patterned ground in the Czech part of the High Sudetes. Opera Corcontica 43:45–56

    Google Scholar 

  • Treml V, Křížek M, Engel Z (2010) Classification of patterned ground based on morphometry and site characteristics: a case study from the High Sudetes. Central Europe Permafrost Periglac Process 21:67–77. https://doi.org/10.1002/ppp.671

    Article  Google Scholar 

  • Uxa T, Křížek M, Hrbáček F (2021) PERICLIMv1.0: a model deriving palaeo-air temperatures from thaw depth in past permafrost regions. Geoscientific Model Development 14:1865–1884. https://doi.org/10.5194/gmd-14-1865-2021

    Article  Google Scholar 

  • Vítková M, Vítek O, Müllerová J (2012) Anthropogenic changes of vegetation above timberline in the Krkonose Mountains National Park focusing on the impact of tourism. Opera Corcontica 49:5–30

    Google Scholar 

  • Wild J, Wildová R (2002) Interactions between dwarf pine shrubs and grassland vegetation under different management. Opera Corcontica 39:17–33

    Google Scholar 

  • Wild J, Winkler E (2008) Krummholz and grassland coexistence above the forest-line in the Krkonoše Mountains: Grid-based model of shrub dynamics. Ecol Model 213(3–4):293–307. https://doi.org/10.1016/j.ecolmodel.2007.12.013

    Article  Google Scholar 

  • Wookey PA, Aerts R, Bardgett RD, Baptist F, Bråthen KA, Cornelissen JH, Shaver GR (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Change Biol 15(5):1153–1172. https://doi.org/10.1111/j.1365-2486.2008.01801.x

    Article  Google Scholar 

Download references

Acknowledgements

The research was part of a project CZ.05.4.27/0.0/0.0/17_078/0009044 funded by the Ministry of Environment of the Czech Republic. JM was supported by the long-term research development project RVO 67985939 of the Czech Academy of Sciences and LČ by the project UNCE/HUM 018 of Charles University. Our work would not be possible without help from students at Charles University, namely Jakub Růžička and Mojmír Polák, and technicians in our teams, namely Zdeňka Konopová and Jan Pačák.

Funding

The research was part of a project CZ.05.4.27/0.0/0.0/17_078/0009044 funded by the Ministry of Environment of the Czech Republic, a project UNCE/HUM 018 of Charles University, and a long-term research development project RVO 67985939 of the Czech Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

MP, LK, and JM carried out the image classification, its validation, the processing of ancillary data; they also prepared statistical and graphical outputs of the spatial–temporal image analysis. JL and LČ developed scripts in ArcGIS for spatial–temporal data analysis and validation. DK contributed with analyses relating vegetation cover and patterned ground. ZH and SB supervised linking the results with the conservation aspects. The manuscript was drafted by JM (Introduction, Discussion and Conclusion), MP and DK (Results). All authors contributed to designing the manuscript’s concept and to editing the final version of the manuscript.

Corresponding author

Correspondence to Markéta Potůčková.

Ethics declarations

Conflict of interest

No conflicts of interest/competing interests.

Additional information

Communicated by Antony Brown.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

See Tables

Table 9 Transformation table between the Natura 2000 habitats and classes of grasslands and dwarf pine stands

9,

Table 10 Area of the land cover classes in the five evaluated years resulting from classification of aerial images

10,

Table 11 Change detection matrices

11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potůčková, M., Kupková, L., Červená, L. et al. Towards resolving conservation issues through historical aerial imagery: vegetation cover changes in the Central European tundra. Biodivers Conserv 30, 3433–3455 (2021). https://doi.org/10.1007/s10531-021-02255-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02255-y

Keywords

Navigation