Skip to main content

Advertisement

Log in

Role of black pine (Pinus nigra J. F. Arnold) in European forests modified by climate change

  • Review Article
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In the twenty-first century, it is crucial to see climate change not only as a risk that can cause large-scale forest disturbances but also as an opportunity for innovative approaches to forest management and silviculture of new resistant tree species, like the prospective black pine (Pinus nigra J. F. Arnold). This literature review compiles findings from 260 scientific papers. It presents a summary of research results of black pine potential in European forests from 1970 to 2023. It describes the importance of its taxonomy, area of distribution and introduction, ecological characteristics, production, silviculture, wood quality, threats, and pests, as well as the potential of this tree species in relation to global climate change. In Europe, black pine covers an area of over 9.5 million ha and is one of the most frequently planted tree species outside of its original range. This pine is an effective tree species for afforestation management in arid habitats, as well as in areas threatened by pollution or on reclamation sites. Moreover, it resists the negative effects of climate change exceptionally well, such as more intense heat waves and more frequent long-term droughts, especially in young stands with lower tree density. However, the consequences of climate change on growth are not homogeneous across black pine distribution ranges due to interpopulation variability. It also has a high production potential advantage, and the wood is easy to process for various purposes. Overall, black pine can be considered one of the most adaptable pine species to anthropogenic factors and ongoing climate change, and a valuable tree species in forestry for newly cultivated areas in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdullah H, Skidmore AK, Darvishzadeh R, Heurich M (2019) Sentinel-2 accurately maps green-attack stage of European spruce bark beetle (Ips typographus L.) compared with Landsat-8. Remote Sens Ecol Conserv 5:87–106. https://doi.org/10.1002/rse2.93

    Article  Google Scholar 

  • Alejano R, Domínguez-Delmás M, García-González I, Wazny T, Vázquez-Piqué J, Fernández-Martínez M (2019) The age of black pine (Pinus nigra Arn. Ssp. salzmannii (Dunal) Franco) mother trees has no effect on seed germination and on offspring seedling performance. Ann for Sci 76:15. https://doi.org/10.1007/s13595-019-0801-7

    Article  Google Scholar 

  • Amorini E (1983) Prove di diradamento nella pineta di pino nero di Monte della Modina sull’Appennino Toscano. Ann Ist Sper Selvic 14:101–148

    Google Scholar 

  • Amorini E, Fabbio G (1992) La gestione dei rimboschimenti con pino nero. Mont Ital 4:27–29

    Google Scholar 

  • Andreu L, Gutiérrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Glob Change Biol 13:1–12. https://doi.org/10.1111/j.1365-2486.2007.01322.x

    Article  Google Scholar 

  • Atalay I, Efe R (2010) Structural and distributional evaluation of forest ecosystems in Turkey. J of Environ Biol 31:61

    Google Scholar 

  • Atalay I, Efe R (2012) Ecological attributes and distribution of Anatolian black pine [Pinus nigra Arnold. subsp. pallasiana Lamb. Holmboe] in Turkey. J Environ Biol 33:509–519

    PubMed  Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann for Sci 59:233–253

    Article  Google Scholar 

  • Ayan S, Yücedağ C, Simovski B (2021) A major tool for afforestation of semi-arid and anthropogenic steppe areas in Turkey: Pinus nigra J.F. Arnold subsp. pallasiana (Lamb.) Holmboe. J for Sci 67:449–463. https://doi.org/10.17221/74/2021-JFS

    Article  CAS  Google Scholar 

  • Azcárate FM, Seoane J, Silvestre M (2023) Factors affecting pine processionary moth (Thaumetopoea pityocampa) incidence in Mediterranean pine stands: a multiscale approach. For Ecol Manage 529:120728. https://doi.org/10.1016/j.foreco.2022.120728

    Article  Google Scholar 

  • Bachi PR, Peterson JL (1985) Enhancement of Sphaeropsis sapinea stem invasion of pines by water deficits. Plant Dis 69:798–799

    Google Scholar 

  • Baeten L, Bruelheide H, van der Plas F, Kambach S, Ratcliffe S, Jucker T et al (2019) Identifying the tree species compositions that maximize ecosystem functioning in European forests. J Appl Ecol 56(3):733–744

    Article  Google Scholar 

  • Balenović I, Jazbec A, Marjanović H, Paladinić E, Vuletić D (2015) Modeling tree characteristics of individual black pine (Pinus nigra Arn.) trees for use in remote sensing-based inventory. Forests 6(2):492–509. https://doi.org/10.3390/f6020492

    Article  Google Scholar 

  • Banfi E, Consolino F (2011) Guide Compact—Alberi. Conoscere e riconoscere tutte le specie più diffuse di Alberi spontanei e ornamentali. 319 p

  • Barbet-Massin M, Jiguet F (2011) Back from a predicted climatic extinction of an island endemic, a future for the Corsican Nuthatch? PLoS ONE 6(3):e18228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barčić D, Hršak V, Španjol Ž (2006) The ameliorative effects of pine cultures on forest sites on the island of Rab in Southwest Croatia. For Ecol Manage 237:39–46. https://doi.org/10.1016/j.foreco.2006.09.065

    Article  Google Scholar 

  • Barčić D, Dubravac T, Vučetić M (2020) Potential hazard of open space fire in black pine stands (Pinus nigra J.F. Arnold) in regard to fire severity. Southeast Eur for. https://doi.org/10.15177/seefor.20-16

    Article  Google Scholar 

  • Barčić D, Hršak V, Rosavec R, Ančić M (2022) Ecological Potential of mediterranean habitats for black pine (Pinus nigra J.F. Arnold) in Croatia. Forests 13:1900. https://doi.org/10.3390/f13111900

    Article  Google Scholar 

  • Benito DM, del Río Gaztelurrutia M, de Viñas ICR (2007) Estudio de la variabilidad interregional en los modelos de crecimiento en altura dominante y calidad de estación de" pinus nigra arn." en la Península Ibérica. Cuadernos de la Sociedad Española de Ciencias Forestales 23:221-226

    Google Scholar 

  • Bernetti G (2000) Problemi e prospettive della selvicoltura nell’Appennino Centro Settentrionale. Atti del Secondo Congresso Nazionale di Selvicoltura, Venezia 24–27 giugno 1998, 2:79–119

  • Bezak K (1992) Tablice drvnih masa cera, crnog bora i običnog bora. Radovi 5:47–65

    Google Scholar 

  • Biondi E, Allegrezza M (2020) Syntaxonomy of Pinus nigra s.l. communities in the Erico-Pinetea class and their distribution in the central Apennines and Balkan province. Plant Biosyst 154(2):248–258. https://doi.org/10.1080/11263504.2019.1701128

    Article  Google Scholar 

  • Blodgett JT, Eyles E, Bonello P (2007) Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diplodia scrobiculata. Tree Physiol 27:511–517

    Article  PubMed  Google Scholar 

  • Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P et al (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J for Res 24(6):473–482. https://doi.org/10.1080/02827580903418224

    Article  Google Scholar 

  • Bončina A, Trifković V, Ficko A (2023) Diameter Growth of silver fir (Abies alba Mill.), scots pine (Pinus sylvestris L.), and black pine (Pinus nigra Arnold) in central European forests: findings from Slovenia. Forests 14:793. https://doi.org/10.3390/f14040793

    Article  Google Scholar 

  • Bošeľa M, Štefančcík I, Petráš R, Vacek S (2016) The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agro Sur 222:21–31. https://doi.org/10.1016/j.agrformet.2016.03.005

    Article  Google Scholar 

  • Boutheina A, El Aouni MH, Balandier P (2013) Influence of stand and tree attributes and silviculture on cone and seed productions in forests of Pinus pinea L. in northern Tunisia, Options Méditerranéennes, Series A: Mediterranean Seminars, No. 105 (CIHEAM, FAO, INIA, IRTA, CESEFOR, CTFC, Zaragoza, 2013), pp 9–14.

  • Brabec P, Vacek Z, Vacek S, Štefančík I, Cukor J, Weatherall A et al. (2023) Growth-climate responses of Picea sitchensis (Bong.) Carr. versus Picea abies (L.) Karst. in the British Isles and Central Europe. Cent Eur For J 69:167–178. https://doi.org/10.2478/forj-2022-0011

  • Brang P, Spathelf P, Larsen J, Bauhus J, Bončína A, Chauvin C, Drössler L, García-Güemes C, Heiri C, Kerr G, Lexer M, Mason B, Mohren F, Mühlethaler U, Nocentini S, Svoboda M (2014) Suitability of close-tonature silviculture for adapting temperate European forests to climate change. Forestry 87:492–503. https://doi.org/10.1007/s13595-018-0736-4

    Article  Google Scholar 

  • Bravo A, Montero G (2008) Descripción de los caracteres culturales de las principals especies forestales de España. In: Serrada R, Montero G, Reque J.A. (2008) Compendio de selvicultura aplicada en España. INIA, 1178 pp

  • Brüchert F, Gardiner B (2006) The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce (Picea sitchensis, Pinacee). Am J Bot 93(10):1512–1521. https://doi.org/10.3732/ajb.93.10.1512

    Article  PubMed  Google Scholar 

  • Brus R, Pötzelsberger E, Lapin K, Brundu G, Orazio C, Straigyte L et al (2019) Extent, distribution and origin of non-native forest tree species in Europe. Scand J for Res 34(7):533–544. https://doi.org/10.1080/02827581.2019.1676464

    Article  Google Scholar 

  • Buckley YM, Brockerhoff E, Langer L, Ledgard N, North H, Rees M (2005) Slowing down a pine invasion despite uncertainty in demography and dispersal. J Appl Ecol 42:1020–1030

    Article  Google Scholar 

  • Büntgen U, Piermattei A, Krusic PJ, Epsen J, Sparks T, Crivellaro A (2022) Plants in the UK flower a month earlier under recent warming. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2021.2456

    Article  Google Scholar 

  • Burns RM, Honkala BH (1990a) Silvics of North America 2. Hardwoods. Agriculture Handbook 654, USDA Forest Service, Washington DC

  • Burns RM, Honkala BH (1990b) Silvics of North America, Volume 1. Conifers

  • Burylo M, Rey F, Roumet C, Buisson E, Dutoit T (2009) Linking plant morphological traits to uprooting resistance in eroded marly lands (Southern Alps, France). Plant Soil 324(1):31–42

    Article  CAS  Google Scholar 

  • Bussotti F (2002) Pinus nigra Arnold. In: Pines of silvicultural importance. Wallingford–New York, CAB International: 266–285.

  • Calama R, Manso R, Lucas-Borja ME, Espelta JM, Bravo F, del Peso C, Pardos M (2017) Natural regeneration in Iberian pines: a review of dynamic processes and proposal for management. For Syst 26:eR02S. https://doi.org/10.5424/fs/2017262-11255

    Article  Google Scholar 

  • Cameron AD (2002) Importance of early selective thinning in the development of long-term stand stability and improved log quality: a review. Forestry 75:25–35

    Article  Google Scholar 

  • Candel-Pérez D, Lucas-Borja ME, García-Cervigón AI, Tíscar PA, Andivia E, Bose AK et al (2021) Forest structure drives the expected growth of Pinus nigra along its latitudinal gradient under warming climate. For Ecol Manage. https://doi.org/10.1016/j.foreco.2021.119818

    Article  Google Scholar 

  • Cantiani P, Chiavetta U (2015) Estimating the mechanical stability of Pinus nigra Arn. using an alternative approach across several plantations in central Italy. Iforest 8(6):846. https://doi.org/10.3832/ifor1300-007

    Article  Google Scholar 

  • Cantiani P, Piovosi M (2009) La gestione dei rimboschimenti di pino nero appenninici. I diradamenti nella strategia di rinaturalizzazione. Annali CRA-SEL 35:35–42

    Google Scholar 

  • Cantiani P, Plutino M, Amorini E (2010) Effects of silvicultural treatment on the stability of black pine plantations. Ann Silvic Res 36:49–58

    Google Scholar 

  • Caudullo G, Welk E, San-Miguel-Ayanz J (2017) Chorological maps for the main European woody species. Data Br 12:662–666. https://doi.org/10.1016/j.dib.2017.05.007

    Article  Google Scholar 

  • Çengel B, Tayanç Y, Kandemir G, Velioglu E, Alan M, Kaya Z (2012) Magnitude and efficiency of genetic diversity captured from seed stands of Pinus nigra (Arnold) subsp. pallasiana in established seed orchards and plantations. New for 43:303–317

    Article  Google Scholar 

  • Cenni E, Bussotti F, Ferratti M, Grossoni P (1993) Variations in mineral nutrients and trace elements in Pinus nigra Arn. A three-year monitoring programme in a periurban forest in Tuscany (Central Italy). Presentato come comunicazione orale a CEC/IUFRO symposium on nutrient uptake and cycling in forest ecosystem, Halmstad, Sweden, 7–10 Giugno 1993

  • Christensen KI (1997) Pinaceae, Cupressaceae, Taxaceae, Ephedraceae, Salicaceae, Juglandaceae, Betulaceae, Fagaceae, Ulmaceae, Moraceae. In: Strid A, Tan K (eds) Flora Hellenica, vol vol.1. Koeltz Scientific Books, Königstein, pp 1–17

  • Ciabatti G, Gabellini A, Ottaviani C, Perugi A (2009) I rimboschimento in Toscana e la loro gestione. Regione Toscana. ARSIA. 167 p

  • Cordonnier T, Bourdier T, Kunstler G, Piedallu C, Courbaud B (2018) Covariation between tree size and shade tolerance modulates mixed-forest productivity. Ann for Sci 75:1–15. https://doi.org/10.1007/s13595-018-0779-6

    Article  Google Scholar 

  • Coutts SR, Caplat P, Cousins K, Ledgard N, Buckley YM (2012) Reproductive ecology of Pinus nigra in an invasive population: individual-and population-level variation in seed production and timing of seed release. Ann for Sci 69:467–476. https://doi.org/10.1007/s13595-012-0184-5

    Article  Google Scholar 

  • Creus J (1998) A propósito de los árboles más viejos de la España peninsular: los Pinus nigra Arn. ssp. salzmanii (Dunal) Franco de Puertollano-Cabañas Sierra de Cazorla. Jaén Montes 54:68–76

    Google Scholar 

  • Cseresnyés I, Csontos P (2012) Soil seed bank of the invasive Robinia pseudoacacia in planted Pinus nigra stands. Acta Bot Croat 71:249–260. https://doi.org/10.2478/v10184-011-0065-2

    Article  Google Scholar 

  • Cseresnyés I, Tamás J (2014) Evaluation of Austrian pine (Pinus nigra) plantations in Hungary. Tájökológiai Lapok 12:267–284

    Article  Google Scholar 

  • Cukor J, Vacek Z, Vacek S, Linda R, Podrázský, (2022) Biomass productivity, forest stability, carbon balance, and soil transformation of agricultural land afforestation: a case study of suitability of native tree species in the submontane zone in Czechia. CATENA 210:105893. https://doi.org/10.1016/j.catena.2021.105893

    Article  CAS  Google Scholar 

  • De Luis M, Gričar J, Čufar K, Raventós J (2007) Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J 28:389–404

    Article  Google Scholar 

  • De Meo I, Cantiani P, Paletto A (2020) Effect of thinning on forest scenic beauty in a black pine forest in central Italy. Forests 11:1295. https://doi.org/10.3390/f11121295

    Article  Google Scholar 

  • Debreczy Z, Rácz I (2011) Conifers around the world. DendroPress Ltd., Budapest DePristo

    Google Scholar 

  • del Cerro A, Lucas-Borja ME, Martínez García E, López Serrano FR, Andrés Abellán M, García Morote FA et al (2009) Influence of stand density and soil treatment on the Spanish black pine (Pinus nigra Arn. Ssp. salzmannii) regeneration in Spain. Invest Agrar Sis Recur for 18(2):1–14

    Google Scholar 

  • del Río M, Schütze G, Pretzsch H (2013) Temporal variation of competition andfacilitation in mixed species forests in Central Europe. Plant Biol 16:166–176. https://doi.org/10.1111/plb.12029

    Article  PubMed  Google Scholar 

  • Diaz-Maroto IJ, Vila-Lameiro P (2006) Litter production and composition in natural stands of Quercus robur L. (Galicia, Spain). Pol J Ecol 54:429–439

    Google Scholar 

  • Dida M, Ducci F, Zeneli G (2001) Black pine (Pinus nigra Arn.) resources in Albania. For Gen Res 29:43–46

    Google Scholar 

  • Dobbs C, Kendal D, Nitschke CR (2014) Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol Indic 43:44–55. https://doi.org/10.1016/j.ecolind.2014.02.007

    Article  Google Scholar 

  • Dropkin VH, Foudin A, Kondo E, Lini MJ, Smith M (1981) Pinewood nematode: a threat to US forests? Plant Dis 65:1022–1027

    Article  Google Scholar 

  • Dyderski MK, Paź S, Frelic LE, Jagodziński AM (2018) How much does climate change threaten European forest tree species distributions? Glob Chang Biol 24(3):1150–1163. https://doi.org/10.1111/gcb.13925

    Article  PubMed  Google Scholar 

  • Eckenwalder J (2009) Conifers of the world: the complete reference. Timber Press, Portland

    Google Scholar 

  • Enescu CM, de Rigo D, Caudullo G, Mauri A, Houston Durrant T (2016) Pinus nigra in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publ. Off EU, Luxembourg, pp 015–138

    Google Scholar 

  • Forest Europe (2015) State of Europe’s Forests 2015; FOREST EUROPE Liaison Unit: Madrid, Spain, p 314

  • Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J for Sci 51(10):431–445

    Article  Google Scholar 

  • Fabrika M (2007) Modelling of forest production at climate change by growth model SIBYLA. In Bioclimatology and natural hazards international scientific conference, Poľana nad Detvou, Slovakia, pp 17–20

  • Farjon A, Filer D (2013) An Atlas of the World’s Conifers. An analysis of their distribution, biogeography, diversity, and conservation status. Brill Academic Publisher, Leiden

    Book  Google Scholar 

  • Farjon A (2010) A handbook of the world’s conifers. Brill EJ, Leiden/Boston

  • Farjon A (2013) Pinus nigra. The IUCN Red List of Threatened Species 2013: e.T42386A2976817

  • Felton A, Lindbladh M, Brunet J, Fritz Ö (2010) Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe. For Ecol Manage 260(6):939–947. https://doi.org/10.1016/j.foreco.2010.06.011

    Article  Google Scholar 

  • Fernandes TJG, Del Campo AD, Herrera R, Molina AJ (2016) Simultaneous assessment, through sap flow and stable isotopes, of water use efficiency (WUE) in thinned pines shows improvement in growth, tree-climate sensitivity and WUE, but not in WUEi. For Ecol Manage 361:298–308. https://doi.org/10.1016/j.foreco.2015.11.029

    Article  Google Scholar 

  • Férnandez A, Génova M, Creus J, Gutiérrez E (1996) Dendroclimatological investigation covering the last 300 years in central Spain. In: Dean JS, Meko DM, Swetman TW (eds) Tree rings, environment and humanity. Radiocarbon U of Arizona, Tucson, pp 181–190

    Google Scholar 

  • Fernández-Golfín Seco JI, Diez Barra MR, Hermoso Prieto E, Conde García M (2004) Mechanical characterization of timber from Spanish provenances of laricio pine according to European standards. Wood Sci Technol 38(1):25–34

    Article  Google Scholar 

  • Fkiri S, Mezni F, Rigane G, Ben Salem R, Ghazghazi H, Khouja ML, Nasr Z, Khaldi A (2021) Chemotaxonomic Study of Four Subspecies of Pinus nigra Arn. Grown in Common Garden Based on Essential Oil Composition. J Food Qual 533531:1-7

    Google Scholar 

  • Forrester DI, Kohnle U, Albrecht AT, Bauhus J (2013) Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For Ecol Manage 304:233–242. https://doi.org/10.1016/j.foreco.2013.04.038

    Article  Google Scholar 

  • Fulé PZ, Ribas M, Gutiérrez E, Vallejo R, Kaye MW (2008) Forest structure and fire history in an old Pinus nigra forest, eastern Spain. For Ecol Manage 255(3–4):1234–1242. https://doi.org/10.1016/j.foreco.2007.10.046

    Article  Google Scholar 

  • Galicia L, Zarco-Arista AE (2014) Multiple ecosystem services, possible trade-offs and synergies in a temperate forest ecosystem in Mexico: a review. Int J Biodivers Sci Ecosyst Serv Manag 10:275–288. https://doi.org/10.1080/21513732.2014.973907

    Article  Google Scholar 

  • Gambi G (1983) Il pino nero, pianta della bonifica montana. Annali Istituto Sperimentale per La Selvicoltura 14:3–46

    Google Scholar 

  • Gazol A, Camarero JJ (2022) Compound climate events increase tree drought mortality across European forests. Sci Total Environ 816:151604. https://doi.org/10.1016/j.scitotenv.2021.151604

    Article  CAS  PubMed  Google Scholar 

  • Gernandt DS, Geada López G, Ortiz García S, Liston A (2005) Phylogeny and classification of Pinus. Taxon 54:29–42. https://doi.org/10.2307/25065300

    Article  Google Scholar 

  • Gillman LN, Wright SD, Cusens J, McBride PD, Malhi Y, Whittaker RJ (2015) Latitude, productivity and species richness. Glob Ecol Biogeogr 24:107–117. https://doi.org/10.1111/geb.12245

    Article  Google Scholar 

  • Goertz D, Pernek M, Haendel U, Kohlmayr B, Wegensteiner R (2017) Infection, course of disease and effects of Canningia tomici in Tomicus piniparda and Tomicus minor (Coleoptera: Curculionidae). Period Biol 119:285–293. https://doi.org/10.18054/pb.v119i4.4998

    Article  Google Scholar 

  • Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manage 267:284–296. https://doi.org/10.1016/j.foreco.2011.11.035

    Article  Google Scholar 

  • Grossoni P (2000) Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie. In: Roloff A, Weisgerber H, Lang UM, Stimm B, Schütt P (eds) (Wiley-Vch Verlag, Weinheim, 2000)

  • Guada G, Camarero JJ, Sánchez-Salguero R, Cerrillo RMN (2016) Limited growth recovery after drought-induced forest dieback in very defoliated trees of two pine species. Front Plant Sci 7:418. https://doi.org/10.3389/fpls.2016.00418

    Article  PubMed  PubMed Central  Google Scholar 

  • Guler C, Copur Y, Akgul M, Buyuksari U (2007) Some chemical, physical and mechanical properties of juvenile wood from black pine (Pinus nigra Arnold) plantations. J Appl Sci 7(5):755–758

    Article  CAS  Google Scholar 

  • Gülsoy S, Cinar T (2019) The relationships between environmental factors and site index of Anatolian black pine (Pinus nigra Arn. Subsp. pallasiana (Lamb.) Holmboe) stands in Demirci (Manisa) district, Turkey. Appl Ecol Environ Res 17:1235–1246. https://doi.org/10.15666/aeer/1701_12351246

    Article  Google Scholar 

  • Güner H, Köse N, Harley G (2016) A 200-year reconstruction of Kocasu River (Sakarya River Basin, Turkey) streamflow derived from a tree-ring network. Int J Biometeorol 61(3):427–437. https://doi.org/10.1007/s00484-016-1223-y

    Article  PubMed  Google Scholar 

  • Guner ST, Çömez A (2017) Biomass equations and changes in carbon stock in afforested black pine (Pinus nigra Arnold. Subsp. Pallasiana (Lamb.) Holmboe) stands in Turkey. Fresenius Environ Bull 26(3):2368–2379

    CAS  Google Scholar 

  • Hamilton GJ, Christie JM (1971) Forest management tables. Forestry Commission Booklet No. 34, London, UK, 201 p

  • Hanso M, Drenkhan R (2008) First observations of Mycosphaerella pini in Estonia. Plant Pathol 57:1177. https://doi.org/10.1111/j.1365-3059.2008.01912.x

    Article  Google Scholar 

  • Hanso M, Drenkhan R (2009) Diplodia pinea is a new pathogen on Austrian pine (Pinus nigra) in Estonia. Plant Pathol 58:797

    Article  Google Scholar 

  • Van Haverbeke DF (1990) Pinus nigra Arnold (European Black Pine). In: Burns RM, Honkala BH (eds): Silvics of North America. Volume 1. Conifers. Agriculture Handbook No. 654. Washington, D.C., USDA Forest Service, pp 797–818

  • Hodgson D, McDonald JL, Hosken DJ (2015) What do you mean ‘resilient’? Trends Ecol Evol 30:503–506. https://doi.org/10.1016/j.tree.2015.06.010

    Article  PubMed  Google Scholar 

  • Huber MO, Sterba H, Bernhard L (2014) Site conditions and definition of compositional proportion modify mixture effects in Picea abies–Abies alba stands. Can J for Res 44:1281–1291. https://doi.org/10.1139/cjfr-2014-0188

    Article  Google Scholar 

  • Huuskonen S, Domisch T, Finér L, Hantula J, Hynynen J, Matala J et al (2021) What is the potential for replacing monocultures with mixed-species stands to enhance ecosystem services in boreal forests in Fennoscandia? For Ecol Manage 479:118558. https://doi.org/10.1016/j.foreco.2020.118558

    Article  Google Scholar 

  • IPCC (2019) In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Portner HO, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds), Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC

  • Isajev V, Fady B, Semerci H, Andonovski V (2004) EUFORGEN technical guidelines for genetic conservation and use for European black pine (Pinus nigra). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Curr Opin Insect Sci 35:103–108. https://doi.org/10.1016/j.cois.2019.07.010

    Article  PubMed  Google Scholar 

  • Jandl R, Spathelf P, Bolte A, Prescott CE (2019) Forest adaptation to climate change—is non-management an option? Ann for Sci 76(2):1–13. https://doi.org/10.1007/s13595-019-0827-x

    Article  Google Scholar 

  • Jankovský L, Palovćiková D (2003) Dieback of Austrian pine—the epidemic occurrence of Sphaeropsis sapinea in southern Moravia. J for Sci 49(8):389–394. https://doi.org/10.17221/4712-JFS

    Article  Google Scholar 

  • Janssen E, Kint V, Bontemps JD, Özkan K, Mert A, Köse N et al (2018) Recent growth trends of black pine (Pinus nigra J.F. Arnold) in the eastern mediterranean. For Ecol Manage 412:21–28. https://doi.org/10.1016/j.foreco.2018.01.047

    Article  Google Scholar 

  • Jones MW, Smith A, Betts R, Canadell JG, Prentice IC, Le Quéré C (2020) Climate change increases the risk of wildfires. ScienceBrief Rev 116:117

    Google Scholar 

  • Kanat M, Alma MH, Sivrikaya F (2010) The effect of Viscum album L. on annual diameter increment of Pinus nigra Arn. Afr J Agric Res 5(2):166–171. https://doi.org/10.5897/AJAR09.482

    Article  Google Scholar 

  • Karali A, Hatzaki M, Giannakopoulos C, Roussos A, Xanthopoulos G, Tenentes V (2014) Sensitivity and evaluation of current fire risk and future projections due to climate change: the case study of Greece. Nat Hazards Earth Syst Sci 14(1):143–153. https://doi.org/10.5194/nhess-14-143-2014

    Article  Google Scholar 

  • Kaya Z, Temerit A (1994) Genetic structure of marginally located Pinus nigra var pallasiana populations in central Turkey. Silvae Genet 43:272–276

    Google Scholar 

  • Kolström M, Lindner M, Vilén T, Maroschek M, Seidl R, Lexer MJ et al (2011) Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2(4):961–982. https://doi.org/10.3390/f2040961

    Article  Google Scholar 

  • Kowalski T, Jankowiak R (1998) First record of Dothistroma septospora (Dorog.) Morelet in Poland: a contribution to the symptomatology and epidemiology. Phytopathol Pol 16:15–29

    Google Scholar 

  • Krajnc L, Hafner P, Gričar J (2021) The effect of bedrock and species mixture on wood density and radial wood increment in pubescent oak and black pine. For Ecol Manage 481:118753. https://doi.org/10.1016/j.foreco.2020.118753

    Article  Google Scholar 

  • Kremer BP (2010) Steinbachs Naturführer Bäume und Sträucher. Ulmer Verlag. 384 p

  • Kunkel KK (2001) Surface energy budget and fuel moisture. In: Johnson EA, Miyanishi K (eds) Forest fires-behavior and ecological effects. Academic Press, San Diego, pp 303–350

    Chapter  Google Scholar 

  • Kupka I, Podrázský V, Kubeček J (2013) Soil-forming effect of Douglas fir at lower altitudes-a case study. J for Sci 59(9):345–351. https://doi.org/10.17221/27/2013-JFS

    Article  Google Scholar 

  • La Marca O (1986) Gli schianti nei boschi. La Gestione Delle Foreste e La Difesa Del Suolo - Cellulosa e Carta 4:14–22

    Google Scholar 

  • Lebourgeois F, Becker M, Chevalier R, Dupouey J, Gilbert JM (2000) Height and radial growth trends of Corsican pine in western France. Can J for Res 30(5):712–724. https://doi.org/10.1139/x00-001

    Article  Google Scholar 

  • Leites L, Benito Garzón M (2023) Forest tree species adaptation to climate across biomes: building on the legacy of ecological genetics to anticipate responses to climate change. Glob Chang Biol 29:4711–4730. https://doi.org/10.1111/gcb.16711

    Article  CAS  PubMed  Google Scholar 

  • Liira J, Sepp T, Kohv K (2011) The ecology of tree regeneration in mature and old forests: combined knowledge for sustainable forest management. J for Res 16:184–193

    Article  Google Scholar 

  • Linares JC, Tíscar PA (2010) Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiol 30:795–806. https://doi.org/10.1093/treephys/tpq052

    Article  PubMed  Google Scholar 

  • Linares JC, Camarero JJ, Carreira JA (2009) Interacting effects of climate and forest-cover changes on mortality and growth of the southernmost European fir forests. Global Ecol Biogeogr 18:485–497. https://doi.org/10.1111/j.1466-8238.2009.00465.x

    Article  Google Scholar 

  • Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van Der Maaten E et al (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manage 146:69–83. https://doi.org/10.1016/j.jenvman.2014.07.030

    Article  PubMed  Google Scholar 

  • Linnakoski R, Kasanen R, Dounavi A, Forbes KM (2019) Forest health under climate change: effects on tree resilience, and pest and pathogen dynamics. Front Plant Sci 10:1157. https://doi.org/10.3389/fpls.2019.01157

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Wang T, Peñuelas J, Piao S (2022) Drought resistance enhanced by tree species diversity in global forests. Nat Geosci 15:800–804. https://doi.org/10.1038/s41561-022-01026-w

    Article  CAS  Google Scholar 

  • Loustau D, Bosc A, Colin A, Ogée J, Davi H, François C et al (2005) Modeling climate change effects on the potential production of French plains forests at the sub-regional level. Tree Physiol 25:813–823. https://doi.org/10.1093/treephys/25.7.813

    Article  PubMed  Google Scholar 

  • Lucas-Borja ME (2008) La regeneración natural de los montes de Pinus nigra Arn. ssp salzmannii en la Serranía de Cuenca; Bases para la gestión forestal del monte “Los Palancares y Agregados” (CU). PhD Dissertation, Castilla La Mancha University

  • Lucas-Borja ME, Vacchiano G (2018) Interactions between climate, growth and seed production in Spanish black pine (Pinus nigra Arn. ssp. salzmannii) forests in Cuenca Mountains (Spain). New for 49(3):399–414. https://doi.org/10.1007/s11056-018-9626-8

    Article  Google Scholar 

  • Lucas-Borja ME, Fonseca T, Linares JC, Morote FG, Serrano FL (2012a) Does the recruitment pattern of Spanish black pine (Pinus nigra Arn ssp. salzmannii) change the regeneration niche over the early life cycle of individuals? For Ecol Manage 284:93–99. https://doi.org/10.1016/j.foreco.2012.07.042

    Article  Google Scholar 

  • Lucas-Borja ME, Fonseca TF, Lousada JL, Silva-Santos P, Garcia EM, Abellán MA (2012b) Natural regeneration of Spanish black pine [Pinus nigra Arn. ssp. salzmannii (Dunal) Franco] at contrasting altitudes in a Mediterranean mountain area. Ecol Res 27(5):913–921. https://doi.org/10.1007/s11284-012-0969-x

    Article  Google Scholar 

  • Lucas-Borja ME, HedoJ CA, Candel-Pérez D, Viñegla B (2016a) Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine (Pinus nigra Ar. ssp. salzmannii) Forest. Sci Total Environ 562:145–154. https://doi.org/10.1016/j.scitotenv.2016.03.160

    Article  CAS  PubMed  Google Scholar 

  • Lucas-Borja ME, Madrigal J, Candel-Pérez D, Jiménez E, Moya D, de-las Heras J et al (2016b) Effects of prescribed burning, vegetation treatment and seed predation on natural regeneration of Spanish black pine (Pinus nigra Arn. Ssp. salzmannii) in pure and mixed forest stands. For Ecol Manage 378:24–30. https://doi.org/10.1016/j.foreco.2016.07.019

    Article  Google Scholar 

  • Lucas-Borja ME, Andivia E, Candel-Pérez D, Linares JC, Camarero JJ (2021) Long term forest management drives drought resilience in Mediterranean black pine forest. Trees 35(5):1651–1662. https://doi.org/10.1007/s00468-021-02143-6

    Article  Google Scholar 

  • RS MAFF (2023). Information about countries. In: Coordination mechanism for cooperation between China and CEEC countries, Republic of Slovenia Ministry of Agriculture, Forestry and Food. http://www.china-ceecforestry.org/

  • C MANRE (2016). Critera and Indicators for the Sustainable Forest Management in Cyprus. Cyprus Ministry of Agriculture, Natural Resources and Environment. https://moa.gov.cy

  • Marchi M, Castaldi C, Merlini P, Nocentini S, Ducci F (2015) Stand structure and influence of climate on growth trends of a Marginal forest population of Pinus nigra spp. nigra. Ann Silvic Res 39:100–110. https://doi.org/10.12899/asr-1066

    Article  Google Scholar 

  • Marchi M, Paletto A, Cantiani P, Bianchetto E, De Meo I (2018) Comparing thinning system effects on ecosystem services provision in artificial black pine (Pinus nigra J.F. Arnold) forests. Forests 9(4):188. https://doi.org/10.3390/f9040188

    Article  Google Scholar 

  • M MARD (2023) Forests of Montenegro, Directorate for Forestry, Hunting and Wood industry. Montenegro Ministry of Agriculture and Rural Development. https://www.gov.me

  • Martín-Benito D, Cherubini P, del Río M, Cañellas I (2008a) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373. https://doi.org/10.1007/s00468-007-0191-6

    Article  Google Scholar 

  • Martín-Benito D, Gea-Izquierdo G, del Río M, Cañellas I (2008b) Long-term trends in dominant-height growth of black pine using dynamic models. For Ecol Manage 256:1230–1238. https://doi.org/10.1016/j.foreco.2008.06.024

    Article  Google Scholar 

  • Martín-Benito D, del Río M, Cañellas I (2010) Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean mountains. Ann for Sci 67:401. https://doi.org/10.1051/forest/2009121

    Article  Google Scholar 

  • Martínez-Vilalta J, López BC, Adell N, Badiella L, Ninyerola M (2008) Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob Chang Biol 14:1868–2881. https://doi.org/10.1111/j.1365-2486.2008.01685.x

    Article  Google Scholar 

  • Matziris DI (1994) Genetic variation in the phenology of flowering in black pine. Silvae Genet 43(5–6):321–328

    Google Scholar 

  • Matziris DI (2005) Genetic variation and realized genetic gain from black pine tree improvement. Silvae Genet 54(3):96–104. https://doi.org/10.1515/sg-2005-0015

    Article  Google Scholar 

  • Medvecká J, Jarolímek I, Hegedüšová K, Škodová I, Bazalová D, Botková K et al (2018) Forest habitat invasions—who with whom, where and why. For Ecol Manage 409:468–478. https://doi.org/10.1016/j.foreco.2017.08.038

    Article  Google Scholar 

  • Mercurio R, Contu F, Scarfò F (2010) New approaches concerning forest restoration in a protected area of central Italy: an introduction. Scand J for Res 25:115–120. https://doi.org/10.1080/02827581.2010.485809

    Article  Google Scholar 

  • Meštrović Š, Fabijanić G (1994). Priručnik za uređivanje šuma. Ministarstvo poljoprivrede i šumarstva Hrvatske, Zagreb, 416 p

  • Mikulová K, Jarolímek I, Bacigál T, Hegedüšová K, Májeková J et al (2019a) The effect of non-native black pine (Pinus nigra J.F. Arnold) plantations on environmental conditions and undergrowth diversity. Forests 10:548. https://doi.org/10.3390/f10070548

    Article  Google Scholar 

  • Mikulová K, Jarolímek I, Bacigál T, Hegedüšová K, Májeková J, Medvecká J et al (2019b) The effect of non-native black pine (Pinus nigra J.F. Arnold) plantations on environmental conditions and undergrowth diversity. Forests 10(7):548. https://doi.org/10.3390/f10070548

    Article  Google Scholar 

  • Millar CS (1970) Role of Lophodermella species in premature death of Pine needles in Scotland. Rep Forest Res Lond. pp 176–178

  • Mina M, del Río M, Huber MO, Thürig E, Rohner B (2018) The symmetry of competitive interactions in mixed Norway spruce, silver fir and European beech forests. J Veg Sci 29:775–787. https://doi.org/10.1111/jvs.12664

    Article  Google Scholar 

  • Mitchell SJ (2000) Stem growth responses in Douglas-fir and Sitka spruce following thinning: implications for assessing wind-firmness. For Ecol Manage 135:105–114. https://doi.org/10.1016/S0378-1127(00)00302-9

    Article  Google Scholar 

  • Monumentaltrees.com (2003–2022): Available online at: https://www.monumentaltrees.com/en/trees/blackpine/records/

  • Moreira F, Ascoli D, Safford H, Adams MA, Moreno JM, Pereira JM et al (2020) Wildfire management in Mediterranean-type regions: paradigm change needed. Environ Res Lett 15:011001. https://doi.org/10.1088/1748-9326/ab541e

    Article  Google Scholar 

  • Móricz N, Garamszegi B, Rasztovits E, Bidló A, Horváth A, Jagicza A, Gábor I, Vekerdy Z, Somogyi Z, Gálos B (2018) Recent Drought-induced vitality decline of black pine (Pinus nigra Arn.) in South-West hungary—is this drought-resistant species under threat by climate change? Forests 9(7):414. https://doi.org/10.3390/f9070414

    Article  Google Scholar 

  • Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219. https://doi.org/10.1111/j.1461-0248.2011.01691.x

    Article  PubMed  Google Scholar 

  • Muscolo A, Mallamaci C, Sidari M, Mercurio R (2011) Effects of gap size and soil chemical properties on the natural regeneration in black pine (Pinus nigra Arn.) stands. Tree for Sci Biotech 5(1):65–71

    Google Scholar 

  • Musil I, Hamerník J (2007) Jehličnaté dřeviny: Lesnická dendrologie 1. Praha, Academia: 352 p

  • Netherer S, Schopf A (2010) Potential effects of climate change on insect herbivores in European forests—general aspects and the pine processionary moth as specific example. For Ecol Manage 259:831–838. https://doi.org/10.1016/j.foreco.2009.07.034

    Article  Google Scholar 

  • Nicholls TH, Hudler GW (1971) Dothistroma pini on Pinus nigra in Minnesota. Plant Dis Rep 55:1040

    Google Scholar 

  • F NIGFI (2022) Statistics from the National Institute of Geographic and Forest Information. French National Institute of Geographic and Forest Information. https://www.ign.fr/

  • Nijs I, Roy J (2000) How important are species richness, species evenness and interspecific differences to productivity? A mathematical model. Oikos 88:57–66

    Article  Google Scholar 

  • Nikolić D, Tucić N (1983) Isozyme variation within and among populations of European black pine (Pinus nigra Arnold). Silvae Genet 32(3–4):80–89

    Google Scholar 

  • Nopp-Mayr U, Kempter I, Muralt G, Gratzer G (2012) Seed survival on experimental dishes in a central European old-growth mixed-species forest: effects of predator guilds, tree masting and small mammal population dynamics. Oikos 121:337–346. https://doi.org/10.1111/j.1600-0706.2011.19099.x

    Article  Google Scholar 

  • Norris JE, Di Iorio A, Stokes A, Nicoll BC, Achim A (2008) Slope stability and erosion control: ecotechnological solutions. In: Norris JE et al (eds). Springer Netherlands, pp 167–210

  • Novotný P, Modlinger R, Pešková V, Čáp J (2012) Evaluation of growth and health status of European buck pine (Pinus nigra Arnold) provenances in Central Bohemia at the age of 41 years. ZLV 57(3):266–273

    Google Scholar 

  • Oliva AG, Merino VB, Fernández-Golfín Seco JI, García MC, Prieto EH (2006) Effect of growth conditions on wood density of Spanish Pinus nigra. Wood Sci Technol 40(3):190–204. https://doi.org/10.1007/s00226-005-0014-0

    Article  CAS  Google Scholar 

  • Olsson S, Grivet D, Cattonaro F, Vendramin V, Giovannelli G, Scotti-Saintagne C et al (2020) Evolutionary relevance of lineages in the European black pine (Pinus nigra) in the transcriptomic era. Tree Genet Genomes 16:30. https://doi.org/10.1007/s11295-020-1424-8

    Article  Google Scholar 

  • Özçelik R, Bal C (2013) Effects of adding crown variables in stem taper and volume predictions for black pine. Turk J Agric for 37(2):231–242. https://doi.org/10.3906/tar-1206-2

    Article  Google Scholar 

  • Özçelik R, Cao QV (2017) Evaluation of fitting and adjustment methods for taper and volume prediction of black pine in Turkey. For Sci 63(4):349–355. https://doi.org/10.5849/FS.2016-067

    Article  Google Scholar 

  • Palahí M, Pukkala T, Trasobares A (2006) Modelling the diameter distribution of Pinus sylvestris, Pinus nigra and Pinus halepensis forest stands in Catalonia using the truncated Weibull function. For 79(5):553–562. https://doi.org/10.1093/forestry/cpl037

    Article  Google Scholar 

  • Paletto A, De Meo I, Grilli G, Nikodinoska N (2017) Effects of different thinning systems on the economic value of ecosystem services: a case-study in a black pine peri-urban forest in Central Italy. Ann for Res 60(2):313–326. https://doi.org/10.15287/afr.2017.799

    Article  Google Scholar 

  • Palik B, Engstrom RT (1999) Species Composition. Cambridge University Press, Cambridge, pp 65–94

    Google Scholar 

  • Pazdrowski W (2004) The proportion and some selected physical and mechanical properties of juvenile, maturing and adult wood of black pine and Scots pine. EJPAU 7(1):1–8.

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Pereira MG, Trigo RM, da Camara CC, Pereira JMC, Leite SM (2005) Synoptic patterns associated with large summer forest fires in Portugal. Agr Forest Meteorol 129:11–25. https://doi.org/10.1016/j.agrformet.2004.12.007

    Article  Google Scholar 

  • Pérez-Ramos IM, Ourcival JM, Limousin M, Rambal S (2010) Mast seeding under increasing drought: results from a longterm data set and from a rainfall exclusion experiment. Ecology 91(10):3057–3068. https://doi.org/10.1890/09-2313.1

    Article  PubMed  Google Scholar 

  • Peterson GW, Walla JA (1978) Development of Dothistroma pini upon and within needles of Austrian and ponderosa pines in eastern Nebraska. Phytopathol 68(10):1422–1430

    Article  Google Scholar 

  • Pimont F, Prodon R, Rigolot E (2011) Comparison of postfire mortality in endemic Corsican black pine (Pinus nigra ssp. laricio) and its direct competitor (Pinus pinaster). Ann for Sci 68(2):425–432. https://doi.org/10.1007/s13595-011-0031-0

    Article  Google Scholar 

  • Pines of Silvicultural Importance (2002) CABI publishing, New York. pp 531

  • Plaza-Álvarez PA, Lucas-Borja ME, Sagra J, Moya D, Fontúrbel T, De las Heras J (2017) Soil respiration changes after prescribed fires in Spanish black pine (Pinus nigra Arn. Ssp. salzmannii) monospecific and mixed forest stands. Forests 8(7):248. https://doi.org/10.3390/f8070248

    Article  Google Scholar 

  • Podrázský V, Remeš J (2009) Soil-forming effect of grand fir (Abies grandis [Dougl. ex D. Don] Lindl.). J for Sci 55(12):533–539. https://doi.org/10.17221/50/2009-JFS

    Article  Google Scholar 

  • Podrázský V, Remeš J, Sloup R, Pulkrab K, Novotná S (2016) Douglas-fir-partial substitution for declining conifer timber supply—review of Czech data. Wood Res 61(4):525–530

    Google Scholar 

  • Podrázský V, Vacek Z, Vacek S, Vítámvás J, Gallo J, Prokůpková A et al (2020) Production potential and structural variability of pine stands in the Czech Republic: Scots pine (Pinus sylvestris L.) versus introduced pines—case study and problem review. J for Sci 66(5):197–207. https://doi.org/10.17221/42/2020-JFS

    Article  Google Scholar 

  • Poljanšek S, Ballian D, Nagel TA, Levanič T (2012) A 435-year-long European black pine (Pinus nigra) chronology for the central-western Balkan region. Tree-Ring Res 68(1):31–44. https://doi.org/10.3959/2011-7.1

    Article  Google Scholar 

  • Pötzelsberger E, Spiecker H, Neophytou C, Mohren F, Gazda A, Hasenauer H (2020) Growing non-native trees in European forests brings benefits and opportunities but also has its risks and limits. Curr for Rep 6(4):339–353. https://doi.org/10.1007/s40725-020-00129-0

    Article  Google Scholar 

  • Praciak A, Pasiecznik N, Sheil D, van Heist M, Sassen M, Correia CS et al (2013) The CABI encyclopedia of forest trees. CABI, Oxfordshire

    Google Scholar 

  • Pretzsch H, Matthew C, Dieler J (2012) Allometry of tree crown structure. Relevance for space occupation at the individual plant level and for self-thinning at the stand level. In: Growth and defence in plants: resource allocation at multiple scales, pp 287–310

  • Pretzsch H, Schütze G (2016) Effect of tree species mixing on the size structure, density, and yield of forest stands. Eur J for Res 135:1–22. https://doi.org/10.1007/s10342-015-0913-z

    Article  Google Scholar 

  • von Raab-Straube E (2014) Gymnospermae. In: Euro+Med Plantbase—the information resource for Euro-Mediterranean plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/

  • Radanova SS (2014) Plant succession in post fire communities of Pinus nigra Arn. Ecol Balk 5:55–60

    Google Scholar 

  • Raptis DI, Kazana V, Kazaklis A, Stamatiou C (2018) A crown width-diameter model for natural even-aged black pine forest management. Forests 9:610. https://doi.org/10.3390/f9100610

    Article  Google Scholar 

  • Raptis DI, Kazana V, Kazaklis A, Stamatiou C (2021) Mixed-effects height-diameter models for black pine (Pinus nigra Arn.) forest management. Trees 35(4):1167–1183. https://doi.org/10.1007/s00468-021-02106-x

    Article  Google Scholar 

  • Read DJ (1968) Dieback disease of pines with special reference to Corsican pine. III. Mycological Factors. Forestry 41:72–82. https://doi.org/10.1093/forestry/41.1.72

    Article  Google Scholar 

  • Remeš J, Zeidler A (2014) Production potential and wood quality of Douglas fir from selected sites in the Czech Republic. Wood Res 59(3):509–520

    Google Scholar 

  • Richter K, Eckstein D, Holmes RL (1991) The dendrochronological signal of pine trees (Pinus spp.) in Spain. Tree Ring Bull 51:1–13

    Google Scholar 

  • de Rigo D, Bosco C, San-Miguel-Ayanz J, Houston Durrant T, Barredo J I, Strona G et al. (2016) Forest resources in Europe: an integrated perspective on ecosystem services, disturbances and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds), European Atlas of Forest Tree Species. Publ Off EU, Luxembourg, pp e015b50+

  • Rodrigo A, Retana J, Picó FX (2004) Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology 85(3):716–729. https://doi.org/10.1890/02-0492

    Article  Google Scholar 

  • Roiron P, Chabal L, Figueiral I, Terral J-F, Ali AA (2013) Palaeobiogeography of Pinus nigra Arn. subsp. salzmannii (Dunal) Franco in the north-western Mediterranean Basin: a review based on macroremains. Rev Palaeobot Palynol 194:1–11. https://doi.org/10.1016/j.revpalbo.2013.03.002

    Article  Google Scholar 

  • Ruiz J (2005) Descripción de la especie Pinus nigra Arn. In: Grande Ortiz MA, García Abril A (eds) Los pinares de Pinus nigra Arn. en España: Ecología, uso y gestión. Fundación Conde Del Valle De Salazar, Madrid Ruscoe WA

  • Ruscoe WA, Elkinton JS, Choquenot D, Allen RB (2005) Predation of beech seed by mice: effects of numerical and functional responses. J Anim Ecol 74:1005–1019

    Article  Google Scholar 

  • Sangüesa-Barreda G, Camarero JJ, Sánchez-Salguero R, Gutierrez E, Linares J, Génova M et al (2019) Droughts and climate warming desynchronize Black pine growth across the Mediterranean Basin. Sci Total Environ 697:133989. https://doi.org/10.1016/j.scitotenv.2019.133989

    Article  CAS  PubMed  Google Scholar 

  • Savi T, Casolo V, Dal Borgo A, Rosner S, Torboli V, Stenni B et al (2019) Drought-induced dieback of Pinus nigra: a tale of hydraulic failure and carbon starvation. Conserv Physiol 7:coz012. https://doi.org/10.1093/conphys/coz012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savill PS (2013) The silviculture of trees used in British forestry. CABI.

  • Scaltsoyiannes A, Rohr R, Panetsos KP, Tsaktsira M (1994) Allozyme frequency distributions in five European populations of black pine (Pinus nigra Arnold). I. Estimation of genetic variation within and among populations. II. Contribution os isozyme analysis to the taxonomic status of the species. Silvae Genet 43:20–30

    Google Scholar 

  • Schupp EW (1995) Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. Am J Bot 82:399–409. https://doi.org/10.1002/j.1537-2197.1995.tb12645.x

    Article  Google Scholar 

  • Šimůnek V, Vacek Z, Vacek S (2020) Solar Cycles in Salvage Logging: National Data from the Czech Republic Confirm Significant Correlation. Forests 11(9):973. https://doi.org/10.3390/f11090973

    Article  Google Scholar 

  • Šikanja S (2015) Height curve as a new aspect of black pine (Pinus nigra) plantations in the Šumadija region. Acta Agriculturae Serbica 20(39):29–39. https://doi.org/10.5937/AASer1539029S

    Article  Google Scholar 

  • Slodičák M et al (2008) Lesnické hospodaření v Krušných horách. Edice GS LČR, Hradec Králové, 480

  • Sohn JA, Hartig F, Kohler M, Huss J, Bauhus J (2016a) Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests. Ecol Appl 26:2190–2205. https://doi.org/10.1002/eap.1373

    Article  PubMed  Google Scholar 

  • Sohn JA, Saha S, Bauhus J (2016b) Potential of forest thinning to mitigate drought stress: a meta-analysis. For Ecol Manage 380:261–273. https://doi.org/10.1016/j.foreco.2016.07.046

    Article  Google Scholar 

  • Spanos K, Skouteri A, Gaitanis D, Petrakis P, Meliadis I, Michopoulos P et al (2021) Forests of Greece, their multiple functions and uses, sustainable management and biodiversity conservation in the face of climate change. Open J Ecol 11:374–406. https://doi.org/10.4236/oje.2021.114026

    Article  Google Scholar 

  • Spellmann H, Quitt S, Klemmt H-J, Häger U (2015) Schwarzkiefer (Pinus nigra Arn.). In: Vor T, Spellmann H, Bolte A, Ammer Ch (eds) Potenziale und Risiken eingeführter Baumarten: Baumartenpotraits mit naturschutzfachlicher Bewertung. Universitätsverlag Göttingen, Göttingen, pp 127–139

    Google Scholar 

  • Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe—temperate zone. J Environ Manage 67:55–65. https://doi.org/10.1016/S0301-4797(02)00188-3

    Article  PubMed  Google Scholar 

  • MARD SR (2022) Správa o lesnom hospodárstve v Slovenskej republike za rok 2021. Ministry of Agriculture and Rural Development of the Slovak Republic. https://www.mpsr.sk/

  • Stanturf JA, Palik BJ, Dumroese RK (2014) Contemporary forest restoration: a review emphasizing function. For Ecol Manage 331:292–323. https://doi.org/10.1016/j.foreco.2014.07.0

    Article  Google Scholar 

  • Starr M, Saarsalmi A, Hokkanen T, Merila P, Helmisaari HS (2005) Models of litterfall production for scots pine (Pinus sylvestris L.) in Finland using stand, site and climate factors. For Ecol Manag 205(1–3):215–225. https://doi.org/10.1016/j.foreco.2004.10.047

    Article  Google Scholar 

  • Sterck FF, Vos MA, Hannula SES, de Goede SS, de Vries WW, den Ouden JJ et al (2021) Optimizing stand density for climate-smart forestry: a way forward towards resilient forests with enhanced carbon storage under extreme climate events. Soil Biol Biochem 162:108396

    Article  CAS  Google Scholar 

  • Sumner G, Romero R, Homar V, Ramis C, Alonso S, Zorita E (2003) An estimate of the effects of climate change on the rainfall of Mediterranean Spain by the late twenty first century. Clim Dyn 20:789–805. https://doi.org/10.1007/s00382-003-0307-7

    Article  Google Scholar 

  • Tamás J (2003) The history of Austrian pine plantations in Hungary. Acta Bot Croat 62:147–158

    Google Scholar 

  • Teischinger A (2019) Laubholzaufkommen, Laubholzverarbeitung in Österreich und Ansätze für Konzepte von Innovationsstrategien. Lignovisionen 34:21–32

    Google Scholar 

  • Thiel D, Nagy L, Beierkuhnlein C, Huber G, Jentsch A, Konnert M et al (2012) Uniform drought and warming responses in Pinus nigra provenances despite specific overall performances. For Ecol Manage 270:200–208. https://doi.org/10.1016/j.foreco.2012.01.034

    Article  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A et al (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9(3–4):137–152. https://doi.org/10.1016/j.ppees.2007.09.004

    Article  Google Scholar 

  • Tíscar PA (2002) Capacidad reproductiva de Pinus nigra subsp. salzmannii en relación con la edad de la planta madre. Invest Agrar: Sist Recur for 11:357–371

    Google Scholar 

  • Tíscar PA (2003) Condicionantes y limitaciones de la regeneración natural en un pinar oromediterráneo de Pinus nigra subsp. salzmannii. For sys, 12:55-64.

  • Tíscar PA (2007) Dinámica de regeneración de Pinus nigra subsp. salzmannii al sur de su área de distribución: etapas, procesos y factores implicados. Invest Agrar Sist Rec for 16(2):124–135

    Article  Google Scholar 

  • Tíscar P, Linares JC (2011a) Structure and regeneration patterns of Pinus nigra subsp. salzmannii natural forests: a basic knowledge for adaptive management in a changing climate. Forests 2:1013–1030. https://doi.org/10.3390/f2041013

    Article  Google Scholar 

  • Tíscar PA, Linares JC (2011b) Structure and regeneration patterns of Pinus nigra subsp. salzmannii natural forests: a basic knowledge for adaptive management in a changing climate. Forests 2(4):1013–1030. https://doi.org/10.3390/f2041013

    Article  Google Scholar 

  • Tokár F, Krekulová E (2005) Structure, quality, production, LAI and dendrochronology of 100 years old Austrian pine (Pinus nigra Arnold) stand. J for Sci 51(2):67–76. https://doi.org/10.17221/4545-JFS

    Article  Google Scholar 

  • Toth D, Maitah M, Maitah K, Jarolínová V (2020) The impacts of calamity logging on the development of spruce wood prices in Czech forestry. Forests 11:283. https://doi.org/10.3390/f11030283

    Article  Google Scholar 

  • Touchan R, Baisan C, Mitsopoulos ID, Dimitrakopoulos AP (2012) Fire history in European black pine (Pinus nigra Arn.) forests of the Valia Kalda, Pindus mountains, Greece. Tree-Ring Res 68(1):45–50. https://doi.org/10.3959/2011-12.1

    Article  Google Scholar 

  • Trasobares A, Pukkala T, Miina J (2004) Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain. Ann for Sci 61:9–24. https://doi.org/10.1051/forest:2003080

    Article  Google Scholar 

  • Turco M, von Hardenberg J, AghaKouchak A, Llasat M, Provenzale A, Trigo R (2017) On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci Rep 7:81. https://doi.org/10.1038/s41598-017-00116-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turfan N, Alay M, Sariyildiz T (2018) Effect of tree age on chemical compounds of ancient Anatolian black pine (Pinus nigra subsp. pallasiana) needles in Northwest Turkey. Iforest 11(3):406. https://doi.org/10.3832/ifor2665-011

    Article  Google Scholar 

  • Ujházy K, Ujházyová M, Hederová L, Máliš F, Martinák M (2016) Dominant tree species and stand density are the main drivers of plant diversity in managed fir-beech forests. In Book of Abstracts, Posters, 25th Meeting of the European Vegetation Survey; Agrillo E, Attorre F, Spada F, Casella L, Eds., European Vegetation Survey: Rome, Italy, p 107

  • Vacek S et al (2003) Mountain Forests of the Czech Republic. Ministry of Agriculture of the Czech Republic, Forestry Department: 311

  • Vacek S, Prokůpková A, Vacek Z, Bulušek D, Šimůnek V, Králíček I et al (2019a) Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. J for Sci 65:331–345. https://doi.org/10.17221/82/2019-JFS

    Article  Google Scholar 

  • Vacek Z, Vacek S, Slanař J, Bílek L, Bulušek D, Štefančík I et al (2019b) Adaption of Norway spruce and European beech forests under climate change: from resistance to close-to-nature silviculture. Cent Eur for J 65(2):129–144. https://doi.org/10.2478/forj-2019-0013

    Article  Google Scholar 

  • Vacek Z, Prokůpková A, Vacek S, Cukor J, Bílek L, Gallo J et al (2020) Silviculture as a tool to support stability and diversity of forests under climate change: study from Krkonoše Mountains. Cent Eur for J 66:116–129. https://doi.org/10.2478/forj-2020-0009

    Article  Google Scholar 

  • Vacek Z, Cukor J, Vacek S, Linda R, Prokůpková A, Podrázský V et al (2021) Production potential, biodiversity and soil properties of forest reclamations: opportunities or risk of introduced coniferous tree species under climate change? Eur J for Res 140:1243–1266. https://doi.org/10.1007/s10342-021-01392-x

    Article  CAS  Google Scholar 

  • Vacek S, Vacek Z, Cukor J, Podrázský V, Gallo J (2022a) Pinus contorta Douglas ex Loudon and climate change: a literature review of opportunities, challenges, and risks in European forests. J for Sci 68:329–343. https://doi.org/10.17221/101/2022-JFS

    Article  Google Scholar 

  • Vacek Z, Bílek L, Remeš J, Vacek S, Cukor J, Gallo J (2022b) Afforestation suitability and production potential of five tree species on abandoned farmland in response to climate change, Czech Republic. Trees 36:1369–1385. https://doi.org/10.1007/s00468-022-02295-z

    Article  CAS  Google Scholar 

  • Vacek Z, Vacek S, Cukor J (2023) European forests under global climate change: review of tree growth processes, crises and management strategies. J Environ Manage 332:117353. https://doi.org/10.1016/j.jenvman.2023.117353

    Article  PubMed  Google Scholar 

  • Vacek Z, Vacek S (2023) Challenges and risks of Serbian spruce (Picea omorika [Pančić] Purk.) in the time of climate change—a literature review. Cent Eur For J 69:152–166. https://doi.org/10.2478/forj-2022-0016

  • Valbuena-Carabaña M, de Heredia UL, Fuentes-Utrilla P, González-Doncel I, Gil L (2010) Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palynol 162(3):492–506. https://doi.org/10.1016/j.revpalbo.2009.11.003

    Article  Google Scholar 

  • Vallauri DR, Aronson J, Barbero M (2002) An analysis of forest restoration 120 years after reforestation on badlands in the southwestern Alps. Restor Ecol 10:16–26. https://doi.org/10.1046/j.1526-100X.2002.10102.x

    Article  Google Scholar 

  • Venäläinen A, Lehtonen I, Laapas M, Ruosteenoja K, Tikkanen OP, Viiri H, Peltola H (2020) Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review. Glob Chang Biol 26:4178–4196. https://doi.org/10.1111/gcb.15183

    Article  PubMed  PubMed Central  Google Scholar 

  • Viegas DX, Reis RM, Cruz MG, Viegas MT (2004) Calibraçao do Sistema Canadiano de Perigo de Incendio para Aplicaçao em Portugal (Canadian Fire Weather Risk System Calibration for aplication in Portugal). Silva Lusit 12:77–93

    Google Scholar 

  • Weatherall A, Nabuurs GJ, Velikova V, Santopuoli G, Neroj B, Bowditch E et al. (2022) Defining climate-smart forestry. In: Climate-smart forestry in mountain regions. Springer, Cham, pp 35–58

  • Willis KJ, Bennett KD, Birks HJB (1998) The late Quaternary dynamics of pines in Europe. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 107–121

    Google Scholar 

  • Wilson JS, Oliver CD (2000) Stability and density management in Douglas-fir plantations. Can J for Res 30:910–920. https://doi.org/10.1139/x00-027

    Article  Google Scholar 

  • Wingfield MJ, Blanchette A, Kondo E (1983) Comparison of the pine wood nematode, Bursaphelenchus xylophilus from pine and balsam fir. Eur J for Pathol 13(5–6):360–372. https://doi.org/10.1111/j.1439-0329.1983.tb00137.x

    Article  Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2—implications for water-limited environments. Plant Cell Environ 25:319–331. https://doi.org/10.1046/j.1365-3040.2002.00796.x

    Article  PubMed  Google Scholar 

  • Wunder S, Abildtrup J, Thorsen BJ (2014) Quantification of management measures and ekosystém services provision. In: Mavsar R, Tyrväinen L, Prokofieva I, Stenger A (eds) Thorsen BJ. The provision of forest ecosystem services, EFI Joensuu, pp 21–25

    Google Scholar 

  • Zeidler A, Borůvka V, Schönfelder O (2017) Comparison of wood quality of Douglas fir and spruce from afforested agricultural land and permanent forest land in the Czech Republic. Forests 9(1):13. https://doi.org/10.3390/f9010013

    Article  Google Scholar 

  • Zeidler A (2007) Zhodnocení vybraných vlastností dřeva borovice černé (Pinus nigra Arnold.). Zprávy lesnického výzkumu 52:14-20

  • Zeidler A (2013) Timber Atlas. Available online: http://r.fld.czu.cz/vyzkum/multimedia/timber_atlas/nextpages/softwoods.html#

  • Zhang Y, Chen HY, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol 100:742–749. https://doi.org/10.1111/j.1365-2745.2011.01944.x

    Article  Google Scholar 

  • Zimmermann NE Normand S, Psomas A (2014) Environmental portfolio of Central European tree species (appendix s1), Tech. rep., Swiss Federal Research Institute WSL. PorTree. Schlussbericht. Forschungsprogramm Wald und Klimawandel des Bundesamtes für Umwelt BAFU, Bern und der Eidg. Forschungsanstalt WSL, Birmensdorf 10

Download references

Acknowledgements

This study was supported by the Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences (Excellent Team 2021–2022), and Ministry of Agriculture of the Czech Republic (No. QK22020045). Acknowledgment also belongs to Jitka Šišáková, an expert in the field, and Richard Lee Manore, a native speaker, for checking English. We also want to thank Josef Macek for the graphic design of the figures. We are grateful to anonymous reviewers and editor for their constructive comments and valuable suggestions that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ZV, JC, and SV were involved in conceptualization. ZV, JC, SV, JG, VB, and AZ were involved in writing—original draft preparation. ZV and SV were involved in supervision; ZV was involved in project administration. ZV and JC were involved in funding acquisition and revision.

Corresponding author

Correspondence to Zdeněk Vacek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Miren del Río.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacek, Z., Cukor, J., Vacek, S. et al. Role of black pine (Pinus nigra J. F. Arnold) in European forests modified by climate change. Eur J Forest Res 142, 1239–1258 (2023). https://doi.org/10.1007/s10342-023-01605-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-023-01605-5

Keywords

Navigation