Skip to main content
Log in

Ecological consequences of Douglas fir (Pseudotsuga menziesii) cultivation in Europe

  • Review
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) was first introduced to Europe from North America more than 150 years ago, was then planted on a large scale and is now the economically most important exotic tree species in European forests. This literature review summarizes the current knowledge on the effects of Douglas fir on soil chemistry, plants, arthropods and fungi. Douglas fir shapes its abiotic environment similarly to native tree species such as Norway spruce, silver fir or European beech. In general, many organisms have been shown to be able to live together with Douglas fir and in some cases even benefit from its presence. Although the number of species of the ground vegetation and that of arthropod communities is similar to those of native conifer species, fungal diversity is reduced by Douglas fir. Special microclimatic conditions in the crown of Douglas fir can lead to reduced arthropod densities during winter with possible negative consequences for birds. The ecological impacts of Douglas fir are in general not as severe as those of other exotic tree species, e.g., Pinus spp. in South Africa and Ailanthus altissima, Prunus serotina and Robinia pseudoacacia in Europe. Nonetheless, Douglas fir can negatively impact single groups of organisms or species and is now regenerating itself naturally in Europe. Although Douglas fir has not been the subject of large-scale outbreaks of pests in Europe so far, the further introduction of exotic organisms associated with Douglas fir in its native range could be more problematic than the introduction of Douglas fir itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrecht A, Kohnle U, Hanewinkel M, Bauhus J (2013) Storm damage of Douglas-fir unexpectedly high compared to Norway spruce. Ann For Sci 70(2):195–207

    Google Scholar 

  • Auger-Rozenberg M-A, Roques A (2012) Seed wasp invasions promoted by unregulated seed trade affect vegetal and animal biodiversity. Integr Zool 7(3):228–246

    PubMed  Google Scholar 

  • Augspurger CK (1984) Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology 65(6):1705–1712

    Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59(8):233–253

    Google Scholar 

  • Augusto L, Dupouey J-L, Ranger J (2003) Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann For Sci 60:823–831

    Google Scholar 

  • Avolio S, Bernardini V (2000) La parcella sperimentale no 412 di douglasia verde di Pavari nella Catena costiera calabra a settant’anni dall’impianto. Annali dell’Istituto Sperimentale per la Selvicoltura 31:119–136

    Google Scholar 

  • Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. For Ecol Manag 254(1):1–15

    Google Scholar 

  • Benesperi R, Giuliani C, Zanetti S, Gennai M, Lippi MM, Guidi T, Nascimbene J, Foggi B (2012) Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodivers Conserv 21(14):3555–3568

    Google Scholar 

  • Bertheau C, Salle A, Rossi J-P, Bankhead-dronnet S, Pineau X, Roux-morabito G, Lieutier F (2009) Colonisation of native and exotic conifers by indigenous bark beetles (Coleoptera: Scolytinae) in France. For Ecol Manag 258(7):1619–1628

    Google Scholar 

  • Binkley D, Giardina C (1998) Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42(1):89–106

    Google Scholar 

  • Blaney C, Kotanen P (2001) Effects of fungal pathogens on seeds of native and exotic plants: a test using congeneric pairs. J Appl Ecol 38(5):1104–1113

    Google Scholar 

  • Blick T, Goßner M (2006) Spinnen aus Baumkronen-Klopfproben (Arachnida: Aranea), mit Anmerkungen zu Cinetata gradata (Linyphiidae) und Theridion boesenbergi (Theridiidae). Arachnologische Mitteilungen 31:23–39

    Google Scholar 

  • Brasier C, Webber J (2010) Sudden larch death. Nature 466(7308):824–825

    CAS  PubMed  Google Scholar 

  • Bringmann H-D (2001) Die nordamerikanische Douglasie (Pseudotsuga menziesii) als Entwicklungsstätte für heimische Bockkäfer (Col., Cerambycidae). Entomologische Nachrichten und Berichte 45(2):97

  • Brodribb TJ, Pittermann J, Coomes DA (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. Int J Plant Sci 173(6):673–694

    Google Scholar 

  • Broncano MJ, Vila M, Boada M (2005) Evidence of Pseudotsuga menziesii naturalization in montane Mediterranean forests. For Ecol Manag 211(3):257–263

    Google Scholar 

  • Brus D, Hengeveld G, Walvoort D, Goedhart P, Heidema A, Nabuurs G, Gunia K (2011) Statistical mapping of tree species over Europe. Eur J For Res 131(1):145–157

    Google Scholar 

  • Budde S (2006) Auswirkungen des Douglasienanbaus auf die Bodenvegetation im nordwestdeutschen Tiefland. Faculty of Forest Sciences and Forest Ecology, Georg-August-Universität Göttingen, Cuvillier Verlag, Göttingen

    Google Scholar 

  • Buée M, Maurice J-P, Zeller B, Andrianarisoa S, Ranger J, Courtecuisse R, Marçais B, Le Tacon F (2011) Influence of tree species on richness and diversity of epigeous fungal communities in a French temperate forest stand. Fungal Ecol 4(1):22–31

    Google Scholar 

  • Bürger-Arndt R (2000) Kenntnisse zur Synökologie der Douglasie als Grundlage für eine naturschutzfachliche Einschätzung. Forst und Holz 55(22):707–712

    Google Scholar 

  • Burmeister J, Goßner M, Gruppe A (2007) Insektengemeinschaften im Kronenraum von Koniferenarten im Forstlichen Versuchsgarten Grafrath. Nachrichtenblatt der Bayerischen Entomologen 56(1):19–28

    Google Scholar 

  • Bušina F (2007) Natural regeneration of Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) in forest stands of Hůrky Training Forest District, Higher Forestry School and Secondary Forestry School in Písek. J For Sci 53(1):20–34

    Google Scholar 

  • Bußler H, Blaschke M (2004) Die Douglasie—(k)ein Baum für alle Fälle. LWF aktuell 46:14–15

    Google Scholar 

  • Calvaruso C, N’Dira V, Turpault MP (2011) Impact of common European tree species and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) on the physicochemical properties of the rhizosphere. Plant Soil 342(1):469–480

    CAS  Google Scholar 

  • Carnus J-M, Parrotta J, Brockerhoff E, Arbez M, Jactel H, Kremer A, Lamb D, Ohara K, Walters B (2006) Planted forests and biodiversity. J For 104(2):65–77

    Google Scholar 

  • Carrillo-Gavilán A, Espelta JM, Vilà M (2012) Establishment constraints of an alien and a native conifer in different habitats. Biol Invasions 14(6):1279–1289

    Google Scholar 

  • Chou C-H (1993) The role of allelopathy in the diversity of plant communities in Taiwan. Botanical Bulletin of Academia Sinensis 34:211–221

    Google Scholar 

  • Cornelissen JH, Sass-Klaassen U, Poorter L, van Geffen K, van Logtestijn RS, van Hal J, Goudzwaard L, Sterck FJ, Klaassen RK, Freschet GT (2012) Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment. Ambio 41(3):231–245

    PubMed Central  PubMed  Google Scholar 

  • Davidson J, Garbelotto M, Koike S, Rizzo D (2002) First report of Phytophthora ramorum on Douglas-fir in California. Plant Dis 86(11):1274

    Google Scholar 

  • Deflorio G, Johnson C, Fink S, Schwarze FWMR (2008) Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. For Ecol Manag 255(7):2373–2383

    Google Scholar 

  • Del Moral R, Cates RG (1971) Allelopathic potential of the dominant vegetation of western Washington. Ecology 52(6):1030–1037

    Google Scholar 

  • Dellus V, Mila I, Scalbert A, Menard C, Michon V, Herve du Penhoat CLM (1997) Douglas-fir polyphenols and heartwood formation. Phytochemistry 45(8):1573–1578

    CAS  Google Scholar 

  • Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187(2):475–484

    PubMed  Google Scholar 

  • Dodet M, Collet C (2012) When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them? Biol Invasions 14(9):1765–1778

    Google Scholar 

  • EFSA PLH (2011) Scientific Opinion on the Pest Risk Analysis on Phytophthora ramorum prepared by the FP6 project RAPRA. EFSA J 9(6):2186

    Google Scholar 

  • Endres U, Förster B (2013) Die Douglasie in Naturwaldreservaten—passt das zusammen?. Bayerische Landesanstalt für Wald und Forstwirtschaft

  • Engel K (2001) Zersetzer und ihre Leistung: Buche-Fichte-Douglasie. LWF-Bericht 33:18–21

    Google Scholar 

  • Engelmark O, Sjöberg K, Andersson B, Rosvall O, Ågren GI, Baker WL, Barklund P, Björkman C, Despain DG, Elfving B (2001) Ecological effects and management aspects of an exotic tree species: the case of lodgepole pine in Sweden. For Ecol Manag 141(1):3–13

    Google Scholar 

  • Ennos RA (2001) The introduction of lodgepole pine as a major forest crop in Sweden: implications for host–pathogen evolution. For Ecol Manag 141(1):85–96

    Google Scholar 

  • Essex S, Williams A (1992) Ecological effects of afforestation: a case study of Burrator, Dartmoor. Appl Geogr 12(4):361–379

    Google Scholar 

  • Essl F (2005) Verbreitung, Status und Habitatbindung dersubspontanen Bestände der Douglasie (Pseudotsuga menzíesií) in Österreich. Phyton 45:117–144

    Google Scholar 

  • Essl F, Mang T, Dullinger S, Moser D, Hulme PE (2011) Macroecological drivers of alien conifer naturalizations worldwide. Ecography 34(6):1076–1084

    Google Scholar 

  • European Commission (2013) Forests and forest related policies. European Commission. http://ec.europa.eu/environment/forests/home_en.htm. Accessed 1 July 2013

  • Fagúndez J (2013) Heathlands confronting global change: drivers of biodiversity loss from past to future scenarios. Ann Bot 111(2):151–172

    PubMed  Google Scholar 

  • Farr DF, Rossman AY (2013) Fungal databases, systematic mycology and microbiology laboratory. ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/. Accessed 1 July 2013

  • Felton A, Boberg J, Björkman C, Widenfalk O (2013) Identifying and managing the ecological risks of using introduced tree species in Sweden’s production forestry. For Ecol Manag 307:165–177

    Google Scholar 

  • Finch O-D, Szumelda A (2007) Introduction of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) into Western Europe: epigaeic arthropods in intermediate-aged pure stands in northwestern Germany. For Ecol Manag 242(2–3):260–272

    Google Scholar 

  • Fischer A (2008) Die Eignung der Douglasie im Hinblick auf den Klimawandel. LWF Wissen 59:63–66

    Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194

    CAS  PubMed  Google Scholar 

  • Frank D, Finckh M (1997) Impact of Douglas-fir plantations on vegetation and soil in south-central Chile. Revista Chilena de Historia Natural 70(2):191–211

    Google Scholar 

  • Füldner K, Spork T (2003) Entwicklungserfolg von Nonne (Lymantria monacha Linnaeus, 1758: Lepidoptera, Lymantriidae) an Douglasie (Pseudotsuga menziesii), Fichte (Picea abies) und Kiefer (Pinus sylvestris) unter Laborbedingungen. Allgemeine Forst und Jagdzeitschrift 174:84–88

    Google Scholar 

  • Ganssen R (1972) Bodengeographie—mit besonderer Berücksichtigung der Böden Mitteleuropas, 2nd edn. KF Koehler Verlag, Stuttgart

    Google Scholar 

  • Garbelotto M, Hayden KJ (2012) Sudden Oak Death: interactions of the exotic oomycete Phytophthora ramorum with naïve North American hosts. Eukaryot Cell 11(11):1313–1323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glatz K, Winter K, Niemeyer H (2003) Beitrag zur epigäischen Käferfauna in niedersächsischen Mischwäldern mit und ohne Douglasie. Forst und Holz 58(1/2):32–36

    Google Scholar 

  • Goßner M (2004) Diversität und Struktur arborikoler Arthropodenzönosen fremdländischer und einheimischer Baumarten. Ein Beitrag zur Bewertung des Anbaus von Douglasie (Pseudotsuga menziesii (Mirb.) Franco) und Roteiche (Quercus rubra L.), vol 5. NEOBIOTA

  • Goßner M (2008) Insektenwelten—Die Douglasie im Vergleich mit der Fichte. LWF Wissen 59:70–73

    Google Scholar 

  • Goßner M, Ammer U (2006) The effects of Douglas-fir on tree-specific arthropod communities in mixed species stands with European beech and Norway spruce. Eur J For Res 125(3):221–235

    Google Scholar 

  • Goßner M, Bräu M (2004) Die Heteroptera der Neophyten Douglasie (Pseudotsuga menziesii) und Amerikanischer Roteiche (Quercus rubra) im Vergleich zur Fichte und Tanne bzw. Stieleiche und Buche in südbayerischen Wäldern-Schwerpunkt arborikole Zönosen. Beiträge Bayerischer Entomofaunistik 6:217–235

    Google Scholar 

  • Goßner M, Simon U (2002) Introduced Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) affects community structure of tree-crown dwelling beetles in a managed European forest. In: Kowarik I, Starfinger U (eds) Biologische Invasionen—eine Herausforderung zum Handeln? vol 1. NEOBIOTA, pp 167–179

  • Goßner M, Utschik H (2002) Douglas fir stands deprive overwintering bird species of food resource. In: Klotz S, Kühn I (eds) Biological invasions—challenges for science, vol 3. NEOBIOTA, pp 105–121

  • Goßner M, Gruppe A, Simon U (2005) Aphidophagous insect communities in tree crowns of the neophyte Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and Norway spruce (Picea abies L.). J Appl Entomol 129(2):81–88

    Google Scholar 

  • Goßner MM, Chao A, Bailey RI, Prinzing A (2009) Native fauna on exotic trees: phylogenetic conservatism and geographic contingency in two lineages of phytophages on two lineages of trees. Am Nat 173(5):599–614

    PubMed  Google Scholar 

  • Gösswald K (1990) Die Waldameise. Bd. 2. Die Waldameise im Ökosystem Wald, ihr Nutzen und ihre Hege. Aula Verlag, Wiesbaden

    Google Scholar 

  • Greig B, Gibbs J, Pratt J (2001) Experiments on the susceptibility of conifers to Heterobasidion annosum in Great Britain. For Pathol 31(4):219–228

    Google Scholar 

  • Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2012) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20(3):131–138

    PubMed  Google Scholar 

  • Gruppe A, Goßner M (2006) Douglasiennadeln als Nahrungsressource für Larven von Lymantria monacha L. Ein qualitativer Vergleich mit Fichte. Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie 15:31–35

    Google Scholar 

  • Gugger PF, González-Rodríguez A, Rodríguez-Correa H, Sugita S, Cavender-Bares J (2011) Southward Pleistocene migration of Douglas-fir into Mexico: phylogeography, ecological niche modeling, and conservation of ‘rear edge’ populations. New Phytol 189(4):1185–1199

    PubMed  Google Scholar 

  • Haarstick K (1979) Erfahrungen bei der Haltung und Aufzucht von Auerwild (Tetrao urogallus L.) in der Aufzuchtstation im Staatlichen Forstamt Lonau/Harz. Zeitschrift für Jagdwissenschaft 25(3):167–177

  • Hansen E, Parke J, Sutton W (2005) Susceptibility of Oregon forest trees and shrubs to Phytophthora ramorum: a comparison of artificial inoculation and natural infection. Plant Dis 89(1):63–70

    Google Scholar 

  • Haslam E (1994) Secondary metabolism—evolution and function: products or processes? Chemoecology 5(2):89–95

    Google Scholar 

  • Haugo RD, Bakker JD, Halpern CB (2013) Role of biotic interactions in regulating conifer invasion of grasslands. For Ecol Manag 289:175–182

    Google Scholar 

  • Hendriks C, Bianchi F (1995) Root density and root biomass in pure and mixed forest stands of Douglas-fir and beech. NJAS Wageningen J Life Sci 43(3):321–331

    Google Scholar 

  • Hermann RK (1982) The genus Pseudotsuga: historical records and nomenclature. Forest Research Laboratory, Special Publication 2a Oregon State University, Corvallis, USA

  • Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87(9):2288–2297

    PubMed  Google Scholar 

  • Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24(11):599–605

    PubMed  Google Scholar 

  • Höltermann A, Klingenstein F, Symank A (2008) Naturschutzfachliche Bewertung der Douglasie aus Sicht des Bundesamtes für Naturschutz (BfN). LWF Wissen 59:74–81

    Google Scholar 

  • Horner JD, Gosz JR, Cates RG (1988) The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. Am Nat 132(6):869–883

    Google Scholar 

  • IUCN (2000) IUCN guidlines for the prevention of biodiversity loss caused by aline invasive species. In: 51st meeting of the IUCN Council, Gland Switzerland. http://cmsdata.iucn.org/downloads/2000_feb_prevention_of_biodiv_loss_invasive_species.pdf. Accessed 12 Dec 2012

  • Iverson LR, McKenzie D (2013) Tree-species range shifts in a changing climate: detecting, modeling, assisting. Landsc Ecol 28:879–889

    Google Scholar 

  • Jansen AE (1991) The mycorrhizal status of Douglas fir in the Netherlands: its relation with stand age, regional factors, atmospheric pollutants and tree vitality. Agric Ecosyst Environ 35(2):191–208

    Google Scholar 

  • Jonášová M, van Hees A, Prach K (2006) Rehabilitation of monotonous exotic coniferous plantations: a case study of spontaneous establishment of different tree species. Ecol Eng 28(2):141–148

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78(7):1946–1957

    Google Scholar 

  • Kaiser T, Purps J (1991) Der Anbau fremdländischer Baumarten aus der Sicht des Naturschutzes-diskutiert am Beispiel der Douglasie. Forst und Holz 46:304–305

    Google Scholar 

  • Kirichenko N, Péré C, Baranchikov Y, Schaffner U, Kenis M (2013) Do alien plants escape from natural enemies of congeneric residents? Yes but not from all. Biol Invasions 15(9):2105–2113

    Google Scholar 

  • Knight DH, Baker WL, Engelmark O, Nilsson C (2001) A landscape perspective on the establishment of exotic tree plantations: lodgepole pine (Pinus contorta) in Sweden. For Ecol Manag 141(1):131–142

    Google Scholar 

  • Knoerzer D (1999) Zur Naturverjüngung der Douglasie im Schwarzwald: Inventur und Analyse von Umwelt-und Konkurrenzfaktoren sowie eine naturschutzfachliche Bewertung, vol 306. Gebrüder Borntraeger Verlagsbuchhandlung Berlin Stuttgart, Dissertationes Botanicae

  • Knoerzer D, Reif A (2002) Fremdländische Baumarten in deutschen Wäldern. In: Kowarik I, Starfinger U (eds) Biologische Invasionen—eine Herausforderung zum Handeln?, vol 1. NEOBIOTA, pp 27–35

  • Köble R, Seufert G (2001) Novel maps for forest tree species in Europe. In: Proceedings of the 8th European symposium on the physico-chemical behaviour of air pollutants: “A Changing Atmosphere!”. Torino (It), 17–20 September 2001

  • Koch J, Thomsen I (2003) Serpula himantioides, Heterobasidion annosum and Calocera viscosa as butt rot fungi in a Danish Douglas fir stand. For Pathol 33(1):1–6

    Google Scholar 

  • Kohlert A, Roth M (2000) Der Einfluß fremdländischer Baumarten (Douglasie: Pseudotsuga menziesii) auf saprophage Arthropoden und epigäische Regulatoren. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 12:353–358

    Google Scholar 

  • Kolb H (1996) Fortpflanzungsbiologie der Kohlmeise Parus major auf kleinen Flächen: Vergleich zwischen einheimischen und exotischen Baumbeständen. Journal für Ornithologie 137(2):229–242

    Google Scholar 

  • Konnert M, Fussi B (2012) Natürliche und künstliche Verjüngung der Douglasie in Bayern aus genetischer Sicht. Schweizerische Zeitschrift für Forstwesen 163(3):79–87

    Google Scholar 

  • Kownatzki D, Kriebitzsch W-U, Bolte A, Liesebach H, Schmitt U, Elsasser P (2011) Zum Douglasienanbau in Deutschland. Johann-Heinrich von Thünen-Institut. Agric For Res 344:21–41

  • Kubartová A, Ranger J, Berthelin J, Beguiristain T (2009) Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microb Ecol 58(1):98–107

    PubMed  Google Scholar 

  • Kuiters A, Sarink H (1986) Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biol Biochem 18(5):475–480

    CAS  Google Scholar 

  • Laufhütte J (1997) Borkenkäfer (Scolytidae) der Douglasie (Pseudotsuga menziesii (Mirb.) Franco): Literaturrecherche und Freilanduntersuchungen. Georg-August-Universität, Göttingen

  • Lei PF, Scherer-Lorenzen M, Bauhus J (2012) The effect of tree species diversity on fine-root production in a young temperate forest. Oecologia 169(4):1105–1115

    PubMed  Google Scholar 

  • Leitl R (2001) Artenvielfalt und Bestandesform am Beispiel der Bodenvegetation. LWF-Bericht 33:9–13

    Google Scholar 

  • Loo JA (2009) Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Invasions 11(1):81–96

    Google Scholar 

  • Magee TK, Ringold PL, Bollman MA, Ernst TL (2010) Index of alien impact: a method for evaluating potential ecological impact of alien plant species. Environ Manag 45(4):759–778

    Google Scholar 

  • Malchair S, Carnol M (2009) Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites. Soil Biol Biochem 41(4):831–839

    CAS  Google Scholar 

  • Mareschal L, Bonnaud P, Turpault M, Ranger J (2010) Impact of common European tree species on the chemical and physicochemical properties of fine earth: an unusual pattern. Eur J Soil Sci 61(1):14–23

    CAS  Google Scholar 

  • Mareschal L, Turpault M-P, Bonnaud P, Ranger J (2013) Relationship between the weathering of clay minerals and the nitrification rate: a rapid tree species effect. Biogeochemistry 112:293–309

    CAS  Google Scholar 

  • Metzler B (2010) Waldschutzaspekte bei Douglasie. FVA-Einblick 3:6–8

    Google Scholar 

  • Meyer P (2011) Naturschutzfachliche Bewertung der Douglasie. Forstarchiv 82:157–158

    Google Scholar 

  • Morales R, Sanfuentes E, Vives I, Molinaa E (2012) Phaeocryptopus gaeumannii, patógeno causante del “swiss needle cast” en Pseudotsuga menziesii: antecedentes de su biología, medidas de control y situación en Chile. Bosque (Valdivia) 33(2):127–134

    Google Scholar 

  • Moslonka-Lefebvre M, Pautasso M, Jeger MJ (2009) Disease spread in small-size directed networks: epidemic threshold, correlation between links to and from nodes, and clustering. J Theor Biol 260(3):402–411

    PubMed  Google Scholar 

  • Moslonka-Lefebvre M, Finley A, Dorigatti I, Dehnen-Schmutz K, Harwood T, Jeger MJ, Xu X, Holdenrieder O, Pautasso M (2011) Networks in plant epidemiology: from genes to landscapes, countries, and continents. Phytopathology 101(4):392–403

    PubMed  Google Scholar 

  • Nordén B, Paltto H (2001) Wood-decay fungi in hazel wood: species richness correlated to stand age and dead wood features. Biol Conserv 101(1):1–8

    Google Scholar 

  • OECD (2008) Consensus Document on the Biology of Douglas-Fir (Pseudotsuga Menziesii (Mirb.) Franco, vol 43. Environment, Health and Safety Publications. Series on Harmonisation of Regulatory Oversight in Biotechnology. OECD

  • Oh HK, Sakai T, Jones M, Longhurst W (1967) Effect of various essential oils isolated from Douglas fir needles upon sheep and deer rumen microbial activity. Appl Microbiol 15(4):777–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parlade J, Alvarez I, Pera J (1995) Ability of native ectomycorrhizal fungi from northern Spain to colonize Douglas-fir and other introduced conifers. Mycorrhiza 6(1):51–55

    Google Scholar 

  • Pautasso M (2013) Phytophthora ramorum – a pathogen linking network epidemiology, landscape pathology and conservation biogeography. CAB Reviews 8:1–14

    Google Scholar 

  • Pearse IS, Altermatt F (2013) Predicting novel trophic interactions in a non-native world. Ecol Lett 16(8):1088–1094

    PubMed  Google Scholar 

  • Peterken G (2001) Ecological effects of introduced tree species in Britain. For Ecol Manag 141(1):31–42

    Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50(1):53–65

    Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52(3):273–288

    Google Scholar 

  • Pontégnie M, du Bus de Warnaffe G, Lebrun P (2005) Impacts of silvicultural practices on the structure of hemi-edaphic macrofauna community. Pedobiologia 49(3):199–210

    Google Scholar 

  • Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For Ecol Manag 309:19–27

    Google Scholar 

  • Prietzel J, Bachmann S (2012) Changes in soil organic C and N stocks after forest transformation from Norway spruce and Scots pine into Douglas fir, Douglas fir/spruce, or European beech stands at different sites in Southern Germany. For Ecol Manag 269:134–148

    Google Scholar 

  • Prospero S, Vercauteren A, Heungens K, Belbahri L, Rigling D (2013) Phytophthora diversity and the population structure of Phytophthora ramorum in Swiss ornamental nurseries. Plant Pathol 62(5):1063–1071

    Google Scholar 

  • Reyer C, Lasch P, Mohren GMJ, Sterck FJ (2010) Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change—a model-based analysis. Ann For Sci 67(8):805

    Google Scholar 

  • Rice EL (1979) Allelopathy—an update. Bot Rev 45(1):15–109

    CAS  Google Scholar 

  • Richardson DM, Rejmánek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib 10(5–6):321–331

    Google Scholar 

  • Ronnberg J, Vollbrecht G, Thomsen IM (1999) Incidence of butt rot in a tree species experiment in northern Denmark. Scand J For Res 14(3):234–239

    Google Scholar 

  • Roques A, Auger-Rozenberg M-A, Boivin S (2006) A lack of native congeners may limit colonization of introduced conifers by indigenous insects in Europe. Can J For Res 36(2):299–313

    Google Scholar 

  • Rose S, Perry D, Pilz D, Schoeneberger M (1983) Allelopathic effects of litter on the growth and colonization of mycorrhizal fungi. J Chem Ecol 9(8):1153–1162

    Google Scholar 

  • Rożen A, Sobczyk Ł, Liszka K, Weiner J (2010) Soil faunal activity as measured by the bait-lamina test in monocultures of 14 tree species in the Siemianice common-garden experiment, Poland. Appl Soil Ecol 45(3):160–167

    Google Scholar 

  • Russell M, Burns R, Honkala B (1990) Sylvics of North America, vol 1. US Department of Agriculture, Forest Service, Washington, DC

    Google Scholar 

  • Schlyter P, Stjernquist I, Bärring L, Jönsson AM, Nilsson C (2006) Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce. Clim Res 31(1):75–84

    Google Scholar 

  • Schowalter TD, Hargrove W, Crossley D Jr (1986) Herbivory in forested ecosystems. Annu Rev Entomol 31(1):177–196

    Google Scholar 

  • Schütz J, Pommerening A (2013) Can Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) sustainably grow in complex forest structures? For Ecol Manag 303:175–183

    Google Scholar 

  • Schwartz MW, Martin TG (2013) Translocation of imperiled species under changing climates. Ann N Y Acad Sci 1286:15–28

    Google Scholar 

  • Seastedt TR, Hobbs RJ, Suding KN (2008) Management of novel ecosystems: are novel approaches required? Front Ecol Environ 6(10):547–553

    Google Scholar 

  • Selosse MA, Jacquot D, Bouchard D, Martin F, Le Tacon F (2002) Temporal persistence and spatial distribution of an American inoculant strain of the ectomycorrhizal basidiomycete Laccaria bicolor in a French forest plantation. Mol Ecol 7(5):561–573

    Google Scholar 

  • Skurski TC, Maxwell BD, Rew LJ (2013) Ecological tradeoffs in non-native plant management. Biol Conserv 159:292–302

    Google Scholar 

  • Slippers B, Stenlid J, Wingfield MJ (2005) Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends Ecol Evol 20(8):420–421

    PubMed  Google Scholar 

  • Smith S, Gilbert J (2003) National inventory of woodland and trees: Great Britain. Inventory Report Great Britain. http://www.forestry.gov.uk/pdf/nigreatbritain.pdf/$file/nigreatbritain.pdf

  • Steinlein T (2013) Invasive alien plants and their effects on native microbial soil communities. In: Lüttge U, Beyschlag W, Francis D, Cushman J (eds) Progress in botany, vol 74. Springer, Berlin, pp 293–319

  • Strong DR, Levin DA (1975) Species richness of the parasitic fungi of British trees. Proc Natl Acad Sci USA 72(6):2116–2119

    CAS  PubMed  Google Scholar 

  • Tahvanainen J, Niemelä P (1987) Biogeographical and evolutionary aspects of insect herbivory. Ann Zool Fenn 24(3):239–247

    Google Scholar 

  • Tinnin RO, Kirkpatrick LA (1985) The allelopathic influence of broadleaf trees and shrubs on seedlings of Douglas-fir. For Sci 31(4):945–952

    Google Scholar 

  • Turpault MP, Uterano C, Boudot JP, Ranger J (2005) Influence of mature Douglas fir roots on the solid soil phase of the rhizosphere and its solution chemistry. Plant Soil 275(1):327–336

    CAS  Google Scholar 

  • Turpault MP, Gobran G, Bonnaud P (2007) Temporal variations of rhizosphere and bulk soil chemistry in a Douglas fir stand. Geoderma 137(3):490–496

    CAS  Google Scholar 

  • Utschik H (2001) Schutzstrategien für Waldpilze. LWF-Bericht 33:14–17

    Google Scholar 

  • Utschik H (2006) Baum- und Stratenpräferenzen nahrungssuchender Waldvogelarten in Waldbeständen unterschiedlicher Baumartenzusammensetzung. Ornithologischer Anzeiger 45(1):1–20

    Google Scholar 

  • Vacher C, Daudin JJ, Piou D, Desprez-Loustau ML (2010) Ecological integration of alien species into a tree-parasitic fungus network. Biol Invasions 12(9):3249–3259

    Google Scholar 

  • Van Nevel L, Mertens J, De Schrijver A, Baeten L, De Neve S, Tack FM, Meers E, Verheyen K (2013) Forest floor leachate fluxes under six different tree species on a metal contaminated site. Sci Total Environ 447:99–107

    PubMed  Google Scholar 

  • van Wilgen BW, Richardson DM (2012) Three centuries of managing introduced conifers in South Africa: Benefits, impacts, changing perceptions and conflict resolution. J Environ Manag 106:56–68

    Google Scholar 

  • Voloscuk I (2012) Changes in forest phytodiversity caused by alien woody plants in Štiavnické vrchy Mts. Thaiszia J Bot 22:105–119

    Google Scholar 

  • Wainhouse D, Beech-Garwood P (1994) Growth and survival of Dendroctonus micans larvae on six species of conifer. J Appl Entomol 117(1–5):393–399

    Google Scholar 

  • Walentowski H (2008) Die Douglasie aus naturschutzfachlicher Sicht. LWF Wissen 59:67–69

    Google Scholar 

  • Wallertz K, Malmqvist C (2013) The effect of mechanical site preparation methods on the establishment of Norway spruce (Picea abies (L.) Karst.) and Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) in southern Sweden. Forestry 86(1):71–78

    Google Scholar 

  • Walter J, Essl F, Englisch T, Kiehn M (2005) Neophytes in Austria: habitat preferences and ecological effects. Neobiota 6:13–25

    Google Scholar 

  • Wang L, Ibrom A, Korhonen J, Arnoud Frumau K, Wu J, Pihlatie M, Schjoerring J (2013) Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies. Biogeosciences 10(2):999–1011

    Google Scholar 

  • Watt MS, Stone JK, Hood IA, Palmer DJ (2010) Predicting the severity of Swiss needle cast on Douglas-fir under current and future climate in New Zealand. For Ecol Manag 260(12):2232–2240

    Google Scholar 

  • Wei X–X, Beaulieu J, Khasa DP, Vargas-Hernández J, López-Upton J, Jaquish B, Bousquet J (2011) Range-wide chloroplast and mitochondrial DNA imprints reveal multiple lineages and complex biogeographic history for Douglas-fir. Tree Genet Genomes 7(5):1025–1040

    Google Scholar 

  • Wezel G (2008) Die Douglasie (Pseudotsuga menziesii). Anbau und Kulturbegründung. Erzeugergemeinschaft fuer Qualitätsfoerderung Süddeutschland eV 1:1–4

    Google Scholar 

  • Winter K (2001) Zur Arthropodenfauna in niedersächsischen Douglasienforsten: I. Reinbestände in der Ostheide und im Solling. Forst und Holz 56(12):355–362

    Google Scholar 

  • Winter K, Finch O-D, Glatz K (2001) Zur Arthropodenfauna in niedersächsischen Douglasienforsten: II. Mischbestände im Flachland. Forst und Holz 56(22):720–726

    Google Scholar 

  • Zebisch M (2005) Klimawandel in Deutschland: Vulnerabilität und Anpassungsstrategien klimasensitiver Systeme. Clim Change 08(05):205

    Google Scholar 

  • Zeller B, Recous S, Kunze M, Moukoumi J, Colin-Belgrand M, Bienaimé S, Ranger J, Dambrine E (2007) Influence of tree species on gross and net N transformations in forest soils. Ann For Sci 64(2):151–158

    CAS  Google Scholar 

  • Zerbe S (2007) Non-indigenous plant species in Central European forest ecosystems. In: Hong SK, Nakagoshi N, Fu B, Morimoto Y (eds) Landscape ecological applications in man-influenced areas. Springer, Berlin, pp 235–252

    Google Scholar 

  • Ziesche TM, Roth M (2008) Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: What makes the difference, tree species or microhabitat? For Ecol Manag 255(3–4):738–752

    Google Scholar 

  • Zou J, Cates RG (1995) Foliage constituents of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco (Pinaceae)): their seasonal variation and potential role in Douglas fir resistance and silviculture management. J Chem Ecol 21(4):387–402

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Many thanks to Alex Brunner, Mathias Gerber, Lioba Paul, Rita Schubert and anonymous reviewers for their helpful suggestions.We also thank J.D. Brus and his colleagues for the permission to use their distribution map of Douglas fir across Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Schmid.

Additional information

Communicated by C. Ammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M., Pautasso, M. & Holdenrieder, O. Ecological consequences of Douglas fir (Pseudotsuga menziesii) cultivation in Europe. Eur J Forest Res 133, 13–29 (2014). https://doi.org/10.1007/s10342-013-0745-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0745-7

Keywords

Navigation