Skip to main content

Advertisement

Log in

Past human impact in a mountain forest: geoarchaeology of a medieval glass production and charcoal hearth site in the Erzgebirge, Germany

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Since the twelfth century, forest areas in the upper reaches of the low mountain ranges of central Europe provided an important source of wood and charcoal especially for mining and smelting as well as glass production. In this case study from a site in the upper Erzgebirge region (Ore Mountains), results from archeological, geophysical, pedo-sedimentological, geochemical, anthracological, and palynological analyses have been closely linked to allow for a diachronic reconstruction of changing land use and varying intensities of human impact with a special focus on the fourteenth to the twentieth century. While human presence during the thirteenth century can only be assumed from archeological material, the establishment of glass kilns together with quartz mining shafts during the fourteenth century has left behind more prominent traces in the landscape. However, although glass production is generally assumed to have caused intensive deforestation, the impact on this site appears rather weak compared to the sixteenth century onwards, when charcoal production, probably associated with emerging mining activities in the region, became important. Local deforestation and soil erosion has been associated mainly with this later phase of charcoal production and may indicate that the human impact of glass production is sometimes overestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Boden AG (2005) Bodenkundliche Kartieranleitung KA5. Schweizerbart, Hannover

    Google Scholar 

  • Armbruster M, Abiy M, Feger KH (2003) The biogeochemistry of two forested catchments in the Black Forest and the eastern Ore Mountains (Germany). Biogeochemistry 65:341–368. https://doi.org/10.1023/A:1026250209699

    Article  CAS  Google Scholar 

  • Bachmann HG (1996) Waldwirtschaft und Glashütten im Spessart. In: Jockenhövel A (ed) Bergbau, Verhüttung und Waldnutzung im Mittelalter. Auswirkungen auf Mensch und Umwelt, Vierteljahresschrift für Sozial- und Wirtschaftsgeschichte, Beiheft, vol 212. Franz Steiner, Stuttgart, pp 181–188

    Google Scholar 

  • Bebermeier W, Hoelzmann P, Meyer M, Schimpf S, Schütt B (2018) Lateglacial to Late Holocene landscape history derived from floodplain sediments in context to prehistoric settlement sites of the southern foreland of the Harz Mountains, Germany. Quat Int 463:74–90. https://doi.org/10.1016/j.quaint.2016.08.026

    Article  Google Scholar 

  • Berglund BW, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagramms. In: Berglund BE (ed) Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester, pp 357–373

    Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Billig G, Geupel V (1992) Entwicklung, Form und Datierungen der Siedlungen in der Kammregion des Erzgebirges. Siedlungsforschung Archäologie, Geschichte, Geographie 10:173–194

    Google Scholar 

  • Bohdálková L, Bohdálek P, Břízová E, Pacherová P, Kuběna A (2018) Atmospheric metal pollution records in the Kovářská Bog (Czech Republic) as an indicator of anthropogenic activities over the last three millennia. Sci Total Environ 633:857–874. https://doi.org/10.1016/j.scitotenv.2018.03.142

    Article  CAS  Google Scholar 

  • Cappers RTJ, Bekker RM, Jans JEA (2012) Digitale zadenatlas van Nederland / Digital seed atlas of the Netherlands, 2nd edn. Barkhuis, Eelde

    Google Scholar 

  • Černá E (1995) Eine mittelalterliche Glashütte bei Pockau im Erzgebirge. Arbeits- und Forschungsberichte zur sächsischen Bodendenkmalpflege 37:177–194

    Google Scholar 

  • Černá E (1996) Die hochmittelalterliche Glaserzeugung im östlichen Teil des Erzgebirges. In: Jockenhövel A (ed) Bergbau, Verhüttung und Waldnutzung im Mittelalter. Auswirkungen auf Mensch und Umwelt, Vierteljahresschrift für Sozial- und Wirtschaftsgeschichte, Beiheft, vol 212. Franz Steiner, Stuttgart, pp 173–180

    Google Scholar 

  • Černá E (2014) Forschungsstand zu erzgebirgischen Glashütten. In: Černá E, Steppuhn P (eds) Glasarchäologie in Europa: Regionen - Produkte - Analysen; Beiträge zum 5. Internationalen Symposium zur Erforschung mittelalterlicher und frühneuzeitlicher Glashütten Europas, Seiffen/Erzgebirge 2012, Ústav Archeologické Památkové Péc̆e Severozápadních C̆ech, Most, pp 13–26.

  • Černá E (2016) Středověké sklárny v severozápadních Čechách. Přínos archeologie k dějinám českého sklárství. Mittelalterliche Glashütten in Nordwestböhmen. Beitrag zur Geschichte des böhmischen Glashüttenwesens, Tiskárna, Most

    Google Scholar 

  • Chambers FM, van Geel B, van der Linden M (2011) Considerations for the preparation of peat samples for palynology, and for the counting of pollen and non-pollen palynomorphs. Mires Peat 7:1–14

    Google Scholar 

  • Cílová Z, Woitsch J (2012) Potash – a key raw material of glass batch for Bohemian glasses from 14th–17th centuries? J Archeol Sci 39:371–380. https://doi.org/10.1016/j.jas.2011.09.023

    Article  CAS  Google Scholar 

  • Cílová Z, Kučerová I, Knížová M, Trojek T (2015) Corrosion damage and chemical composition of Czech stained glass from 13th to fifteenth century. Glass Technol Eur J Glass Sci Technol Part A 56:153–162

    Google Scholar 

  • Clark RL (1984) Effects of pollen preparation on charcoal. Pollen Spores 26:559–576

    Google Scholar 

  • Crkal J, Černá E (2009) Nové objevy v Krušných horách - zaniklé stredoveké sklárny na k. ú. Výsluní, okr. Chomutov. Archaeologia Historica 34:503–521

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (2013) An introduction to the rock-forming minerals, 3rd edn. The Minerological Society, London

    Google Scholar 

  • Deforce K, Boeren I, Adriaenssens S, Bastiaens J, De Keersmaeker L, Haneca K, Tys D, Vandekerkhove K (2013) Selective woodland exploitation for charcoal production. A detailed analysis of charcoal kiln remains (ca. 1300–1900 AD) from Zoersel (northern Belgium). J Archaeol Sci 40:681–689. https://doi.org/10.1016/j.jas.2012.07.009

    Article  Google Scholar 

  • Durand A (2016) Medieval Southern Alpine Mountains: perceptions and interweaving diverse sources. In: Retamero F, Schellerup I, Davies A (eds) Making agro-pastoral landscapes in pre-industrial societies: choices, stability and change. Oxbow, Oxford, pp 251–270

    Google Scholar 

  • Durcan JA, King GE, Duller GAT (2015) DRAC: Dose rate and age calculator for trapped charge dating. Quat Geochronol 28:54–61. https://doi.org/10.1016/j.quageo.2015.03.012

    Article  Google Scholar 

  • Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM (1999) Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41:339–364. https://doi.org/10.1111/j.1475-4754.1999.tb00987.x

    Article  Google Scholar 

  • Garnier E (2000) “The coveted tree”: the industrial threat to the vosges forest in the 16th and 18th centuries. In: Agnoletti M, Anderson S (eds) Forest History: International Studies on Socio-economic and Forest Ecosystem Change. CABI, Wallingford, pp. 37–47.

  • Gassiot Ballbé E, Clemente Conte I, Mazzucco N, Garcia Casas D, Obea Gómez L, Rodríguez Antón D (2016) Surface surveying in high mountain areas, is it possible? Some methodological considerations. Quat Int 402:35–45. https://doi.org/10.1016/j.quaint.2015.09.103

    Article  Google Scholar 

  • Gerasimova M, Lebedeva-Verba M (2010) Topsoils-mollic, takyric and yermic horizons. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 351–368

    Google Scholar 

  • Geupel V (1984a) Die mittelalterliche Wehranlage “Raubschloss” Liebenstein bei Olbernhau, Kr. Marienberg. Arbeits- und Forschungsberichte zur sächsischen Bodendenkmalpflege 27(28):289–307

    Google Scholar 

  • Geupel V (1984b) Sondierungen in der Wüstung Schwedengraben bei Niederlauterstein, Kr. Marienberg. Ausgrabungen und Funde 29:30–37

    Google Scholar 

  • Geupel V (1990) Ullersdorf - eine mittelalterliche Wüstung im mittleren Erzgebirge. Ausgrabungen und Funde 35:40–45

    Google Scholar 

  • Geupel V (1992) Die Ausgrabungen in der Wüstung “Schwedengraben” bei Niederlauterstein. Ein Haus des 13. Jahrhunderts. Arbeits- und Forschungsberichte zur sächsischen Bodendenkmalpflege 35:163–176

    Google Scholar 

  • Geupel V (1994) Die Wüstung Hilmersbach in der Stadtflur Marienberg im Erzgebirge. Ausgrabungen und Funde 39:27–31

    Google Scholar 

  • Geupel V (1995) Die vergessene Burg an den Nonnenfelsen. Erzgebirgische Heimatblätter 17:12–15

    Google Scholar 

  • Giesecke T, Bennett KD, Birks HJB, Bjune AE, Bozilova E, Feurdean A, Finsinger W, Froyd C, Pokorný P, Rösch M, Seppä H, Tonkov S, Valsecchi V, Wolters S (2011) The pace of Holocene vegetation change – testing for synchronous developments. Quat Sci Rev 30:2805–2814. https://doi.org/10.1016/j.quascirev.2011.06.014

    Article  Google Scholar 

  • Gühne A (1983) Ein Glasschmelzplatz des 13. Jahrhunderts im Tharandter Wald, Gemarkung Grillenburg, Kr. Freital. Ausgrabungen und Funde 28:30–36

    Google Scholar 

  • Hardy B, Dufey J (2015) Les aires de faulde en forêt wallone: repérage, morphologie et distribution spatiale. Forêt Nature 135:20–30

    Google Scholar 

  • Hartmann G (1994) Late Medieval glass manufacture in the Eichsfeld region (Thuringia, Germany). Chem Erde 54:103–128

    CAS  Google Scholar 

  • Haslett J, Parnell A (2008) A simple monotone process with application to radiocarbon-dated depth chronologies. J R Stat Soc: Ser C: Appl Stat 57:399–418. https://doi.org/10.1111/j.1467-9876.2008.00623.x

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. https://doi.org/10.1023/A:1008119611481

    Article  Google Scholar 

  • Hemker C, Hoffmann Y, Scholz V (2012) Silvermining at Dippoldiswalde during the medieval mining period in Saxony. Acta rerum naturalium 12:79–98

    Google Scholar 

  • Hemker C (2014) Ausgewählte Funde des Jahres 2012 aus den hochmittelalterlichen Silbergruben von Dippoldiswalde und Niederpöbel. Ausgrabungen in Sachsen 4. Arbeits- und Forschungsberichte zur sächsischen Bodendenkmalpflege Beiheft 27. LfA, Dresden, pp. 363–374.

  • Hemker C (2018) New insights on mining archaeology in the Erzgebirge (Ore Mountains). World of Mining - Surface & Underground 70:409–416

    Google Scholar 

  • Henderson J (2013) Ancient glass. Cambridge University Press, Cambridge; New York.

  • Hesse R (2010) LiDAR-derived Local Relief Models - a new tool for archaeological prospection. Archaeol Prospect 17:67–72. https://doi.org/10.1002/arp.374

    Article  Google Scholar 

  • Hildebrandt H, Heuser-Hildebrandt B, Wolters S (2007) Kulturlandschaftsgenetische und bestandsgeschichtliche Untersuchungen anhand von Kohlholzspektren aus historischen Meilerplätzen, Pollendiagrammen und archivalischen Quellen im Naturpark Pfälzerwald, Forstamt Johanniskreuz - Mainzer Geographische Studien, Sonderband 3. Mainz.

  • Horák J, Klír T (2017) Pedogenesis, Pedochemistry and the Functional Structure of the Waldhufendorf Field System of the Deserted Medieval Village Spindelbach, the Czech Republic. Interdisciplinaria Archaeologica - Natural Sciences in Archaeology VIII:43–57. doi: https://doi.org/10.24916/iansa.2017.1.4

  • Houfková P, Horák J, Pokorná A, Bešta T, Pravcová I, Novák J, Klír T (2019) The dynamics of a non-forested stand in the Krušné Mts.: the effect of a short-lived medieval village on the local environment. Veg Hist Archaeobotany 28:607–621. https://doi.org/10.1007/s00334-019-00718-5

    Article  Google Scholar 

  • Isenburg M (2014) LAStools - efficient LiDAR processing Software.

  • Jackson CM, Smedley JW (2016) Theophilus and the use of beech ash as a glassmaking alkali. In: Martinón-Torres M, Rehren T (eds) Archaeology, history and science. Routledge, New York, pp 117–130

    Google Scholar 

  • Kaiser K, Hrubý P, Tolksdorf JF, Alper G, Herbig C, Kočár P, Petr L, Schulz L, Heinrich I (2019) Cut and covered: Subfossil trees in buried soils reflect medieval forest composition and exploitation of the central European uplands. Geoarchaeology 35:42–62. https://doi.org/10.1002/gea.21756

    Article  Google Scholar 

  • Kirsche A (2003) Glas und Holz: Vorindustrielle Glashütten im Erzgebirge und im Vogtland und ihr Einfluss auf die Seiffener Holzkunst. Dissertation, TU Dresden

    Google Scholar 

  • Kirsche A (2014) Zu den Wechselbeziehungen zwischen Glashütten, Waldwirtschaft und Bergbau im Erzgebirge. In: Černá E, Steppuhn P (eds) Glasarchäologie in Europa: Regionen - Produkte - Analysen; Beiträge zum 5. Internationalen Symposium zur Erforschung mittelalterlicher und frühneuzeitlicher Glashütten Europas, Seiffen/Erzgebirge 2012, Ústav Archeologické Památkové Péc̆e Severozápadních C̆ech, Most, pp. 27–33.

  • Knapp H, Robin V, Kirleis W, Nelle O (2013) Woodland history in the upper Harz Mountains revealed by kiln site, soil sediment and peat charcoal analyses. Quat Int 289:88–100. https://doi.org/10.1016/j.quaint.2012.03.040

    Article  Google Scholar 

  • Kooistra MJ, Pulleman MM (2010) Features related to faunal activity. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 447–469

    Google Scholar 

  • Křivánek R (1995) Geophysikalische Prospektion im Bereich der mittelalterlichen Glashütte Ullersdorf. Arbeits- und Forschungsberichte zur sächsischen Bodendenkmalpflege 37:199–203

    Google Scholar 

  • Křivánek R (1998) Ergebnisse geophysikalischer Messungen von mittelalterlichen Glashütten im Erzgebirge. In: von der Osten-Woldenburg H (ed) Unsichtbares sichtbar machen: geophysikalische Prospektionsmethoden in der Archäologie. Theiss, Stuttgart, pp. 147–159.

  • Křivánek R (2001) Specifics and limitations of geophysical work on archaeological sites near industrial zones and coal mines in northwest Bohemia, Czech Republic. Archaeol Prospect 8:113–134. https://doi.org/10.1002/1099-0763(200106)8:2<113::AID-ARP161>3.0.CO;2-N

    Article  Google Scholar 

  • Lange E, Christl A, Joosten H (2005) Ein Pollendiagramm aus der Mothäuser Heide am oberen Erzgebirge unweit des Grenzüberganges Reitzenhain. In: Sachenbacher P, Einicke R, Beier H-J (eds) Kirche und geistiges Leben im Prozess des mittelalterlichen Landesausbaus in Ostthüringen, Westsachsen. Beiträge zur Frühgeschichte und zum Mittelalter Ostthüringens 2. Bayer&Beran, Langenweissbach, pp. 153–169.

  • Larsen A, Bork H-R, Fuelling A, Fuchs M, Larsen JR (2013) The processes and timing of sediment delivery from headwaters to the trunk stream of a Central European mountain gully catchment. Geomorphology 201:215–226. https://doi.org/10.1016/j.geomorph.2013.06.022

    Article  Google Scholar 

  • Leuschner C, Ellenberg H (2017) Ecology of central European forests. Springer International Publishing AG, Cham

    Google Scholar 

  • Ludemann T (2003) Large-scale reconstruction of ancient forest vegetation by anthracology - a contribution from the Black Forest. Phytocoenologia 33:645–666. https://doi.org/10.1127/0340-269X/2003/0033-0645

    Article  Google Scholar 

  • Ludemann T (2011) Scanning the historical and scientific significance of charcoal production – local scale, high resolution kiln site anthracology at the landscape level. SAGVNTVM EXTRA 11:23–24

    Google Scholar 

  • Lungershausen U, Heinrich C, Duttmann R, Gabler-Mieck R (2013) Turning human-nature interactions into 3D landscape scenes: An approach to communicate geoarchaeological research. Kartographische Nachrichten Journal of Cartography and Geographic Information 63:269–275

    Google Scholar 

  • Mannoni T, Giannichedda E (2011) Archeologia della produzione. Einaudi, Torino

    Google Scholar 

  • Matschullat J, Ellminger F, Agdemir N, Cramer S, Ließmann W, Niehoff N (1997) Overbank sediment profiles evidence of early mining and smelting activities in the Harz mountains, Germany. Appl Geochem 12:105–114. https://doi.org/10.1016/S0883-2927(96)00068-6

    Article  CAS  Google Scholar 

  • Mechelk H (1981) Zur Frühgeschichte der Stadt Dresden und zur Herausbildung einer spätmittelalterlichen Keramikproduktion im sächsischen Elbgebiet aufgrund archäologischer Befunde. Akademie Verlag, Berlin

    Google Scholar 

  • Mecking O (2013) Medieval lead glass in Central Europe. Archaeometry 55:640–662. https://doi.org/10.1111/j.1475-4754.2012.00697.x

    Article  CAS  Google Scholar 

  • Milad M, Schaich H, Bürgi M, Konold W (2011) Climate change and nature conservation in Central European forests: a review of consequences, concepts and challenges. For Ecol Manag 261:829–843. https://doi.org/10.1016/j.foreco.2010.10.038

    Article  Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, Oxford

    Google Scholar 

  • Murray A, Wintle A (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat Meas 32:57–73. https://doi.org/10.1016/S1350-4487(99)00253-X

    Article  CAS  Google Scholar 

  • Nalepka D, Walanus A (2003) Data processing in pollen analysis. Acta Palaeobotanica 43:125–134

    Google Scholar 

  • Nelle O (2003) Woodland history of the last 500 years revealed by anthracological studies of charcoal kiln sites in the Bavarian Forest, Germany. Phytocoenologia 33:667–682. https://doi.org/10.1127/0340-269X/2003/0033-0667

    Article  Google Scholar 

  • Östlund L, Zackrisson O, Strotz H (1998) Potash production in northern Sweden: History and ecological effects of a pre-industrial forest exploitation. Environ Hist 4:345–358. https://doi.org/10.3197/096734098779555592

    Article  Google Scholar 

  • Parnell A (2016) Bchron: Radiocarbon dating, age-depth modelling, relative sea level rate estimation, and non-parametric phase modelling. R package version 4(1):1

    Google Scholar 

  • Phillips DH, FitzPatrick EA (1999) Biological influences on the morphology and micromorphology of selected Podzols (Spodosols) and Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Geoderma 90:327–364. https://doi.org/10.1016/S0016-7061(98)00121-9

    Article  Google Scholar 

  • Py-Saragaglia V, Cunill Artigas R, Métailié J-P, Ancel B, Baron S, Paradis-Grenouillet S, Lerigoleur É, Badache N, Barcet H, Galop D (2017) Late Holocene history of woodland dynamics and wood use in an ancient mining area of the Pyrenees (Ariège, France). Quat Int 458:141–157. https://doi.org/10.1016/j.quaint.2017.01.012

    Article  Google Scholar 

  • Raab A, Takla M, Raab T, Nicolay A, Schneider A, Rösler H, Heußner KU, Bönisch E (2015) Pre-industrial charcoal production in Lower Lusatia (Brandenburg, Germany): Detection and evaluation of a large charcoal-burning field by combining archaeological studies, GIS-based analyses of shaded-relief maps and dendrochronological age determination. Quat Int 367:111–122. https://doi.org/10.1016/j.quaint.2014.09.041

    Article  Google Scholar 

  • Raab A, Bonhage A, Schneider A, Raab T, Rösler H, Heußner KU, Hirsch F (2019) Spatial distribution of relict charcoal hearths in the former royal forest district Tauer (SE Brandenburg, Germany). Quat Int 511:153–165. https://doi.org/10.1016/j.quaint.2017.07.022

    Article  Google Scholar 

  • Raab T, Hirsch F, Ouimet W, Johnson KM, Dethier D, Raab A (2017) Architecture of relict charcoal hearths in northwestern Connecticut, USA. Geoarchaeology 32:502–510. https://doi.org/10.1002/gea.21614

    Article  Google Scholar 

  • Radkau J (1983) Holzverknappung und Krisenbewußtsein im 18. Jahrhundert. Gesch Ges 9:513–543

    Google Scholar 

  • Reimer P, Bard E, Bayliss A, Beck W, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Lawrence Edwards R, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55:1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947

    Article  CAS  Google Scholar 

  • Reinhardt-Imjela C, Imjela R, Bölscher J, Schulte A (2018) The impact of late medieval deforestation and 20th century forest decline on extreme flood magnitudes in the Ore Mountains (Southeastern Germany). Quat Int 475:42–53. https://doi.org/10.1016/j.quaint.2017.12.010

    Article  Google Scholar 

  • Richter U (2013) Die Besiedlung des Freiberger Raumes und die Entstehung der Stadt Freiberg. In: Hoffmann Y, Richter U (eds) Die Frühgeschichte Freibergs im überregionalen Vergleich: Städtische Frühgeschichte - Bergbau - früher Hausbau. Mitteldeutscher Verlag, Halle, pp 13–31

    Google Scholar 

  • Riols A (1992) Les verreries forestières et les charbonnières du Causse de l’Hortus (Hérault). Sources historiques et sites archéologiques Bulletin de la Société Botanique de France Actualités Botaniques 139:609–616

    Google Scholar 

  • Sachsenforst (2017) Exkursionsführer zur AFSV-Jahrestagung 2017. Standortswandel und Waldumbau im Oberen Erzgebirge. Staatsbetrieb Sachsenforst, Pirna

    Google Scholar 

  • Schleich N (2006) Tiefenverteilung von Radionukliden in Fichtenwald- und Hochmoorböden. Dissertation, Bergakademie Freiberg

    Google Scholar 

  • Schlöffel M (2010) Die postglaziale Waldgeschichte der Lehmhaide. Rekonstruktion spät- und postglazialer Umweltbedingungen an einem Torfprofil aus dem Erzgebirge. Arbeits- und Forschungsberichte zur sächsischen Bodendenkmalpflege 51(52):9–27

    Google Scholar 

  • Schmidt M, Mölder A, Schönfelder E, Engel F, Fortmann-Valtink W (2016) Charcoal kiln sites, associated landscape attributes and historic forest conditions: DTM-based investigations in Hesse (Germany). Forest Ecosystems 3:8. https://doi.org/10.1186/s40663-016-0067-6

    Article  Google Scholar 

  • Schmidt UE (2002) Der Wald in Deutschland im 18. und 19. Jahrhundert: das Problem der Ressourcenknappheit dargestellt am Beispiel der Waldressourcenknappheit in Deutschland im 18. und 19. Jahrhundert: eine historisch-politische Analyse. Conte/Forst, Saarbrücken.

  • Schmitt A, Rodzik J, Zgłobicki W, Russok C, Dotterweich M, Bork HR (2006) Time and scale of gully erosion in the Jedliczny Dol gully system, south-east Poland. Catena 68:124–132. https://doi.org/10.1016/j.catena.2006.04.001

    Article  Google Scholar 

  • Schneider A, Bonhage A, Raab A, Hirsch F, Raab T (2020) Large-scale mapping of anthropogenic relief features-legacies of past forest use in two historical charcoal production areas in Germany. Geoarchaeology. https://doi.org/10.1002/gea.21782

  • Schröder F (2015) Die montanarchäologischen Ausgrabungen in Niederpöbel (2011–2013)-Befunde und Ergebnisse. In: Smolnik R (ed) Archaeomontan 2015. Montanarchäologie im Erzgebirge. Arbeits- und Forschungsberichte zur sächsischen Bodendenkmalpflege Beiheft 30. LfA, Dresden, pp. 23–166.

  • Schulz L (2019) Visualization of forest development on a local scale. Master Thesis, TU Berlin

    Google Scholar 

  • Schweingruber FH (1990) Anatomie europäischer Hölzer. Haupt, Bern

    Google Scholar 

  • Seidel J, Bebermeier W, Schütt B (2013) Historical Eco-Audit of Glassworks - a Case Study of the Eastern Ore Mountains. In: Raab T, Hirsch F, Raab A, Schopper F, Freytag K (eds) Arbeitskreis Geoarchäologie - Jahrestagung 2013. Geopedology and Landscape Development Research Series 2. BTU, Cottbus, p 37

    Google Scholar 

  • Seifert-Eulen M (2016) Die Moore des Erzgebirges und seiner Nordabdachung. Vegetationsgeschichte ausgewählter Moore. Geoprofil 14:4–78

    Google Scholar 

  • Slavíková L, Syrbe R-U, Slavík J, Berens A (2017) Local environmental NGO roles in biodiversity governance: a Czech-German comparison. GeoScape 11:1–15. https://doi.org/10.1515/geosc-2017-0001

    Article  Google Scholar 

  • Stebich M (1995) Beiträge zur Vegetationsgeschichte des Georgenfelder Hochmoores. University of Leipzig, Dissertation

    Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen et Spores 615–621.

  • Stoops G (2003) Guidelines for analysis and description of soil and regolith thin sections. Soil Science Society of America, Madison

    Google Scholar 

  • Swieder A (2019) Meilerrelikte als Teil der archäologischen Kulturlandschaft im östlichen Harz. Geopedology and Landscape Development Research Series 8:43–72

    Google Scholar 

  • Theuerkauf M, Couwenberg J, Kuparinen A, Liebscher V (2016) DISQOVER the Landcover - R based tools for quantitative vegetation reconstruction. Geophys Res Abstr 18:EGU2016–EGU9933

    Google Scholar 

  • Tolksdorf JF, Elburg R, Schröder F, Knapp H, Herbig C, Westphal T, Schneider B, Fülling A, Hemker C (2015) Forest exploitation for charcoal production and timber since the 12th century in an intact medieval mining site in the Niederpöbel Valley (Erzgebirge, Eastern Germany). J Archaeol Sci Rep 4:487–500. https://doi.org/10.1016/j.jasrep.2015.10.018

    Article  Google Scholar 

  • Tolksdorf JF, Petr L, Schubert M, Herbig C, Kaltofen A, Matson S, Hemker C (2018) Palaeoenvironmental reconstruction in the mining town of Freiberg (Lkr. Mittelsachsen) in Saxony, from the 12th century onwards. Archäologisches Korrespondenzblatt 48:281–296

    Google Scholar 

  • Tolksdorf JF, Schubert M, Schröder F, Petr L, Herbig C, Kočár P, Bertuch M, Hemker C (2019) Fortification, mining, and charcoal production: landscape history at the abandoned medieval settlement of Hohenwalde at the Faule Pfütze (Saxony, Eastern Ore Mountains). E&G Q Sci J 67:73–84. https://doi.org/10.5194/egqsj-67-73-2019

    Article  Google Scholar 

  • Tolksdorf JF, Schröder F, Petr L, Herbig C, Kaiser K, Kočár P, Fülling A, Heinrich S, Hönig H, Hemker C (2020) Evidence for Bronze Age and Medieval tin placer mining in the Erzgebirge mountains, Saxony (Germany). Geoarchaeology 35:198–216. https://doi.org/10.1002/gea.21763

    Article  Google Scholar 

  • van Geel B, Aptroot A, Mauquoy D (2006) Sub-fossil evidence for fungal hyperparasitism (Isthmospora spinosa on Meliola ellisii, on Calluna vulgaris) in a Holocene intermediate ombrotrophic bog in northern-England. Rev Palaeobot Palynol 141:121–126. https://doi.org/10.1016/j.revpalbo.2005.12.004

    Article  Google Scholar 

  • von Kortzfleisch A (2009) Räumliche Verteilung der Köhlerei in den Harzwäldern. In: von Kortzfleisch A, Feldmer P (eds) Die Kunst der schwarzen Gesellen: Köhlerei im Harz. Papierflieger-Verl, Clausthal-Zellerfeld, pp 92–98

    Google Scholar 

  • Wagenbreth O (1990) Bergbau im Erzgebirge: technische Denkmale und Geschichte. Dt. Verl. für Grundstoffindustrie, Leipzig

    Google Scholar 

  • Wedepohl KH, Bergmann R, Kronz A (2009) Die Holzasche-Kalk-Blei-Gläser der Hütte am Füllenberg bei Altenbeken-Buke. Archäologie in Westfalen-Lippe 2009:207–213

    Google Scholar 

  • Wedepohl KH, Simon K (2010) The chemical composition of medieval wood ash glass from Central Europe. Chemie der Erde - Geochemistry 70:89–97. https://doi.org/10.1016/j.chemer.2009.12.006

    Article  CAS  Google Scholar 

  • Wedepohl KH, Simon K, Kronz A (2011) Data on 61 chemical elements for the characterization of three major glass compositions in late antiquity and the Middle Ages. Archaeometry 53:81–102. https://doi.org/10.1111/j.1475-4754.2010.00536.x

    Article  CAS  Google Scholar 

  • Wilson MA, Righi D (2010) Spodic Materials. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, pp 251–273

    Google Scholar 

Download references

Acknowledgments

Research was generously funded by the EU Interreg V program (ArchaeoMontan 2018). The State Forest Authority in Saxony (Sachsenforst) kindly gave permission for the fieldwork and the State Survey Office (Staatsbetrieb Geobasisinformation und Vermessung Sachsen, GeoSN) kindly provided LiDAR measurements for processing. We are indebted to V. Geupel, Y. Hoffmann, B. Kirschen, O. Huke and H. Zimack for advice during fieldwork and discussion of results. ICP-OES and soil analyses were kindly performed by A. Guhl (TU Freiberg) and A. Körle (Humboldt-University Berlin), respectively. We especially thank four anonymous reviewers and the editor who helped to improve a previous version of this manuscript by detailed annotations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Friedrich Tolksdorf.

Additional information

Communicated by Wolfgang Cramer

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Suppl. 1

A: Aerial view on study area, B: Example of ridges typical for charcoal hearth as seen on the ground; C: Photo of profile 2; D: Photo of profile 3; E: Photo of profile 5 (JPG 5409 kb)

Suppl. 2

Soil data (XLSX 22 kb)

Suppl. 3

Geochemical data from profile 2 (XLS 55 kb)

Suppl. 4

Comparison of biostratigraphical units between Ullersdorf profile 2 and the corresponding units in the time-depth-models of the Mothäuser Heide record. Changes in the abundance or decline of specific taxa are indicated as trends by arrows (JPG 647 kb)

Suppl. 5

Stratigraphy of profile 4 at the mining heap feature; inset B: Samples from the mining heap containing the overburden material (gneiss) and quartz left behind (JPG 3758 kb)

Suppl. 6

(DOCX 38.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolksdorf, J.F., Kaiser, K., Petr, L. et al. Past human impact in a mountain forest: geoarchaeology of a medieval glass production and charcoal hearth site in the Erzgebirge, Germany. Reg Environ Change 20, 71 (2020). https://doi.org/10.1007/s10113-020-01638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10113-020-01638-1

Keywords

Navigation