Skip to main content
Log in

A morphometric study of the Abies religiosa–hickelii–guatemalensis complex (Pinaceae) in Guatemala and Mexico

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

This morphometric study of the geographic variation in the Abies religiosa–hickelii–guatemalensis complex is based on samples from 15 Guatemalan and 12 Mexican populations, two populations of A. religiosa s.str. and A. hickelii s.str., and herbarium specimens of A. hickelii, A. vejarii and varieties of A. guatemalensis. The multivariate methods employed were principal components analysis, and UPGMA clustering. The multivariate and univariate analyses based on 231 operational taxonomic units imply that although morphological differences exist distinct morphospecies cannot be recognized within the A. religiosa–hickelii–guatemalensis complex. A Mantel’s test reports that taxonomic dissimilarities are significantly related to geographic distance. We suggest, therefore, that A. religiosa, A. hickelii and A. guatemalensis are merged so that A. hickelii is referred to as A. religiosa subsp. hickelii (Flous & Gaussen) U. Strandby, K.I. Chr. & M. Sørensen, comb. et stat. nov. and A. guatemalensis as A. religiosa subsp. mexicana (Martínez) U. Strandby, K.I. Chr. & M. Sørensen, comb. nov. According to our analyses A. vejarii cannot retain its status as a separate taxon as the material studied is nested within A. religiosa subsp. mexicana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguirre-Planter E, Furnier GR, Eguiarte LE (2000) Low levels of genetic variation within and high levels of genetic differentiation among populations of species of Abies from Southern Mexico and Guatemala. Am J Bot 87:362–371

    Article  PubMed  Google Scholar 

  • Baum DA, Donoghue MJ (1995) Choosing among alternative ‘phylogenetic’ species concepts. Syst Bot 20:560–573

    Article  Google Scholar 

  • Bonnet E, Van de Peer Y (2002) zt: A software tool for simple and partial Mantel tests. J Stat Softw 7:1–12

    Google Scholar 

  • Briggs D, Walters SM (1997) Plant variation and evolution. Cambridge University Press, Cambridge, pp 399–433

    Google Scholar 

  • Carney D (1998) Implementing the sustainable rural livelihood approach. In: Carney D (ed) Sustainable rural livelihoods—what contribution can we make?. Department for International Development, London

    Google Scholar 

  • Christensen KI (1987) Taxonomic revision of the Pinus mugo complex and P. × rhaetica (P. mugo × sylvestris) (Pinaceae). Nord J Bot 7:383–408

    Article  Google Scholar 

  • Christensen KI (1992) Revision of Crataegus sect. Crataegus and nothosect. Crataeguineae (Rosaceae–Maloideae) in the Old World. Syst Bot Monogr 35:1–199

    Google Scholar 

  • Christensen KI (2005) A morphometric study of the geographic variation in Pinus contorta (Pinaceae). Nord J Bot 23:563–575

    Article  Google Scholar 

  • CITES (2008) Convention on International Trade in Endangered Species of Wild Fauna and Flora, Geneva. Available at: http://www.cites.org/eng/app/appendices.shtml (accessed April 2008)

  • CONABIO (2001) Comisión nacional para el conocimiento y uso de la biodiversidad. Mexico City. http://www.conabio.gob.mx/conocimiento/ise/fichas/doctos/plantas.html (accessed April 2008)

  • Davis JI (1995) Species concepts and phylogenetic analysis. Syst Bot 20:555–559

    Article  Google Scholar 

  • Debreczy Z, Rácz I (1995) New species and varieties of conifers from México. Phytologia 78:217–243

    Google Scholar 

  • Doyle JJ (1995) The irrelevance of allele tree topographies for species delimitation, and a non-topological alternative. Syst Bot 20:574–588

    Article  Google Scholar 

  • Dunn G, Everitt BS (1982) An introduction to mathematical taxonomy. Cambridge University Press, London

    Google Scholar 

  • Edwards DGW (2008) Abies. In: USDA FS agriculture handbook 727. Dry Branch, USDA Forest Service, Washington, DC, pp 149–198. Available at: http://www.nsl.fs.fed.us/wpsm/ Abies.pdf (accessed May 2008)

  • Everitt BS, Dunn G (2001) Applied multivariate data analysis. Oxford University Press, New York

    Google Scholar 

  • Farjon A (1990) Pinaceae—drawings and descriptions of the genera Abies, Cedrus, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Koeltz Scientific Books, Königstein

    Google Scholar 

  • Fielding AH (2007) Cluster and classification techniques for the biosciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Flous F, Gaussen H (1932) Une nouvelle espéce de sapin Mexicain Abies hickelii. Bull Soc Hist Nat Toulouse 64:24–30

    Google Scholar 

  • Furnier GR, Eguiarte LE (1997) Niveles y patrones de variación genética del género Abies en México. Informe final del proyecto B138. Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453–467

    Article  Google Scholar 

  • Gengler-Nowak K (2002) Phenetic analyses of morphological traits in the Malesherbia humilis complex (Malesherbiaceae). Taxon 51:281–293

    Article  Google Scholar 

  • Gibson DJ (2002) Methods in comparative plant population ecology. Oxford University Press, Oxford

    Google Scholar 

  • Givnish TJ (2000) Adaptive radiation and molecular systematics: issues and approaches. In: Schluter D (ed) The ecology of adaptive radiation. Oxford University Press, Oxford, pp 1–54

    Google Scholar 

  • Givnish TJ (2001) The rise and fall of plant species: a population biologist’s perspective. Am J Bot 88:1928–1934

    Article  Google Scholar 

  • Hawley GJ, DeHayes DH (1985) Hybridization among several North American firs. I. Crossability. Can J For Res 15:42–49

    Article  Google Scholar 

  • Heywood VH, Iriondo JM (2003) Plant conservation: old problems, new perspectives. Biol Conserv 111:321–335

    Article  Google Scholar 

  • Hollingsworth PM (2003) Taxonomic complexity, population genetics and plant conservation in Scotland. Bot J Scotl 55:55–63

    Google Scholar 

  • Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum. Part I: the herbaria of the World, 8th edn (Regnum Veg. 120). International Association for Plant Taxonomy, New York Botanical Garden, New York

    Google Scholar 

  • INAB (1996) Ley Forestal: Decreto Legislativo Número 101–96. Instituto Nacional de Bosques, Guatemala City

    Google Scholar 

  • INAB (1999) Diagnóstico de las poblaciones naturales de Pinabete (Abies guatemalensis R.) en Guatemala y estrategia para su conservación. Co-ediciones técnicas, documento No. 11. Instituto Nacional de Bosques, Guatemala City

  • IUCN (2008) Abies guatemalensis—vulnerable. IUCN, Gland. Available at: http://www.iucnredlist.org/search/details.php/42285/all (accessed March 2008)

  • Jaramillo-Correa JP, Aguirre-Planter E, Khasa DP, Eguiarte LE, Piñero D, Furnier GR, Bousquet J (2008) Ancestry and divergence of subtropical montane forest isolates: molecular biogeography of the genus Abies (Pinaceae) in southern México and Guatemala. Mol Ecol 17:2476–2490

    Article  PubMed  CAS  Google Scholar 

  • Jeffers JNR (1967) Two case studies in the application of principal component analysis. Appl Stat 16:225–236

    Article  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service (v.3.15). BMC Genet 6:13. Available at: http://ibdws.sdsu.edu/

  • Jolliffe IT (1986) Principal components analysis. Springer, New York

    Google Scholar 

  • Lattin J, Carrol JD, Green P (2003) Analyzing multivariate data. Thomson Learning, Toronto

    Google Scholar 

  • Ledig FT, Bermejo-Velázquez B, Vargas-Hernández J (2000) Genetic differentiation in Mexican conifers. Available at: www.fs.fed.us/global/nafc/silvi/activities/2000/ conference/posters/LedigPosterNAFBW.doc

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lester DT (1968) Variation in cone morphology of balsam fir, Abies balsamea. Rhodora 70:83–94

    Google Scholar 

  • Lienert J, Fischer M, Schneller J, Diemer M (2002) Isozyme variability of the wetland specialist Swertia perennis (Gentianaceae) in relation to habitat size, isolation, and plant fitness. Am J Bot 89:801–811

    Article  CAS  Google Scholar 

  • Liu TS (1971) A monograph of the genus Abies. Department of Forestry, College of Agriculture, National Taiwan University, Taipei

    Google Scholar 

  • Luckow M (1995) Species concepts: assumptions, methods and applications. Syst Bot 20(4):589–605

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Martínez M (1942) Genero Abies. Anales Inst Biol Univ Nac Mexico 13:629–634

    Google Scholar 

  • Martínez M (1948) Los Abies Mexicanos. Anales Inst Biol Univ Nac Mexico 19:11–104

    Google Scholar 

  • McDade LA (1995) Species concepts and problems in practice: insight from botanical monographs. Syst Bot 20:606–622

    Article  Google Scholar 

  • McGough HN (2006) Legislation: a key user of taxonomy for plant conservation and sustainable use. In: Leadlay E, Jury S (eds) Taxonomy and plant conservation. Cambridge University Press, New York, pp 255–265

    Google Scholar 

  • Milligan GW, Cooper MC (1987) A study of variable standardization. College of Administrative Science Working Paper Series 87–63. Ohio State University, Columbus

  • Morton A (2001) DMAP for Windows. Version 7.1. Winkfield. http://www.dmap.co.uk/

  • Myers O, Bormann FH (1963) Phenotypic variation in Abies balsamea in response to altitudinal and geographic gradients. Ecology 44:429–436

    Article  Google Scholar 

  • Olmstead RG (1995) Species concepts and plesiomorphic species. Syst Bot 20:623–630

    Article  Google Scholar 

  • Oostermeijer JGB, Luijten SH, Ellis-Adam AC, den Nijs JCM (2002) Future prospects for the rare, late-flowering Gentianella germanica and Gentianopsis ciliata in Dutch nutrient-poor calcareous grasslands. Biol Conserv 104:339–350

    Article  Google Scholar 

  • Otieno DF, Balkwill K, Paton AJ (2006) A multivariate analysis of morphological variation in the Hemizygia bracteosa complex (Lamiaceae, Ocimeae). Plant Syst Evol 261:19–38

    Article  Google Scholar 

  • Panetsos KP (1992) Variation in the position of resin canals in the leaves of Abies species and provenances. Ann Sci For 49:253–260

    Article  Google Scholar 

  • Parker WH, Bradfield GE, Maze J, Lin SC (1979) Analysis of variation in leaf and twig characters of Abies lasiocarpa and A. amabilis from north-coastal British Columbia. Can J Bot 57:1354–1366

    Article  Google Scholar 

  • Parker WH, Maze J, Bradfield GE (1981) Implications of morphological and anatomical variation in Abies balsamea and A. lasiocarpa (Pinaceae) from Western Canada. Am J Bot 68:843–854

    Article  Google Scholar 

  • Rasmussen KK, Strandby Andersen U, Frauenfelder N, Kollmann J (2008) Microsatellite markers for the endangered fir Abies guatemalensis (Pinaceae). Mo Ecol Resour 8(6):1307–1309

    Article  CAS  Google Scholar 

  • Rehder A (1939) The firs of Mexico and Guatemala. J Arnold Arbor 20:281–287

    Google Scholar 

  • Rich TCG (2006) The role of the taxonomist in conservation of critical vascular plants. In: Leadlay E, Jury S (eds) Taxonomy and plant conservation. Cambridge University Press, New York, pp 212–220

    Google Scholar 

  • Richard E, Evans D (2006) The need for plant taxonomy in setting priorities for designated areas and conservation management plans: a European perspective. In: Leadlay E, Jury S (eds) Taxonomy and plant conservation. Cambridge University Press, New York, pp 162–176

    Google Scholar 

  • Rohlf FJ (2008) NTSYSpc—numerical taxonomy and multivariate analysis system, Version 2.20q. Exeter Software, New York

  • Rushforth KD (1989) Two new species of Abies (Pinaceae) from western Mexico. Notes R Bot Gard Edinb 46:101–109

    Google Scholar 

  • Rzedowski RJ (1978) Vegetación de México. Limusa, Mexico City

    Google Scholar 

  • SAS Institute Inc. (2006) JMP v6.0. SAS Institute Inc., Cary

  • Scaltsoyiannes A, Tsaktsira M, Drouzas D (1999) Allozyme differentiation in the Mediterranean firs (Abies, Pinaceae). A first comparative study with phylogenetic implications. Plant Syst Evol 216:289–307

    Article  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Sokal RR (1979) Testing statistical significance of geographical variation patterns. Syst Zool 28:227–232

    Article  Google Scholar 

  • St. Clair JB, Critchfield WB (1988) Hybridization of a Rocky Mountain fir (Abies concolor) and a Mexican fir (Abies religiosa). Paper No. 2255, Forest Research Laboratory, Oregon State university, Corvallis

  • Strandby Andersen U, Prado Córdova JP, Sørensen M, Kollmann J (2006) Conservation and utilisation of Abies guatemalensis Rehder (Pinaceae)—an endangered endemic conifer in Central America. Biodivers Conserv 15:3131–3151

    Article  Google Scholar 

  • Thorpe RS (1983) A review of the mumerical methods for recognizing and analyzing racial differentiation. In: Felsenstein J (ed) Numerical taxonomy. Springer, Berlin, pp 404–423

    Google Scholar 

  • Wendt T, Canela MBF, Morrey-Jones JE, Henriques AB, Rios RI (2000) Recognition of Pitcairnia corcovadensis (Bromeliaceae) at the species level. Syst Bot 25:389–398

    Article  Google Scholar 

  • Williams PH, Humphries CJ (1994) Biodiversity, taxonomic relatedness and endemism in conservation. In: Forey PL, Humphries CJ, Vane-Wright RI (eds) Systematics and conservation evaluation. Clarendon Press, London, pp 269–287

    Google Scholar 

  • Wu H, Hu Z (1997) Comparative anatomy of resin ducts of the Pinaceae. Trees 11:135–143

    Article  Google Scholar 

Download references

Acknowledgments

This project was embarked upon 4 years ago when the project proposal was approved by the Danish Research Council for Development Research (grant No. 91160) with an additional PhD grant by the University of Copenhagen. We gratefully acknowledge the advice and assistance provided by José Pablo Prado Córdova, Juan José Castillo Mont, Gamaliel Alexander Martínez Marroquin, Martin Schiøtz, Karen Munk Rysbjerg, Anne Marie Thonning Skov, Gabriela García Besné, Tulio Lot del Angel, Erika Aguirre-Planter, Eduardo Estrada and the Guatemalan National Seed Centre (BANSEFOR). The curators of A, GH, K, MEXU, MICH, MO and NY kindly provided material for study. We are grateful to the reviewers for their comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uffe Strandby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strandby, U., Christensen, K.I. & Sørensen, M. A morphometric study of the Abies religiosa–hickelii–guatemalensis complex (Pinaceae) in Guatemala and Mexico. Plant Syst Evol 280, 59–76 (2009). https://doi.org/10.1007/s00606-009-0164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0164-x

Keywords

Navigation