Skip to main content
Log in

Comprehensive temporal reprogramming ensures dynamicity of transcriptomic profile for adaptive response in Taxus contorta

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Plants respond to the environmental perturbations by triggering the dynamic changes within the transcriptome. The assessment of these oscillations within the transcriptome would offer insights into the ecological adaptation of the plants. We evaluated how the transcriptome of Taxus contorta swings under natural conditions to elucidate its adaptive response. Thus, our study provides new insights into the performance of T. contorta under a changing environment during different seasons. The abundance estimation using the RNAseq approach revealed 6727 differentially expressed genes. Comprehensive reprogramming was observed in Taxol biosynthesis, maintenance of redox homeostasis, and generation of effective shield to UV-B, high light intensity, and temperature. Besides differential expression, the alternative splicing (AS) and single nucleotide variations (SNVs) also confer flexibility to the transcriptome of T. contorta. 1936 differentially expressing transcripts were also found to exhibit Differential Exon Usage (DEU) as well as differential SNVs. LC–MS-based untargeted metabolic analysis revealed 7774 ion features, among which around 334 putatively identified metabolites were differentially regulated. Our results showed that the swing and the oscillations of the transcriptome and metabolome of T. contorta ensure adaptability and better survival under changing environment. In addition, varying patterns of AS and SNVs compliment the adaptation provided by differential expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

The raw data can be retrieved from NCBI under the SRA accession numbers of SRX4951473, SRX4951472, SRX4951471 and SRX4951470.

References

  • Agrawal S, Kumar S, Sehgal R, George S, Gupta R, Poddar S, Pathak S (2019) El- MAVEN: a fast, robust, and user-friendly mass spectrometry data processing engine for metabolomics. In: Hardy NW, Hall RD (eds) High-throughput metabolomics. Humana, New York, pp 301–321

    Google Scholar 

  • Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22(10):2008–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balasaraswathy P, Kumar U, Srinivas CR, Nair S (2002) UVA and UVB in sunlight, optimal utilization of UV rays in sunlight for phototherapy. Indian J Dermatol Venereol Leprol 68(4):198

    CAS  PubMed  Google Scholar 

  • Barry GF, Nordine C, Kishore GM (1997) Expression of fructose 1,6 bisphosphate plants. Patent WO1998058069A1

  • Benoit-Pilven C, Marchet C, Chautard E, Lima L, Lambert MP, Sacomoto G, Claude JB (2018) Complementarity of assembly-first and mapping-first approaches for alternative splicing annotation and differential analysis from RNAseq data. Sci Rep 8(1):4307

    PubMed  PubMed Central  Google Scholar 

  • Blödner C, Goebel C, Feussner I, Gatz C, Polle A (2007) Warm and cold parental reproductive environments affect seed properties, fitness, and cold responsiveness in Arabidopsis thaliana progenies. Plant Cell Environ 30(2):165–175

    PubMed  Google Scholar 

  • Bolger AM, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaventure G, Beisson F, Ohlrogge J, Pollard M (2004) Analysis of the aliphatic monomer composition of polyesters associated with Arabidopsis epidermis: occurrence of octadeca-cis-6, cis-9-diene-1, 18-dioate as the major component. Plant J 40(6):920–930

    CAS  PubMed  Google Scholar 

  • Calixto CP, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, Brown JW (2018) Rapid and dynamic alternative splicing impacts the Arabidopsis cold response transcriptome. Plant Cell 30(7):1424–1444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castillejo C, Pelaz S (2008) The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol 18(17):1338–1343

    CAS  PubMed  Google Scholar 

  • Chen J, Lv F, Liu J, Ma Y, Wang Y, Chen B, Oosterhuis DM (2014) Effect of late planting and shading on cellulose synthesis during cotton fiber secondary wall development. PLoS ONE 9(8):e105088

    PubMed  PubMed Central  Google Scholar 

  • Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321

    CAS  PubMed  Google Scholar 

  • Davidson NM, Oshlack A (2014) Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol 15(7):410

    PubMed  PubMed Central  Google Scholar 

  • Davidson NM, Hawkins AD, Oshlack A (2017) SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes. Genome Biol 18(1):148

    PubMed  PubMed Central  Google Scholar 

  • Deguchi M, Saeki H, Ohkawa W, Kanahama K, Kanayama Y (2002) Effects of low temperature on sorbitol biosynthesis in peach leaves. J Jpn Soc Hortic Sci 71(3):446–448

    CAS  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15

    CAS  PubMed  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19(7):2225–2245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci 103(21):8281–8286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Downie B, Gurusinghe S, Dahal P, Thacker RR, Snyder JC, Nonogaki H, Bradford KJ (2003) Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up- regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol 131(3):1347–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Mizoguchi T (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20(11):2960–2971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124(4):1854–1865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Chen Z (2011) Full- length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development and response to environmental stress. Plant Physiol 153(4):1526–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45(D1):D1040–D1045. https://doi.org/10.1093/nar/gkw982

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, John MM (2013) MYC2: the master in action. Mol Plant 6(3):686–703

    CAS  PubMed  Google Scholar 

  • Kejani AA, Tafreshi SAH, Nekouei SMK, Mofid MR (2010) Efficient isolation of high quality nucleic acids from different tissues of Taxus baccata L. Mol Biol Rep 37(2):797–800

    Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko JH, Prassinos C, Keathley D, Han KH (2011) Novel aspects of transcriptional regulation in the winter survival and maintenance mechanism of poplar. Tree Physiol 31(2):208–225

    CAS  PubMed  Google Scholar 

  • Kucukural A, Yukselen O, Ozata DM, Moore MJ, Garber M (2019) DEBrowser: interactive differential expression analysis and visualization tool for count data. BMC Genomics 20(1):6

    PubMed  PubMed Central  Google Scholar 

  • Laloum T, Martín G, Duque P (2018) Alternative splicing control of abiotic stress responses. Trends Plant Sci 23(2):140–150

    CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformat 12(1):323

    CAS  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659

    CAS  PubMed  Google Scholar 

  • Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5(2):171–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Beisson F, Koo AJ, Molina I, Pollard M, Ohlrogge J (2007) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin- like monomers. Proc Natl Acad Sci 104(46):18339–18344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2013) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozak K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Liu C, Hou X, Xi W, Shen L, Tao Z, Yu H (2012) FTIP1 is an essential regulator required for florigen transport. PLoS Biol 10(4):e1001313

    CAS  PubMed  PubMed Central  Google Scholar 

  • López-Ibáñez J, Pazos F, Chagoyen M (2016) MBROLE 2.0—functional enrichment of chemical compounds. Nucleic Acids Res 44(W1):W201–W204

    PubMed  PubMed Central  Google Scholar 

  • Love M, Anders S, Huber W (2014) Differential analysis of count data–the DESeq2 package. Genome Biol 15(550):10–1186

    Google Scholar 

  • Majeed A, Singh A, Choudhary S, Bhardwaj P (2019) Transcriptome characterization and development of functional polymorphic SSR marker resource for Himalayan endangered species, Taxus contorta (Griff). Ind Crops Prod 140:111600

    CAS  Google Scholar 

  • Mandadi KK, Scholthof KBG (2015) Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon. Plant Cell 27(1):71–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzucotelli E, Tartari A, Cattivelli L, Forlani G (2006) Metabolism of γ- aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J Exp Bot 57(14):3755–3766

    CAS  PubMed  Google Scholar 

  • Mishra Y, Jänkänpää HJ, Kiss AZ, Funk C, Schröder WP, Jansson S (2012) Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biol 12(1):6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murkowski A (2001) Heat stress and spermidine: effect on chlorophyll fluorescence in tomato plants. Biol Plant 44(1):53–57

    CAS  Google Scholar 

  • Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T (2007) Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol 144(1):513–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panikashvili D, Shi JX, Schreiber L, Aharoni A (2009) The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiol 151(4):1773–1789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao D, Yang C, Chen J, Guo Y, Li Y, Niu S, Chen Z (2019) Comprehensive identification of the full-length transcripts and alternative splicing related to the secondary metabolism pathways in the tea plant (Camellia sinensis). Sci Rep 9(1):2709

    PubMed  PubMed Central  Google Scholar 

  • Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2∆∆CT method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinformat Biomath 3(3):71

    Google Scholar 

  • Ruelland E, Cantrel C, Gawer M, Kader JC, Zachowski A (2002) Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol 130(2):999–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sacomoto GA, Kielbassa J, Chikhi R, Uricaru R, Antoniou P, Sagot MF, Lacroix V (2012) KISSPLICE: de-novo calling alternative splicing events from RNA-seq data. In BMC bioinformatics. BioMed Central 13(6):S5

    Google Scholar 

  • Sasaki H, Ichimura K, Oda M (1996) Changes in sugar content during cold acclimation and deacclimation of cabbage seedlings. Ann Bot 78(3):365–369

    CAS  Google Scholar 

  • Savitch LV, Harney T, Huner NP (2000) Sucrose metabolism in spring and winter wheat in response to high irradiance, cold stress and cold acclimation. Physiol Plant 108(3):270–278

    CAS  Google Scholar 

  • Schwacke R, Ponce-Soto GY, Krause K, Bolger AM, Arsova B, Hallab A, Usadel B (2019) MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant 12(6):879–892

    CAS  PubMed  Google Scholar 

  • Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Choi YD (2013) A t MYB 44 regulates WRKY 70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73(3):483–495

    CAS  PubMed  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212

    PubMed  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Shinozaki K (2002) Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29(4):417–426

    CAS  PubMed  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939

    CAS  PubMed  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res 41(W1):W77–W83

    PubMed  PubMed Central  Google Scholar 

  • Wang T, McFarlane HE, Persson S (2015) The impact of abiotic factors on cellulose synthesis. J Exp Bot 67(2):543–552

    CAS  PubMed  Google Scholar 

  • Wang QW, Nagano S, Ozaki H, Morinaga SI, Hidema J, Hikosaka K (2016) Functional differentiation in UV-B-induced DNA damage and growth inhibition between highland and lowland ecotypes of two Arabidopsis species. Environ Exp Bot 131:110–119

    CAS  Google Scholar 

  • Weinig C, Ungerer MC, Dorn LA, Kane NC, Toyonaga Y, Halldorsdottir SS, Schmitt J (2002) Novel loci control variation in reproductive timing in Arabidopsis thaliana in natural environments. Genetics 162(4):1875–1884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaginuma T, Kobayashi M, Yamashita O (1990) Distinct effects of different low temperatures on the induction of NAD-sorbitol dehydrogenase activity in diapause eggs of the silkworm, Bombyx mori. J Comp Physiol 160(3):277–285

    CAS  Google Scholar 

  • Yoon YE, Kuppusamy S, Cho KM, Kim PJ, Kwack YB, Lee YB (2017) Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma- aminobutyric acid (GABA) in spinach (Spinacia oleracea). Food Chem 215:185–192

    CAS  PubMed  Google Scholar 

  • Yu C, Guo H, Zhang Y, Song Y, Pi E, Yu C, Shen C (2017) Identification of potential genes that contributed to the variation in the taxoid contents between two Taxus species (Taxus media and Taxus mairei). Tree Physiol 37(12):1659–1671

    CAS  PubMed  Google Scholar 

  • Zhang F, Huang L, Wang W, Zhao X, Zhu L, Fu B, Li Z (2012) Genome-wide gene expression profiling of introgressed indica rice alleles associated with seedling cold tolerance improvement in a japonica rice background. BMC Genomics 13(1):461

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by MoEF (Ministry of Environment and Forests), India under the grant NMHS/SG-2016/011. Aasim Majeed acknowledges CSIR New Delhi for financial assistance during PhD programme. The authors also acknowledge Ms. Shruti Choudhary for her valuable support during the metabolite analysis. We are grateful to the anonymous reviewer and associate editor for critically commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Pankaj Bhardwaj conceived and organized the overall study. Aasim Majeed carried out sampling, wet lab experiments, bioinformatic analysis and wrote the manuscript. Amandeep Singh participated in sampling and nucleic acid isolation. Ram Kumar Sharma and Vikas Jaitak contributed in Metabolite analysis. Pankaj Bhardwaj edited and approved the final version of the manuscript. All authors have carefully read and approved the manuscript.

Corresponding author

Correspondence to Pankaj Bhardwaj.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1—S1: Sequences of primers used in qRT-PCR. (DOCX 12 kb)

438_2020_1709_MOESM2_ESM.tif

Supplementary material 2—S2: Graphical representation of PCA before (left) and after (right) Batch effect correction and normalization. (TIFF 59 kb)

Supplementary material 3—S3: List of Differentially expressed transcripts. (CSV 645 kb)

Supplementary material 4—S4: Correlation graph of expression results obtained from RNAseq and qRT-PCP. (TIFF 445 kb)

Supplementary material 5—S5: List if Differentially expressed metabolites. (XLSX 30 kb)

Supplementary material 6—S6: Representation of Total Ion Chromatograms (TIC). (DOCX 61 kb)

Supplementary material 7—S7: MDS plot showing similarities or dissimilarities between samples. (DOCX 25 kb)

438_2020_1709_MOESM8_ESM.docx

Supplementary material 8—S8: Integrative pathway map based on integrative analysis of RNAseq and metabolite data. Red dots represent upregulation steps while green dots represent downregulated steps in winter as compared to summer. (DOCX 729 kb)

Supplementary material 9—S9: Transcripts corresponding to Transcription Factors. (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, A., Singh, A., Sharma, R.K. et al. Comprehensive temporal reprogramming ensures dynamicity of transcriptomic profile for adaptive response in Taxus contorta. Mol Genet Genomics 295, 1401–1414 (2020). https://doi.org/10.1007/s00438-020-01709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01709-2

Keywords

Navigation