Skip to main content

Advertisement

Log in

Biology and molecular interactions of Parastagonospora nodorum blotch of wheat

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Parastagonospora nodorum is one of the important necrotrophic pathogens of wheat which causes severe economical loss to crop yield. So far, a number of effectors of Parastagonospora nodorum origin and their target interacting genes on the host plant have been characterized. Since targeting effector-sensitive gene carefully can be helpful in breeding for resistance. Therefore, constant efforts are required to further characterize the effectors, their interacting genes, and underlying biochemical pathways. Furthermore, to develop effective counter-strategies against emerging diseases, continuous efforts are required to determine the qualitative resistance that demands to screen of diverse genotypes for host resistance.

Abstract

Stagonospora nodorum blotch also refers to as Stagonospora glume blotch and leaf is caused by Parastagonospora nodorum. The pathogen deploys necrotrophic effectors for the establishment and development on wheat plants. The necrotrophic effectors and their interaction with host receptors lead to the establishment of infection on leaves and extensive lesions formation which either results in host cell death or suppression/activation of host defence mechanisms. The wheat Stagonospora nodorum interaction involves a set of nine host gene–necrotrophic effector interactions. Out of these, Snn1–SnTox1, Tsn1–SnToxA and Snn–SnTox3 are one of the most studied interaction, due to its role in the suppression of reactive oxygen species production, regulating the cytokinin content through ethylene-dependent wayduring initial infection stage. Further, although the molecular basis is not fully unveiled, these effectors regulate the redox state and influence the ethylene biosynthesis in infected wheat plants. Here, we have discussed the biology of the wheat pathogen Parastagonospora nodorum, role of its necrotrophic effectors and their interacting sensitivity genes on the redox state, how they hijack the resistance mechanisms, hormonal regulated immunity and other signalling pathways in susceptible wheat plants. The information generated from effectors and their corresponding sensitivity genes and other biological processes could be utilized effectively for disease management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source of primary inoculum

Fig. 3

Similar content being viewed by others

Data availability

There is no data related to this MS.

References

  • Abeysekara NS, Friesen TL, Keller B, Faris JD (2009) Identification and characterization of a novel host-toxin interaction in the wheat Stagonospora nodorum pathosystem. Theor Appl Genet 120:117–126. https://doi.org/10.1007/s00122-009-1163-6

    Article  CAS  PubMed  Google Scholar 

  • Abeysekara NS, Faris JD, Chao S, McClean PE, Friesen TL (2012) Whole-genome QTL analysis of Stagonospora nodorum blotch resistance and validation of the SnTox4–Snn4 interaction in hexaploid wheat. Phytopathology 102:94–104

    Article  CAS  PubMed  Google Scholar 

  • Adhikari TB, Jackson EW, Gurung S, Hansen JM, Bonman JM (2011) Association mapping of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA national small grains collection. Phytopathology 101:1301–1210. https://doi.org/10.1094/PHYTO-03-11-0076 (PMID: 21692647)

    Article  PubMed  Google Scholar 

  • Afzal F, Chaudhari SK, Gul A, Farooq A, Ali H, Nisar S, Sarfraz B, Shehzadi KJ, Mujeeb-Kazi A (2015) Bread wheat (Triticum aestivum L.) under biotic and abiotic stresses: an overview. In: Hakeem K (ed) Crop production and global environmental issues. Springer, International Publishing: Cham, Switzerland, pp 293–317

    Chapter  Google Scholar 

  • Aguilar V, Stamp P, Winzeler M, Winzeler H, Schachermayr G, Keller B, Zanetti S, Messmer MM (2005) Inheritance of field resistance to Stagonospora nodorum leaf and glume blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 111:325–336

    Article  CAS  PubMed  Google Scholar 

  • Arora NK (2018) Agricultural sustainability and food security. Environ Sustain 1:217–219. https://doi.org/10.1007/s42398-018-00032-2

    Article  Google Scholar 

  • Arseniuk E, Czembor PC, Czaplicki A, Song QJ, Cregan PB, Hoffman DL et al (2004) QTL controlling partial resistance to Stagonospora nodorum leaf blotch in winter wheat cultivar Alba. Euphytica 137:225–231

    Article  CAS  Google Scholar 

  • Bathgate JA, Loughman R (2001) Ascospores are a source of inoculum of Phaeosphaeria nodorum, P. avenaria f. sp. avenaria and Mycosphaerella graminicola in Western Australia. Aust Plant Pathol 30(4):317–322. https://doi.org/10.1071/AP01043

    Article  Google Scholar 

  • Bertazzoni S, Jones DAB, Phan HT, Tan KC, Hane JK (2021) Chromosome-level genome assembly and manually-curated proteome of model necrotroph Parastagonospora nodorum Sn15 reveals a genome-wide trove of candidate effector homologs, and redundancy of virulence-related functions within an accessory chromosome. BMC Genomics 22(1):382. https://doi.org/10.1186/s12864-021-07699-8 (PMID:34034667;PMCID:PMC8146201)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertucci M, Brown-Guedira G, Murphy JP, Cowger C (2014) Genes conferring sensitivity to Stagonospora nodorum necrotrophic effectors in Stagonospora nodorum blotch-susceptible U.S. wheat cultivars. Plant Dis 98:746–753. https://doi.org/10.1094/PDIS-08-13-0820-RE

    Article  CAS  PubMed  Google Scholar 

  • Bhathal JS, Loughman R (2001) Ability of retained stubble to carry-over leaf diseases of wheat in rotation crops. Aust J Exp Agric 41:649–653

    Article  Google Scholar 

  • Bhathal JS, Loughman R, Speijers J (2003) Yield reduction in wheat in relation to leaf disease from yellow (tan) spot and Septoria nodorum blotch. Eur J Plant Pathol 109:435–443

    Article  CAS  Google Scholar 

  • Blixt E, Djurle A, Yuen J, Olson A (2009) Fungicide sensitivity in Swedish isolates of Phaeosphaeria nodorum. Plant Pathol 58:655–664. https://doi.org/10.1111/j.1365-3059.2009.02041.x

    Article  CAS  Google Scholar 

  • Bnejdi F, Saadoun M, Naouari M, Gazzah ME (2012) Relationship between leaf stages and epistasis for resistance to Stagonospora nodorum in durum wheat. Genet Mol Biol 35:441–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Bostwick DE, Ohm HW, Shaner G (1993) Inheritance of Septoria glume blotch resistance in wheat. Crop Sci 33:439–443

    Article  Google Scholar 

  • Bringans S, Hane JK, Casey T, Tan KC, Lipscombe R et al (2009) Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum. BMC Bioinformatics 10:301

    Article  PubMed  PubMed Central  Google Scholar 

  • Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated Kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci USA 107:9452–9457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey T, Solomon PS, Bringans S, Tan KC, Oliver RP et al (2010) Quantitative proteomic analysis of G-protein signalling in Stagonospora nodorum using isobaric tags for relative and absolute quantification. Proteomics 10:38–47

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Steed A, Travella S, Keller B, Nicholson P (2009) Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants. New Phytol 182:975–983

    Article  CAS  PubMed  Google Scholar 

  • Chooi YH, Muria-Gonzalez MJ, Solomon PS (2014) A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum. Mycology 5(3):192–206. https://doi.org/10.1080/21501203.2014.928386

    Article  CAS  PubMed  Google Scholar 

  • Chooi YH, Zhang G, Hu J, Muria-Gonzalez MJ et al (2017) Functional genomics-guided discovery of a light-activated phytotoxin in the wheat pathogen Parastagonospora nodorum via pathway activation. Environ Microbiol 19(5):1975–1986. https://doi.org/10.1111/1462-2920.13711

    Article  CAS  PubMed  Google Scholar 

  • Chu C-G, Faris JD, Xu S, Friesen TL (2010) Genetic analysis of disease susceptibility contributed by the compatible Tsn1-SnToxA and Snn1-SnTox1 interactions in the wheat–Stagonospora nodorum pathosystem. Theor Appl Genet 129:1451–1459

    Article  Google Scholar 

  • Ciudad T, Hickman M, Bellido A, Berman J, Larriba G (2016) Phenotypic consequences of a spontaneous loss of heterozygosity in a common laboratory strain of Candida albicans. Genetics 203(3):1161–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockram J, Scuderi A, Barber T, Furuki E, Gardner KA, Gosman N, Kowalczyk R, Phan HP, Rose GA, Tan KC, Oliver RP, Mackay IJ (2015) Fine-mapping the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum necrotrophic effector SnTox1 using an eight founder multiparent advanced generation inter-cross population. G3 (bethesda). 5:2257–2266. https://doi.org/10.1534/g3.115.021584

    Article  PubMed  PubMed Central  Google Scholar 

  • Collemare J, Lebrun M-H (2011) Fungal secondary metabolites: ancient toxins and novel effectors in plant–microbe interactions. In: Martin F, Kamoun S (eds) Effectors in plant-microbe interactions. Wiley-Blackwell, Oxford, pp 379–402

    Google Scholar 

  • Crook AD, Friesen TL, Liu ZH, Ojiambo PS, Cowger C (2012) Novel necrotrophic effectors from Stagonospora nodorum and corresponding host genes in winter wheat germplasm in the southeastern US. Phytopathology 102:498–505

    Article  CAS  PubMed  Google Scholar 

  • Cunfer BM (2000) Stagonospora and Septoria diseases of barley, oat, and rye. Can J Plant Path 22:332–348. https://doi.org/10.1080/07060660009500452

    Article  Google Scholar 

  • Czembor PC, Arseniuk E, Czaplicki A, Song Q, Cregan PB, Ueng PP (2003) QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genome 46(4):546–554. https://doi.org/10.1139/g03-036

    Article  CAS  PubMed  Google Scholar 

  • Czembor PC, Arseniuk E, Radecka-Janusik M, Piechota U, Słowacki P (2019) Quantitative trait loci analysis of adult plant resistance to Parastagonospora nodorum blotch in winter wheat cv. Liwilla (Triticum aestivum L.). Eur J Plant Pathol 155:1001–1016. https://doi.org/10.1007/s10658-019-01829-5

    Article  CAS  Google Scholar 

  • de Toledo Thomazella DP, Brail Q, Dahlbeck D, Staskawicz B (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. bioRxiv. https://doi.org/10.1101/064824

    Article  Google Scholar 

  • de Waard MA, Andrade AC, Hayashi K, Schoonbeek H, Stergiopoulos I, Zwiers LH (2006) Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Manag Sci 62:195–207. https://doi.org/10.1002/ps.1150

    Article  CAS  PubMed  Google Scholar 

  • Dodds P, Thrall P (2009) Recognition events and host–pathogen co-evolution in gene-for-gene resistance to flax rust. Funct Plant Biol 36(5):395–408. https://doi.org/10.1071/FP08320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  • Downie RC, Bouvet L, Furuki E, Gosman N, Gardner KA, Mackay IJ, Campos Mantello C, Mellers G, Phan HTT, Rose GA, Tan K-C, Oliver RP, Cockram J (2018) Assessing European wheat sensitivities to Parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3. Front Plant Sci 9:881. https://doi.org/10.3389/fpls.2018.00881

    Article  PubMed  PubMed Central  Google Scholar 

  • Duba A, Goriewa-Duba K, Wachowska U (2018) A review of the interactions between wheat and wheat pathogens: ZymoSeptoria tritici, Fusarium spp. and Parastagonospora nodorum. Int J Mol Sci 19:1138. https://doi.org/10.3390/ijms19041138

    Article  CAS  PubMed Central  Google Scholar 

  • Ecker R, Dinoor A, Cahaner A (1989) The inheritance of resistance to Septoria glume blotch. I. Common bread wheat, Triticum aestivum. Plant Breed 102:113–131

    Article  Google Scholar 

  • Engle JS, Lipps PE, Minyo RJ Jr (2006) Reaction of commercial soft red winter wheat cultivars to Stagonospora nodorum in the greenhouse and field. Plant Dis 90:576–582. https://doi.org/10.1094/PD-90-0576

    Article  PubMed  Google Scholar 

  • Faris JD, Friesen TL (2009) Reevaluation of a tetraploid wheat population indicates that the Tsn1-ToxA interaction is the only factor governing Stagonospora nodorum blotch susceptibility. Phytopathology 99:906–912

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107:13544–13549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faris JD, Zhang Z, Rasmussen JB, Friesen TL (2011) Variable expression of the Stagonospora nodorum effector SnToxA among isolates is correlated with levels of disease in wheat. Mol Plant Microbe Interact 24:1419–1426

    Article  CAS  PubMed  Google Scholar 

  • Ficke A, Cowger C, Bergstrom G, Brodal G (2018) Understanding yield loss and pathogen biology to improve disease management: Septoria nodorum blotch - a case study in wheat. Plant Dis 102:696–707. https://doi.org/10.1094/PDIS-09-17-1375-FE

    Article  CAS  PubMed  Google Scholar 

  • Flor HH (1947) Inheritance of reaction to rust in flax. J Agric Res 74:241–262

    Google Scholar 

  • Francki MG (2013) Improving Stagonospora nodorum resistance in wheat: a review. Crop Sci 53:355–365. https://doi.org/10.2135/cropsci2012.06.0347

    Article  Google Scholar 

  • Friesen TL, Faris JD (2010) Characterization of the wheat-Stagonospora nodorum disease system: what’s the molecular basis of this quantitative necrotrophic disease interaction? Can J Plant Pathol 32:20–28

    Article  CAS  Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Meinhardt SW, Faris JD (2007) The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J 51:681–692

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Zhang Z, Solomon PS, Oliver RP, Faris JD (2008) Characterization of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene. Plant Physiol 146:682–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friesen TL, Chu CG, Liu ZH, Xu SS, Halley S, Faris JD (2009) Host selective toxins produced by Stagonospora nodorum confer disease susceptibility in adult wheat plants under field conditions. Theor Appl Genet 118:1489–1497

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Chu C, Xu SS, Faris JD (2012) SnTox5–Snn5: a novel Stagonospora nodorum effector-wheat gene interaction and its relationship with the SnToxA-Tsn1 and SnTox3–Snn3–B1 interactions. Mol Plant Pathol 13(9):1101–1109. https://doi.org/10.1111/J.1364-3703.2012.00819.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Faris JD, Liu Z, Kim YM, Syme RA, Oliver RP, Xu SS, Friesen TL (2015) Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum–wheat pathosystem. Mol Plant-Microbe Interact 28:615–625. https://doi.org/10.1094/MPMI-12-14-0396-R

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-guedira G (2014) Genome-wide association study reveals novel quantitative trait loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS ONE 13(12):e0208196. https://doi.org/10.1371/journal.pone.0108179

    Article  CAS  Google Scholar 

  • Halder J, Zhang J, Ali S et al (2019) Mining and genomic characterization of resistance to tan spot, Stagonospora nodorum blotch (SNB) and Fusarium head blight in Watkins core collection of wheat landraces. BMC Plant Biol 19:480. https://doi.org/10.1186/s12870-019-2093-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hane JK, Lowe RG, Solomon PS, Tan K-C, Schoch CL, Spatafora JW et al (2007) Dothideomycete–plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell 19(11):3347–3368. https://doi.org/10.1105/tpc.107.052829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JA, Ammar R, Torti D, Nislow C, Cowen LE (2013) Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations. PLoS Genet 9(4):e1003390. https://doi.org/10.1371/journal.pgen.1003390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ipcho SVS, Hane JK, Antoni EA, Ahren D, Henrissat B et al (2012) Transcriptome analysis of Stagonospora nodorum: gene models, effectors, metabolism and pantothenate dispensability. Mol Plant Pathol 13:531–554

    Article  CAS  PubMed  Google Scholar 

  • Jeger MJ, Griffiths E, Jones DG (1981) Influence of environmental conditions on spore dispersal and infection by Septoria nodorum. Ann Appl Biol 99:29–34. https://doi.org/10.1111/j.1744-7348.1981.tb05126.x

    Article  Google Scholar 

  • Jia H, Zhang Y, Orbovic V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNAmediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen IH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152

    Article  Google Scholar 

  • Katoch S, Rana SK, Sharma PN (2019) Application of PCR based diagnostics in the exploration of Parastagonospora nodorum prevalence in wheat growing regions of Himachal Pradesh. J Plant Biochem Biotechnol 28:169–175. https://doi.org/10.1007/s13562-018-0481-7

    Article  CAS  Google Scholar 

  • Keller SM, McDermott JM, Pettway RE, Wolfe MS, McDonald BA (1997) Gene flow and sexual reproduction in the wheat glume blotch pathogen Phaeosphaeria nodorum (anamorph Stagonospora nodorum). Phytopathology 87(3):353–358. https://doi.org/10.1094/PHYTO.1997.87.3.353

    Article  CAS  PubMed  Google Scholar 

  • Khan H, McDonald MC, Williams SJ, Solomon PS (2020) Assessing the efficacy of CRISPR/Cas9 genome editing in the wheat pathogen Parastagonspora nodorum. Fungal Biol Biotechnol 7:4. https://doi.org/10.1186/s40694-020-00094-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleijer G, Bronnimann A, Fossati A (1977) Chromosomal location of a dominant gene for resistance at the seedling stage to Septoria nodorum Berk. In the wheat variety Atlass 66. Z Pflanzenz¨uchtg 78: 170–173

  • Kourelis J, Van der Hoorn RAL (2018) Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30:285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapin D, Van den Ackerveken G (2013) Susceptibility to plant disease: more than a failure of host immunity. Trends Plant Sci 18:546–554

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wei H, Hu J, Lacey E, Sobolev AN, Stubbs KA, Solomon PS, Chooi YH (2020) Genomics-driven discovery of phytotoxic cytochalasans involved in the virulence of the wheat pathogen Parastagonospora nodorum. ACS Chem Biol 15(1):226–233. https://doi.org/10.1021/acschembio.9b00791

    Article  CAS  PubMed  Google Scholar 

  • Liu ZH, Faris JD, Meinhardt SW, Ali S, Rasmussen JB, Friesen TL (2004a) Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathology 94:1056–1060

    Article  CAS  PubMed  Google Scholar 

  • Liu ZH, Friesen TL, Rasmussen JB, Ali S, Meinhardt SW, Faris JD (2004b) Quantitative trait loci analysis and mapping of seedling resistance to Stagonospora nodorum leaf blotch in wheat. Phytopathology 94:1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Friesen TL, Ling H, Meinhardt SW, Oliver RP, Rasmussen JB, Faris JD (2006) The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Genome 49:1265–1273. https://doi.org/10.1139/g06-088

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Faris JD, Oliver RP, Tan K-C, Solomon PS et al (2009) SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog 5(9):e1000581. https://doi.org/10.1371/journal.ppat.1000581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zhang Z, Faris JD, Oliver RP, Syme R et al (2012) The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog 8:e1002467. https://doi.org/10.1371/journal.ppat.1002467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, El-Basyoni I, Kariyawasam G, Zhang G, Fritz A, Hansen J, Marais F, Friskop A, Chao S, Akhunov E, Baenziger PS (2015) Evaluation and association mapping of resistance to tan spot and Stagonospora nodorum blotch in adapted winter wheat germplasm. Plant Dis 99:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Gao Y, Kim YM, Faris JD, Shelver WL, de Wit PJGM, Xu SS, Friesen TL (2016) SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual-function protein that facilitates infection while protecting from wheat-produced chitinases. New Phytol 211:1052–1064. https://doi.org/10.1111/nph.13959

    Article  CAS  PubMed  Google Scholar 

  • Lorang J (2019) Necrotrophic exploitation and subversion of plant defense: a lifestyle or just a phase, and implications in breeding resistance. Phytopathology 109:332–346. https://doi.org/10.1094/PHYTO-09-18-0334-IA

    Article  CAS  PubMed  Google Scholar 

  • Loughman R, Wilson RE, Thomas GJ (1994) Influence of disease complexes involving Leptosphaeria (Septoria) nodorum on detection of resistance to three leaf spot diseases in wheat. Euphytica 72:31–42

    Article  Google Scholar 

  • Luderer R, De Kock MJD, Dees RHL, De Wit P, Joosten M (2002) Functional analysis of cysteine residues of ECP elicitor proteins of the fungal tomato pathogen Cladosporium fulvum. Mol Plant Pathol 3:91–95

    Article  CAS  PubMed  Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Hughes GR (1995) Genetic control and chromosomal location of Triticum timopheevii- derived resistance to Septoria nodorum blotch in durum wheat. Genome 38:332–338

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Cermak T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16:1918–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald MC, Solomon PS (2018) Just the surface: advances in the discovery and characterization of necrotrophic wheat effectors. Curr Opin Microbiol 46:14–18. https://doi.org/10.1016/j.mib.2018.01.019

    Article  PubMed  Google Scholar 

  • McDonald MC, Ahren D, Simpfendorfer S, Milgate A, Solomon PS (2017) The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokiniana. Mol Plant Pathol 19:432–439. https://doi.org/10.1111/mpp.12535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehra LK, Cowger C, Gross K, Ojiambo PS (2016) Predicting pre-planting risk of Stagonospora nodorum blotch in winter wheat using machine learning models. Front Plant Sci 7:390. https://doi.org/10.3389/fpls.2016.00390

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehra L, Adhikari U, Cowger C, Ojiambo PS (2018) Septoria nodorum blotch of wheat. Peer J Prepr 6:e27039v2. https://doi.org/10.7287/peerj.preprints.27039v2

    Article  Google Scholar 

  • Mehra LK, Adhikari U, Ojiambo PS, Cowger C (2019) Septoria nodorum blotch of wheat. Plant Health Instr. https://doi.org/10.1094/PHI-I-2019-0514-01

    Article  Google Scholar 

  • Mobius N, Hertweck C (2009) Fungal phytotoxins as mediators of virulence. Curr Opin Plant Biol 12:390–398. https://doi.org/10.1016/j.pbi.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  • Moffat CS, See PT, Oliver RP (2014) Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis. Mol Plant Pathol 15:918–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muria-Gonzalez MJ, Chooi YH, Breen S, Solomon PS (2014) The past, present and future of secondary metabolite research in the Dothideomycetes. Mol Plant Pathol. https://doi.org/10.1111/mpp.12162

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy NEA, Loughman R, Appels R, Lagudah ES, Jones MGK (2000a) Genetic variability in a collection of Stagonospora nodorum isolates from Western Australia. Aust J Agric Res 51:679–684

    Article  CAS  Google Scholar 

  • Murphy NEA, Loughman R, Wilson R, Lagudah ES, Appels R, Jones MGK (2000b) Resistance to Septoria nodorum blotch in the Aegilops tauschii accession RL5271 is controlled by a single gene. Euphytica 113:227–233

    Article  CAS  Google Scholar 

  • Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Australas Plant Pathol 38:558–570

    Article  Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482. https://doi.org/10.1038/s41598-017-00578-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien JA, Benková E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver RP, Solomon PS (2010) New developments in pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol 13:415–419. https://doi.org/10.1016/j.pbi.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  • Oliver RP, Rybak K, Shankar M, Loughman R, Harry N, Solomon PS (2008) Quantitative disease resistance assessment by real-time PCR using the Stagonospora nodorum-wheat pathosystem as a model. Plant Pathol 57:527–532

    Article  CAS  Google Scholar 

  • Oliver RP, Friesen TL, Faris JD, Solomon PS (2012) Stagonospora nodorum: from pathology to genomics and host resistance. Annu Rev Phytopathol 50:23–43

    Article  CAS  PubMed  Google Scholar 

  • Oliver R, Lichtenzveig J, Tan KC, Waters O, Rybak K, Lawrence J et al (2013) Absence of detectable yield penalty associated with insensitivity to Pleosporales necrotrophic effectors in wheat grown in the West Australian wheat belt. Plant Pathol 63:1027–1032. https://doi.org/10.1111/ppa.12191

    Article  Google Scholar 

  • Oliver RP, Tan K-C, Moffat CS (2016) Necrotrophic pathogens of wheat. In: Wrigley C, Corke H, Seetharaman K, Faubion J (eds) Encyclopedia of food grains, 2nd edn. Academic Press, Oxford, pp 273–278

    Chapter  Google Scholar 

  • Palmgren MG, Edenbrandt AK, Vedel SE et al (2015) Are we ready for back-to-nature crop breeding? Trends Plant Sci 20:155–164

    Article  CAS  PubMed  Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in rice. Plant Biotechnol J 15:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira D, McDonald BA, Croll D (2020) The genetic architecture of emerging fungicide resistance in populations of a global wheat pathogen. Genome Biol Evol 12:2231–2244. https://doi.org/10.1093/gbe/evaa203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters Haugrud AR, Zhang Z, Richards JK, Friesen TL, Faris JD (2019) Genetics of variable disease expression conferred by inverse gene-for-gene interactions in the wheat-Parastagonospora nodorum pathosystem. Plant Physiol 180:420–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Phan H, Rybak K, Furuki E, Breen S, Solomon PS, Oliver RP et al (2016) Differential effector gene expression underpins epistasis in a plant fungal disease. Plant J 87:343–354. https://doi.org/10.1111/tpj.13203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan HTT, Rybak K, Bertazzoni S, Furuki E, Dinglasan E, Hickey LT, Oliver RP, Tan K-C (2018) Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identifed by genome-wide association studies. Theor Appl Genet 131:1223–1238. https://doi.org/10.1007/s00122-018-3073-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan HTT, Jones DAB, Rybak K, Dodhia KN, Lopez-Ruiz FJ, Valade R, Gout L, Lebrun M-H, Brunner PC, Oliver RP, Tan K-C (2020) Low amplitude boom-and-bust cycles define the Septoria nodorum blotch interaction. Front Plant Sci 10:1785. https://doi.org/10.3389/fpls.2019.01785

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponzio C, Weldegergis BT, Dicke M, Gols R (2016) Compatible and incompatible pathogen-plant interactions differentially affect plant volatile emissions and the attraction of parasitoid wasps. Funct Ecol 30:1779–1789. https://doi.org/10.1111/1365-2435.12689

    Article  Google Scholar 

  • Quaedvlieg W, Verkley GJM, Shin HD, Barreto RW, Alfenas AC, Swart WJ, Groenewald JZ, Crous PW (2013) Sizing up Septoria. Stud Mycol 75:307–390. https://doi.org/10.3114/sim0017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen MW, Roux ME, Petersen M, Mundy J (2012) MAP kinase cascades in Arabidopsis innate immunity. Front Plant Sci 3:1–6. https://doi.org/10.3389/fpls.2012.00169

    Article  Google Scholar 

  • Reddy L, Friesen TL, Meinhardt SW, Chao S, Faris JD (2008) Genomic analysis of the Snn1 locus on wheat chromosome arm 1BS and the identification of candidate genes. Plant Genome 1:55–66

    Article  CAS  Google Scholar 

  • Ribeiro Do Vale FX, Parlevliet JE, Zambolim L (2001) Concepts in plant disease resistance. Fitopatol Bras 26:577–589

    Article  Google Scholar 

  • Schnurbusch T, Paillard S, Fossati D, Messmer M, Schachermayr G, Winzeler M, Keller B (2003) Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor Appl Genet 107:1226–1234

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shaner G, Buechley G (1995) Epidemiology of leaf blotch of soft red winter wheat caused by Septoria tritici and Stagonospora nodorum. Plant Dis 79:928–938

    Article  Google Scholar 

  • Shankar M, Walker E, Golzar H, Loughman R, Wilson RE, Francki MG (2008) Quantitative trait loci for seedling and adult plant resistance to Stagonospora nodorum in wheat. Phytopathology 98(8):886–893. https://doi.org/10.1094/PHYTO-98-8-0886 (PMID: 18943206)

    Article  CAS  PubMed  Google Scholar 

  • Shankar M, Reeves K, Bradley J, Varischetti R, Loughman R (2020) Effect of varietal resistance on the yield loss function of wheat to nodorum blotch. Plant Pathol 70:745–759

    Article  Google Scholar 

  • Sharipova GV, Veselov DS, Kudoyarova GR, Timergalin MD, Wilkinson S (2012) Effect of ethylene perception inhibitor on growth, water relations, and abscisic acid content in wheat plants under water deficit. Russ J Plant Physiol 59:573–580

    Article  CAS  Google Scholar 

  • Shi G, Friesen TL, Saini J, Xu SS, Rasmussen JB, Faris JD (2015) The wheat gene Snn7 confers susceptibility on recognition of the Parastagonospora nodorum necrotrophic effector SnTox7. Plant Genome 8(2):1–10. https://doi.org/10.3835/plantgenome2015.02.0007

    Article  CAS  Google Scholar 

  • Shi G, Zhang Z, Friesen TL, Bansal U, Cloutier S, Wicker T, Rasmussen JB, Faris JD (2016a) Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Mol Genet Genomics 291:107–119

    Article  CAS  PubMed  Google Scholar 

  • Shi G, Zhang Z, Friesen TL, Raats D, Fahima T, Brueggeman RS, Lu S, Trick HN, Liu Z, Chao W et al (2016b) The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci Adv 2:e1600822

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jorgensen LN, Hovmoller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Singh S, Deng Z, He X, Kehel Z, Singh RP (2019) Characterization of QTLs for seedling resistance to tan spot and Septoria nodorum blotch in the PBW343/Kenya Nyangumi wheat recombinant inbred lines population. Int J Mol Sci 20:5432. https://doi.org/10.3390/ijms20215432

    Article  CAS  PubMed Central  Google Scholar 

  • Smets R, Le J, Prinsen E, Verbelen JP, van Onckelen HA (2005) Cytokinin-induced hypocotyl elongation in light-grown Arabidopsis plants with inhibited ethylene action or indole-3-acetic acid transport. Planta 221:39–47

    Article  CAS  PubMed  Google Scholar 

  • Solomon PS, Lowe RGT, Tan K-C, Waters ODC, Oliver RP (2006) Stagonospora nodorum: cause of Stagonospora nodorum blotch of wheat. Mol Plant Pathol 7(3):147–156. https://doi.org/10.1111/J.1364-3703.2006.00326.X

    Article  PubMed  Google Scholar 

  • Stotz HU, Mitrousia GK, de Wit PJ, Fitt BD (2014) Effector-triggered defence against apoplastic fungal pathogens. Trends Plant Sci 19:491–500. https://doi.org/10.1016/j.tplants.2014.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syme RA, Hane JK, Friesen TL, Oliver RP (2013) Resequencing and comparative genomics of Stagonospora nodorum: sectional gene absence and effector discovery. G3 (bethesda). 3(6):959–969. https://doi.org/10.1534/g3.112.004994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syme RA, Tan K-C, Hane JK, Dodhia K, Stoll T, Hastie M et al (2016) Comprehensive annotation of the Parastagonospora nodorum reference genome using next-generation genomics transcriptomics and proteogenomics. PLoS ONE 11(2):e0147221. https://doi.org/10.1371/journal.pone.0147221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan KC, Oliver RP, Solomon PS, Moffat CS (2010) Proteinaceous necrotrophic effectors in fungal virulence. Funct Plant Biol 37:907–912

    Article  CAS  Google Scholar 

  • Tan KC, Ferguson-Hunt M, Rybak K, Waters OD, Stanley WA, Bond CS et al (2012) Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis. Mol Plant Microbe Interact 25:515–522. https://doi.org/10.1094/MPMI-10-11-0273

    Article  CAS  PubMed  Google Scholar 

  • Tan KC, Phan HT, Rybak K, John E, Chooi YH, Solomon PS, Oliver RP (2015) Functional redundancy of necrotrophic effectors-consequences for exploitation for breeding. Front Plant Sci 6:501. https://doi.org/10.3389/fpls.2015.00501

    Article  PubMed  PubMed Central  Google Scholar 

  • Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M (2008) Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18:1979–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa R, Brown-Guedira G, Ohm HW, Mateos-Hernandez M, Wise KA, Goodwin SB (2016) Determining the order of resistance genes against Stagonospora nodorum blotch, Fusarium head blight and stem rust on wheat chromosome arm 3BS. BMC Res Notes 9(1):58. https://doi.org/10.1186/s13104-016-1859-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uphaus J, Walker E, Shankar M, Golzar H, Loughman R, Francki M, Ohm H (2007) Quantitative trait loci identified for resistance to Stagonospora glume blotch in wheat in the USA and Australia. Crop Sci 47:1813–1822. https://doi.org/10.2135/cropsci2006.11.0732

    Article  CAS  Google Scholar 

  • Van Ginkel M, McNab A, Krupinsky J (eds) (1999) Septoria and Stagonospora diseases of cereals: a compilation of global research. CIMMYT, Mexico, D.F.

    Google Scholar 

  • Van-Schie CC, Takken FL (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581

    Article  CAS  PubMed  Google Scholar 

  • Veselova SV, Nuzhnaya TV, Maksimov IV (2014) The effect of 1-methylcyclopropene on the components of pro and antioxidant systems of wheat and the development of defense reactions in fungal pathogenesis. Appl Biochem Microbiol 50:516–523

    Article  CAS  Google Scholar 

  • Veselova SV, Burkhanova GF, Nuzhnaya TV, Maksimov IV (2016) Roles of ethylene and cytokinins in development of defense responses in Triticum aestivum plants infected with Septoria nodorum. Russ J Plant Physiol 63:609–619

    Article  CAS  Google Scholar 

  • Veselova SV, Burkhanova GF, Nuzhnaya TV, Rumyantsev SD, Maksimo IV (2019) Effect of the host-specific toxin SnTOX3 from Stagonospora nodorum on ethylene signaling pathway regulation and redox-state in common wheat. Vavilovskii Zhurnal Genet Sel Vavilov J Genet Breed 23:856–864

    Article  Google Scholar 

  • Veselova S, Nuzhnaya T, Burkhanova G, Rumyantsev S, Maksimov I (2021a) Reactive oxygen species in host plant are required for an early defense response against attack of Stagonospora nodorum Berk. Necrotrophic effectors SnTox. Plants (basel) 10(8):1586. https://doi.org/10.3390/plants10081586

    Article  CAS  Google Scholar 

  • Veselova SV, Nuzhnaya TV, Burkhanova GF, Rumyantsev SD, Khusnutdinova EK, Maksimov IV (2021b) Ethylene-cytokinin interaction determines early defense response of wheat against Stagonospora nodorum Berk. Biomolecules 11(2):174. https://doi.org/10.3390/biom11020174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner TA, Kohorn BD (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13:303–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wicki W, Winzeler M, Schmid JE, Stamp P, Messmer M (1999) Inheritance of resistance to leaf and glume blotch caused by Septoria nodorum Berk. In winter wheat. Theor Appl Genet 99:1265–1272. https://doi.org/10.1007/s001220051332

    Article  Google Scholar 

  • Winterberg B, Du Fall LA, Song X, Pascovici D, Care N, Molloy M, Ohms S, Solomon PS (2014) The necrotrophic effector protein SnTox3 re-programs metabolism and elicits a strong defence response in susceptible wheat leaves. BMC Plant Biol 14:215. https://doi.org/10.1186/s12870-014-0215-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SS, Friesen TL, Cai XW (2004a) Sources and genetic control of resistance to Stagonospora nodorum blotch in wheat. Recent Res Devel Genet Breed 1:449–469

    Google Scholar 

  • Xu SS, Friesen TL, Mujeeb-Kazi A (2004b) Seedling resistance to tan spot and Stagonospora nodorum blotch in synthetic hexaploid wheats. Crop Sci 44:2238–2245

    Article  Google Scholar 

  • Zaidi SS, Mukhtar MS, Mansoor S (2018) Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol 36:898–906

    Article  CAS  PubMed  Google Scholar 

  • Zearfoss AD, Cowger C, Ojiambo PS (2011) A degree-day model for the latent period of Stagonospora nodorum blotch in winter wheat. Plant Dis 95:561–567

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZC, Friesen TL, Simons KJ, Xu SS, Faris JD (2009) Identification, development and validation of markers for marker-assisted selection against the Stagonospora nodorum toxin sensitivity genes Tsn1 and Snn2 in wheat. Mol Breeding 23:35–49

    Article  Google Scholar 

  • Zhang Z, Friesen TL, Xu SS, Shi G, Liu Z, Rasmussen JB, Faris JD (2011) Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. Plant J 65:27–38. https://doi.org/10.1111/j.1365-313X.2010.04407.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724. https://doi.org/10.1111/tpj.13599

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Sharma.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katoch, S., Sharma, V., Sharma, D. et al. Biology and molecular interactions of Parastagonospora nodorum blotch of wheat. Planta 255, 21 (2022). https://doi.org/10.1007/s00425-021-03796-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03796-w

Keywords

Navigation