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Abstract

Accurately predicting the crown photosynthesis of trees is necessary for better understand-

ing the C circle in terrestrial ecosystem. However, modeling crown for individual tree is still

challenging with the complex crown structure and changeable environmental conditions.

This study was conducted to explore model in modeling the photosynthesis light response

curve of the tree crown of young Larix principis-rupprechtii Mayr. Plantation. The rectangular

hyperbolic model (RHM), non-rectangular hyperbolic model (NRHM), exponential model

(EM) and modified rectangular hyperbolic model (MRHM) were used to model the photosyn-

thetic light response curves. The fitting accuracy of these models was tested by comparing

determinants coefficients (R2), mean square errors (MSE) and Akaike information criterion

(AIC). The results showed that the mean value of R2 of MRHM (R2 = 0.9687) was the high-

est, whereas MSE value (MSE = 0.0748) and AIC value (AIC = -39.21) were the lowest. The

order of fitting accuracy of the four models for Pn-PAR response curve was as follows:

MRHM > EM > NRHM > RHM. In addition, the light saturation point (LSP) obtained by

MRHM was slightly lower than the observed values, whereas the maximum net photosyn-

thetic rates (Pmax) modeled by the four models were close to the measured values. There-

fore, MRHM was superior to other three models in describing the photosynthetic response

curve, the accurate values were that the quantum efficiency (α), maximum net photosyn-

thetic rate (Pmax), light saturation point (LSP), light compensation point (LCP) and respira-

tion rate (Rd) were 0.06, 6.06 μmol�m-2s-1, 802.68 μmol�m-2s-1, 10.76 μmol�m-2s-1 and

0.60 μmol�m-2s-1. Moreover, the photosynthetic response parameters values among differ-

ent layers were also significant. Our findings have critical implications for parameter calibra-

tion of photosynthetic models and thus robust prediction of photosynthetic response in

forests.
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Introduction

As the largest carbon flux in global carbon (C) cycling, photosynthesis can assimilate CO2

from the atmosphere and thus dedicating to climate change mitigation. It plays a crucial role

in the material cycle and energy flow of forest ecosystems [1–3]. In addition to the stage of leaf

development and genetic constitution of plant, photosynthesis is also strongly affected by sur-

rounding environmental conditions (e.g., light, leaf, CO2 concentration, humidity and temper-

ature etc.), during which intensity of light and its availability particularly determine the

amount of C assimilated by photosynthesis [4–7]. For the trees, the canopy is the most direct

part for photosynthesis to response to incoming solar irradiance. Therefore, better under-

standing the mechanism of crown leaf photosynthesis response to light availability is thus criti-

cal for maintaining forest productivity and management, in particular for dynamic simulation

growth models and in parameterization of crown photosynthesis.

Light response curves (Pn-PAR curves) describe the relationship between net photosyn-

thetic rate (Pn) and photosynthetically active radiation (PAR), and provide information about

the photosynthetic efficiency of plants (e.g. quantum yield, the maximum photosynthetic

capacity, light compensation point and leaf radiation use efficiency of leaves) [8–10]. The sim-

ulation of Pn-PAR curves are becoming increasingly important to study the photosynthetic

response process of plants to the environment, and analyze the primary productivity of vegeta-

tion and forests [1, 11–13]. A series of photo-physiological core parameters, such as maximum

net photosynthetic rate (Pmax), apparent quantum yield (AQY), light-saturation point (LSP),

light-compensation point (LCP), and dark respiration rate (Rd), can be used to assess the can-

opy photosynthetic rate and capacity of plants in different growth stage. To date, in order to

investigate the response of net photosynthetic rate (Pn) to light intensity of different plants,

many models, including the rectangular hyperbola model (RHM) [14, 15], the nonrectangular

hyperbola model (NRHM) [16, 17], the exponential model (EM) [18, 19], and the modified

rectangular hyperbola model (MRHM) [20], have been widely applied in modeling the photo-

synthetic light-response curve (Pn-PAR curve) [1, 12]. However, RHM, NRHM, and EM are

very complex, some photo- and biochemical parameters (such as Pmax and LSP) are subject to

environmental conditions and cannot be calculated directly using these models when light

intensity are above zero [21–24], and the fitted values of photosynthetic parameters were sig-

nificantly different from the measured ones [20, 25]. In the contrary, owing to the addition of

two adjusting factors (β and γ) into this model, which made the model highly advantageous in

fitting the photo-inhibition and light saturation stages [20, 26], the MRHM can directly pro-

duce Pmax and LSP, and overcome the limitation of above three models, the accuracy were

higher and the results were suitable for fitting Pn-PAR curve and photosynthetic parameters

under various environmental conditions [20, 24, 26, 27], it has been successfully applied in

simulating light-response curves of many plants, such as Keteleeria calcarea [28], Pinu stabu-
laeformis Carr. [29], Pinus koraiensis [30], Betula utilis [31].

Larix principis-rupprechtii Mayr (Larch)., one of the main species of the total area of all

plantations in Northern China, plays an important role in wood production, biodiversity pro-

tection, and forest ecological construction, due to its advantages of fast growth, strong adapt-

ability, and high economic value. To the best of our knowledge, little attention has been paid

to the application of a variety of dynamic crown photosynthetic light-response models in

Larch, and the fitting effect and differences of light responses by these models remains unclear.

Therefore, the determinant coefficients (R2), mean square error (MSE), and Akaike informa-

tion criterion (AIC) were used to evaluated the performance of four types of light-response

models(such as RHM, NRHM, EM, and MRHM) in 16-years-old Larch. Planation. The objec-

tives of the study were to select an optimal Pn-PAR curve model for fitting the Pn-PAR curves
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of Larch, and to explore the relationships between the parameters of the optimal Pn-PAR curve

model and leaf vertical positions. The results are helpful to further explore the spatial heteroge-

neity of carbon sequestration capacity of Larch needles in canopy, and provide a basis for accu-

rately estimating photosynthetic physiological characteristics and the productivity of its

plantation.

Materials and methods

Ethics statement

Conflicts of interest. The authors declare no conflict of interest.

Ethical approval. The authors declare that this article does not contain any research with

humans or animal subjects.

Site description and sample tree selection

The experiments were conducted in the field at the the scientific research base of the State For-

estry and Grassland Bureau established by Hebei Agricultural University, and the practice

Base for postgraduate training of Forestry Master’s Degree in Hebei Agricultural University.

which is located in Saihanba Forest Farm of Weichang County of Hebei Province in the north-

ern China (Fig 1, Table 1). The farm was mainly composed with Larixprincipis-rupprechtii,
Populusdavidiana, Betula platyphylla, and Quercus mongolica. The total forest coverage is

approximately 82.6%, including 72.6% plantation.

Three sample plots (20 m width × 30 m length) were set up within 16-year-old Larch planta-

tions of the same habitat. The diameter at breast height (DBH, cm) and tree height (H, m)

were measured for all trees with the D >5 cm in each plot, and the mean D (Dm) for three

plots were calculated independently. Then, three sample trees, whose D values respectively was

similar to Dm of the three plots, were selected to represent experimental materials. According

to the previous studies, for trees, the upper limit of the Pn-PAR curves was significantly differ-

ent within different crown whorls in the vertical direction [32–34]. Thus, we divided the

crowns of three sample trees respectively into three vertical layers with the trisection of crown

Fig 1. Study location and field experiment of L. principis-rupprechtii in Hebei Province, China.

https://doi.org/10.1371/journal.pone.0261683.g001
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depth (the distance from the top of the tree to the base of its live crown, CD), and each layer

was divided into two parts in horizontal direction (sunny and shaded) (Fig 2) [35].

Measurements of the light-response process

The light responses of photosynthesis were measured using a portable photosynthetic gas anal-

ysis system (LI-6400, LI-COR, Inc., Lincoln, Nebraska, USA) coupled with a standard red-blue

light-emitting diode (LED) radiation source (85% red, emission peak at 655 nm + 15% blue,

emission peak at 465 nm) (Li-6400-02B, LI-COR, Inc., Lincoln, NE, USA), photosynthetic

active radiations (PAR) intensities were set at thirteen lever of 2000, 1500, 1200, 1000, 800,

600, 400, 200, 150, 100, 50, 25, and 0 μmol (photons) m-2s-1). Before measuring, the instrument

was preheated and calibrated each time, these sample needles were kept for 10–20 min at a

CO2 concentration of 380 μmol (photons) m-2 s-1 and a PAR value of 1,400 μmol (photons) m-

2 s-1 in the leaf chamber, which reach a steady state around the needles. Then, the sample nee-

dles were allowed to equilibrate to 20˚C conditions for a minimum time of 2 min and a maxi-

mum of 3 min before the data were logged during the measurement of the Pn-PAR curves. The

measurements (experiments) were conducted from 8:30 a.m. to 16:30 p.m. on a cloud-free

periods day, with an air temperature at 24–26˚C and a relative humidity at 30–40%, the fixed

exposure time for each level of PAR was set at 2–3 min, these methods are described previously

[32, 33]. The data for the Pn-PAR curves were measured once every half month during the

growing season (approximately from 15th June to 10th August) in 2018 and 2019

Table 1. Description of sample site used in the experiment.

Sample

site

Latitude

(N)

Longitude

(E)

Elevation

(m)

Climate Annual mean

temperature

(˚C)

Annual

precipitation

(mm)

Annual

evaporation

(mm)

Sunshine

hours (hs)

Number of

frost-free

period (d)

Population

size (hm2)

Saihanba

Forest

Farm

42˚020-

42˚360
116˚510-

117˚39

1500–2067 cold temperate

semi-arid and

semi humid

continental

monsoon

-1.5

(from -42.8 to

30.9˚C)

452.6 1230 2368 60 93333

https://doi.org/10.1371/journal.pone.0261683.t001

Fig 2. Sketch map of the crown divisions. Upper, Middle and Lower represent three equal divisions of crown depth

in the vertical direction.

https://doi.org/10.1371/journal.pone.0261683.g002
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Photosynthesis-light response curve-fitting model and its parameters

The rectangular hyperbola model, the nonrectangular hyperbola model, the exponential

model, and the modified rectangular hyperbola model were used to fit the light-response

curves and to estimate photosynthetic parameters. The environmental conditions (CO2 con-

centration, temperature and humidity) are given. The expressions and parameters of the four

models were as follows:

The rectangular hyperbola model (RHM) [15, 36] was represented to the following form:

Pn ¼
aIPmax

aI þ Pmax
� Rd ð1Þ

Where: Pn represents the net photosynthetic rate (μmol (photon) m-2�s-1), a represents the

initial quantum efficiency at low light intensities [22], Pmax represents the maximum net pho-

tosynthetic rate (μmol (photon) m-2�s-1), Rd represents the respiration rate in the dark (μmol

(photon) m-2�s-1), and I represents the PAR. α, Pmax, and Rd are the main parameters to used

describe the characteristics of the Pn-PAR. Α is the initial slope of the Pn-PAR when PAR is 0–-

200 μmol�m-2�s-1, which indicates the plants’ light use efficiency [37–39].

The Pmax and LSP cannot be calculated directly using RHM, therefore, Pmax was estimated

and calculated by using the nonlinear least squares method under high light intensity [36, 40,

41], LSP could be expressed respectively as:

Pmax ¼ A� LSP� Rd ð2Þ

where: A (AQE) represents apparent quantum efficiency; LSP represents the light saturation

point (μmol (photon) m-2�s-1); Rd is as described above. A was obtained by fitting the light

response data which PAR is equal to or less than 200 μmol (photon) m-2s-1)

LSP ¼ ðPmax þ RdÞ=A ð3Þ

LCP ¼ ðRd � PmaxÞ=a� ðPmax� RdÞ ð4Þ

Where: LCP represents the light compensation point (μmol (photon) m-2�s-1); LSP, A, Pmax,

Rd are as described above.

The nonrectangular hyperbola model (NRHM) [42] was represented to the following form:

Pn ¼
aI þ Pmax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaI þ PmaxÞ
2
� 4ayIPmax

q

2y
� Rd ð5Þ

where: Pn indicates the net photosynthetic rate (μmol (photon) m-2�s-1); θ (0 < θ< 1) indicates

the convexity (curvilinear angle) (dimensionless); and α, I, Pmax, and Rd are as described

above.

The LSP was calculated by. Formula 3.

The LCP can be obtained by:

LCP ¼
ðRd � Pmax � y� Rd2Þ

a� ðPmax � RdÞ
ð6Þ

Where: LCP represents the light compensation point (μmol (photon) m-2�s-1); k, α, Pmax, Rd

are as described above.
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The expressions for the exponential model (EM) [18] was represented to the following

form:

Pn ¼ Pmax � 1 � e
� aI

Pmax

� �
� Rd ð7Þ

Where: e indicates the base of natural logarithm, α, I, Pmax, Pn, and Rd are as described

above.

The LSP was calculated by. Formula 3,

The LCP was calculated by. Formula 8.

LCP ¼
Pmax
a
� ln

Pmax
Pmax � Rd

ð8Þ

The modified rectangular hyperbola model (MRHM) [20, 23, 26] was represented to the

following form:

Pn ¼ a�
1 � bI
1þ gI

I � Rd ð9Þ

where: β and γ are adjusting factors. β represents the photoinhibition item (dimensionless), γ
represents the light saturation item (dimensionless), and γ = α/Pmax. α, I, and Rd are as

described above.

The Pmax, LCP and LSP were expressed on the modified rectangular hyperbola model in

Eqs 10, 11, and 12, respectively:

Pmax ¼ a

ffiffiffiffiffiffiffiffiffiffiffi
bþ g
p

�
ffiffiffi
b
p

g

� �2

� Rd ð10Þ

LCP ¼
Rd

a
ð11Þ

LSP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ gÞ=b

p
� 1

g
ð12Þ

where LCP, LSP, α, β, γ, and Rd are as described above.

Model assessment and validation

The fitting quality of the different models were assessed by mean square errors (MSE), deter-

minants coefficients (R2), and Akaike information criterion (AIC), the best combination with

the largest R2 value and smallest MSE and AIC value represented the higher fitting accuracy.

Mean square error (MSE) was the average of squared forecast errors, it is the specific value

of the sum of squared errors to the number of errors.

MSE ¼
1

n
Pn

i¼1
ðyi � ŷiÞ

2
ð13Þ

Determinants coefficients (R2) represents the fitting degree of net photosynthetic rate and

light intensity.

R2 ¼ 1 �

Pn
i¼1
ðyi � ŷiÞ

2

Pn
i¼1
ðyi � �yiÞ

2
ð14Þ

Akaike information criterion (AIC) is a fined technique based on in-sample fit to estimate
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the likelihood of a model to predict/estimate the future values.

AIC ¼ 2kþ nln
P
ðyi � ŷiÞ

2

n
ð15Þ

where yi, ŷi and �yi in the equations above represented the measured value, the fitted value and

the mean of the measured values, respectively n is the number of observations. k is the number

of estimated parameters [43].

Statistical analyses

The measured light-response data are collated and analyzed and expressed as mean ± standard

deviation (SD) of three replicates. Statistical analyses of the data were performed using two-

way analysis of variance (ANOVA) by GraphPad Prism 8.0 or the SPSS software (version 18.0)

and Duncan tests. Parameter values which are significantly different (p<0.05) are indicated by

different letters.

Results

Pn in response to PAR
To describe the relationships between Pn and PAR, photosynthetic light-response curves (Pn-
PARs) of Larch was studied. The results showed that light response curves (Pn—PAR) fitted by

NRHM, EM and MRHM from different layers were of similar tendency, while RHM were dif-

ficult to implement because the curves increased gradually with no extreme. Taking the middle

layer as an example, the Pn-PAR curves could be divided into three stages, the net photosyn-

thetic rate (Pn) increased linearly (rapidly) with the augments of photosynthetic available radi-

ation (PAR) in the first stage, where PAR< 200 μmol (photon) m-2 s-1, then increased

nonlinearly up to the maximum Pn, in the second stage, the maximum Pn is 6.00 μmol (pho-

tons) m-2s-1 when PAR is 600 μmol (photons) m-2s-1, and decreased gradually with increasing

PAR in the third stage (Fig 3). At the same PAR, needles under upper layer had a higher Pn

than those of the middle and lower leaves, and Pn values under different leaf layer could be

ranked as: Upper layer>Middle layer>lower layer.

Fitting and comparison of photosynthesis-light response curves

The fitting results showed the fitting Pn values of the four models were very close to the mea-

sured values actually when the PAR was low (PAR<100 μmol (photons) m-2s-1), the gap

increased with an increasing PAR, and the difference in Pn was more remarkable. The Pn value

simulated by NRHM, MRHM, and EM was slightly greater than measured value when PAR
values are 200–2000 μmol (photons) m-2s-1, and the simulated pattern of Pn-PAR curves

showed similar trend, the light-response curve was best described by three models, especially

when light intensity (PAR) is beyond Pmax (Fig 3). However, the Pn value simulated by the

RHM increased with the increasing PAR, the fitting error was too large to use directly (Fig

3A1-3A3). In addition, the mean value of R2 (range from 0.9748 to 0.9930) of the MRHM

model was the highest among the four models, and MSE value (MSE range from 0.0646 to

0.0866 μmol (photons) m-2 s-1) and AIC value (range from -45.7887 to -34.8321 respective) of

the MRHM were significantly smaller than those of other three models in upper, middle and

lower layer respectively (Table 2). In addition, MRHM model was superior to other three mod-

els in south and north orientation.
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Fig 3. Comparison of the measured values and fitted values of net photosynthetic light response curves in different layers on the

RHM (a1-a3), NRHM (b1-b3), MRHE (c1-c3) and EM (d1-d3) models. PAR represents photosynthetic available radiation, MSE
represents mean square error, R2 represents the coefficient of determination and AIC represents Akaike information criterion.

https://doi.org/10.1371/journal.pone.0261683.g003

Table 2. Fitting accuracy of different Pn-PAR.

Position Fitting accuracy Pn-PAR models

RHM NRHM MRHM EM

Upper layer MSE 0.2998 0.1903 0.0733 0.129

R2 0.967 0.982 0.993 0.9856

AIC -14.57 -17.18 -34.8321 -21.1756

Middle layer MSE 0.23 0.1518 0.0646 0.144

R2 0.9628 0.9816 0.9923 0.9746

AIC -17.06 -20.79 -45.7887 -26.5774

Lower layer MSE 0.4581 0.3 0.0866 0.2398

R2 0.8961 0.9473 0.9748 0.912

AIC -15.73 -19.27 -37.0383 -22.5198

North MSE 0.3706 0.1988 0.0748 0.1565

R2 0.9563 0.9807 0.9904 0.9735

AIC -13.71 -17.52 -39.6365 -22.6997

South MSE 0.288 0.2292 0.0748 0.1853

R2 0.9276 0.9598 0.983 0.9413

AIC -16.32 -20.38 -40.393 -22.943

https://doi.org/10.1371/journal.pone.0261683.t002
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Fitting analysis of the photosynthetic parameters based on the models

The Fitting value of photosynthetic parameters were used to estimate the fitting quality of the

model, its accuracy and rationality are affected by the model and layer [16, 19, 20, 27]. There-

fore, it is very important to study the fitting effect of different models, different layers and dif-

ferent orientations on light response parameter of needle leaves. The results showed Pmax

calculated from the RHM, NRHM and EM were closer to the measured value in the up layer,

and was slightly greater than the measured values in the middle and lower layer. The light satu-

ration point (LSP) obtained by above three models were much lower than the measured values

in the up, middle and lower layer respectively. The fitted values of Pmax and LSP by MRHM

were close to the measured values in each layer respectively. In addition, the LSP values were

significant difference between MRHM and the other three models, while the Pmax and LCP val-

ues were no significant difference, the a values of each model, which are the quantum effi-

ciency at low irradiance, ranged from 0 to 0.125 [44], Rd value was closer among four models

(Fig 4).

In the different layers, some simulated values of Pn-PAR response parameters revealed

somewhat different, there was no significant difference for LSP LCP and Rd in upper and mid-

dle layers, but was significant difference in lower layers, the values of α and Pmax were signifi-

cant for in each layer. In addition, the layer is one of the main factors of affecting the light

Fig 4. Comparison of light response parameters of different models at the same layer. (a) Parameters of (a) the

initial quantum efficiency (a). (b) maximum net photosynthetic rate (Pmax). (c) light saturation point (LSP). (d) light

compensation point (LCP). (e) dark respiration rate (Rd) for needles at different models. different letters indicate

significant difference at p<0.05 level with the least significant difference test, n.s. indicated no significant difference at

the level of P<0.05.

https://doi.org/10.1371/journal.pone.0261683.g004
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response parameters (e.g. a, Pmax, LCP) (Fig 4, S1 Table). Some simulated values of Pn-PAR
response parameters calculated by MRHM was more accurate than those obtained from other

three models (Fig 5, S1 Table). The photosynthetic parameters which were fitted by four mod-

els showed no significant difference between north and south direction (Fig 6, S3 Table).

Discussion

The light response curve (Pn-PAR curve) is an important tool for describing the response of

the Pn to PAR, identifying a series of photosynthetic parameters and evaluating the photosyn-

thetic efficiency of plants [11, 45, 46]. Therefore, constructing of Pn-PAR curve and choosing

the appropriate model are helpful to simulate canopy photosynthesis and predict plant produc-

tivity [47, 48]. In the study, the net photosynthetic rate increased initially and then decreased

gradually with the increase of PAR (Fig 3), which was consistent with the study of leaf Pn-PAR
curves of some plants in different growth stages [49, 50]. The results indicated light energy

absorbed by plants exceeded the needs of plants, the absorption of the excessive light energy

would restricted photosynthetic mechanism and series of enzymatic reaction rates in the chlo-

roplasts and result in photo-inhibition of Larch. The upper limit value of Pn-PAR curve main-

tained the state of upper layer>middle layer > lower layer during the whole growth period,

which was also proved in other Larch species [32], indicated that the metabolic capacity was

Fig 5. Comparison of light response parameters of different layers at the same model. (a) Parameters of the initial

quantum efficiency (a). (b) maximum net photosynthetic rate (Pmax). (c) light saturation point (LSP). (d) light

compensation point(LCP). (e); dark respiration rate (Rd) for needles at different canyon (different letters indicate

significant difference at p<0.05 level with the least significant difference test).

https://doi.org/10.1371/journal.pone.0261683.g005
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closely related to the light environment [34]. The differences of the Pn-PAR curve among dif-

ferent canopies might be associated with leaf characteristics, solar elevation angle, higher chlo-

rophyll a/b ratios, relative depth into crown (RDINC), etc [32, 51]. Additional, The

photosynthetic parameters which were fitted by four models showed no significant difference

between north and south direction, which was consistent with that of previous study [52].

The fitting of light-response model is an important method to describe the response mecha-

nism of Pn to PAR and evaluate the photosynthetic efficiency [45]. Among four models, the Pn

value simulated by the RHM consistently increased with the increasing PAR with no stable or

declined trend (Fig 3A1–3A3), indicated that RHM was more suitable for fitting consistently

increased type of Pn-PAR curves. This result agreed with the previous study [53]. Compared to

the other three models, the determinants coefficients (R2) value of the MRHM was the highest,

and mean square errors (MSE) value and Akaike information criterion (AIC) value were the

lowest (Table 2), indicated that MRHM performed better than other three models [23]. In

addition, some fitted values of photosynthetic parameters (e.g Pmax and LSP) were close to the

measured values (Fig 4, S1 Table), Ye [20] has proved that the unique structure of MRHM

made it more flexible in simulating different trends of Pn-PAR curves.

Compared with data fitted (Fig 3) and error analysis (Table 2) on the Pn-PAR curves of the

needles at different leaf canopy, there was no significant difference for LSP, LCP and Rd in

upper and middle layers, but was significant difference in lower layers. However, the values of

a and Pmax were significant in each layer. The Pn in the upper canopy was significantly higher

Fig 6. Comparison of light response parameters of different models between south and north direction. (a)

maximum net photosynthetic rate (Pmax); (b) dark respiration rate (Rd); (c) light saturation point (LSP). (d) light

compensation point (LCP). (e) the initial quantum efficiency (α). (different letters indicate significant difference at

p<0.05 level with the least significant difference test).

https://doi.org/10.1371/journal.pone.0261683.g006
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than those in the middle and lower canopy, which was not consistent with that of previous

study [53]. The different may be due to the comprehensive effects of genetic diversity, different

producing areas and environmental factors of trees [54]. It can be seen that layer was one of

the main factors of affecting the light response parameters (e.g. a, Pmax, LCP) (Fig 4, S1 Table).

Based on the above discussion, we considered that the light response process and photosyn-

thetic parameter (Pmax, LSP, LCP, and Rd) fitting by the MRHM models was more reliable (S2

Table). and MRHM could fit well the Pn-PAR curves of Larch (Fig 4, S2 Table). In addition,

the Pn-PAR of the middle leaf layer can better reflect the changes in leaf layer photosynthetic

parameters. However, the results, obtained in the vigorous growth period of Larix principis
rupprechtii from June to August, are of spatial and temporal limitation in Saihanba, the further

studies are needed to better understand the mechanisms of the photosynthetic physiological

ecology of plants to the environment.

Conclusion

This study describe canopy photosynthesis for Larix principis rupprechtii plantation, the Pn-

PAR curves and photosynthetic response parameters were measured under different layer of

three planted L. principis-rupprechtii trees by different models during the growing season. The

results showed that the fitting effect of MRHM model was superior to those of other three

models and it could analyze the light-response data more accurately, the selection of the mid-

dle layer of the plant is the best when measuring the photosynthetic performance of the whole

tree in combining with the analysis of fitting precision (Fig 3), the accurate values were as fol-

lows: α, Pmax, LSP, LCP and Rd were 0.06, 6.08 μmol�m-2s-1, 931.08 μmol�m-2s-1, 11.45 μmol�m-

2s-1 and 0.61 μmol�m-2s-1, respectively. This study not only helps to further explore the spatial

heterogeneity of carbon sequestration capacity of Larix principis rupprechtii leaves in canopy,

but also provides a scientific and effective guidance for accurately estimating the productivity

of Larix principis rupprechtii plantation.
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