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Abstract: The bark beetle (Ips typographus) disturbance represents serious environmental and economic
issue and presents a major challenge for forest management. A timely detection of bark beetle
infestation is therefore necessary to reduce losses. Besides wood production, a bark beetle outbreak
affects the forest ecosystem in many other ways including the water cycle, nutrient cycle, or carbon
fixation. On that account, (not just) European temperate coniferous forests may become endangered
ecosystems. Our study was performed in the unmanaged zone of the Krkonoše Mountains National
Park in the northern part of the Czech Republic where the natural spreading of bark beetle is slow
and, therefore, allow us to continuously monitor the infested trees that are, in contrast to managed
forests, not being removed. The aim of this work is to evaluate possibilities of unmanned aerial
vehicle (UAV)-mounted low-cost RGB and modified near-infrared sensors for detection of different
stages of infested trees at the individual level, using a retrospective time series for recognition of still
green but already infested trees (so-called green attack). A mosaic was created from the UAV imagery,
radiometrically calibrated for surface reflectance, and five vegetation indices were calculated; the
reference data about the stage of bark beetle infestation was obtained through a combination of field
survey and visual interpretation of an orthomosaic. The differences of vegetation indices between
infested and healthy trees over four time points were statistically evaluated and classified using the
Maximum Likelihood classifier. Achieved results confirm our assumptions that it is possible to use a
low-cost UAV-based sensor for detection of various stages of bark beetle infestation across seasons;
with increasing time after infection, distinguishing infested trees from healthy ones grows easier.
The best performance was achieved by the Greenness Index with overall accuracy of 78%–96% across
the time periods. The performance of the indices based on near-infrared band was lower.

Keywords: bark beetle detection; spectral change; UAVs; green attack; forest infestation; near infrared
(NIR); visible spectrum

1. Introduction

The current climate change causes serious difficulties for forests and keeping track of natural
hazards such as pest outbreaks represents therefore a major challenge for forest management and for
the future of forest ecosystems [1–4]. Over the last decades, spruce forests (not only) in the Central
Europe have been affected by ever increasing bark beetle activity. Thus, coniferous forests, suffering
besides pest attacks also from frequent windstorms and droughts, may join the ranks of endangered
ecosystems in the foreseeable future. The probability of bark beetle attack increases after long periods
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of drought, which debilitates the natural defences of the trees. Above-average temperatures and
below-average precipitation in the last four years weakened the forest ecosystems and set the conditions
for biotic infestation.

European spruce bark beetle (Ips typographus) is a secondary pest that infests primarily
recently-harvested wood or weakened trees of spruce [5,6]; however, where overpopulation occurs,
they can also infest healthy trees. An overabundance of bark beetle affects not only the production of
wood matter; it also affects other forest functions [7] such as water retention or carbon sequestration,
nutrients storage [8], or biodiversity [9]. Besides such environmental concerns, there are of course also
economic impacts. A bark beetle outbreak causes a significant drop in the value of wood and, even
more importantly, imposes significant costs associated with its consequences and recovery [10].

As prevention is the most effective defence against bark beetle, it is necessary to focus on the
deceleration of its spread; however, the spatial and temporal dynamics of the pest’s disturbances are
not fully understood yet [11,12]. For the measures to be successful, the earliest possible detection
of infested trees is needed [13]. An infested tree starts to evince visual changes as well as changes
in spectral characteristics as soon as a few weeks after infestation [14]. Such spectral changes may
be recorded using remote sensing (RS) techniques, i.e., satellites, aeroplanes, or unmanned aerial
vehicles (UAVs). As the satellites are used to map spatiotemporal dynamics of the infestation spread at
large extents, drones may be used for detection of the infested trees at a very detailed scale; see [11]
for review. A comprehensive review of assessing the health status of trees using remote sensing is
provided by [15,16].

Invasive approaches (felling the infested trees, peeling the bark off, application of chemicals, etc.)
for deceleration of bark beetle activity are not applicable in protected areas such as non-intervention
zones of national parks where only autoregulatory conservation management (succession) is possible.
These areas are a valuable source of information about the bark beetle life cycle since no human-driven
management interferes with spreading of the beetle. Moreover, these zones are usually situated in
locations that are difficult to access. Thanks to detectable changes in spectral characteristics between
healthy and infested trees [4,14], the use of RS techniques seems to be a very promising solution [2,17].

The satellite-borne multispectral imagery [11–13], hyperspectral imagery [4,5,18,19], airborne
LiDAR [7,20], or a combination of those have been applied to study bark beetle across large extents.
On the other hand, the close-range RS techniques (e.g., drones) may be used for precise detection of
infested trees at a very detailed scale [4,21–24]. As the UAVs (or drones) have gained in popularity and
use, their prices have come down and the availability of user-friendly software has increased. Their
usability for early detection of infested trees is however still limited and the selection of appropriate
time of UAV data acquisition for early detection still missing. Despite that, UAVs are advantageous due
to their (a) spatial resolution, which offers a solution for local scale analysis at the level of individual
trees [25]; and (b) temporal resolution where rapid deployment is crucial [26]. Miniaturized UAV-specific
sensors thus represent a state-of-the-art solution for many recent environmental applications [22,27]
and deriving forestry parameters [28,29]. Despite this, only few studies have focused on bark beetle
detection using UAVs [30,31]. For example, Näsi et al. [4] distinguished between healthy, infested,
and dead trees with an overall accuracy of 76% and Näsi et al. [19] with 81% overall accuracy using
hyperspectral UAV-borne images in Finland; however, they did not distinguish between healthy trees
and those in an early stage of infestation. The potential of the application of vegetation indices for
detection of trees infested with bark beetle in different environments was previously reported by
Näsi et al. [19] in Finland; Minařík et al. [23] in the Czech Republic; Stoyanova et al. [21] in Bulgaria,
and Safonova et al. [32] in Russia. Despite the fact that the significance of NIR band was proved
by [14,21–23], the detection of the early stage of the bark beetle attack, even before the visual signs are
easily recognizable by the human eye (so-called “green attack”), is still challenging, especially using a
low-cost camera.

The bark beetle infestation has several phases, which are annually repeated [5,6]. The aim of
this study is to highlight the possibility of using low-cost and customized UAV sensors for detection
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of various stages of bark beetle attack at the level of individual trees. We hypothesize that (a) using
broad UAV-based bands, it is possible to detect spectral differences between healthy and infected
trees at various stages, and (b) the near-infrared band plays a more important role in the detection
of trees infested by bark beetle than RGB bands, even when originating from a low-cost, customized
RGB camera. At the first glance, the study represents a typical environmental application of remote
sensing; in a more detailed view, however, it is unique due to (a) the use of low-cost sensors placed on
rotary-wing UAV for bark beetle detection; (b) coupling a customized NIR sensor with a consumer
grade RGB camera; (c) distinguishing between healthy and infested trees in the green attack stage;
(d) a detailed spatial analysis at the level of individual trees (sub-centimetres image resolution); and
(e) location of the study area in the non-intervention zone, which allowed us to comprehensively
describe the forest changes throughout one bark beetle generation.

2. Materials and Methods

2.1. Study Site

The study area with the elevation range of 940–1050 m above MSL is located in the eastern part
of the biggest national park (Krkonoše Mountains National Park) in the north of the Czech Republic
(Figure 1). A state border divides the park into Czech and Polish parts with the combined area of
425 km2. It was founded in 1963 and has been listed as a UNESCO Biosphere Reserve site in 1992.
The study area encompasses 10.7 ha and is covered mainly by spruce forest (Picea abies), supplemented
by mountain-ash (Sorbus aucuparia), common beech (Fagus sylvatica), and silver fir (Abies alba). The mean
annual temperature is less than 5◦C and the mean annual precipitation exceeds 1400 mm; the duration
of vegetation season is approx. a hundred days. The study site, which is included in the first level
of the protected areas (the most strictly protected), is a part of a non-intervention zone left strictly to
ecological succession—no human-managed interventions are permitted. The study area had a high
probability of bark beetle activity in the year of data acquisition due to its activity in the past.
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The bark beetle attack in this area starts usually later than in other parts of the Czech Republic
due to the high altitude and snowy conditions. It is hard to specify the exact date but typically, it is
the end of May (last week of May). The records by local foresters indicate that in 2017, swarming
took place on 1–10 June (sinkholes, wedding chambers and eggs were found in the traps). In the next
period (15–20 June), the larval stage was found in most of the traps. At the turn of July and August,
development progressed to the pupal stage and young beetles started to emerge in the middle of
August (after 15 August). Visual infestation stages corresponded with this statement. Hence, the trees
infested in the orthomosaics from the first (15 June) and second (1 August) periods are in the green
stage, in the third (30 August) mainly in the yellow stage and in the fourth (1 October) mainly in the
red stage.

2.2. Acquisition and Processing of UAV Imagery

Field surveys were performed four times during the 2017 season: (a) At the beginning of the
outbreak (on 15 June), (b, c) during the outbreak on 1 August (b) and on 30 August (c), and (d) after
the outbreak (on 1 October). The UAV flights in June and in October were performed in overcast
conditions while the flights in August in sunny conditions (see Figure A2). Where the images were
acquired under overcast conditions, the cloud cover of the sky was consistent during all UAV missions
and in sunny periods, almost no clouds that could have caused problematic shadows were present
in the sky. Each flight lasted for 15 min so we were able to wait for the appropriate time of image
acquisition—the individual sets of images acquired on the same days were acquired under comparable
conditions. All flights were performed at almost the same time (11:00–13:00). Data was acquired during
a low altitude aerial survey using a rotary-wing UAV Zefyros Oktos XL (MikroKopter, Moormerland,
Germany). UAV was equipped with (a) a casual camera Sony Alpha A7 and (b) a customized sensor
Lumix TZ7. Sony Alpha A7, which is a CMOS-based full-frame 24 MPix camera, was used for acquiring
visible imagery to make a true-color mosaic (RGB); the camera was equipped with a 21 mm focal
length lens providing low geometrical distortions. Lumix TZ7, a CCD-based 10 MPix camera, was
customized to capture near-infrared spectrum as well and thus to obtain a color infrared mosaic (CIR).
The NIR filter was removed by a member of the team of authors and a 760 nm band filter was mounted
in front of the lens to filter out the visible spectrum. Both cameras were mounted on the same UAV.

Predefined flight plan at 90 m above ground level with regular 80% side and frontal overlaps
was uploaded to the UAV control/autopilot unit. Seven Ground Control Points distributed regularly
throughout the area were surveyed using GNSS aperture Topcon Hiper HR (the mean RMSE in XYZ
axis was 0.03 m) to build a strong geometry of the photogrammetric model. In total, 673 camera
stations were taken above the study site per flight.

UAV-acquired images were processed using image-matching software PhotoScan version 1.3.4
(Agisoft LLC, Saint Petersburg, Russia) without initial camera calibration parameters, see Figure A1
for image residuals. More than 600 thousand key points were identified during the image alignment
process and subsequently densified. Orthorectified mosaics were built with a ground sampling distance
of 2.3 cm; all four flight campaigns were processed using the same processing parameters. The output
from the image-matching processing was a combination of RGB and CIR orthomosaics for each field
campaign. A Digital Surface Model (DSM) with the density of 125 points per square meter was created.
Subsequently, a Digital Terrain Model (DTM) was built and subtracted from the DSM to acquire a
Canopy Height Model (CHM) representing the vegetation height.

2.3. Image Analysis

Four composite RGB/CIR orthomosaics were created and radiometrically calibrated to relative
surface reflectance using the Flat Field Correction feature in ENVI software version 5.5 (Harris
Geospatial Solutions Inc., Broomfield, CO, USA). The correction was necessary to adjust for the
different radiometric resolutions of the used cameras and to remove the differences in weather and
seasonal conditions between UAV sensing periods. Flat Field Correction works by dividing the
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reflectance values of individual pixels in the individual channels by a mean value from a user-defined
reference area containing spectrally flat material. The only suitable type of such material in the study
area were boulders in the dry river basin.

Shadows were masked off from the composite orthomosaics using the near-infrared band.
The shadows masks were created using thresholding. The threshold value was set manually
(trial-and-error method) for each of the four composites. To achieve precise detection, individual
treetops were automatically detected using CHM and local maxima filtering [28,29]. This widely used
approach was based on a proprietary script using image smoothing by the low pass 3-by-3 filter, local
maxima finding with a 2 m radius, and template matching [28] in ArcGIS software version 10.6 (ESRI,
Redlands, CA, USA). Detected treetops were visually inspected in the orthomosaic and manually
corrected in a few cases where multiple local maxima were found on a single tree. As the bark beetle
prefers spruce trees older than 60 years that provide a plentiful source of phloem [12], trees lower than
15 m were ignored during the detection process.

Each treetop was classified according to its health status (dead, healthy, or infested) for each
sensing period. This classification was based on the visual image interpretation of the differences
between the state of the tree in the first and the last orthomosaics and verified by a field survey. As the
spectral characteristics of dead trees significantly differed from both healthy and infested trees [4], dead
trees were not included into subsequent statistical analysis and classification process. From processed
orthomosaics, selected vegetation indices were calculated [33,34], see Table 1. The relevance of indices
was evaluated based on visual differences in spectral curves (bands) of infested and healthy trees (see
Figure 2). Around every treetop, a 0.5 m buffer was created to eliminate shadows of surrounding trees;
moreover, an assumption was that the first symptoms were visible near the treetop of the infested tree.
In each buffer, mean vegetation indices were calculated using Zonal Statistics tool in ArcGIS for further
statistical analysis.
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Figure 2. Spectral curves of the time series captured in different stages of the bark beetle infestation,
showing dead (grey, A), infested (red, B), and healthy (green, C) trees throughout the season. The graphs
represent mean relative reflectance values calculated from all infested (red), dead (black), and healthy
(green) trees higher than 15 m in the study area at the individual dates.
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Table 1. Calculated broadband ratio indices with formulas.

Indices Formula Reference

Simple Ratio SR = NIR
RED

[35]

Greenness Index GI = GREEN
RED

[36]

Green Ratio Vegetation Index GRVI = NIR
GREEN

[37]

Normalized Difference Vegetation Index NDVI = NIR−RED
NIR+RED

[38,39]

Green Normalized Difference Vegetation Index GNDVI = NIR−GREEN
NIR+GREEN

[40]

2.4. Statistical Analysis

The main aim of the statistical analysis was to identify possibilities of distinguishing the healthy
trees from the infested ones throughout the sensing periods. The selected infested trees (24 trees
in total) were compared with a random sample selected from the set of healthy trees (3226 trees in
total). The difference was tested using Mann–Whitney test within each observational period separately.
The size of the difference and its change in time were assessed using the Relative Treatment Effect (RTE)
values. STATISTICA software version 13.4 (TIBCO Software Inc., Palo Alto, CA, USA) was used for
Mann–Whitney tests, R environment version 3.5.1 (R Core Team, Vienna, Austria) for RTE calculations
using nparLD procedure as described in [41].

The healthy (H-sample) and infested (I-sample) trees were compared by statistical analysis.
Infested trees were included in the I-sample (22 trees in total, two samples were excluded due to a low
number of pixels in the 0.5 m buffer) while H-sample was a random sample selected from the set of
healthy trees, based on the following criteria: the minimum tree-height 15 m, the maximum distance to
the nearest infested tree 50 m, the minimum number of pixels in the treetop buffer 500 (2138 healthy
trees met the sampling criteria). For a graphical comparison of selected samples, see Figure 3.
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Figure 3. (a) Box-plots displaying quartile characteristics (median, Q25, Q75) for SR, GI, and GRVI,
respectively (always in the order I-sample—infested, H-sample—healthy), in the four sensing periods.
Black dots represent outliers; (b) Box-plots displaying quartile characteristics (median, Q25, Q75) for
NDVI and GNDVI, respectively (always in the order I-sample—infested, H-sample—healthy), in the
four sensing periods. Black dots represent outliers.

2.5. Image Classification

Statistical results were compared to the results of image classification using Maximum Likelihood
Classifier (MLC). Samples of 40 healthy and 10 infested trees were randomly selected for training as
well as for validation. Classification was performed in ArcGIS using the following inputs: Greenness
Index (GI), Simple Ratio (SR), Green Ratio Vegetation Index (GRVI), Normalized Difference Vegetation
Index (NDVI), and Green Normalized Difference Vegetation Index (GNDVI), see Table 1 for details.

3. Results

3.1. Spectral Comparison

The spectral response of identified trees varied across the dates of acquisition (Figure 2).
The imagery analysis was used to determine spectral profiles of the healthy, dead, and infested
trees throughout the season. The spectral differences between healthy and infested trees were
distinguishable both in the visible and near-infrared bands and kept increasing with later dates of
acquisition. The spectral differences between the infested and healthy trees were higher in the visible
bands than in the near-infrared bands.

The spectral response of dead trees is almost constant across different stages, changing towards
the end, probably due to changes in spectral reflectance caused by falling off of needles and fine
branches. The mean reflectance values are therefore very similar in visible bands and are different
in the NIR band (see Figure 2). The response of both infested and healthy trees changed over time.
Nevertheless, in early summer (15 June), at the beginning of infestation, the shapes of the spectral
curves were quite similar. There was no significant difference between healthy and infested trees
(Figure 2). In summer (1 August and 30 August), when the bark beetle attack progressed, the humidity
was lower and temperature higher, the response of healthy and infested trees started to differ and a
spectral variation was apparent, mainly in Red bands. In autumn (1 October), the difference in the Red
band between healthy and infested trees is clearly visible. In addition, the relative spectral reflectance
of infested trees was getting closer to that of dead trees (see the graphs in Figure 2).
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3.2. Statistical Evaluation

Due to the lack of normality, a non-parametric test procedure (Mann–Whitney test) was used
to detect significant differences between samples (see Hypothesis a), separately for each observation
time (Period 1–Period 4). Resulting p-values indicate that the difference between healthy and infested
trees was significant even at the early stage, namely since the second period of observation (Table 2).
An expected effect of enhancing the detection capabilities by adding the NIR band (see Hypothesis
b) was not observed because all the indices showed a comparable ability in detecting the differences
between healthy and infested trees. The NIR however contributed to the results by yielding the best
shadow mask.

Table 2. Comparison of median values in the H-sample/I-sample (p-values of Mann–Whitney test
in brackets). Note: The resulting p-values for GRVI and GNDVI, as well as for SR and NDVI, were
identical in these non-parametric test procedures due to the definition of the indices (see Table 1).

Period 1 Period 2 Period 3 Period 4

SR 2.007/1.911
(0.342)

1.966/1.706
(0.001)

1.771/1.420
(<0.001)

2.326/1.478
(<0.001)

GI 1.112/1.106
(0.245)

1.115/1.075
(0.001)

1.097/0.995
(<0.001)

1.156/0.921
(<0.001)

GRVI 1.793/1.735
(0.581)

1.762/1.576
(0.002)

1.636/1.431
(0.001)

2.020/1.620
(<0.001)

NDVI 0.335/0.313
(0.342)

0.326/0.261
(0.001)

0.278/0.173
(<0.001)

0.399/0.193
(<0.001)

GNDVI 0.284/0.269
(0.581)

0.276/0.223
(0.002)

0.241/0.177
(0.001)

0.338/0.237
(<0.001)Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 19 

 

 

Figure 4. Relative Treatment Effect (RTE) values (GI: solid curves, GRVI and GNDVI: dotted curves, 
SR and NDVI: dashed curves; H-sample—upper curves, I-sample—lower curves). 

3.3. Image Classification 

The Greenness Index yielded the best image MLC classification results for the first period (at the 
beginning of the bark beetle outbreaks). Moreover, the classification accuracy increased with later 
time of image acquisition for all indices (e.g., GI 78%–96%, NDVI 70%–94% and GNDVI 60%–92%). 
In addition, classification results slightly overestimated the number of the infested trees; for practical 
forest application, however, this type of mistake is less harmful than the opposite. The bark beetle 
infestation may be captured in the early stages due to omission-free results. In addition, the small 
number of healthy trees misclassified as infested represent unhealthy trees, which could be 
potentially attacked by bark beetle in the next generation. Therefore, their removal could be also 
beneficial. 

Misclassification of healthy trees for infested was more common in the first two periods (June 
and beginning of August); however, the remaining two periods (end of August and beginning of 
October) proved the possibility to apply vegetation indices calculated from low-cost UAV sensor for 
detection of infested trees with sufficient accuracy; details are tabulated in Table 3. For example, the 
omission error of the GI changed between the first and last sensing periods from 25% to 2% and the 
commission from 3% to 2% for healthy trees; for infested trees, the error of omission was 10% and of 
commission 53% to 10%. The accuracy of the MLC classification in distinguishing healthy trees from 
the infested ones was associated with the actual increase in the differences between the vegetation 
indices; the differences in variability did not play a major role (see Table A1 in Appendix B). The 
effect of the time point of image acquisition on the detection accuracy was more significant than the 
effect of the selection of a variable as vegetation indices are strongly correlated [42]. 
  

Figure 4. Relative Treatment Effect (RTE) values (GI: solid curves, GRVI and GNDVI: dotted curves, SR
and NDVI: dashed curves; H-sample—upper curves, I-sample—lower curves).

The sampling of healthy trees and the testing procedure were repeated 100-times to assess the
stability of the result. In 56 cases (56%), GI differed significantly between healthy and infested trees
as soon as in the first period of observation; SR as well as NDVI recorded the change at that stage
in 39 cases (39%); and GRVI and GNDVI in 21 cases (21%). The increasing difference between the
H-sample and I-sample over time is obvious from Table 2 as a decrease in p-values from Period
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1 to Period 4. As an illustration of this trend, RTE values were calculated, as shown in Figure 4.
The differences between H-samples (upper curves) and I-samples (lower curves) increased with later
periods. For instance, the RTE value for GI in the first period reached 68.5% for H-sample and 60.4%
for I-sample; in the second period, it reached 65.2% for H-sample but only 44.0% for I-sample. The last
value, for example, can be interpreted as follows: with a probability of 44%, any GI value measured
among the infested trees in the second period tends to be smaller than any GI value from the whole
I-sample dataset.

3.3. Image Classification

The Greenness Index yielded the best image MLC classification results for the first period (at the
beginning of the bark beetle outbreaks). Moreover, the classification accuracy increased with later
time of image acquisition for all indices (e.g., GI 78%–96%, NDVI 70%–94% and GNDVI 60%–92%).
In addition, classification results slightly overestimated the number of the infested trees; for practical
forest application, however, this type of mistake is less harmful than the opposite. The bark beetle
infestation may be captured in the early stages due to omission-free results. In addition, the small
number of healthy trees misclassified as infested represent unhealthy trees, which could be potentially
attacked by bark beetle in the next generation. Therefore, their removal could be also beneficial.

Table 3. Image classification accuracy expressed on a sample of 10 infested:40 healthy trees using
maximum likelihood classification where H = number of healthy trees, I = number of infested trees, Σ
= sum, PA = producer’s accuracy, UA = user´s accuracy, bold values = overall accuracy. The graphical
interpretation of the classification approaches may be found in Figure A2 in Appendix C.

Time 15 June 2017 1 August 2017 30 August 2017 1 October 2017

G
I

H I
∑

UA H I
∑

UA H I
∑

UA H I
∑

UA
H 30 1 31 0.97 33 1 34 0.97 38 2 40 0.95 39 1 40 0.98
I 10 9 19 0.47 7 9 16 0.56 2 8 10 0.80 1 9 10 0.90∑

40 10 50 40 10 50 40 10 50 40 10 50
PA 0.75 0.90 0.78 0.83 0.90 0.84 0.95 0.80 0.92 0.98 0.90 0.96

N
D

V
I

H I
∑

UA H I
∑

UA H I
∑

UA H I
∑

UA
H 28 3 31 0.90 32 1 33 0.97 36 3 39 0.92 39 2 41 0.95
I 12 7 19 0.37 8 9 17 0.53 4 7 11 0.64 1 8 9 0.89∑

40 10 50 40 10 50 40 10 50 40 10 50
PA 0.70 0.70 0.70 0.80 0.90 0.82 0.90 0.70 0.86 0.98 0.80 0.94

SR

H I
∑

UA H I
∑

UA H I
∑

UA H I
∑

UA
H 24 2 26 0.92 30 1 33 0.97 35 3 38 0.92 38 2 40 0.95
I 16 8 24 0.33 10 9 17 0.47 5 7 12 0.58 2 8 10 0.80∑

40 10 50 40 10 50 40 10 50 40 10 50
PA 0.60 0.80 0.64 0.75 0.90 0.78 0.88 0.70 0.84 0.95 0.80 0.92

G
N

D
V

I

H I
∑

UA H I
∑

UA H I
∑

UA H I
∑

UA
H 23 3 26 0.89 30 1 31 0.97 35 4 39 0.90 38 2 40 0.95
I 17 7 24 0.29 10 9 19 0.47 5 6 11 0.55 2 8 10 0.80∑

40 10 50 40 10 50 40 10 50 40 10 50
PA 0.58 0.70 0.60 0.75 0.90 0.78 0.88 0.60 0.82 0.95 0.80 0.92

G
R

V
I

H I
∑

UA H I
∑

UA H I
∑

UA H I
∑

UA
H 22 2 24 0.92 29 1 30 0.97 35 3 38 0.92 35 2 37 0.95
I 18 8 26 0.31 11 9 20 0.45 5 7 12 0.58 5 8 13 0.62∑

40 10 50 40 10 50 40 10 50 40 10 50
PA 0.55 0.80 0.60 0.73 0.90 0.76 0.88 0.70 0.84 0.88 0.80 0.86

Misclassification of healthy trees for infested was more common in the first two periods (June and
beginning of August); however, the remaining two periods (end of August and beginning of October)
proved the possibility to apply vegetation indices calculated from low-cost UAV sensor for detection of
infested trees with sufficient accuracy; details are tabulated in Table 3. For example, the omission error
of the GI changed between the first and last sensing periods from 25% to 2% and the commission from
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3% to 2% for healthy trees; for infested trees, the error of omission was 10% and of commission 53% to
10%. The accuracy of the MLC classification in distinguishing healthy trees from the infested ones was
associated with the actual increase in the differences between the vegetation indices; the differences in
variability did not play a major role (see Table A1 in Appendix B). The effect of the time point of image
acquisition on the detection accuracy was more significant than the effect of the selection of a variable
as vegetation indices are strongly correlated [42].

4. Discussion

The study results are consistent with those of other studies focused on bark beetle detection using
UAVs and correspond with the findings of Abdullah et al. [14], who used a field spectrometer, and
Minařík et al. [23] who used non-calibrated raw values. Our study complements those by Stoyanova et
al. and Brovkina et al. [21,22] who investigated UAV-based detection capabilities on mosaics based
on images acquired during a single mission. In the corresponding time of acquisition (with regard
to a different latitude), we recorded a 78% overall accuracy. For example, Näsi et al. [4] achieved
an overall accuracy of 76%. The overestimation of the number of infested trees was more common
in our study while the opposite was true in the studies of Näsi et al. [4,19]. Due to their previous
results documenting good distinctiveness between healthy and dead trees (the overall accuracy 90%),
we focused our attention only on distinguishing between healthy and infested trees. Our findings
also broadly correspond with studies using high-resolution multispectral satellite imagery, especially
Landsat [12,43,44].

We assumed that compared to healthy trees, the infested ones have a higher reflectance in the
Green and Red parts of the spectrum and lower in the NIR (Figure 2), which corresponds with the
results of Näsi et al. and Abdullah et al. [4,14]. Therefore, the vegetation indices combining these bands
were chosen for evaluation. The study results suggest that the Red band is crucial for detecting the bark
beetle. The assumption about the benefit of NIR band acquired by a customized CIR camera wasn’t
proven (Hypothesis b), unlike in previous studies [4,19,21,23]. The non-calibrated CIR camera sensitive
to the wavelength of approx. 760 nm used in our study seems to be insufficient for distinguishing
between healthy trees and those infested by the bark beetle. Based on our results, we assume that it
is necessary to use higher NIR wavelengths around 800 nm [14] for refining the results (with regard
to accuracy and timeliness of detection). The Blue and Green bands recorded more or less a stable
difference between healthy and infested trees in all four sensing periods. The vegetation indices
derived from these bands also yielded only limited success in detection of the bark beetle infestation.

Radiometric normalization of the mosaic was conducted using the Flat Field Correction method
due to the absence of targets for radiometric calibration during the field campaigns or an irradiance
sensor on UAV. The main task of the correction was to normalize the differences between RGB and
customized CIR cameras. The Flat Field Correction is based on dividing image pixels by the mean
reflectance values calculated from the user-defined region of interest represented by a spectrally flat
material. The boulders in the dry river basin were the only suitable type of this material in the study
area. Its reflectance seems to be stable across the camera wavelengths. The result of this correction
is the relative surface reflectance. Depending on the sensors’ sensitivity and the reflectance of the
reference area, this method may lead to relative surface reflectances with values higher than 1 (see
NIR in Figure 2). Therefore, the comparison among the four periods (represented by vegetation
indices) can be slightly affected by the choice of the ideal flat object in the orthomosaics. The possible
inaccuracy of data normalization may be apparent in spectral profiles of the Period 4 (see Figure 2)
where the value of NIR surface reflectance is slightly higher than for the remaining periods. On the
other hand, it could be also caused by weather conditions because October is the moistest and rainiest
month from sensing periods. Therefore, in reality, the general vitality of trees could be greater than
in the remaining periods. The imagery normalization could potentially affect the period’s statistical
evaluation but could not influence the results of the MLC classification of the individual mosaics and
the distinguishing between infested and healthy trees within one sensing period. Despite this crude
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solution, the shapes of corrected spectral curves are very similar to those acquired by other authors
using state-of-art multispectral [23] and hyperspectral [4,19] sensors. Another normalization option
would be for example to use the methods based on chromatic coordinates [45] instead of the Flat Field
Correction tool.

The results may also theoretically be affected by different lighting conditions during image
acquisition (e.g., the amount of shadows). The flights in June and in October were performed in
overcast conditions while the flights in August in sunny weather. For the study needs, however, it
was important that the individual sets of images captured on the same date were acquired under
constant conditions as we were comparing data with the same day of acquisition, not data between the
periods. In the overcast periods, the cloud cover of the sky was consistent during each UAV mission
and in sunny periods, almost no clouds that could cause problematic shadows were present in the sky.
To further minimize the effects of differences in lighting conditions, all UAV flights were performed
between 11:00–13:00 of the local time to minimize shadows. As individual flights take only 15 min, we
were able to wait for the appropriate time of acquisition. The remaining shadows were masked and a
mean value of vegetation index in 0.5 m buffers around the tree tops was calculated. Therefore, we
assume that the weather had a minimum influence on study results. Other studies [4,19] solved this
problem by using the average value of the six brightest pixels in a 1 m diameter window.

We did not consider the possible differences in the vegetation indices caused by differences in the
tree sizes. However, Näsi et al. [19] who took that into consideration did not reveal any significant
effect of such approach.

In our study, the object-based classification using the Maximum Likelihood classifier [46],
representing one of the most widely used and approved classification approaches worldwide, achieved
accurate classification results (Table 3). On the other hand, Näsi et al. [4] used the k-nearest neighbor
classifier (k-NN) and recommended the use of the Random Forest algorithm; Näsi et al. [19] used the
Support Vector Machine (SVM). The presented statistics is based on a representative sample of data
and on a sophisticated and robust method, unlike previous similar studies such as the preliminary
study by Minařík et al. [23]. The sample size in the study by Näsi et al. [4] was similar to ours. Due
to a relatively small sample size of infested trees (compared to healthy ones) and the uniqueness of
the study area due to its situation in the non-intervention zone, it is difficult to evaluate the universal
applicability of this solution in everyday forestry practice. Same as Näsi et al. [4], we believe that
we cannot simply proclaim our method to provide sufficient/insufficient accuracy of infested trees
detection as that always depends predominantly on the particular needs of the forest managers.

Both statistical analysis and image classification show that for identification of infested trees,
the use of a consumer grade RGB camera is sufficient (Hypothesis a). The negligible impact of the
near-infrared band (in the study expressed as SR, GRVI, NDVI, and GNDVI indices) can be caused by
a lower NIR spectral resolution (lower wavelength) of our customized sensor. However, we assume
that using a professional UAV multispectral, e.g., Tetracam µ-MCA Snap 6 [23], or hyperspectral
camera [4,19], could further increase the resulting significance.

There are further future possibilities to build on this study and to advance the knowledge of
UAV-based detection of bark beetle infestation. It is necessary to confirm our results with regard
to early detection of bark beetle infestation in other types of environments using different sensors.
For precise detection, more information is needed about spectral characteristics of different stages of
bark beetle infestation and their spatial-temporal changes, e.g., by using laboratory or field reflectance
measurements [14], by UAV monitoring with high temporal resolution [4], or through time lapse
cameras. Another possible challenge lies in the synergy of application of fine-scale UAV data with
satellites (e.g., Landsat 8, Sentinel-2, or Planet) or airborne sensors, which can allow extrapolation of
UAV results to larger areas.

Presented methodology describes a novel low-cost approach for fine-scale detection of bark beetle
infestation using vegetation indices and the identification of different stages of the tree infestation.
Nevertheless, the study results are applicable for detection of any biotic forest pest disturbances as
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well as for other forestry applications where the spectral characteristics of the tree crown are crucial [4],
such as tree species classification [22].

In our study area, the outbreak started on 1 June (till 10 June) and the new generation was born
after 15 August, which corresponds with the dates of acquisition of UAV-borne images. At the second
stage (1 August), the infestation was usually not easily recognizable from the ground; however, during
the next stage (30 August), the spectral difference was significant, and the infestation was already
recognizable from the ground. In the late stage (1 October), when the infested trees were almost dry,
the spectral variation as well as color differences were obvious. Our results clearly show that the
detection of infested trees was possible as soon as a few weeks after the outbreak. However, the period
of early bark beetle attack detection is highly site- (lowland vs. mountains etc.) and condition-specific
(temperature, humidity etc.). Using state-of-art multispectral and hyperspectral sensor [14] or full-wave
LiDAR [30] could further improve the period between infestation and detectability and contribute
to better distinguishing of bark beetle infestation at the earliest stage. Therefore, more studies have
focused on other sites and the use of different sensors are needed to validate the findings of this study
as well as to make the knowledge base wider. As the bark beetle infestation is a serious environmental
and economic threat, we are planning further research in this field using professional multispectral
sensors at various study areas.

5. Conclusions

Our study clarifies the potential of consumer-grade and customized sensors mounted on a UAV
platform for the detection of bark beetle infestation in different stages throughout the season. Results
indicate that even with low-cost UAV-based solutions, it is possible to precisely detect the infestation
at the level of individual trees (Hypothesis a). We observed differences in the spectral response (based
on vegetation indices) early after the bark beetle outbreak (in the so-called green attack stage), i.e., in
the period when the infested tree cannot be easily recognized from the ground. The Greenness Index
yielded the most promising results. Conversely, a performance of the indices based on the near-infrared
band was lower, therefore we conclude that RGB bands (or Red band) play a more important role in
the detection (Hypothesis b). In addition, results confirm our assumptions that with increasing time
after infection, it is easier to distinguish between healthy and infested trees. For the management of
roughly hundreds of hectares, such an early detection is crucial; however, if thousands of hectares need
to be managed, the few weeks of early detection may prove insignificant and prediction might be more
important. Nevertheless, further research assessing the spectral characteristics of infested trees after an
even shorter time (very early stage) from the outbreak using state-of-art sensors is still necessary.
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Figure A1. Image residuals for Sony A7 (left) and Lumix TZ7 (right) side after image-
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Table A1. Comparison of the variability of the training data reflectance values. H: represents training
H-sample and I: training I-sample. First statistical value shows their mean, the second standard
deviation for every used vegetation index and sensing period.

Period 1 Period 2 Period 3 Period 4

SR
H: 2.090 ± 0.299 H: 2.065 ± 0.328 H: 1.817 ± 0.320 H: 2.226 ± 0.439
I: 1.901 ± 0.231 I: 1.653 ± 0.215 I: 1.364 ± 0.146 I: 1.530 ± 0.283

GI
H: 1.132 ± 0.043 H: 1.114 ± 0.041 H: 1.096 ± 0.036 H: 1.138 ± 0.059
I: 1.105 ± 0.043 I: 1.073 ± 0.044 I: 0.995 ± 0.036 I: 0.929 ± 0.051

GRVI
H: 1.844 ± 0.223 H: 1.849 ± 0.240 H: 1.652 ± 0.249 H: 1.945 ± 0.301
I: 1.717 ± 0.160 I: 1.535 ± 0.148 I: 1.368 ± 0.105 I: 1.638 ± 0.220

NDVI
H: 0.347 ± 0.064 H: 0.340 ± 0.068 H: 0.281 ± 0.081 H: 0.369 ± 0.085
I: 0.306 ± 0.062 I: 0.241 ± 0.064 I: 0.151 ± 0.050 I: 0.201 ± 0.078

GNDVI
H: 0.292 ± 0.057 H: 0.293 ± 0.058 H: 0.239 ± 0.071 H: 0.314 ± 0.070
I: 0.261 ± 0.048 I: 0.208 ± 0.047 I: 0.154 ± 0.037 I: 0.237 ± 0.060
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Figure A2. Illustration of the performance of the Maximum Likelihood Classifier (MLC) classification
based on the different vegetation indices in four unmanned aerial vehicle (UAV) sensing periods.
The red dots in the figure represent infested trees in different stages of the bark beetle attack, blue dots
represent healthy trees. The trees without dots are dead trees infested in previous years. The illustration
represents only a small subset of the study area.



Remote Sens. 2019, 11, 1561 15 of 17

References

1. Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.;
Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402.
[CrossRef] [PubMed]

2. Meigs, G.W.; Kennedy, R.E.; Cohen, W.B. A Landsat time series approach to characterize bark beetle and
defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sens. Environ. 2011, 115,
3707–3718. [CrossRef]

3. Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W.H. Cross-scale
Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle
Eruptions. Bioscience 2008, 58, 501–517. [CrossRef]

4. Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Viljanen, N.;
Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-based photogrammetry and hyperspectral imaging
for mapping bark beetle damage at tree-level. Remote Sens. 2015, 7, 15467–15493. [CrossRef]

5. Fassnacht, F.E.; Latifi, H.; Ghosh, A.; Joshi, P.K.; Koch, B. Assessing the potential of hyperspectral imagery to
map bark beetle-induced tree mortality. Remote Sens. Environ. 2014, 140, 533–548. [CrossRef]

6. Latifi, H.; Schumann, B.; Kautz, M.; Dech, S. Spatial characterization of bark beetle infestations by a multidate
synergy of SPOT and Landsat imagery. Environ. Monit. Assess. 2014, 186, 441–456. [CrossRef] [PubMed]

7. Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Meddens, A.J.H. Landsat time series and lidar as predictors of live
and dead basal area across five bark beetle-affected forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2014, 7, 3440–3452. [CrossRef]

8. Edburg, S.L.; Hicke, J.A.; Brooks, P.D.; Pendall, E.G.; Ewers, B.E.; Norton, U.; Gochis, D.; Gutmann, E.D.;
Meddens, A.J.H. Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and
biogeochemical processes. Front. Ecol. Environ. 2012, 10, 416–424. [CrossRef]

9. Müller, J.; Bußler, H.; Goßner, M.; Rettelbach, T.; Duelli, P. The European spruce bark beetle Ips typographus
in a national park: From pest to keystone species. Biodivers. Conserv. 2008, 17, 2979–3001. [CrossRef]

10. Aukema, J.E.; Leung, B.; Kovacs, K.; Chivers, C.; Britton, K.O.; Englin, J.; Frankel, S.J.; Haight, R.G.;
Holmes, T.P.; Liebhold, A.M.; et al. Economic impacts of Non-Native forest insects in the continental United
States. PLoS ONE 2011, 6, e24587. [CrossRef]

11. Senf, C.; Pflugmacher, D.; Wulder, M.A.; Hostert, P. Characterizing spectral-temporal patterns of defoliator
and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 2015, 170, 166–177. [CrossRef]
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