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Abstract   

Forests influence the climate of our Earth and provide habitat and food for many species and 

resources for human use. These valuable ecosystems are threatened by fast environmental 

changes caused by human-induced climte change. Negative growth responses and higher tree 

mortality rates were associated with increasing physiological stress induced by global warming. 

Especially boreal forests at high latitudes in the arctic region are threatened, a region predicted 

to undergo the highest increase in temperature during the next decades. Therefore, it is 

important to assess the adaptation potential in trees. For this purpose, I studied natural 

populations of white spruce (Picea glauca (Moench) Voss) in Alaska. In this thesis, I present 

three scientific papers in which my co-authors and I studied the phenotypic plasticity and 

genetic basis of tree growth, wood anatomy and drought tolerance as well as the genetic 

structure of white spruce populations in contrasting environments. We established three sites 

representing two cold-limited treelines and one drought-limited treeline with a paired plot 

design including one plot located at the treeline and one plot located in a closed-canopy forest, 

respectively. Additionally, the study design included one forest plot as reference. Within the 

entire project, in total 3,000 trees were measured, genotyped and dendrochronological data was 

obtained. I used several approaches to estimate the neutral and adaptive genetic diversity and 

phenotypic plasticity of white spruce as a model organism to explore the adaptation potential 

of trees to climate change. 

In the first chapter, I combined neutral genetic markers with dendrochronological and climatic 

data to investigate population structure and individual growth of white spruce. Several 

individual-based dendrochronological approaches were applied to test the influence of genetic 

similarity and microenvironment on growth performance. The white spruce populations of the 

different sites showed high gene flow and high genetic diversity within and low genetic 

differentiation among populations, rather explained by geographic distance. The individual 

growth performances showed a high plasticity rather influenced by microenvironment than 

genetic similarity.  

In the second chapter, I investigated the populations of the drought and cold-limited treeline 

sites to decipher the underlying genetic structure of drought tolerance using different genotype-

phenotype association analyses. Based on tree-ring series and climatic data, growth declines 

caused by drought stress were identified and the individual reaction to the drought stress event 

was determined. A subset of 458 trees was genotyped, using SNPs in candidate genes and 

associated with the individual drought response. Most of the associations were revealed by an 

approach which took into account small-effect size SNPs and their interactions. Populations of 

the contrasting treelines responded differently to drought stress events. Populations further 

showed divergent genetic structures associated with drought responsive traits, most of them in 

the drought-limited site, indicating divergent selection pressure.  

In the third chapter, my co-authors and I studied xylem anatomical traits at one of the cold-

limited treeline sites to investigate whether genetic or spatial grouping affected the anatomy 

and growth of white spruce. Annual growth and xylem anatomy were compared between spatial 

groups and between genetic groups and individuals. Overall, wood traits were rather influenced 

by spatial than genetic grouping. Genetic effects were only found in earlywood hydraulic 

diameter and latewood density. Environmental conditions indirectly influenced traits related to 

water transport.  

In conclusion, white spruce showed a high genetic diversity within and a low genetic 

differentiation among populations influenced by high gene flow rates. Genetic differences 
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among populations are rather caused by geographical distance and therefore genetic drift. 

Differing selection pressure at the treeline ecotones presumably lead to divergent genetic 

structures underlying drought-tolerant phenotypes among the populations. Thus, adaptation to 

drought most likely acts on a local scale and involves small frequency shifts in several 

interacting genes. The identified genes with adaptive growth traits can be used to further exlore 

local adaptation in white spruce. Tree growth and wood anatomical traits are rather influenced 

by the environment than genetics and showed a high phentoypic plasticity. The high genetic 

diverstiy and phenotypic plasticity of white spruce may help the species to cope with rapid 

environmental changes. Still, additional work is needed to further explore adaptation processes 

to estimate how tree species reacted to rapid climate change. The presented thesis shed some 

light on the adaptation potential of trees by the example of white spruce using several 

approaches. 
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The conceptual framework of RESPONSE 

The ability of organisms to respond to a changing environment increases in importance in an 

era of human-induced climate change. Species are able to react to environmental change by 

phenotypic plasticity, genetic adaptation or range shift. Still, the question remains if those 

response mechanisms are enough to cope with climate change. Especially long-lived and sessile 

organisms like trees are challenged by the rapidly changing environment and the speed of 

change could exceed their adaptation ability. Therefore, within the thesis I focused on white 

spruce (Picea glauca (Moench) Voss) populations at Alaskan treelines to explore the adaptation 

potential of trees. The thesis is part of the research training group “Biological RESPONSEs to 

novel and changing environments” in the second generation, funded by the German Research 

Foundation (DFG). The project within the thesis is written, belongs to cluster A which deals 

with in-situ responses of species, in detail with the phenotypic plasticity and genetic variance 

of traits in natural populations (Fig. 1). The studies presented in the thesis describe the neutral 

genetic diversity of white spruce populations, genetic associations with dendrophenotypes and 

the plasticity of traits like tree growth, wood anatomy and drought tolerance. The results 

presented help to estimate the adaptation potential of white spruce to better predict the response 

of trees to climate change. The thesis is written in collaboration with Timo Pampuch from the 

RESPONSE project B2 who focused on heritability of wood traits and the dispersal capacity of 

white spruce.  

 

 

Figure 1: Flowchart concept of the research training group RESPONSE 

 (https://biologie.uni-greifswald.de/forschung/dfg-graduiertenkollegs/research-training-group-2010/) 
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1. Introduction  

1.1. General background 

Around 30% of the land surface is covered by forests which contain about 80% of the Earth´s 

total plant biomass (Pan et al., 2013). Forests influence the climate of our Earth by playing a 

crucial role in the global carbon cycle (Arneth et al., 2010; Tagesson et al., 2020). Especially 

boreal forests store more carbon in the soil than other forest biomes. Forests provide habitat and 

food for many species and resources for human use like timber and non-timber products 

(Melillo et al., 1993). Further, they fulfill important ecoystem services like air and water 

filtration, recreation and tourism (Gauthier et al., 2015; Hall et al., 2011; Wells et al., 2020). 

These precious ecosystems are threatened by human-induced global warming and the 

accompanying fast changing environmental conditions (Lindner et al., 2010; Yangyang et al., 

2018). Extreme weather conditions will increase in frequency and intensity (IPCC, 2021) and 

the consequently increasing physiological stress is associated with negative growth responses 

and higher tree mortality rates (Allen et al., 2010; Hynes and Hamann, 2020; van Mantgem et 

al., 2009). This especially threatens forest ecosystems at high latitudes like boreal forests in 

North America, where the highest increase in temperature is predicted during the next decades 

(Collins et al., 2013; IPCC, 2021). Furthermore, forests are affected by human disturbances like 

habitat fragmentation or overexploration (Allan et al., 2017). Still, questions related to the 

genomics of local adaptation and the genomic basis of adaptive traits remain unanswered and 

it is not clear how forests will react to a fast changing environment (Orr, 2005). 

The forest ecosystem is influenced by many factors like weather and soil conditions or biotic 

factors like inter-species competition, mycorrhiza, insects or fungal infections. Studies which 

aim to answer the question how trees adapt to climate change investigate weather, soil 

conditions, nutrients, genetic diversity, as well as tree growth, morphology, insect resistance, 

reproduction and their interactions (Beaulieu et al., 2020; Filipescu and Comeau, 2007; 

Lamhamedi et al., 2006; Li et al., 1993; Wang and Klinka, 1997). Recent studies more often 

combine dendroecology with genetics to assess the complex genetic architecture underlying 

stress response in trees (Depardieu et al., 2021; Heer et al., 2018; Housset et al., 2018; 

Laverdière et al., 2022; Trujillo-Moya et al., 2018).  

The aim of this thesis is to explore adaptation processes in trees by investigating the genetic 

diversity and phenotypic plasticity of white spruce treeline populations in Alaska. Me, on behalf 

of my co-authors, combined the analysis of tree growth and wood anatomy together with neutral 

and adaptive genetic variation to meet the complexity of climate change adaptation in the forest 

ecosystem. We chose white spruce (Picea glauca (Moench) Voss) as model organism and its 

range margin populations to investigate the effects of microenvironment and genetic similarity 

on tree growth and wood anatomy, as well as its population structure and genetic basis and 

plasticity of drought tolerance in contrasting environments. We chose natural populations in 

Alaska, one of the regions which is warming most in the course of global warming (Handorf et 

al., 2017), to estimate the adaptation potential. White spruce has a high economic and ecological 

importance in North America. 
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1.2. Tree adaptation to climate change  

In the face of climate change, forest tree populations will locally adapt to the new environment,  

migrate to more suitable habitats or go extinct (Aitken et al., 2008). Large ranges will help trees 

to survive and/or migrate into suitable habitats (Aitken et al., 2008; Mimura and Aitken, 2007), 

but some species already lag behind their potential distribution range and assisted migration is 

frequently debated (McLachlan et al., 2007). Recent studies suggest that the long generation 

times of tree species occuring in high mountain areas hampers the ability to keep up with rapid 

climate change, which makes them more prone to local extinction  (Dauphin et al., 2021).  

The adaptation potential of trees is limited by their long generation time and sessile biology, so 

they can only dispers by seeds (Shaw and Etterson, 2012). Whereas, advantagous traits in regard 

of adaptation are high disperal capacity as well as adaptive capacity, which includes high 

phenotypic plasticity, standing genetic variation, mutations and recombination (Aubin et al., 

2016; Sultan, 2016). The high fecundity of trees and large populations promote a high genetic 

diversity because the recombination of different alleles from different loci across the large 

genome produces a wide range of genotypes (Aitken et al., 2008). This may result in a wide 

array of phenotypes from which the best locally adapted ones can be selected. However, the 

distribution of genotypes can be limited by intra- and interspecific competition (Savolainen et 

al., 2007). In addition, trees have a high phenotypic plasticity, which enables them to cope with 

climate extremes with relatively fast adaptations (Valladares et al., 2014). Phenotypic plasticity 

is assumed to play an important role in geographical range shifts or the colonization of new 

environments (Bonamour et al., 2019). At the same time it can reduce the selection pressure 

which results in slower genetic adaptation (Botero et al., 2015). Beyond that, phenotypic clines 

may be further intensified through epigenetic effects induced by local climate on maternal 

parents (Aitken et al., 2008). 

The long-term selection acting on morphological and physiological traits can lead to ecotypic 

differentiation in contrasting environments, called isolation-by-environment (Gratani, 2014). 

Additionally, extreme events like droughts set up a strong selection pressure on populations and 

shape the genetic variation among populations (Grant et al., 2017). These selective pressures 

among populations act on genetically controlled fitness traits which differ among individuals 

(Rellstab et al., 2015). Gene flow and the introgression of maladapted alleles into the local gene 

pool could counteract natural selection and therefore local adaptation (O'Connell et al., 2007; 

Rajora et al., 2005). Gene flow is especially high in wind-pollinated species and keeps 

populations connected to maintain the high genetic diversity within populations and low genetic 

differentiation among populations (Avanzi et al., 2020; Leonarduzzi et al., 2016; Liepelt et al., 

2002; Piotti et al., 2009). However, the asynchrony in reproductive phenology of populations 

in different climates could hinder long-distance gene flow (Aitken et al., 2008).  

For natural populations, linkage disequilibrium is low due to large populations and high 

outcrossing rates mediated by effective gene flow via pollen. Therefore, many genes affecting 

adaptive traits are inherited largely independently (Aitken et al., 2008). In forest populations 

characterized by high gene flow and which undergo recent selection, genes related to local 

adaptation are expected to interact in a complex way and show small frequency shifts (Hornoy 

et al., 2015). In conifers, traits involved in local adaptation to climate are known to be polygenic 

and selective sweeps likely affect only a few genes (Aitken et al., 2008; Csilléry et al., 2018; 

Sork, 2017). In summary, adaptive traits are affected by small effects of many genes enhanced 

by a high genetic diversity which may promote rapid local adaptation despite high gene flow 

(Aitken et al., 2008).   
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1.3. Treeline populations to study adaptation to climate  

Treelines are characterized by low tree densities and typically consist of only one tree species 

(Harsch and Bader, 2011). They are popular in research to investigate abiotic growth-limiting 

factors (Körner, 2012), because growth at the treeline is mostly limited by a specific 

environmental factor like low temperature or water availability (Frenne et al., 2013; Lines et 

al., 2012). Therefore, treelines are suitable to investigate the influence of this one environmental 

factor on population structure, selection processes and phenotypic plasticity (Cabon et al., 2020; 

Vitasse et al., 2010). Populations at the treeline are further suitable to study adaptation processes 

to environmental conditions because trees reach the limits of their realized niches at the treeline, 

where tree growth and survival are reduced (Case and Taper, 2000; Hampe and Jump, 2011; 

Restoux et al., 2008).  

Alaskan alpine treelines are limited in growth by low temperatures but water limitation has also 

been shown (Ohse et al., 2012) associated with negative growth responses (Hynes and Hamann, 

2020). In contrast, a longer growing season induced by global warming led to an increase in 

growth and to an advancing treeline (Wilmking et al., 2004; Wilmking et al., 2006). Conifer 

treeline ecotones are characterized by lower seed production and viability as well as extensive 

seed immigration and gene flow (Crofts and Brown, 2020; Johnson et al., 2017). In this case, 

gene flow could introduce preadapted alleles from warmer regions to promote adaptation to a 

warming climate at high elevations (Aitken et al., 2008; Bontrager and Angert, 2018). On the 

other hand, gene flow can lead to adaptation lags in climate margin populations (Fréjaville et 

al., 2019) when maladapted alleles are introduced into the local gene pool and counteract local 

selection processes (Lenormand, 2002; O'Connell et al., 2007; Rajora et al., 2005). Low rates 

of allele frequency shifts in high mountain treeline stands are reported, resulting in high 

genomic vulnerability to rapid climate change and higher vulnerability to local extinction 

(Dauphin et al., 2021).  

 

1.4. Methodological outline 

The traditional way of investigating the influence of environment on phenotype are reciprocal 

transplant experiments or common garden experiments, which investigate phenotypic and 

fitness differences among different provenances (Rellstab et al., 2015) (Fig. 2). Common garden 

studies are suitable to study heritability ex situ and demonstrate genetic adaptation to local site 

conditions (Merilä and Hendry, 2014; Savolainen et al., 2007). Though, we cannot investigate 

the speed of adaptation using this set-ups (Hoffmann and Sgrò, 2011). Over the past 20 years, 

microsatellite markers (simple sequence repeats - SSR) have been widely used for plant 

genotyping. SSR markers are tandem repeated motifs of 1-6 bp which frequently occur on the 

genome and can be present in coding and noncoding regions (Kalia et al., 2011). They are 

codominant and multi-genic markers that are experimentally reproducible and inexpensive 

(Vieira et al., 2016). SSR markers are useful to investigate gene flow, genetic diversity within 

and genetic differentiation among populations and to infer the degree of relatedness between 

individuals (Vieira et al., 2016). Besides that, next-generation sequencing technologies allowed 

us to screen millions of single-nucleotide polymorphisms (SNPs) across the whole genome to 

explore the evolutionary and adaptive capacity of more complex genomes like that of conifers 

(Sork et al., 2013). To increase the efficiency of testing, it is possible to use targeted sequencing 

for already identified candidate genes. SNPs enable us to identify functional genes and 

regulatory regions that underly phenotypes. These genotype-phenotype associations correlate 
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phenotypic measurements with genotypic data to suggest traits involved in local adaptation 

(Sork et al., 2013). In contrast, genotype-environment association analyses try to identify 

genetic variants associated with specific environmental conditions to reveal patterns of local 

adaptation (Rellstab et al., 2015).  

When studying local adaptation in trees, wood anatomy traits became more important in the 

recent years.  Heritability of wood anatomical traits is important in regard of climate adaptation 

because the wood xylem conducts water from roots to the leaves which influences drought 

stress tolerance (Björklund et al., 2017; Hacke, 2015). Further, the phenotypic plasticity of trees 

can be investigated by wood anatomical traits, because trees can alter their wood anatomy in 

response to environmental cues (Fonti et al., 2010). Moreover, tree growth is highly variable in 

response to environmental conditions. The high inter-individual differences qualify the trait for 

association analyses. Investigating these phentoypic traits helps to improve the understanding 

of the interplay of phenotypic plasticity and genetic adaptation in forest trees. 

 

Chapter I mainly deals with population genomics using SSR markers, but also explores if tree 

growth is rather influenced by the genotype or environment (Fig. 2). Chapter II  includes a 

genome-wide association study (GWAS) using SNPs and dendrochronological data. Whereas 

chapter III deals with the question if wood anatomical traits are rather influenced by the 

environment or genotype.  

 

 

 

Figure 2:  Rellstab et al. 2015: Analyes to detect signs of natural selection and genes involved in local adaptation with the 
assigned chapters of the thesis. 
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1.5. White spruce (Picea glauca (Moench) Voss) 

White spruce has a wide distribution range in North America, reaching from the west coast of 

Alaska to the east coast of Canada (Burns and Honkala, 1990) and covers a wide range of 

environmental conditions (OECD, 1999) (Fig. 3). White spruce forms monospecific stands at 

the latitudinal and elevational treeline but also grows in forest stands together with black spruce 

(Picea mariana Britton, Sterns and Poggenburg), balsam poplar (Populus balsamifera L.), 

quaking aspen (Populus tremuloides Michx.) or paper birch birch (Betula papyrifera Mashall). 

In contrast to black spruce, white spruce prefers drainaged and comparatively warm soils 

without permafrost (Viereck, 1992). White spruce is monoecious and mature at the age of 

around 30 to 40 years. It is a wind-pollinated species and produces high amounts of seeds, 

especially in masting years, which are also mainly dispersed by wind (Roland et al., 2014). At 

the treeline, under harsh environmental conditions, white spruce tends to reproduce vegetatively 

via layering which leads to groups of clonal trees (Stone and McKittrick, 1976; Wuerth et al., 

2018).  

Increasing temperatures can favor tree growth and lead to an advancing treeline at the cold-

limited sites of white spruce (Wilmking et al., 2004; Wilmking et al., 2006). On the other hand, 

negative correlations between tree growth and summer temperatures were observed in white 

spruce in Alaska, probably due to temperature-induced drought stress (Juday and Alix, 2012; 

Yarie and van Cleve, 2010). White spruce shows different vulnerabilites to moisture-deficits 

(Hynes and Hamann, 2020) which makes it suitable as model organism to study adaptation 

processes to different environments. Moreover, raising temperatures further increase the risk of 

wildfires, frequently occuring in white spruce forests in Interior Alaska (Chapin, 2006). 

Furthermore, white spruce has a high economic and ecological importance in North America. 

Therefore, a lot of studies focused on the genetic architecture of wood traits (Beaulieu et al., 

2011; Lamara et al., 2016; Lenz et al., 2010) or local adaptation to climate (Hornoy et al., 2015; 

Namroud et al., 2008). Despite its large genome size (Birol et al., 2013), several genomic 

resources are already available such as a catalogue of annotated expressed genes (Rigault et al., 

2011), genotyping data from SNP arrays (Pavy et al., 2008; Pavy et al., 2013), or high density 

gene-based linkage maps (Pavy et al., 2012; Pavy et al., 2017).  

 

Figure 3: White spruce distribution range (grey) (Earle & Frankis, 2004) in North America (left) and white spruce morphology 
(Beissner & Fitschen 1930) (right). 
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1.6. Study sites, field work and sampling 

The study design contained three sites in nearly monospecific white spruce stands in Alaska 

(Fig. 4). Each study site consisted of two plots, one located at the treeline and one plot located 

in a closed canopy forest. The first study site was located in the Central Brooks Range (67°56’N, 

149°44’W) at the latitudinal treeline on a steep south exposed slope. The second study site was 

located in the Alaska Range (63°43’N, 149°00’W) within the Denali National Park Preserve 

located at the elevational treeline, also on a south exposed slope. Both sites were established in 

2012 by Wilmking et al. (2017). At both sites, tree growth is presumably limited by 

temperature, therefore they represented cold-limited treelines of white spruce. The third study 

site was established in 2015 in Interior Alaska near Fairbanks (64°42’N, 148°18’W) located at 

a south-facing bluff (12-34°) above the Tanana river. Due to higher evapotranspiration rates, 

tree growth is limited by water availability and the site represented a drought-limited treeline. 

Additionally, in Interior Alaska one forest plot “Park Loop South” (PLS) complemented the 

study design, also located near Fairbanks. This plot was situated within a mature and 

undisturbed closed canopy forest in the center of the white spruce distribution range. The PLS 

plot as well as the Interior Alaska plots belonged to the Bonanza creek experimental forest 

(Juday and Alix, 2012; Viereck et al., 1986). In total, approximately 3000 trees were sampled, 

genotyped, measured (dbh, height) and the location mapped using a differential GPS. About 

1000 trees were cored to obtain annual tree-ring data.  

For chapter III, genetic material and wood cores of the clonal trees were sampled during field 

work in 2018 conducted by Timo Pampuch, Andreas Burger, Martin Wilmking and me. For the 

genetic analyses in chapter II, needles for DNA extraction were sampled from preselected trees 

during field work in 2019 carried out by Timo Pampuch, Sabine Lichtnau, Andreas Burger and 

me. Further samples for the genetic data used in chapter I and the tree-ring data analysed in 

chapter I and chapter III were collected previously by my co-authors and colleagues, described 

in detail in the corresponding chapters.                                                                                                                                                                                                             
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Figure 4: The state of Alaska (light brown) and distribution range (green outline) of white spruce (Picea glauca) in Alaska 
(Prasad and Iverson 2003). Coloured dots show the location of the three study sites Brooks Range, Interior Alaska and Alaska 
Range and the corresponding environmental conditions. Photos by me and by Andreas Burger.  
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2. Author´s contributions to scientific papers in the thesis 

 

Chapter I deals with neutral genetic diverstiy using by microsatellite markers to describe the 

population structure of the study sites. Morover, it explores if individual tree growth is rather 

influenced by microenvironmental conditions or genetic similarity. The study of chapter II 

explores the genetic basis of drought tolerance in white spruce by evaluating the individual 

growth reaction to drought stress associated with single nucleotide polymorphisms. In chapter 

III, the heritability of wood anatomical traits is investigated by using clonal groups of trees at 

the cold-limited treeline. 

 

 

 

Chapter I: 

Zacharias, M., Pampuch, T., Heer, K., Avanzi, C., Würth, D.G., Trouillier, M., Bog, 

M., Wilmking, M., Schnittler, M. (2021): Population structure and the influence of 

microenvironment and genetic similarity on individual growth at Alaskan white spruce 

treelines. Science of the Total Environment 798 (2021) 149267,  

doi: 10.1016/j.scitotenv.2021.149267 

 

MW and MS invented the overall study design. DW, MT, MS, MW collected samples 

with help of others. DW performed genotyping analyses. Conceptualization of statistical 

analyses was done by KH. R scripts for the growth performance analyses were provided 

by CA. I evaluated environmental data and conducted all statistical analyses except 

model adaptation, which was done by TP. I wrote the manuscript with contributions 

from all authors. 

 

 

Chapter II: 

Zacharias, M., Pampuch, T., Dauphin, B., Opgenoorth, L., Roland, C., M., Schnittler, 

Wilmking, M., Bog, M., Heer, K. (2022): Genetic basis of growth reaction to drought 

stress differ in contrasting high-latitude treeline ecotones of a widespread conifer. 

Molecular ecology (submitted)  

MW and MS designed the overall study design. CR assisted in realizing the Alaska 

Range study sites. TP, MW and I collected samples with the help of others. 

Conceptualization of the GPA analyses was done by KH and LO. I prepared the samples 

for genotyping. TP performed dendro analyses. I performed population structure and 

genotype-phenotype association analyses. I wrote the manuscript with contributions 

from all authors. 
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Chapter III: 

Pampuch, T., Anadon-Rosell, A., Zacharias, M., von Arx, G., Wilmking, M. (2020): 

Xylem anatomical variability in white spruce at treeline is largely driven by spatial 

clustering. Frontiers in Plant Science 11, Article 581378,  

doi: 10.3389/fpls.2020.581378 

 

TP, MW, and I designed the study and conducted field work and sampling. TP prepared 

the samples and performed xylem anatomical measurements with help from GA. I 

performed the genetic analyses. TP performed all statistical analyses with help from 

AA-R. TP wrote the manuscript with contributions from all authors. 

 

 

 

The abstract, introduction, synthesis and conclusion of the thesis is solely written by 

me. 

 

 

 

 

_______________________________ 

Melanie Zacharias (doctoral student)     

 

 

 

_______________________________ 

Prof. Dr. Martin Schnittler (supervisor) 
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Chapter I 

 
Population structure and the influence of microenvironment and genetic 

similarity on individual growth at Alaskan white spruce treelines 

 



Science of the Total Environment 798 (2021) 149267

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Population structure and the influence of microenvironment and genetic
similarity on individual growth at Alaskan white spruce treelines
Melanie Zacharias a,⁎, Timo Pampuch a, Katrin Heer b, Camilla Avanzi c, David G. Würth a, Mario Trouillier a,
Manuela Bog a, Martin Wilmking a, Martin Schnittler a

a Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany
b Conservation Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
c Institute of Biosciences and BioResources, National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• We combined neutral genetic marker
with dendrochronological and climatic
data to investigate population structure
and individual growth of white spruce

• We used individual-based dendrochro-
nological approaches

• White spruce populations showed low
differentiation, high genetic diversity
and high gene flow

• Growth performances showed high plas-
ticity influenced rather by microenviron-
mental features than genetic similarity
⁎ Corresponding author.
E-mail addresses: melanie.zacharias@uni-greifswald.d

camilla.avanzi@ibbr.cnr.it (C. Avanzi), mario.trouillier@un
martin.schnittler@uni-greifswald.de (M. Schnittler).

https://doi.org/10.1016/j.scitotenv.2021.149267
0048-9697/© 2021 Published by Elsevier B.V.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 7 May 2021
Received in revised form 21 July 2021
Accepted 22 July 2021
Available online 26 July 2021

Editor: Elena Paoletti

Keywords:
Picea glauca
Local adaptation
Growth-climate correlation
Genetic differentiation
Knowledge on the adaptation of trees to rapid environmental changes is essential to preserve forests and their
ecosystem services under climate change. Treeline populations are particularly suitable for studying adaptation
processes in trees, as environmental stress together with reduced gene flow can enhance local adaptation. We
investigated white spruce (Picea glauca) populations in Alaska on one moisture-limited and two cold-limited
treeline sites with a paired plot design of one forest and one treeline population each, resulting in six plots.
Additionally, one forest plot in themiddle of the distribution range complements the study design.We combined
spatial, climatic and dendrochronological data with neutral genetic marker of 2203 trees to investigate popula-
tion genetic structure and drivers of tree growth.Weused several individual-based approaches including random
slope mixed-effects models to test the influence of genetic similarity and microenvironment on growth perfor-
mance. A high degree of genetic diversity was found within each of the seven plots associated with high rates
of gene flow. We discovered a low genetic differentiation between the three sites which was better explained
by geographic distances than by environmental differences, indicating genetic drift as themain driver of popula-
tion differentiation. Our findings indicated that microenvironmental features had an overall larger influence on
growth performances than genetic similarity among individuals. The effects of climate on growth differed be-
tween sites butwere smaller than the effect of tree size. Overall, our results suggest that the high genetic diversity
of white spruce may result in a wider range of phenotypes which enhances the efficiency of selection when the
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species is facing rapid climatic changes. In addition, the large intra-individual variability in growth responsesmay
indicate the high phenotypic plasticity of white spruce which can buffer short-term environmental changes and,
thus, allow enduring the present changing climate conditions.

© 2021 Published by Elsevier B.V.
1. Introduction

Boreal forests and woodlands cover around 14.5% of the terrestrial
surface, store more carbon in the soil than other forest biomes and pro-
vide important ecosystem services like habitat and food for many or-
ganisms and resources for human use (Melillo et al., 1993). These
valuable ecosystems are threatened by climate change, which is ex-
pected to affect boreal forests, most severely at high latitudes (Collins
et al., 2013). In this rapidly changing environment, forest tree popula-
tionswill either go extinct or persist throughmigration tomore suitable
habitats or by local adaptation to environmental changes (Aitken et al.,
2008). Their dispersal capacity as well as adaptive capacity, which in-
cludes high phenotypic plasticity and standing genetic variation, could
allow them to cope with local environmental changes (Aubin et al.,
2016; Sultan, 2016). However, despite above-average plasticity and ge-
netic variation, trees are sessile organisms with long generation times
which limits their speed of adaptation (Shaw and Etterson, 2012).
Thus, the question whether tree adaptation will be able to track rapid
climatic changes is currently of high relevance. Advantageous traits for
climate change adaptation in trees are high fecundity and large popula-
tionswhich promote a high genetic diversity. This may result in a wider
range of phenotypeswhich enhances the efficiency of selection. In addi-
tion, large ranges will help to survive and/or migrate into suitable hab-
itats (Aitken et al., 2008; Mimura and Aitken, 2007). Especially conifers
show high rates of pollen-mediated gene flowwhich keeps populations
connected and maintain the high genetic diversity within populations
(Avanzi et al., 2020; Leonarduzzi et al., 2016; Liepelt et al., 2002; Piotti
et al., 2009). Since trees reach the limits of their realized niches at the
treeline, where tree growth and survival are reduced, those populations
are particularly suitable to study adaptation processes to environmental
conditions (Case, 2000;Hampe and Jump, 2011;Hampe and Petit, 2005;
Restoux et al., 2008). Conifer treeline ecotones are characterized by ex-
tensive seed immigration and gene flow together with lower seed pro-
duction and viability (Crofts and Brown, 2020; Johnson et al., 2017;
Piotti et al., 2009). On one hand, gene flow with preadapted alleles
from warmer regions could promote adaptation to a warming climate
at high elevations (Aitken et al., 2008; Bontrager and Angert, 2018).
On the other hand, the introgression of maladapted alleles into the
local gene pool could counteract local selection processes (Lenormand,
2002; O'Connell et al., 2007; Rajora et al., 2005) and lead to adaptation
lags in climatic margin populations (Fréjaville et al., 2019).

Besides genetic adaptation, trees show a variability in growth in re-
sponses to environmental conditions. In particular, forests at the leading
edge are sensitive to increasing temperature, which is apparent in neg-
ative growth responses under drought stress (Hynes and Hamann,
2020). On the other hand, growth increase due to a longer growing sea-
son ultimately translates into an advancing treeline towards higher
latitudes and elevation (Harsch et al., 2009; Wilmking et al., 2004;
Wilmking et al., 2006). To study the influence of genetic similarity and
environment on tree growth, Avanzi et al. (2019) developed an
individual-based approach for Norway spruce (Picea abies (L.) Karst.)
to identify factors influencing growth performance. In this study, micro-
environmental features were more important than genetic similarity in
determining similar growth performances. Tree age had a larger effect
on individual tree-ring width (TRW) than climate but still a large part
of the variance in growth remained unexplained. To disentangle drivers
affecting tree growth we applied this individual-based approach to
treeline and forest populations of white spruce (Picea glauca (Moench)
Voss). White spruce formsmonospecific stands at the treeline in Alaska
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(Wilmking and Juday, 2005) and is found all over boreal North America
(Burns and Honkala, 1990). Due to its economic and ecological impor-
tance in North America, genetic variation in economically important
traits as well as candidate genes for local adaptation to climate have
been studied, focusing on populations in eastern Canada (Beaulieu
et al., 2011; Depardieu et al., 2020; Hornoy et al., 2015; Lamara et al.,
2016; Lenz et al., 2010).

In this study we combine neutral genetic marker with spatial, cli-
matic and dendrochronological data to investigate the different pro-
cesses shaping patterns of genetic diversity and its consequences for
growth performance in natural white spruce populations in Alaska.
Such information is also highly relevant for the conservation of forest
genetic resources, breeding programs and forestmanagement practices.
Our study design includes three different sites, one latitudinal and one
elevational treeline, both cold-limited, and one moisture-limited
treeline. The moisture-limited treeline represents dry and warm condi-
tions predicted for future climate scenarios. Each of the three sites con-
tains a forest and treeline population. Additionally, one forest plot in the
middle of the distribution range complements the study design. With
these contrasting environments, we investigate genetic differentiation
and gene flow among populations and identify drivers of tree growth
as well as the influence of genetic similarity and spatial proximity on
tree growth. Moreover, we can compare drivers influencing growth be-
tween the North American and European spruce species.

Specifically, we investigated (i) the genetic differentiation and (ii)
geneflowamong forest and treeline populations ofwhite spruce shaped
by geographical distance and differing environmental conditions at
large scales. Further, we tested (iii) whether genetic similarity and spa-
tial proximity among individuals had an influence on individual growth
performance within sites.

Research hypothesis:

1. The population structure ofwhite spruce is shaped by environmental
conditions.

2. The individual tree growth of white spruce is influenced by genetic
similarity and/or microenvironment.

2. Materials and methods

2.1. Study sites

We established three study sites in nearly monospecific white
spruce stands in Alaska (Fig. 1, Table 1). Each study site contained two
plots, one at the treeline ecotone and one in a closed canopy forest.
The first study site in Central Brooks Rangewas located at the latitudinal
treeline on a steep south exposed slope. The distance between forest
and treeline plot was only 30 m, because competition changes fast on
a short vertical distance due to the steep slope gradient. The second
site in the Alaska Range (Denali National Park Preserve) was located
at the elevational treeline, also on a south exposed slope, where forest
and treeline plot were 1.3 km apart from each other. These two study
sites represented the presumably temperature limited range edge of
white spruce. The third site, Interior Alaska, was located near Fairbanks
at a steep (12–34°) south exposed bluff of the Tanana river which rep-
resents a moisture-limited treeline due to higher evapotranspiration
rates. At this site, forest and treeline plot were right next to each
other, with the latter plot at the edge of the bluff. For amore detailed de-
scription of the study sites see Wilmking et al. (2017), Wuerth et al.
(2018) and Trouillier et al. (2018a). Additionally, one forest plot (PLS,



Fig. 1. The state of Alaska (light brown) and distribution range ofwhite spruce (Picea glauca) inAlaska (green) (Prasad and Iverson, 2003). Black circles show the location of the three study
sites Brooks Range, Interior Alaska + PLS and Alaska Range. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ParkS Loop South) in Interior Alaska complemented the study design,
representing a mature and undisturbed forest in the middle of the dis-
tribution range. The PLS plot and the Interior Alaska bluff plots were
7 km apart and located within the Bonanza creek experimental forest
(Juday and Alix, 2012; Viereck et al., 1986).

Each of the seven plots (here referred as populations) contained at
least 200 trees and covered an area from 0.5 to 2 ha depending on
tree density. Each tree within the plots was sampled, coordinates
were recorded with a differential DGPS with a precision of 30 cm and
tree height was recorded. Diameter at breast height (dbh) was mea-
sured for trees with a height of at least 1.3 m and wood cores were
taken from trees with dbh> 5 cm (except for the PLS plot where coring
was not permitted). Fresh needles were sampled from each tree and
dried on silica gel for genetic analysis. Additionally, we recorded
which trees produced cones in 2012 for the plots Brooks Range and
Alaska Range as maturity estimator.
Table 1
Characteristics of the white spruce (Picea glauca) research plots. Latitude, longitude and elevati
ring measured, F = forest plot, T = treeline plot, n.d. = not determined.

Study site Brooks range

Research plot BR F BR T

Latitude 67.95 67.95
Longitude 149.75 149.74
Elevation (m a.s.l.) 876 923
Density (trees per ha) 839 232
Number of trees sampled for genetic analysis 361 264
Average dbh ± SD (cm)a 8.8 ± 8.7 4.8 ± 6.4
Number of cored trees 157 67
Average age ± SD (years) of cored trees 132 ± 54 69 ± 47

a Only trees above 1.3 m height were considered.
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2.2. Genetic data

DNA was extracted from dried needles as described in Wuerth et al.
(2018). We genotyped 2571 sampled individuals using 11 nuclear mi-
crosatellite loci developed by Hodgetts et al. (2001) and Rajora et al.
(2001) (Table S1). Microsatellites were combined into three multiplex
assays for Brooks Range and Alaska Range (Eusemann et al., 2014),
and into two multiplex assays for Interior Alaska and PLS for higher ef-
ficiency (Wuerth et al., 2018). PCR conditions and fragment analysis are
described in Wuerth et al. (2018). The microsatellite locus PGL 15 was
excluded from further analysis because sequences obtained from this
locus indicated that the corresponding primers annealed to multiple
sites within the genome. Expected and observed heterozygosity as
well as proportion of null alleles was calculated with GENALEX v 6.5.
(Peakall and Smouse, 2012) (Table S1). Clonal trees within the plots
as well as individuals with more than two markers containing missing
onwere taken for the center point of each plot, average age was calculated using the oldest

Interior Alaska Alaska range

PLS Int F Int T AR F AR T

64.77 64.70 64.70 63.72 63.74
148.28 148.31 148.30 149.01 149.01
406 180 180 802 1008
1128 406 326 507 152
489 275 206 338 270
8.5. ± 15.1 12.9 ± 8.6 4.3 ± 8.0 15.5 ± 14.1 5.6 ± 5.9
n.d. 196 92 167 146
n.d. 77 ± 8 64 ± 17 149 ± 46 56 ± 28
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data were excluded for the analysis, which resulted in a total of 2203
individuals.

Five of 10 markers showed a high degree of null alleles (UAPG_24,
UAPG_64, UAPG_87, UAPG_91, PGL_12), as reflected by the divergence
between expected and observed heterozygosity (Table S1). Excluding
those markers would remove a large part of explanatory power, there-
fore we tested their influence by running the STRUCTURE analysis (see
Section 2.5.1) with only five markers without homozygous excess
(UAPG_06, UAPG_08, UAPG_25, UAPG_105, UAPG_144). The results of
the two STRUCTURE analyses showed no difference. Thus, we continued
using all ten SSRmarker. The analysis of NMπ (see Section 2.5.3) and ge-
netic relatedness (see Section 2.5.4) are accounting for missing data as
described in detail in the corresponding sections.

2.3. Dendrochronological data

Weused a tree-ring dataset containing trees from Brooks Range and
Alaska Range originally sampled in 2012 (Eusemann et al., 2016) and
updated in 2015 and 2016 (Wilmking et al., 2017), and tree-ring data
sampled in Interior Alaska in 2015 (Trouillier et al., 2018a). In total,
our dataset contained dated tree-ring series for 779 individuals. Cores
were glued onto wooden sample holders and surfaces prepared with a
core-microtome. Ring widths were measured from optical scans and
crossdating was done visually. For a detailed description of core pro-
cessing see Wilmking et al. (2017) and (Trouillier et al., 2018a). All se-
ries were detrended in “R” v. 4.0.2 (R Core Team, 2015) with the
detrend function of the package DPLR v. 1.7.1 (Bunn, 2008, 2010; Bunn
et al., 2020), using a 30 years' spline. Detrending with a 30 years' spline
proved to be a suitable standard method in tree-ring studies conducted
within these study sites (Lange et al., 2019; Trouillier et al., 2018b). For
each study site a standard and residual chronology was build using the
chron function with prewhitening in DPLR.

2.4. Climatic data

To characterize the different climate conditions among the three
study sites, we used monthly climate data (precipitation sum, mean
temperature, mean potential evapotranspiration (PET), and mean
vapor pressure) downloaded from the Scenarios Network for Alaska
and Arctic Planning (SNAP) for the period 1950–2015 with a resolution
of 2 km2. From this data the standardized precipitation evapotranspira-
tion index (Vicente-Serrano et al., 2010) was calculated for the summer
(Jun–Aug) and the vegetation period (May-Sep) using the R package SPEI

v. 1.7 (Beguería and Vicente-Serrano, 2013). For the mixed-effects
model SPEI was calculated in a slidingwindow approach taking into ac-
count the previous three (SPEI3) and six months (SPEI6) for each
month. Mean vapor pressure was summarized for the summer and
the vegetation period. Mean temperature and the sum of precipitation
was calculated per year. Additionally, we recorded on-site air tempera-
ture with data loggers (EL-USB-1-PRO, Lascar electronics, UK) at 1 h-
intervals 2 m above the ground. Loggers were covered with a radiation
shield to avoid direct sunlight. On-site temperature measurements
were only used as descriptive data because the measurement period
was not sufficient to use it for analysis (2016–2019, Alaska Range only
2018–2019). On-site mean annual temperature was higher than data-
base temperatures for all plots (Table S2). A possible reason for this
may be the south exposed location of the plots and the climate extremes
of the last years. The spatial resolution of the SNAP climatic variables
was not high enough to separate forest and treeline plots and on-site
air temperature also showed nodifferences between forest and treeline,
thus climate-related analyses were only possible at site level.

To characterize the environmental conditions at the study sites, we
identified climate variables which correlate with each other as little as
possible (r2 < 0.6) but also separated the study sites (Fig. S2). Therefore,
we used a principal component analysis (PCA) and correlation matrices
to check for correlation between the initial set of climate variables. The
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final set of climatic variables consisted of annual temperature, total an-
nual precipitation and mean vapor pressure of the vegetation period.
Following the procedure described in Roschanski et al. (2016) the se-
lected variables were used for a PCA (Fig. S2) to explore climatic differ-
ences between sites.

2.5. Statistical analyses

2.5.1. Population structure
To assess the genetic structure among sites and plots we used the

Bayesian clustering approach implemented in STRUCTURE, v 2.3.4
(Pritchard et al., 2000). K values were tested from 1 to 9 and sample
group information was incorporated in the determination of K. Settings
were a burn-in period of 5 × 104 iterations and 5 × 104 iterations for the
number of membership coefficients with 10 runs. ΔK plots were pro-
duced in structure Harvester (Earl and von Holdt, 2012) according to
the method of Evanno et al. (2005). Clumpak (Kopelman et al., 2015)
was used to visualize the results. Final number of clusters (K) was cho-
sen based on ΔK.

2.5.2. Isolation by distance vs. isolation by environment
To evaluate the influence of isolation by distance vs. isolation by en-

vironment on the genetic structure we followed the analysis described
in Roschanski et al. (2016). At first a hierarchical analysis of molecular
variance (AMOVA) in ARLEQUIN, v 3.5.2.2 (Excoffier and Lischer, 2010)
with 104 permutationswas performed. In case of significant genetic dif-
ferences among sites we can assume isolation by distance (IBD). In con-
trast, significant differences between forest and treeline plots could be a
sign of isolation by environment (IBE). We used the Mantel and partial
Mantel function within the R package ECODIST v 2.0.7 (Goslee and Urban,
2007, 2020) to further evaluate whether IBD or IBE determined the ob-
served genetic differentiation. Genetic distance among sites and plots
were determined by calculating GST values with GENALEX v 6.5. For geo-
graphic distances we calculated Euclidean physical distances among
sites and plots using longitude, latitude and elevation. As a proxy for en-
vironmental distances between sites we used the distances between
site scores of the two first principal components (PC1 and PC2) of the
PCA calculated on climate variables. As climatic data was only available
at the site level, we tested for a pattern of IBE only at site level and for
patterns of IBD at plot level.

2.5.3. Influence of gene flow on population differentiation
Weassessedgeneflow immigration rateswithin eachplot byusing the

software NMπ v1.1 (Chybicki, 2018). The software implements the neigh-
borhoodmodel, a maximum likelihood approach aimed at reconstructing
parent-offspring relationships using individual multilocus genotypes and
spatial positions as input. Besides reconstructing seedlings' genealogies,
the model estimates seed and pollen immigration rates, parameters of
the seed and pollen dispersal kernel, aswell as selfing rates. SinceNMπ ac-
counts for missing data and genotyping errors, mistyping error rates can
be considered as estimable parameters. Individuals were classified either
as putative parents or as putative offspring based on tree height which is
a better proxy for maturity than age in conifers (Bronson, 2020; Crain
and Cregg, 2018). We determined the height at which >30% of the trees
produced cones for the plots in Brooks Range and Alaska Range in 2012
and could thus be considered as mature, reproducing trees. Strong exter-
nal cues like temperature extremes and light conditions can lead to earlier
flowering (Bronson, 2020; Crain and Cregg, 2018; Greene et al., 2002;
Santos-Del-Blanco et al., 2013), and thus, the height threshold for putative
parents was set lower for plots at the distribution edge and low density
populations like Alaska Range treeline and Brooks Range forest and
treeline (Table S3). Individuals below this height threshold were consid-
ered as unlikely to produce seeds, and are thus defined as putative off-
spring. By setting the height thresholds we removed individuals which
could belong to parents aswell as to offspring to exclude overlapping gen-
erations in the analysis as much as possible.
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2.5.4. Influence of genetic similarity and spatial structure on individual
growth performances

To test the genetic and spatial influence on growth performance of
white spruce populations, we used a two-step analytical framework de-
scribed in Avanzi et al. (2019). Briefly in a first step, we employed ran-
dom slope mixed-effects models to quantify the effects of climate and
tree size on TRW. We then extracted individual parameters from the
models, which characterize the individual growth performances under
the consideration of climate and size effects. In a second step, these in-
dividual growth performances were tested against genetic and spatial
variables and their fine-scale spatial arrangementwas assessed through
correlograms and kriging. The procedure will be explained in more de-
tail in the following.

For the first step, we used tree-ring chronologies for growth-climate
correlations for each study site (see Section 2.3). We calculated the cor-
relation of standard and residual tree-ring chronologies with monthly
climate data for each study site using the dcc function of the R package
TREECLIM v 2.0.3 (Zang andBiondi, 2015). Since therewere no strikingdif-
ferences between the correlations of standard and residual chronolo-
gies, we proceeded with the standard chronologies. We selected the
two to three months which showed the highest and most significant
correlation as climatic variables to be included as fixed effect in the
model (Table 2). For the Interior Alaska site, we used the sum of precip-
itation of previous year July, August and September as one climatic
driver, since all three months showed similar significant correlations
with the tree-ring chronologies. We fitted random slope mixed-effects
models for each plot, including the selected climate variables as well
as dbh as fixed effects. We used dbh rather than age as fixed-effect var-
iable because tree size, rather than age, alters climate sensitivity in
white spruce in Alaska (Trouillier et al., 2018b). To estimate inter-
individual variances, we included the ID of individual trees as random
factor. We assumed independency of the different random effects. As a
response variable we used square root transformed raw TRW data, to
fulfill the assumption of normally distributed residuals. The fact that
we compare relative (individual slopes) instead of absolute values,
allowed us to use transformed datawithin themodel. Model evaluation
and reductions of parameters was done in a step-wise manner as de-
scribed in Avanzi et al. (2019). From thesemodelswe extracted individ-
ual parameter which characterize individual growth performances.

In the second step, we evaluated whether the individual growth per-
formances that we determined in the random slope mixed-effect models
were influenced by genetic similarity and spatial structure using Mantel
tests and variance partitioning. For theMantel tests, we calculated spatial
structure as amatrix of pairwise spatial distance and used it as a proxy for
microenvironmental heterogeneity, assuming that trees in close proxim-
ity are likely to face similar microenvironmental conditions. Pairwise
Table 2
REML-estimated parameters (restrictedmaximum likelihood)which showed statistical signific
response variable. Intercept, …, Dbh2 are parameters of fixed effects (intercept and slopes). M

Study site Brooks ran

Research plot BR F

Intercept (int) 0.94
Sum of precipitation previous year July
(P-prev_Jul)

1.1 × 10−3

Sum of precipitation of previous year July, Aug, Sept (P-prev_Jul-Sep) –
Standardized Precipitation Evaporation Index for July, Aug, Sept in previous
September (SPEI3-prev_Sep)

−3.5 × 10

Mean July temperature previous year
(T-prev_Jul)

−3.6 × 10

Mean June temperature current year (T-Jun) −5.8 × 10
Mean February temperature current year (T-Feb) –
Dbh 5.0 × 10−2

Dbh2 2.7 × 10−3

Marginal R2 0.2
Conditional R2 0.96
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genetic similarity was determined by pairwise relatedness coefficients
calculated in POLYRELATEDNESS, v 1.8. (Huang et al., 2016), which takes
null allele frequencies into account. We calculated pairwise absolute dif-
ferences of the extracted individual growth performances from the
models to quantify inter-individual differences. For the Mantel test, we
used themantel() function implemented in the R package VEGAN v 2.5.6
(Oksanen et al., 2018). Since, Mantel tests suffer from some limitations
(Legendre et al., 2015), variance partitioning (Legendre and Legendre,
2012)was used as a secondapproach to evaluate the effect of genetic sim-
ilarity and spatial structure on individual growth performances. For this,
we estimated the relative contribution of genetic similarity or spatial
structure or a combination of both as adjusted R2 in explaining the vari-
ance of individual growth performances (see Avanzi et al., 2019). To
determine genetic similarity among individuals, we ran a principal com-
ponent analysis based on the genetic data with the dudi.pca function of
the R package ADEGENET v. 2.1.3 (Jombart and Ahmed, 2011) using only
components accounting for >50% of the variance. For spatial structure
we used a distance-based Moran's eigenvector map as described in
Avanzi et al. (2019). Variance partitioning was performed using the
varpart function of the R package VEGAN. To test for the significance of
the variance components we used ANOVA-like permutation tests for re-
dundancy analysis and partial redundancy analysis (RDA) with 104 per-
mutations (Legendre and Legendre, 2012). The PLS plot could not be
considered for this growth performance analysis since no tree-ring data
were available.

Finally, we investigated the fine-scale spatial arrangement of indi-
vidual growth performances to visualize the spatial clustering of similar
growth performances, due to microenvironmental heterogeneity.
Therefore, we applied Moran's I correlograms using ten distance classes
with even sample size within the R package SPDEP (Bivand and Piras,
2015). To identify the existence and extent of within-plot clusters of
trees showing similar individual growth performances,we applied ordi-
nary kriging with an isotropic global neighborhood using the R package
GEOR (Ribeiro et al., 2020). Kriging results were displayed only when
variograms have a range parameter >3 m and a partial sill >0 (Avanzi
et al., 2019).

3. Results

3.1. Genetic diversity

3.1.1. Population structure
STRUCTURE displayed the most pronounced differences for K = 2,

which distinguished the study site Brooks Range from the Southern
populations (Interior Alaska, PLS and Alaska Range, Fig. 2). When indi-
viduals were assigned to three clusters (K = 3), the three study sites
ance aftermodel selection procedurewith tree-ringwidth ofwhite spruce (Picea glauca) as
arginal and conditional R2 reported per model. F – forest, T - treeline.

ge Interior Alaska Alaska range

BR T Int F Int T AR F AR T

0.67 0.45 0.22 0.47 0.65
3.9 × 10−3 – – 5.2 × 10−4 −3.3 × 10−4

– 3.3 × 10−3 5.8 × 10−3 – –
−2 −3.6 × 10−2 −3.1 × 10−2 −1.2 × 10−1 2.2 × 10−2 –

−2 −2.3 × 10−2 – – – –

−2 1.4 × 10−2 – – 1.7 × 10−2 3.9 × 10−3

– −4.3 × 10−2 −7.1 × 10−2 – –
6.0 × 10−2 −3.7 × 10−3 5.7 × 10−2 4.1 × 10−2 6.0 × 10−2

−3.5 × 10−3 −3.2 × 10−3 −3.6 × 10−3 −1.9 × 10−3 - 5.6 × 10−3

0.08 0.35 0.26 0.41 0.24
0.91 0.88 0.80 0.99 0.84



Fig. 2. Populationmembership coefficient of sampledwhite spruce (Picea glauca) individuals of the three different sites and forest/ treeline plots obtainedwith STRUCTURE for K=2 andK=
3 based on 10 SSR loci. BR – Brooks Range, PLS – forest plot (Interior Alaska), Int – Interior Alaska, AR – Alaska Range, F – forest, T - treeline.
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were differentiated. Within the sites, forest and treeline plots were not
assigned to distinct genetic clusters. Based on ΔK and loglikelihood
plots, K = 2 and K = 3 were most representative of the true number
of clusters (Fig. S3). Pairwise GST values showed a low degree of genetic
differentiation among sites aswell as between plots (meanGST=0.014,
Table S4). The lowest value was found for the pair of Interior forest and
Interior treeline (GST = 0.001); the highest between the plots Alaska
Range forest and Brooks Range forest (GST = 0.026).

3.1.2. Isolation by distance vs. isolation by environment
The first PC of the PCA on selected climate variables explained 59.1%

of the variance and separated Brooks Range and Interior Alaska / PLS
due to temperature and vapor pressure. The second PC separated Alaska
Range from the other sites due to precipitation differences and ex-
plained 37.2% of the variability (Fig. S2).

On site level, the hierarchical AMOVA revealed no significant differ-
entiation (0.28%, P > 0.05, FCT = 0.0028, Table S5). The partial Mantel
test supported the existence of an IBD pattern among sites when ac-
counting for PC1 (r=0.961, P=0.04, Table S6). At the same time, a par-
tialMantel test consideringmean annual temperaturewhile accounting
for geographic distance indicated an IBE pattern (r=0.865, P=0.043).
On plot level, the AMOVA showed a weak but significant differentiation
between the paired plots (forest and treeline) of a study site (0.87%, P<
0.001, FSC= 0.00868), whereasmost of the genetic variancewaswithin
the plots (98.85%, P < 0.001, FST = 0.0115). The Mantel tests showed
that the differentiation among the plots could be explained by geo-
graphic distance (IBD) (r = 0.843, P = 0.004). The differentiation
among sites could be rather explained by geographic distance than en-
vironmental differences.

3.1.3. Influence of gene flow on population differentiation
Seed and pollen immigration were high in all plots, with mean rates

of 62.2% and 34.5%, respectively (Table S3). Seed immigration into
treeline plots (72.3%) tended to be higher than into the corresponding
forest plots (49.7%). Due to the very high seed immigration rates in
the two Interior Alaska plots and Alaska Range treeline plot, the neigh-
borhoodmodel was not able to calculate the remaining parameters due
to insufficient data. Test runs with varying thresholds for the group
assignments showed a high fluctuation in results except for PLS.
Furthermore, the estimated mistyping error rates were high, reflecting
the divergence of expected and observed heterozygosity (Table S1).

3.2. Influence of genetic similarity and spatial structure on individual
growth performances

3.2.1. Random slope mixed-effects model
In all sites, dbh had a strong influence on TRW(Table 2). The effect of

temperature-based climate variables on TRW was overall slightly
higher than the effect of precipitation-based climate variables. The se-
lected climate variables differed among sites. For the populations Alaska
Range forest and treeline and Brooks Range treeline mean temperature
of current June had a positive influence on TRW. TRW of Brooks Range
forest was negatively influenced by mean temperature of current June
and mean temperature of previous year July. For both Interior Alaska
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populations, mean temperature of current February had a negative in-
fluence on TRW. The drought index SPEI (standardized precipitation
evapotranspiration index) calculated for the months July, August and
September in previous year September was negatively correlated with
TRW in the forest and treeline plots in Brooks Range and Interior Alaska.
A positive influence of SPEI3 on TRWwas detected for Alaska Range for-
est and no interaction in Alaska Range treeline. Overall, higher precipi-
tation had a positive influence on TRW. With TreeID as random factor,
conditional R2 values were high in all plots (0.84–0.99), whereas mar-
ginal R2 showed a larger range (0.08–0.41).

3.2.2. Influence of genetic similarity and spatial structure on individual
growth performances

Mantel tests between pairwise differences of individual growth per-
formances with spatial proximity revealed significant correlations in six
out of 37 cases, with r values ranging from0.035 to 0.130 (Fig. 3). In con-
trast, genetic similarity showed a minor correlation with pairwise dif-
ference in individual growth performances with only two significant
correlations out of 37 comparisons (r = 0.018 and 0.026 with dbh2

and intercept in Interior Alaska forest) (Fig. 4).
The results of variance partitioning and partial RDA analysis sup-

ported the Mantel test results (Fig. 5). Genetic similarity explained a
minor part of the variance (adjusted R2 up to 0.17) and showed four sig-
nificant cases out of 37 cases in partial RDA analysis. In contrast, spatial
structure explained up to 26% of the variance in individual growth per-
formances (adjusted R2 up to 0.26) in eleven out of 37 cases. The joint
effect of genetic and spatial structure together resulted in an adjusted
R2 of up to 0.1. Most of the variance in individual growth performances
was not explained as shown by the high values of the residuals (Fig. 5).

Spatial autocorrelograms revealed the existence of non-random spa-
tial arrangements for individual growth performances for mean June
temperature and dbh for Brooks Range forest, as well as dbh in Brooks
Range treeline (Fig. S4). Interior Alaska treeline showed a spatial
clumping in individual growth performances for intercept. A clear
non-randomspatial arrangementwas also shown inAlaska Range forest
and precipitation of previous year July and the clearest pattern in Alaska
Range treeline for dbh. These non-random spatial arrangements of indi-
vidual growth performances were confirmed by the results of the
kriging analysis except for precipitation of previous July in Alaska
Range forest (Fig. S5). Additionally, a signal of spatial clumping was
found for the intercepts of all plots except Interior Alaska forest, the
mean June temperature in Brooks Range treeline and SPEI in September
for both Brooks Range plots as well as temperature of previous July in
Brooks Range forest.

4. Discussion

4.1. Genetic differentiation

Similar to other conifer species, the investigated white spruce popu-
lations showed low but significant genetic differentiation together with
a high degree of genetic diversity within a population (Hamrick and
Godt, 1996; O'Connell et al., 2007; Rajora et al., 2005; Roschanski
et al., 2016). In our case, geographic distance explained more of the



Fig. 3. Scatterplots of pairwise spatial distances (x axis) vs. pairwise absolute differences of individual growth performances (y axis) of white spruce (Picea glauca). Each tick on x axis
corresponds to 20 m of linear distance. Mantel test results (i.e. correlation coefficients and P-values) are reported for each combination of plot × individual parameters of the model de-
pending on plot location (BR, Int, AR). The graph is coloured onlywhen theMantel test was significant, otherwise it is in greyscale. The R function densCols (GRDEVICES v3.6.2) was used to
colour points accordingly to their local densities in each area of the scatterplot, ranging from black/red (high density) to light grey/blue (low density). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Scatterplot of pairwise relatedness coefficients (x axis, scaled in a 0–1 range) vs. pairwise absolute differences of individual growth performances (y axis) of white spruce (Picea
glauca). X axis values range from 0 to 1. Mantel test results (i.e. correlation coefficients and P-values) are reported. Colours are used as in Fig. 3.
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Fig. 5. The upper figures (A) represent the results of variance partitioning on individual growth performances of white spruce (Picea glauca) depicted by Venn diagram as conceptual
representation (top left) and plot-by-plot results grouped by study sites (BR – Brooks Range, Int – Interior Alaska, AR – Alaska Range). In the bar plots dark grey, light grey and black
represent the portions of variance (adjusted R2) uniquely explained by spatial structure (Spat) and genetic similarity (Gen), and their joint effect, respectively. The two bottom figures
(B) represent the effect of spatial structure on individual growth performances of white spruce (Picea glauca) while controlling for genetic similarity (left) and the effect of genetic
similarity while controlling for spatial structure (right). Statistical significance of the variance components, assessed through ANOVA like permutation tests for partial redundancy
analysis (pRDA), is reported in the heat maps.
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differentiation among populations than environmental differences.
Only themean annual temperature explained aminor part of the differ-
entiation, indicating some selective influence by the environment. A
weak genetic differentiation between forest and treeline plots was
only visible within the AMOVA, attributed to geographic distance. The
missing significant differentiation among sites within the AMOVA can
be explained by the low number of sites included in our analysis. In ac-
cordance with our results, several studies have shown that isolation by
distance has a stronger effect on genetic similarity than isolation by en-
vironment in conifers (Mimura and Aitken, 2007; Mosca et al., 2014)
and other plant species (Sexton et al., 2014). Moreover, Anderson
8

et al. (2011) named genetic drift as a main driver in structuring Alaskan
white spruce populations. In contrast, Roschanski et al. (2016) re-
ported differentiation between high and low elevation plots due to
environmental differences, using SNP markers in Abies alba. This
could be to the fact that the SNPs were located in candidate genes
which represent a part of the adaptive genetic diversity compared
to SSR markers which mainly represent neutral genetic variation.
Further, the study design contains greater horizontal and elevational
distances between high and low elevation plots than our study de-
sign. Still, most of the genetic variance remains within the plots
(Roschanski et al., 2016).
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The low genetic differentiation but high genetic diversity canmainly
be explained by extensive long-distance pollen dispersal in white
spruce (O'Connell et al., 2007). Several studies have shown that
pollen-mediated gene flow plays a major role in connecting tree popu-
lations to maintain the high genetic diversity within populations
(Burczyk et al., 2004; Hamrick, 2004; Liepelt et al., 2002). Especially
thewind-pollination and light seeds of white spruce favor the exchange
of genetic material (Kling and Ackerly, 2021; Nienstaedt and Zasada,
1990) and counteract selection processes which can lead to local adap-
tation (Lenormand, 2002). On the other hand, a high genetic diversity in
treeline populations can facilitate the evolution of new climatic niche
limits (Aguilée et al., 2016). The high rates of gene flow between plots
were reflected in the high seed and pollen immigration rates in the
NMπ results. Similar high seed and pollen immigration rates were re-
ported for Norway spruce (Avanzi et al., 2020; Piotti et al., 2009) and
other conifers in treeline ecotones (Johnson et al., 2017; Leonarduzzi
et al., 2016). A study investigating white spruce populations in Canada
reported that 85.1% of the seeds were sired by pollen of trees from at
least 250 to 3000 m away (O'Connell et al., 2007). At this point it is im-
portant to mention that parentage assignment methods have a limited
application to treeline plots because treeline populations are young
and are mainly colonized from seed sources outside the plots. Thus,
only few offspring can be assigned to adults within the same plot and
the runs were aborted (I. Chybicki, personal communication).
Moreover, homozygous excess and the high amount of null alleles in
our SSR data might have hampered the correct assignment of progeny
to putative parents. To account for these problems in other analyses,
we calculated relatedness using a software which considers for null al-
leles. In addition, Carlsson (2008) argued that null alleles influence the
power to correctly assign individuals but probably do not change the
overall outcome of the assignment. Furthermore, Anderson et al.
(2011) described significantly fewer alleles in the microsatellites of
Alaskan white spruce populations relative to outside Alaska, which
could result in a lower variation in microsatellites and therefore assign-
ment problems.

4.2. Drivers of tree growth

When studying growth dynamics, the high discrepancy between
individual-level and plot-level growth-climate correlations underlines
the importance of individual-based modelling approaches (Carrer,
2011). In this regard, random slope mixed-effect models offer great ad-
vantages for analyzing individual growth performances (Avanzi et al.,
2019). In this study, we modified the random slope mixed-effects
model developed by Avanzi et al. (2019) to better assess the drivers of
tree growth. Specifically, we included dbh instead of tree age and
more precise climate variables than mean temperature and precipita-
tion. We used individual parameters obtained from the model to test
if microenvironment or genetic similarity had a larger impact on indi-
vidual growth performances in natural Alaskan white spruce popula-
tions. The similar study design of Avanzi et al. (2019) allowed us to
compare drivers affecting TRW among an American and European
spruce species.

In the random slope mixed-effects models, we found higher condi-
tional R2 values for white spruce than for Norway spruce. This might
be related to the application of a detrending technique using a 30
years' spline on the tree-ring data. Further, the explained variance in
TRW was higher for white spruce than Norway spruce, which could
be due to the fact that we used dbh instead of age as a proxy for size.
For both species, tree size had a larger effect on TRW than most of the
climate variables within the models. Also, the importance of climate
variables differed between the spruce species. In Norway spruce, tem-
perature had a larger effect than precipitation on TRW, which was ex-
plained by high water availability at the sampling sites (Avanzi et al.,
2019). In our study, the investigated white spruce populations differed
in their reaction to climate. At the Interior Alaska study site, which
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represents amoisture-limited treeline, precipitation during the summer
had a high influence on growth compared to Brooks Range and Alaska
Range. In contrast, temperature showed a larger effect size on TRW in
Brooks Range and Alaska Range, which represent edge populations at
the cold-limited treeline. The effect was slightly larger in Brooks
Range, the study site at the northern distribution treeline of the species
in Alaska. These results indicate that tree growth in Brooks Range and
Alaska Range is limited by cold temperatures in contrast to the
moisture-limited Interior Alaska site. Further, the negative growth re-
sponse in the Brooks Range plots to temperature in July of the previous
year and the negative growth response in the plots of Interior Alaska
and Brooks Range to SPEI3 in previous year September could be related
to drought stress (Ohse et al., 2012; Wilmking et al., 2004). Forest and
treeline plots showed similar effect sizes for a site, which can be ex-
plained by similar climatic conditions at treeline and forest plots per
site.

The extracted individual growth performances showed a large part
of unexplained variance in variance partitioning. This was consistent
with the large part of inter-individual variation in TRW within the
models associated with the intercepts in all plots. The intercepts reflect
how constant each tree grows influenced by factors whichwere not ex-
plicitly defined in the model, like nutrient availability, mycorrhiza,
water holding capacity of the soil, light conditions and other environ-
mental factors. This heterogeneity seemed to have the largest influence
on tree growth by creating microhabitats which are more or less bene-
ficial (Carrer et al., 2013). The results of theMantel tests and partial RDA
using the individual growth performances confirmed that spatial struc-
ture had a larger effect on individual growth than genetic similarity.
Forest plots did not differ from treeline plots. Moreover, model inter-
cepts were spatially structured in almost all white spruce plots and in
the Italian Norway spruce plots located on a steep and rocky sandstone
slope (Avanzi et al., 2019). This indicates that microenvironmental fea-
tures have an even larger effect on growth under extreme growth
conditions.

The negligible effect of genetic similarity on individual growth
performances compared to spatial structure was also found in the
Norway spruce populations as well as in other conifer species (Avanzi
et al., 2019; King et al., 2013; Rozas et al., 2020). Additionally, spatial
structure also had a larger effect on wood anatomical traits of white
spruce than genetic similarity (Pampuch et al., 2020). In contrast, a
greater genetic diversity could positively be associated with growth in
juvenile trees of alpine treeline populations (González-Díaz et al.,
2020). However, all these studies were based on neutral markers like
microsatellites which only represent a small and presumably neutral
fraction of the large conifer genome and thus, might have limited ex-
planatory power for growth traits.

In summary, in both speciesmicroenvironmental conditions seemed
to have a larger effect on individual growth performances than genetic
similarity. Tree size had a larger effect on TRW than climate in white
spruce as well as in Norway spruce. Overall, white and Norway spruce
showed similar resultswhen explaining TRWwith tree size and climate,
whichwas probably due to the close relatedness and similar physiology
of both Picea species even though they occur in different parts of the
world.

4.3. Conclusions and outlook

The overall genetic diversity of the investigated white spruce popu-
lations was high due to high gene flow favored by high seed and pollen
immigration rates. Gene flow was higher into the treeline than core
plots due to the leading edge position within the distribution range
and lower reproductive success at the treeline. The high gene flow
rates are also reflected in the low degree of genetic differentiation
among sites. The observed population structure was better explained
by geographic distance than environmental distance. This leads to the
assumption that genetic drift together with decreasing gene flow with
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increasing distance play an important role in structuring white spruce
populations in Alaska. Further, in Alaskan white spruce, tree size has a
larger effect on TRW than climatic conditions. Climate variables which
drive TRW differ depending on the growth limiting factor at the site,
with temperature at the cold-limited treeline and precipitation at the
moisture-limited treeline. At the local scale, microenvironment was
likely to be more relevant for tree growth than genetic similarity.

In future studies it is worth testing if sequence-based information
from both, coding and non-coding regions, would have a greater ex-
planatory power for growth traits compared to our SSR based analysis.
A further step in model development may be the inclusion of competi-
tion among trees to explain a higher proportion of the variance in TRW.

The high plastic growth response of white spruce could be advanta-
geous to buffer short-term environmental changes. In regard to long-
term adaptation, the high gene flow among Alaskan populations could
support adaptation to a warming climate by the possible introgression
of preadapted alleles from warmer regions into the gene pool of north-
ern populations.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.149267.
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Supplementary Information 

Table S1: SSR loci used to analyze population structure and differentiation and genetic similarity of 2,571 individuals of white spruce (Picea glauca) with mistyping error rate (ER) of NMπ runs, 

expected (He) and observed heterozygosity (Ho) and proportion of null alleles (null) per plot calculated in GENALEX.; AR – Alaska Range, Int – Interior Alaska, BR – Brooks Range, F – forest 

plot, T – treeline plot.   

 loci UAPG_06 UAPG_08 UAPG_24 UAPG_25 UAPG_64 UAPG_87 UAPG_91 UAPG_105 UAPG_144 PGL_12 

BR 

forest 

error 

rate 

0.16 0.20 0.21 0.13 0.20 0.21 0.24 0.14 0.07 0.21 

Ho 0.77 0.65 0.30 0.09 0.46 0.54 0.44 0.73 0.68 0.54 

He 0.79 0.88 0.91 0.43 0.87 0.91 0.89 0.77 0.71 0.83 

null 0.00 0.01 0.15 0.00 0.04 0.04 0.00 0.00 0.00 0.05 

BR 

tree-

line 

error 

rate 

0.10 0.06 0.06 0.04 0.08 0.06 0.06 0.02 0.07 0.05 

Ho 0.81 0.66 0.33 0.18 0.46 0.53 0.53 0.75 0.62 0.42 

He 0.77 0.88 0.92 0.17 0.86 0.91 0.92 0.80 0.66 0.79 

null 0.00 0.01 0.13 0.01 0.10 0.02 0.00 0.00 0.00 0.06 

PLS error 

rate 

0.03 0.04 0.22 0.05 0.15 0.19 0.22 0.01 0.09 0.10 

Ho 0.72 0.71 0.33 0.09 0.38 0.69 0.51 0.82 0.62 0.46 

He 0.71 0.87 0.90 0.90 0.87 0.94 0.87 0.81 0.81 0.84 

null 0.03 0.01 0.23 0.00 0.14 0.02 0.01 0.00 0.00 0.14 

Int 

forest 

error 

rate 

0.24 0.22 0.35 0.07 0.40 0.42 0.24 0.11 0.22 0.01 

Ho 0.76 0.67 0.26 0.14 0.45 0.72 0.42 0.83 0.61 0.39 

He 0.75 0.87 0.87 0.19 0.83 0.92 0.90 0.81 0.64 0.78 

null 0.00 0.00 0.26 0.02 0.07 0.01 0.03 0.00 0.00 0.12 

Int 

tree-

line 

error 

rate 

0.19 0.16 0.46 0.07 0.35 0.20 0.37 0.20 0.11 0.29 

Ho 0.75 0.66 0.31 0.17 0.39 0.70 0.41 0.83 0.55 0.35 

He 0.76 0.88 0.91 0.26 0.84 0.92 0.89 0.82 0.61 0.82 
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null 0.00 0.01 0.23 0.02 0.04 0.01 0.02 0.00 0.00 0.10 

AR 

forest 

error 

rate 

0.09 0.14 0.19 0.01 0.17 0.13 0.17 0.04 0.06 0.25 

Ho 0.71 0.79 0.51 0.10 0.41 0.49 0.50 0.78 0.67 0.37 

He 0.69 0.85 0.88 0.11 0.83 0.92 0.79 0.74 0.69 0.82 

null 0.00 0.00 0.11 0.00 0.06 0.08 0.00 0.00 0.00 0.05 

AR 

tree-

line 

error 

rate 

0.25 0.13 0.40 0.09 0.19 0.24 0.20 0.06 0.09 0.25 

Ho 0.75 0.78 0.39 0.10 0.39 0.66 0.45 0.71 0.68 0.48 

He 0.76 0.90 0.91 0.10 0.86 0.94 0.86 0.76 0.71 0.87 

null 0.00 0.00 0.11 0.00 0.06 0.05 0.01 0.00 0.00 0.09 
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Table S2: Mean annual temperature in °C downloaded from the Scenarios Network for Alaska and Arctic Planning (SNAP) for 

each site and measured on-site temperature at the white spruce (Picea glauca) plots for various time periods used as climatic 

data. 

 

Temperature SNAP database 

Temperature measurements 

Forest plot Treeline plot 

Brooks Range -8.18 -2.55 -2.26 

PLS -1.89 1.2 n.d. 

Interior Alaska -1.89 0.66 1.24 

Alaska Range -3.58 1.32 1.56 

Time period 1950 – 2015 09/2016 – 08/2019 

09/2018 – 08/2019 for Alaska Range 

 

 

Figure S1: Interannual variation in the selected climate variables mean annual temperature (A), annual total precipitation (B) 

and mean vapor pressure (C) for the white spruce (Picea glauca) sites Alaska Range (AR), Interior Alaska / PLS (Int/PLS) and 

Brooks Range (BR) for the period 1950 – 2015 downloaded from the Scenarios Network for Alaska and Arctic Planning (SNAP). 

Letters (a, b, c) indicate significant differences between sites.  
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Figure S2: PC1 versus PC2 of a PCA of the climate variables mean annual temperature (temp), total annual precipitation (prec) 

and vapor pressure of May until September (vp) downloaded from the Scenarios Network for Alaska and Arctic Planning (SNAP) 

for analysis of isolation by environment; differentiating the sites white spruce (Picea glauca) Brooks Range, Interior Alaska /  

PLS and Alaska Range 
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Table S3: Parameters and results of the gene flow analysis of white spruce (Picea glauca) plots with NMπ (Chybicki 2018). The 

top rows indicate the size thresholds (tree height in m) for assigning trees as putative parents and putative offspring, the central 

rows indicate the number of individuals assigned as parents and offspring, and the bottom rows represent the proportion of 

offspring resulting from seed immigration, selfing and pollen immigration and offspring with both parents assigned. 

Threshold group assignment (height in m) 

 BR F BR T PLS Int F Int T AR F AR T 

Putative 

parents 

> 5 > 5 > X* > 6 > 6 > 6 > 5 

Putative 

offspring 

< 2.5 < 2.5 < 4 < 3 < 3 < 3 < 3 

Number of trees 

Putative 

parents 

158 43 146 184 64 185 59 

Putative 

offspring 

162 191 327 71 111 102 141 

Results (%) 

Seed 

immigration 

38.8 40.2 69.4 57.9 86.5 52.5 90.2 

Selfing 27.0 5.3 1.5 n.d. n.d. 11.9 5 

Pollen 

immigration 

28.2 56.8 25.4 n.d. n.d. 27.7 n.d. 

Both 

parents 

assigned 

6 0 3.7 n.d. n.d. 7.9 n.d. 

 

* no height data available for adult trees, dbh > 10 cm corresponds to 7.5 m height 
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Figure S3: A - Evaluation of the optimum number of clusters (K) from the STRUCTURE analysis with the deltaK method (Evanno et 

al. 2005) for white spruce (Picea glauca). B - Evaluation of loglikelihood of clusters (K) from the STRUCTURE analysis with the 

deltaK method (Evanno et al. 2005). 

 

 

Table S4: Population differentiation described by GST values between the white spruce (Picea glauca) plots (BR, Int, AR stands 

for Brooks Range, Interior, Alaska Range sites; F and T for forest and treeline plot) obtained from GENALEX.  

 BR F BR T PLS Int F Int T AR F 

BR F       

BR T 0.007      

PLS 0.024 0.021     

Int F 0.021 0.019 0.005    

Int T 0.019 0.017 0.005 0.001   

AR F 0.026 0.022 0.012 0.014 0.013  

AR T 0.016 0.013 0.011 0.011 0.008 0.009 
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Table S5: Results of hierarchical AMOVA analysis to test for isolation by distance for all white spruce (Picea glauca) sites using 

microsatellite data. 

Source of 

variation 

Sum of Squares Variance components 

Percentage 

variation 

P Fixation index 

Among sites 13359.32 1.67 0.28 > 0.05 FCT = 0.0028 

Among plots 

within sites 

16071.58 5.10 0.87 < 0.001 FSC = 0.0087 

Within plots 2738353.03 582.21 98.85 < 0.001 FST = 0.0115 

 

Table S6: Mantel test and partial Mantel test for isolation by distance (on plot and site level) and isolation by environment (on 

site level) for all white spruce (Picea glauca) sites using microsatellite data.; significant results are in bold type. 

 Mantel test Partial Mantel test 

r p-value Accounting for r p-value 

Isolation by 

distance 

Site level 0.906 0.083 

PC 1 0.961 0.040 

PC 2 0.906 0.209 

Plot level  0.843 0.004 - - - 

Isolation by 

environment 

(site level) 

PC1 0.562 0.083 

Geographic 

distance 

0.841 0.087 

PC2 0.398 0.665 -0.397 0.628 

Mean annual 

temperature 

0.976 0.086 0.865 0.043 

Total annual 

precipitation 

-0.180 0.999 -0.360 0.622 

Mean vapor pressure 

(May-Sep) 

0.528 0.080 0.836 0.083 
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Figure S4:  Moran´s I spatial correlograms on individual growth performances for each white spruce (Picea glauca) plot to test 

for spatial clumping of individual growth performances. 
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Figure S5:  Distribution maps from spatial interpolation (kriging) of individual parameters for each white spruce (Picea glauca) 

plot. Colors range from the highest values of within-plot parameters (red) to the lowest ones (blue)
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Abstract 27 

Climate change will increase the frequency and intensity of drought events in many boreal forests. As 28 

tree species are sessile and have a long generation time, it is essential to know how forests will cope 29 

with such extreme environmental conditions and what is the genetic basis of fitness-related phenotypic 30 

traits that enable drought tolerance. We therefore investigated three natural populations of white spruce 31 

(Picea glauca) in Alaska, located at one drought-limited and two cold-limited treelines with a paired 32 

plot design of one forest and one treeline plot. We obtained individual increment cores from 458 trees 33 

and climate data to assess dendrophenotypes, in particular drought stress-induced growth declines. To 34 

explore the genetic basis of these dendrophenotypes, we genotyped the individual trees at 3,000 SNPs 35 

in candidate genes and performed genotype-phenotype association analysis using linear mixed models 36 

and Bayesian sparse linear mixed models. Growth responses to drought stress differed in contrasting 37 

treeline populations and are likely to be affected unevenly by climate change. We identified 40 genes 38 

associated with dendrophenotypic traits, which differed between the treeline populations. Most genes 39 

were identified in the drought-limited site, indicating covariance of alleles with drought-tolerant 40 

phenotypes. The genetic basis of drought tolerance contrasted between the sampled sites as well as in 41 

comparison with Canadian populations, suggesting that drought adaptation acts on a local scale. Our 42 

results highlight a set of genes that genetically determines wood traits critical for the establishment and 43 

persistence of tomorrow´s forests under climate change.  44 

 45 

Keywords: genotype-phenotype associations, Picea glauca, dendrophenotype, genotyping-by-46 

sequencing, Bayesian sparse linear mixed model, linear mixed model 47 

 48 

1. Introduction 49 

Under human-induced global warming, drought events increase in frequency and intensity (IPCC 2021; 50 

Dai 2013), affecting boreal forest ecosystems more severely at high than low latitudes (Collins et al. 51 

2013). Especially in North America, regional warming leads to a decrease in soil moisture and therefore 52 
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increase in water deficit (Reich et al. 2018; Girardin et al. 2016). The resulting increased physiological 53 

stress is associated with negative growth responses and elevated tree mortality rates (Allen et al. 2010; 54 

van Mantgem et al. 2009; Hynes & Hamann 2020). Therefore, it is important to know how trees adapt 55 

to increases in drought events as the speed of adaptation in trees is limited by their long generation time 56 

and sessile biology (Shaw & Etterson 2012). In fact, some tree species already lag behind their potential 57 

distribution range (Aitken et al. 2008). In general, tree populations are characterized by high phenotypic 58 

plasticity and adaptive capacity, including high standing genetic variation and a high dispersal ability 59 

by pollen, which enables them to cope with environmental changes (Aubin et al. 2016). Extreme events 60 

like droughts exert intense selection pressure on populations and thereby shape genetic variation at 61 

adaptive loci (Grant et al. 2017). However, especially in conifers, the high pollen-mediated gene flow 62 

keeps populations connected (Liepelt et al. 2002; Avanzi et al. 2020) and the introgression of 63 

maladapted alleles could counteract local adaptation (Rajora et al. 2005; O'Connell et al. 2007). Within 64 

tree populations that experienced recent selection and that are characterized by high gene flow, genes 65 

related to local adaptation are expected to interact in a complex way and show small frequency shifts 66 

(Hornoy et al. 2015). However, it is unclear which genes do control drought tolerance in trees (Moran 67 

et al. 2017).   68 

 Due to their long generation times, trees will probably have difficulties to keep up with rapid 69 

climate change, especially in high mountain areas, what makes them more vulnerable to local extinction 70 

(Dauphin et al. 2021). Therefore, recent studies started to link genetics with dendroecology to explore 71 

the molecular mechanisms of stress-tolerant phenotypes in tree populations (Heer et al. 2018; Housset 72 

et al. 2018; Trujillo-Moya et al. 2018; Depardieu et al. 2021; Laverdière et al. 2022). To achieve this 73 

goal, genotype-phenotype association analysis is commonly used to identify loci that are associated to 74 

phenotypic traits related to drought tolerance. Tree growth during and following a drought event informs 75 

about the overall drought tolerance of trees (Moran et al. 2017). Using this approach, Depardieu et al. 76 

(2020) detected signals of local adaptation to drought among white spruce (Picea glauca (Moench) 77 

Voss) populations of Eastern Canada planted in a common garden. The follow-up study (Depardieu et 78 

al. 2021) then combined genetic association analysis using dendrophenotypes and climate data with 79 
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gene expression data to detect genes related to drought adaptation in white spruce. Depardieu et al. 80 

(2021) detected 285 genes significantly associated with phenotypic traits or climatic factors, of which 81 

110 were differentially regulated under drought conditions. The study identified eight high-confidence 82 

genes, associated with phenotypic traits as well as climatic factors, including four drought-responsive 83 

genes related to white spruce adaptation to drought (Depardieu et al. 2021). 84 

Although common garden studies are suitable to study genetic adaptation to local site 85 

conditions, we cannot investigate the speed of adaptation using this set-ups (Merilä & Hendry 2014; 86 

Hoffmann & Sgrò 2011). Further, genotype-by-environment interactions can make results misleading 87 

in regard to the natural situation (Merilä and Hendry 2014). To our knowledge, genetic association 88 

analyses with dendrophenotypes in white spruce are exclusively done in common garden experiments 89 

in Canada. We investigated natural populations of white spruce in contrasting extreme environments in 90 

Alaska to check whether high confidence genes identified in common garden studies also show to be 91 

significantly associated with phenotypic traits related to drought tolerance in natural populations. White 92 

spruce has a high economic and ecological importance in North America and is described to have an 93 

exceptional high adaptive capacity (Royer-Tardif et al. 2021). To study adaptation to climatic extremes, 94 

treeline populations are particularly suitable because tree growth and survival are limited and trees 95 

experience the limits of their realized niches (Hampe & Jump 2011; Hampe & Petit 2005; Restoux et 96 

al. 2008). Therefore, we investigated populations of three different sites representing contrasting treeline 97 

ecotones to infer genes that control drought tolerance in white spruce. Our study design includes 98 

sampling sites in one drought and two cold-limited ecotones where growth is limited by water or 99 

temperature, respectively. The populations of this ecotones experience different climate extremes and, 100 

therefore, divergent selection pressures, which is estimated to lead to different genetic signatures 101 

underlying drought tolerance.  102 

With our data, we wanted to test the following two hypotheses: (1) the individual reaction to 103 

drought stress differs i) between drought and cold-limited treelines and ii) between treeline and forest 104 

plots, and (2) the selection pressure of the contrasting treelines lead to divergent signatures in drought-105 

associated genes. To test these hypotheses, we first developed an evidence-based approach to identify 106 
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growth decline caused by drought stress using dendroecological and climate data because there is no 107 

standardized definition (Schwarz et al. 2020; Slette et al. 2019). Second, we calculated the individual 108 

reaction to drought events using tree-ring data as phenotypic data. Because resilience traits are unitless, 109 

they can be compared between natural populations (Opgenoorth & Rellstab 2021). As genetic data, we 110 

used 3,000 SNPs located in candidate genes, originally identified in Canadian white spruce populations 111 

(Pavy et al. 2017). For the genotype-phenotype association analysis, we used linear mixed-effects 112 

models to account for different environments at the sites and, as a second approach, Bayesian sparse 113 

model to account for interaction and small-effect size SNPs. We compared growth reaction to drought 114 

stress as well as climate sensitivity and the underlying genetic basis among the contrasting ecotones. 115 

Our results provide insights into the genetic architecture underlying drought tolerance of natural 116 

populations in contrasting environments. 117 

 118 

2. Materials and Methods 119 

2.1. Study sites  120 

We investigated trees in three sites in nearly monospecific white spruce stands in Alaska under different 121 

environmental conditions (Figure 1, Table 1). Each of the three study sites contained two plots, one 122 

representing the treeline ecotone and one representing the closed-canopy forest. Two study sites 123 

represented the presumably temperature-limited range edge of white spruce. The first study site was 124 

located in Central Brooks Range at the latitudinal treeline on a steep south exposed slope. The distance 125 

between the forest and treeline plot was only 30 m, because due to a steep slope gradient 126 

microenvironmental conditions changed fast on a short vertical distance. The second study site was 127 

situated in the Alaska Range (Denali National Park Preserve) at an elevational treeline on a south 128 

exposed slope. The distance between forest and treeline plot was 1.3 km. A third site was located in 129 

Interior Alaska near Fairbanks and belonged to the Bonanza creek experimental forest (Juday & Alix 130 

2012; Viereck et al. 1986). It was situated at a steep (12 – 34°) south exposed bluff of the Tanana river 131 

and represented a moisture-limited treeline due to higher water run-off and evapotranspiration rates. 132 
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Forest and treeline plot were right next to each other, but had the highest differences in inclination. The 133 

treeline plot was located at the upper edge of the bluff on a steep slope, whereas the forest plot exhibited 134 

a shallow slope. For a more detailed description of all study sites see Wilmking et al. (2017) and 135 

Trouillier et al. (2018a).  136 

Each plot contained at least 200 trees and covered an area from 0.5 to 2 ha depending on tree 137 

density. For each tree within the plots tree height was recorded and diameter at breast height (dbh) was 138 

measured for trees with a height of at least 1.3 m. Wood cores were taken from trees with dbh > 5 cm. 139 

Within the plots we selected trees with a dbh between 10 – 40 cm, a height of 4 – 20 m and a minimum 140 

age of 50 years for further analyses. We calculated the maximum likelihood estimates of relatedness (r) 141 

between individuals using microsatellite markers described in Zacharias et al. (2021) and the software 142 

ML-RELATE (Kalinowski et al. 2006). We excluded trees that were closely related (r > 0.5). In the case 143 

of clonal groups, we selected the oldest individual to be included in the analysis. For genetic analyses, 144 

fresh needles were sampled from selected trees and dried on silica gel. 145 

 146 

2.2. Drought year identification and individual-level response parameters  147 

We used a tree ring dataset that contained trees sampled in Interior Alaska in 2015 (Trouillier et al. 148 

2018a) as well as trees from Brooks Range and Alaska Range initially sampled in 2012 (Eusemann et 149 

al. 2016) and complemented in 2015 and 2016 (Wilmking et al. 2017). In brief, cores were glued onto 150 

wooden sample holders and surfaces prepared with a core-microtome. Ring widths were measured from 151 

optical scans and crossdating was done visually. For a detailed description of core processing see 152 

Wilmking et al. (2017) and Trouillier et al. (2018a).  153 

For the genotype-phenotype association (GPA) analysis, we derived measures of the individual 154 

growth reaction to drought stress as phenotypic data. For this purpose, we first identified years with a 155 

growth decline caused by drought stress for each site. As there is no standardized method to identify 156 

growth decline associated with drought in dendroecology (Schwarz et al. 2020), we combined tree ring 157 

and climatic data to make a standardized and evidence-based decision for each of the three study sites 158 

(Figure 2). According to the recommendation for drought studies of Slette et al. (2019), we provided 159 
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standardized climatic index values and a quantitative definition of what we consider as drought 160 

conditions.  161 

As a first step, we used R v. 4.0.2 (R Core Team 2015) with the package POINTRES v. 1.1.3 (van 162 

der Maaten-Theunissen et al. 2015) to identify extreme events in our tree ring data set. We calculated 163 

event years, defined as years in which the individual tree shows a substantial reduction in growth. Based 164 

on these individual event years, we identified years in which at least 50% of the trees showed such an 165 

event year which was then defined as pointer year (Schweingruber et al. 1990). As suggested by Schwarz 166 

et al. (2020), we used raw radial growth data and series detrended with the detrend function of the R 167 

package DPLR v. 1.7.1 (Bunn 2008; Bunn 2010; Bunn et al. 2020), using a 30 year spline. We did a 168 

sensitivity analysis to check if the choice of the thresholds influences the outcome. We applied a moving 169 

window approach, initially proposed by Cropper (1979), using different settings of 3, 5 or 7 years with 170 

the common thresholds 0.9, 1.0 and 1.1 in each combination. All combinations were calculated using 171 

raw and detrended data. We only considered a pointer year for further analyses when it was identified 172 

by at least half of the applied combinations.  173 

As a second step, to identify whether the growth decline in the pointer year was caused by 174 

drought, we checked the climatic conditions in a time span of two years before until two years after the 175 

pointer year. Because of the low accuracy of climatic data in Alaska before 1950, we only considered 176 

years after 1950 in the analysis. To characterize the climatic conditions, we used three different drought-177 

related indices. The first one is the standardized precipitation evapotranspiration index (SPEI6), which 178 

accounts for precipitation and potential evapotranspiration (PET) in a moving window approach taking 179 

into account a period of six months (Vicente-Serrano et al. 2010). Second, we used the climate moisture 180 

index (CMI6), which includes precipitation and PET. Both climate values were calculated for the 181 

growing season (May-September). We also calculated the CMI by Hogg for the period of one year, 182 

including the sum of monthly CMI values from 1st of preceding August till the 31st of current year July. 183 

This index already showed strong growth-climate relationships and was applied in previous studies 184 

about drought impacts on growth in white spruce (Hogg & Wein 2005; Hogg et al. 2017). Monthly 185 

climate data (precipitation sum, mean temperature, mean PET) was downloaded from the Scenarios 186 
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Network for Alaska and Arctic Planning (SNAP) for the period 1950-2015 with a resolution of 2 km2. 187 

We defined drought as a periodic lack of water compared to normal conditions at the site, characterized 188 

by SPEI6 and CMI values with a negative standard deviation > 1.25 from the 5-year mean. We also 189 

accounted for the climate conditions in the years before the pointer year, due to the memory effect, trees 190 

can show a later response to drought stress (Hacket-Pain et al. 2015).  191 

After the drought event identification, we calculated the individual response to drought stress of 192 

each tree using detrended and raw tree-ring data. Because there were no striking differences, we 193 

continued with the detrended data. We obtained the resistance, recovery, resilience and relative 194 

resilience indices after Lloret et al. (2011) for each tree and pointer year using the R package POINTRES 195 

v.1.1.3 (van der Maaten-Theunissen et al. 2015). The number of years considered for pre- and post-196 

disturbance periods in calculating the resilience components was set to two years because of the short 197 

periods between growth declines. Resistance describes the ratio between growth during and before the 198 

pointer year, recovery the ratio between growth after and during the pointer year, resilience the ratio 199 

between growth after and before the pointer year and relative resilience the resilience weighted by the 200 

growth decrease during the pointer year (van der Maaten-Theunissen et al. 2015). 201 

Additional to the named indices, we estimated the climate sensitivity of each individual for 202 

1970-2015 by calculating the standard deviation in growth. Trees with a high deviation from the mean 203 

were characterized as highly sensitive with a high variability in growth depending on climate conditions, 204 

which is associated with higher mortality (Cailleret et al. 2017). The described growth indices were used 205 

as phenotypic data within the GPA analysis. Normal distribution of the phenotypic data was checked by 206 

performing the shapiro.test function (Shapiro-Wilk normality test) and visually by applying the qqnorm 207 

function in the R package STATS v.4.1.0. In case of not normal distributed data, we transformed the 208 

data with the R function boxcoxTransform of ENVSTATS v.2.4.0 using the lambda value calculated with 209 

transformTukey of the R package RCOMPANION v2.4.1. In addition, outlier phenotypes which disturbed 210 

the normal distribution of the data were excluded to avoid spurious associations in linear mixed models 211 

(Interior Alaska - four individuals for resistance 2010, one individual for resilience 2010, three 212 

individuals for recovery 2010; Brooks Range - one individual for relative resilience 1993).                                                                                                                                                                                                                                                                      213 
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 214 

2.3. Genotyping                                                                                                                                      215 

The sampled needles were sent to LGC Genomics GmbH (Berlin, Germany) for DNA extraction and 216 

targeted genotyping by sequencing (SeqSNP, LGC April 11, 2019). All trees were genotyped using the 217 

Illumina NextSeq 550 platform, targeting SNPs located in coding regions mapped in a high-resolution 218 

reference genetic map of white spruce (Pavy et al. 2017). In a first step, we selected a subset of 7,511 219 

SNPs genotyped in white spruce in Pavy et al. (2017) in East Canadian populations which were 220 

distributed across the 12 chromosomes of white spruce. These SNPs showed good quality and minor 221 

allele frequency (MAF) of at least 6% in previous white spruce studies (Pavy et al. 2017). All selected 222 

SNPs were located in coding regions which have a higher probability of sequence conservation and were 223 

mapped to the reference maps of Pavy et al. (2017) and (Gagalova et al. in review). The sequences 224 

surrounding the SNPs (at least 75 bp) were blasted against the transcriptome of white spruce (Birol et 225 

al. 2013) and only sequences of SNPs with a full hit in the genome were retained. The corresponding 226 

oligo probes for SNP detection were designed on the transcriptome and validated by running a test 227 

sequencing. Based on this information, we selected 3,000 SNPs whose oligo probes had only one hit in 228 

the genome (Table S5). Each SNP was located in a single gene, resulting in 3,000 different genes. 229 

Additional to the 478 samples, we included 12 negative controls and 15 duplicates into the sequenced 230 

samples to control the sequencing quality. We compared the sequences of the duplicated individuals 231 

using the function dupGenotypes implemented in the R package STRATAG v. 2.0.2 (Archer et al. 2017). 232 

This function calculates the proportion of shared loci between the duplicates. Duplicated individuals 233 

with more than 5% of missing data were excluded.  234 

In the first filtering steps, performed by LGC, SNPs were filtered for a minimum coverage of 8 235 

reads per sample and locus. We removed SNPs with more than 80% missing data and individuals with 236 

more than 10% missing data. Only biallelic SNPs were kept in the dataset. SNPs with a minor allele 237 

frequency > 2.5% were retained, resulting in a dataset of 458 individuals and 2,744 SNPs. Further, to 238 

exclude linked loci, we tested all SNPs for pairwise population-based linkage disequilibrium (LD) using 239 

the function gl.report.ld implemented in the R package DARTR v.1.8.3 (Gruber et al. 2018). In the case 240 
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of tightly linked SNPs (r > 0.9), the first SNP of the pair was removed. For SNPs located on the same 241 

contig this threshold was set to r > 0.5. With this step, we excluded 120 SNPs. Further, when paralogs 242 

are targeted, this might negatively affect the outcome of the analysis. Since paralogs are expected to 243 

show a greater proportion of heterozygotes than singleton loci (McKinney 2017), we calculated the 244 

expected and observed heterozygosity, as well as the deviation from Hardy-Weinberg-equilibrium 245 

(HWE) per locus and population using DARTR. Loci which showed heterozygous excess and deviation 246 

from HWE in more than one population can probably be assigned to oligo probes which are binding on 247 

multiple sites within the white spruce genome and were therefore excluded from the analysis, which 248 

was the case for further 161 loci. As a result, the final dataset consisted of 2,463 SNPs from 458 249 

individuals. 250 

 251 

2.4. Population genetic structure 252 

In GPA studies, population structure can cause spurious associations (Sul et al. 2018). Therefore, we 253 

investigated genetic structure within and among plots using two approaches. First, we conducted a 254 

principal component analysis (PCA) as implemented in the R package ADEGENET v. 2.1.3 (Jombart 255 

2016). Second, we used a variational Bayesian framework implemented in FASTSTRUCTURE (Raj et 256 

al. 2014) to infer the levels of admixture within populations and individuals. We defined the optimal 257 

number of genetic clusters (K) by using the script chooseK.py in PYTHON 2, which parsed through the 258 

output of the runs to provide an appropriate number of clusters for the model complexity of our data 259 

(van Rossum & Drake Jr 1995). We summarized and visualized the results of the 15 independent runs 260 

for each K value using the R package POPHELPER v. 2.3.1 (Francis 2017). In addition, we checked the 261 

overall population genetic structure using five neutral microsatellite markers described in Zacharias et 262 

al. (2021) in STRUCTURE v. 2.3.4 (Pritchard et al. 2000) in comparison with the SNP data. Pairwise 263 

population genetic differentiation values (FST) were calculated in the R package DARTR v. 1.8.3 (Gruber 264 

et al. 2018). 265 

 266 

2.4. Genetic association analysis 267 
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2.4.1. Genotype-phenotype association analysis 268 

We tested the association between each dendrophenotype (Lloret index) and each SNP to characterize 269 

the underlying genetic variation of drought stress tolerance. For this purpose, we used linear mixed 270 

models (LMM) implemented in the R package GENESIS v.2.23.3 (Gogarten et al. 2019), which takes 271 

into account population structure using the PC-AiR method (Conomos et al. 2015) and genetic 272 

relatedness using the PC-Relate method (Conomos et al. 2016) to control for false-positive associations. 273 

For missing values in the genotype data, GENESIS imputed the mean alternate allele count by using the 274 

allele frequency. First, to adjust for population structure in the mixed models we estimated the kinship 275 

among individuals using the snpgdsIBDKING function of the R package SNPRELATE v.1.27.0 (Zheng 276 

et al. 2012). As a next step, we conducted a PC-AiR using unrelated individuals which are maximally 277 

informative about all ancestries in our sampled populations. We ran a Principal Component Analysis 278 

(PCA) with the unrelated individuals and then projected the relatives onto the PCs with a kinship 279 

threshold of degree 3 (unrelated is less than first cousin) using the pcair function (GENESIS). Second, 280 

to account for genetic relatedness we used the first 2 PCs to compute kinship estimates with the pcrelate 281 

function (GENESIS). We obtained a genetic relatedness matrix as covariance matrix for the null model 282 

using the function pcrelateToMatrix (GENESIS). As a next step, we created a household matrix to 283 

account for different environmental conditions among the study sites or treeline / forest plots. Within 284 

this binary code matrix 0 represents two individuals from the same and 1 two individuals sampled from 285 

different study sites or plots. The first step in association testing was to fit the null model with the 286 

hypothesis that each SNP has no effect. We fit different null models depending on the tested study sites 287 

using the fitNullModel function (GENESIS). For each study site, we fit a null model with the first PC 288 

and tree height as fixed effect covariates and genetic relatedness matrix and household matrix accounting 289 

for treeline and forest plot as random effect covariates based on the Gaussian distribution. We included 290 

tree height rather than tree size (dbh) as a covariate since the latter influences climate sensitivity in white 291 

spruce in Alaska (Trouillier et al. 2018b). In case of overlapping pointer years among sites we fit the 292 

null models for multiple study sites with the first PC and tree height as fixed effect covariates and genetic 293 

relatedness matrix and household matrix accounting for different study sites as random effect covariates 294 
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based on the Gaussian distribution. Further, we used the function assocTestSingle (GENESIS) to test 295 

each SNP with each quantitative trait in conjunction with the output of the null model fit. At last, we 296 

controlled for multiple testing using the qvalue function with a false discovery rate of 0.05 using the R 297 

package QVALUE v.2.25.0 (Storey et al. 2021).  298 

To account for small effect size SNPs as well as for interaction effects, we applied a Bayesian 299 

sparse linear mixed model (BSLMM) using Markov chain Monte Carlo (MCMC) as implemented in 300 

GEMMA v.0.98.5 (Zhou et al. 2013). This polygenic model accounts for single larger effect size SNPs 301 

and multiple SNPs with small effects at the same time while correcting for population genetic structure 302 

by calculating a centered relatedness matrix. GEMMA excludes individuals with missing values. 303 

Therefore, we imputed missing genotypes using the function na.roughfix implemented in the R package 304 

RANDOMFOREST v.4.6-14 (Liaw & Wiener 2002). Missing genotypes were filled with the mean 305 

genotype of the SNP, which was the case for 0.31 % of the SNPs. We then tested all SNPs for association 306 

with each phenotypic trait by performing 5,000,000 iterations and a burn-in of 1,000,000 running three 307 

independent chains for each trait. The convergence across the independent runs was assessed using 308 

Gelman-Rubin diagnostics implemented in the R package CODA (Plummer et al. 2006). The harmonic 309 

mean of the posterior inclusion probabilities (PIP) were calculated across the three runs. The PIP is the 310 

sum of all posterior probabilities of all regressions including the specific variable and thus a ranking 311 

measure to assess the extent to which the data favor the inclusion of a variable in the regression. We 312 

filtered SNPs with PIP > 0.1 to identify SNPs with the strongest evidence of association (Chaves et al. 313 

2016; Pfeifer et al. 2018; Depardieu et al. 2021). We summarized the hyperparameters for each trait 314 

using the R package CODA by calculating the mean, standard deviation and upper and lower bound of 315 

the 97.5% confidence interval (Depardieu et al. 2021).  316 

 317 

2.4.2 Gene annotation 318 

The GCAT3.3 white spruce gene catalogue (Rigault et al. 2011) was used for structural annotation of 319 

SNPs. Sequence description for the associated genes was obtained using BLAST2GO (Götz et al. 2008), 320 

described in Gagalova et al. (in review). BLAST2GO was also used to obtain Gene Ontology (GO) 321 
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annotations. GO biological process, molecular function and cellular component terms were gained for 322 

each individual transcript.  323 

 324 

3. Results  325 

3.1. Identified drought years 326 

The trees of Interior Alaska showed the highest climate sensitivity, whereas the trees of the Alaska 327 

Range forest plot were the least sensitive. Within each study site, the treeline plots had consistently a 328 

higher sensitivity than the corresponding forest plots, which was significant for Alaska Range and 329 

Brooks Range (Figure 3A). The climate sensitivity also differed significantly between sites.  330 

We identified several pointer years which can be associated with drought stress for each study 331 

site: For the Brooks Range we identified 1993 as a pointer year associated with a low CMI6 in 1991. In 332 

the Alaska Range, trees also showed a growth reduction in 1993 likely in response to low CMI6 in 1991. 333 

Additionally, the year 1998 was identified as a pointer year in the Alaska Range with low values of 334 

SPEI6, CMI6 as well as CMI by Hogg in the previous year (1997). The same pointer year (1998) 335 

occurred in Interior Alaska also preceded by low values of CMI6 and SPEI6 in 1997. The trees of Interior 336 

Alaska showed a second pointer year in 2010 in the wake of low CMI6 in 2009.  337 

The reaction of trees showed significant site-specific differences to the same pointer year. For 338 

example, in 1998 Interior Alaska showed a higher relative resilience and recovery but Alaska Range a 339 

higher resistance (Figure 3E). In 1993, Alaska Range had a higher resistance, resilience, relative 340 

resilience and recovery than Brooks Range (Figure 3D). Further, trees also showed a significantly 341 

different reaction to different pointer years within the same site, like 1993 and 1998 in Alaska Range or 342 

1998 and 2010 in Interior Alaska for half of all parameters (Figure 3B, C). The individual-tree reaction 343 

during a pointer year differed between the treeline and the forest plot within one site. In Alaska Range 344 

for 1998, the forest plot showed a higher resilience, relative resilience and recovery compared to the 345 

treeline plot (Figure 3B). This pattern was also shown in Interior Alaska for 1998 and 2010 (Figure 3C). 346 

No significant differences between forest and treeline could be detected in Brooks Range and Alaska 347 
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Range for 1993 (Figure 3B – D). Recovery showed to have the highest inter-individual variation in all 348 

sites (Fig 3 B – E).    349 

 350 

3.2. Population genetic structure  351 

Distinct genetic clusters appeared between study sites based on PCA, with a clear separation of the 352 

Brooks Range study site from the Southern populations (Interior Alaska and Alaska Range; Figure 4A). 353 

No separation between forest and treeline plots was visible, except for two groups of individuals of the 354 

Alaska Range forest plot which separated from the remaining individuals of their study site. The two 355 

first axes (PC1 and PC2) together explained 3.94 % of the total genotypic variation. Note that 98.7 – 356 

99.8 % of all loci were shared between duplicate samples (Table S2), demonstrating the reliability of 357 

the genotyping approach and the SNP detection method used.  358 

This pattern of population genetic structure was supported by the results of Bayesian clustering 359 

analysis (Figure 4B). When individuals were assigned to two genetic clusters (K = 2), the study site 360 

Alaska Range was mainly distinguished from Brooks Range and Interior Alaska. At K = 3 the three 361 

study sites were mainly differentiated and a difference between Alaska Range forest and treeline became 362 

visible. Interior Alaska and Alaska Range were admixed from several genetic clusters. Furthermore, the 363 

pairwise FST values revealed a lower differentiation (FST = 0.014 – 0.017) between the Alaska Range 364 

treeline plot and the plots of the Brooks Range and Interior Alaska sites compared to the Alaska Range 365 

forest plot (FST = 0.023 – 0.025; Table S1).  366 

 367 

3.3. Genotype-phenotype association analysis  368 

3.3.1 Among-site associations 369 

We conducted genotype-phenotype association (GPA) analysis of genotypes with dendrophenotypes 370 

using LMM. When we integrated Interior Alaska and Alaska Range in a single analysis for the pointer 371 

year 1998, we detected 12 SNPs associated with resilience in 1998, after correcting for individual 372 

relatedness (Table S4). No significant associations were detected for climate sensitivity. 373 
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 374 

3.3.2 Within-site associations 375 

The association analysis of genotypes with the dendrophenotypes using LMM revealed no significant 376 

associations when testing pointer years at individual sites separately. Our second approach, the 377 

polygenic BSLMM and testing sites separately, revealed strong associations involving 30 SNPs, 378 

representing 30 different genes (Table S4). Three of these were associated with two traits. Of the 30 379 

SNPs, 13 were associated with climate sensitivity, including 11 in Alaska Range and one for Brooks 380 

Range and Interior Alaska, respectively. The remaining 17 SNPs showed strong associations with 381 

drought parameters. We revealed the majority of the associations in the drought-limited Interior Alaska 382 

site (11 SNPs) with two of the SNPs being associated with two different traits. In addition, we found the 383 

highest PIP values for resistance to drought in 2010 (PIP = 0.74 & 0.44). No overlap between strongly 384 

associated SNPs with individual response parameters could be detected among the sites. When 385 

comparing the amount of associated SNPs between the phenotypic traits, resistance was most frequently 386 

associated (8 SNPs) followed by relative resilience (5 SNPs), resilience (4 SNPs) and recovery (3 SNPs; 387 

Figure S5). Of all traits, climate sensitivity encompassed the highest amount of strong associations 388 

biased by the SNPs of Alaska Range (11 of 13 SNPs). This is also reflected by the proportion of 389 

phenotypic variance explained in BSLMM as well as in LMM (Figure 5, Figure S3). For Interior Alaska 390 

in BSLMM, genetic variance explained the largest proportion of phenotypic variance for the traits 391 

resilience, relative resilience and recovery in 1998 (53%, 70% and 62%; Figure 5, Table S3). The 392 

phenotypic variance explained of the remaining parameters had a range from 12 – 45%. In Brooks Range 393 

15 – 33% of the phenotypic variation was explained by genetic variation and in Alaska Range 17 – 77%. 394 

The proportion of phenotypic variance which could be explained by large-effect size SNPs was the 395 

highest for Interior Alaska for the traits resistance (59%) and relative resilience (42%) in 2010 (Table 396 

S3, Figure S4). In Brooks Range large effect size SNPs explained a higher proportion of the phenotypic 397 

variance (38 – 43%) compared to Alaska Range (30 – 37%; Table S3, Figure S4). The credible interval 398 

of the hyperparameters showed a wide distribution which is depending on the sample size (pers. comm. 399 

Zhou; Table S3). 400 
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Both analyses revealed the highest number of significantly and strongly associated SNPs with 401 

drought related parameters in the drought-limited site Interior Alaska. Genomic regions associated with 402 

drought tolerance differed between sites. Two SNPs (ss538950708 on chromosome 1 & ss524300164 403 

on chromosome 9) were identified with both methods independently, associated with resilience in 1998 404 

in Interior Alaska (Table S4). In total, 40 unique SNPs could be associated with the individual response 405 

parameters to drought or climate sensitivity.  406 

 407 

3.4. Annotation of candidate SNPs  408 

All associated SNPs were mapped and represent different genes (Table S4). Genes containing SNPs 409 

with strong associations differed in their location on the genome between the sites. In Interior Alaska, 410 

the majority of the genes were located on chromosome 1 and 10 (3 genes each), whereas in Brooks 411 

Range chromosome 3 (2 genes) and in Alaska Range chromosome 7 (4 genes) and chromosome 4 (3 412 

genes) contained the majority of the associations. GO annotation was possible for 24 of the 40 associated 413 

genes (Table S4). Eight of them were related to the cellular component membrane and six genes related 414 

to transferase and / or hydrolase activity. One gene (GQ03312_O11) could be related to lignin 415 

biosynthetic process. Further, for six of the SNPs we could derive the information if the mutation was 416 

synonymous (4 SNPs) or non-synonymous (2 SNPs).  417 

 418 

4. Discussion  419 

We investigated three populations of white spruce representing contrasting treeline ecotones at high 420 

latitudes, and identified 40 genes associated to dendrophenotypes that inform us about the drought 421 

tolerance and climate sensitivity of the trees.  422 

When investigating the population genetic structure with a Bayesian clustering analysis, Alaska 423 

Range could clearly be distinguished from Interior Alaska and Brooks Range, whereas in the PCA, 424 

Brooks Range was more separated from the other two sites. A further STRUCTURE analysis with five 425 

microsatellite markers also differentiated Brooks Range from Interior Alaska and Alaska Range for K 426 
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= 2 (Figure S1). This supports the results of the PCA and indicates a pattern of isolation by distance 427 

(Zacharias et al. 2021). Further, the separating group of individuals in the Alaska Range forest plot was 428 

weakly supported by the available data and was also not shown with the microsatellite markers. It is 429 

unlikely that it is the result of human interference. 430 

 431 

4.1. Climate sensitivity  432 

All treeline plots showed a higher climate sensitivity than the corresponding forest plots due to the more 433 

extreme climate conditions at the treeline compared to the more protected closed-canopy forest 434 

environment. In fact, the treeline populations represent an environment where the species experiences 435 

its physiological limits within the realized niche. Growth is limited by low water availability (Interior 436 

Alaska) or low temperatures (Brooks Range, Alaska Range), resulting in a stronger climate signal 437 

(Hampe & Jump 2011). Consequently, treeline populations are preferably sampled in dendroecology to 438 

study the influence of these environmental variables (Fritts 1976; Cook & Kairiukstis 1990). 439 

Furthermore, in Brooks Range an elevated climate sensitivity is reported for small and young white 440 

spruce trees (Trouillier et al. 2018b), like those found in the treeline plots. By far the most significant 441 

associated genes with climate sensitivity were found in the Alaska Range population (11 genes) 442 

compared to only one gene for Interior Alaska and Brooks Range, respectively. Therefore, for the trait 443 

climate sensitivity, the phenotypic variance explained by genetic variants was highest in Alaska Range 444 

(77%), intermediate in Interior Alaska (38%) and lowest in Brooks Range (15%). In Alaska Range, 445 

forest and treeline plot have the highest distance to each other and the largest difference in elevation. 446 

Therefore, environmental conditions and consequently climate sensitivity differ the most between the 447 

plots within Alaska Range compared to the other two sites. These phenotypic differences among the 448 

individuals together with the separating cluster of Alaska Range forest within the population genetic 449 

structure analysis probably led to the high amount of significant associations. Five of the associated 450 

SNPs in Alaska Range could be annotated and related to gene functions such as hydrolase activity or 451 

cell wall organization, among others. Further, two of the associated SNPs with climate sensitivity in 452 

Alaska Range are non-synonymous mutations, which change the amino acid sequence of a protein and 453 
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are therefore subjected to natural selection. This indicates a genetic basis of climate sensitivity. Climate 454 

sensitivity exhibited a higher variability among the sites than the drought related traits. In contrast, for 455 

white spruce populations planted in a common garden, climate sensitivity traits had the lowest 456 

phenotypic variance explained (11 – 18.5%) (Depardieu et al. 2021).  457 

 458 

4.2. Growth reaction to drought stress  459 

In contrast to climate sensitivity, there was no consistent pattern in the growth reaction to drought events 460 

when comparing forest and treeline. In general, in Alaska Range and Interior Alaska, trees within the 461 

forest plots seemed to recover better from a drought event. For the drought-limited site (Interior Alaska) 462 

the growth reaction differed significantly between forest and treeline trees for most of the traits, even 463 

though the plots were positioned right next to each other. This suggests that the site´s location at a steep 464 

south-exposed bluff results in a strong microenvironmental gradient at short geographical distance, 465 

which seems to gain influence during a drought event with stronger effects on the bluff site that is more 466 

exposed to radiation (Nicklen et al. 2018). In the cold-limited sites (Brooks Range, Alaska Range), 467 

forest and treeline plots exhibited only minor differences in growth reaction probably due to similar 468 

environmental conditions. Trees of different sites reacted significantly to a drought event in the same 469 

year, probably due to distinct growth conditions among sites. For the growth reaction in 1998, the 470 

drought-limited site (Interior Alaska) showed a significant higher recovery compared to the cold-limited 471 

site (Alaska Range), which in return showed a significant higher resistance. A similar pattern was 472 

observed in maritime pine with high resistance in Atlantic and high recovery in Mediterranean 473 

provenances planted in a common garden (Zas et al. 2020). Thus, populations experiencing contrasting 474 

environmental conditions seem to use various strategies to cope with drought stress. This supports our 475 

hypothesis that the individual reaction to drought stress differs between drought and cold-limited 476 

treelines as well as between forest and treeline plots. Nevertheless, we could not identify a common 477 

pattern within the growth reaction except for climate sensitivity. For gymnosperms, a reduced recovery 478 

is related to high drought-related mortality risk (Desoto et al. 2020). 479 
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Even though we developed an evidence-based approach to identify years of growth decline 480 

caused by drought, we acknowledge that factors other than drought stress may had affected growth 481 

reduction. Furthermore, drought induces masting in white spruce (Ascoli et al. 2020) which could also 482 

be the reason for growth reduction at the population level (Hacket-Pain et al. 2015; Nicklen et al. 2018). 483 

Mast seeding events were recorded for the Alaska Range site in 1998 and the Interior Alaska site in 484 

2010 overlapping with the analyzed pointer years (Roland et al. 2014). 485 

 486 

4.3. Contrasting genetic basis underlying drought tolerant phenotypes  487 

There was no overlap in drought-associated genes among sites, which supports our hypothesis that the 488 

selection pressure at the contrasting treeline ecotones led to divergent genetic signatures underlying 489 

drought tolerance. Even the two cold-limited sites (Brooks Range, Alaska Range) showed different 490 

genetic signatures associated with drought tolerance. However, it is important to mention that the two 491 

cold-limited sites differ in precipitation as well as in temperature. At these treelines frost tolerance may 492 

be a strong selective driver in addition to drought. Thus, signatures of selection are population-specific 493 

and led to different alleles associated with drought-tolerant phenotypes, such as reported in populations 494 

of Arabidopsis halleri in heterogenous alpine environments (Rellstab et al. 2017). Moreover, the 495 

location of the associated genes on the genome varied widely with genes on different chromosomes 496 

associated for different sites. Even though we analyzed two drought years for the Alaska Range site 497 

compared to only one for the Brooks Range site, the Alaska Range site showed the lowest number of 498 

GPAs with growth reaction, possibly explained by the comparably high precipitation rates at the Alaska 499 

Range site. We identified most of the significantly associated genes with drought tolerance in the 500 

drought-limited site (Interior Alaska), as well as the highest proportion of phenotypic variance explained 501 

by genetic variance (70%). This indicates comparatively strong selection of drought-tolerant phenotypes 502 

within the drought-limited site. Populations experience the strongest selection pressure under extreme 503 

events like droughts which shape the genetic variation among populations (Grant et al. 2017). This high 504 

selection pressure leads from small to moderate shifts in allele frequencies (Depardieu et al. 2021). A 505 

high resilience to extreme drought events was also found in white spruce populations from dry regions 506 
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planted in a common garden, which leads to the assumption that genetic variation among populations 507 

plays a significant role in growth resilience in response to drought (Depardieu et al. 2020). Further, 508 

significant heritability estimates for drought response traits indicated significant natural genetic 509 

variation among polycross families of white spruce (Laverdière et al. 2022). Furthermore, the adaptive 510 

genetic variation and phenotypic correlations between drought response and wood traits differed among 511 

provenances of Picea abies, indicating different selection intensities (Trujillo-Moya et al. 2018). Still, 512 

gene flow among sites is high, as demonstrated by the high seed- and pollen-migration rates and the low 513 

genetic differentiation among the investigated sites (Zacharias et al. 2021). The linear mixed model 514 

revealed only significant SNPs when taking together Interior Alaska and Alaska Range, the two sites 515 

which genetically differentiated within the Bayesian clustering analysis for K = 2. Therefore, there could 516 

be a covariance between the genetic differences between the sites and site-specific growth responses to 517 

drought, resulting in spurious associations. Nevertheless, two of the associated SNPs could also be 518 

identified in the Bayesian sparse linear mixed model, independently. 519 

 520 

4.4. The polygenic basis of drought tolerance  521 

The association approach, which took into account multiple SNPs and their interactions together with 522 

small effect-size SNPs (BSLMM) resulted in a much higher number of significant associations than the 523 

linear mixed models, pointing towards a complex genetic architecture of drought tolerance in white 524 

spruce. When analyzing complex traits such as growth related traits, multi-locus approaches commonly 525 

outperform single locus approaches (Moser et al. 2015). In conifers, traits involved in local adaptation 526 

to climate are known to be polygenic (Csilléry et al. 2018; Sork 2017), and adaptation is rather driven 527 

by interacting small-effect size alleles instead of a few large-effect alleles (Hornoy et al. 2015; Le Corre 528 

& Kremer 2012). Especially in populations with high gene flow and recent selection events, local 529 

adaptation involves small allele frequency changes that interact in complex pathways (Hornoy et al. 530 

2015). Nevertheless, for resistance within the Interior Alaska site, the phenotypic variance explained by 531 

large-effect size SNPs was highest, indicating the influence of a few genes with larger effects on drought 532 

tolerance. The two SNPs with the highest posterior inclusion probabilities were found for this trait in 533 
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the Interior Alaska site. This could be a hint towards selective sweeps like reported for Sequoia 534 

sempervirens and Sequoiadendron giganteum in relation to local adaptation (La Torre et al. 2022). When 535 

testing our phenotypic traits, the main and polygenic SNPs within the BSLMM analysis explained 12 – 536 

77% of the phenotypic variance. These values are higher than the ones reported for white spruce 537 

populations in a common garden (11 – 33.6%) or natural Pinus albicaulis populations (14.4 – 37.6%) 538 

(Depardieu et al. 2021; Lind et al. 2017). Most of the associated genes were found in climate sensitivity 539 

at the Alaska Range site. For the traits related to drought reaction, resistance had the most associated 540 

genes suggesting a strong genetic basis for this trait.  541 

 542 

4.5. Significant associated genes with drought tolerance 543 

Three of the identified genes (GQ03814_E07: O-fucosyltransferase 23-like, WS00110_K01: probable 544 

inactive leucine-rich repeat receptor-like protein kinase At3g03770, GQ03417_G17: uridine-cytidine 545 

kinase C) were associated with multiple traits (Table S4) and two other genes (GQ03701_H09: auxin 546 

response factor 6, GQ03417_G17: uridine-cytidine kinase C) were associated with resilience by both 547 

association approaches independently. These genes were associated with various biological processes, 548 

molecular functions and cellular components like transferase or hydrolase activity suggesting their 549 

relevance in relation to drought tolerance. Sixteen of the genes associated with drought relevant 550 

phenotypic traits in our analysis were also represented among the 110 differentially expressed genes in 551 

white spruce in response to drought in a greenhouse experiment (Depardieu et al. 2021). Furthermore, 552 

eight of the 40 associated genes were already associated with wood anatomy traits like wood density in 553 

white spruce provenances sampled in Québec (Lamara et al. 2016). Wood density is known to influence 554 

drought tolerance in conifers (Martinez-Meier et al. 2008). In a common garden experiment of 555 

Pseudotsuga menziesii, all trees that survived a strong drought had a higher stem wood density, ring 556 

density and latewood density than the individuals that died (Martinez-Meier et al. 2008). Nevertheless, 557 

within the investigated sites xylem anatomical traits are rather influenced by microhabitat, but latewood 558 

density and earlywood hydraulic diameter showed a moderate heritability (Pampuch et al. 2020). 559 

Moreover, eight of the associated genes were related to the cellular component membrane and one to 560 
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lignin biosynthetic process, which may alter the wood anatomy and drought tolerance in trees.  Still, 561 

selection can only act on traits which are heritable (Depardieu et al. 2020). Five of the associated genes 562 

were both differentially regulated under drought and associated with wood traits (Depardieu et al. 2021; 563 

Lamara et al. 2016) and are therefore related to drought tolerance. One gene (GQ03617_M21: 21 kDa 564 

protein-like) associated to resilience in Interior Alaska in our study, was also identified as high 565 

confidence gene in correlation with phenotypic and environmental data in white spruce in a common 566 

garden setting in Eastern Canada (Depardieu et al. 2021). The reason for the limited number of 567 

overlapping genes between our study and study of  Depardieu et al. (2021) could be that we investigated 568 

natural populations with trees of different sizes and ages and varying environmental conditions in 569 

contrast to their controlled common garden setting. Still, we tried to account for the differing 570 

environments by using the household matrix (a binary encoded matrix indicating if individuals are from 571 

the same or different study sites) within the linear mixed models when testing multiple sites together or 572 

testing the sites separately in BSLMM. Further, the Alaskan and Canadian study sites are located at the 573 

western and eastern edge of the white spruce distribution range, which not only reduces gene flow but 574 

also represents populations of different glacial refugia (Anderson et al. 2011). Adaptation to drought 575 

can also occur in independent routes like described for two populations of Brassica rapa which shared 576 

parallel shifts in allele frequency in only a few genes (Franks et al. 2016). Many genes related to climate 577 

adaptation are known to be involved in transferase and hydrolase activities in white spruce (Depardieu 578 

et al. 2021; Hornoy et al. 2015) and Norway spruce (Azaiez et al. 2018). In our study, six of our 24 579 

successfully annotated genes could be associated with hydrolase and / or transferase activities, which 580 

supports the important role of these genes.  581 

 582 

4.6. Conclusions  583 

Treeline plots showed a higher sensitivity in their growth response to climate than the corresponding 584 

forest plots because of the more extreme environmental conditions. Climate sensitivity showed a high 585 

phenotypic plasticity but our results indicated a minor genetic basis. Tree populations growing in 586 

different environments responded differently to drought stress, thus supporting that populations were 587 
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differentially affected by drought events induced by climate change. In addition, populations from 588 

different environments had divergent genetic signatures underlying drought stress tolerance with most 589 

genes found in populations more exposed to drought. As a consequence, our results support the 590 

hypothesis that selection pressure in populations in different environments resulted in differing 591 

strategies to cope with drought stress and, thus, adaptation is a local process in populations with 592 

restricted gene flow. Further, the high amount of small-effect size SNPs demonstrated the polygenic and 593 

complex architecture of drought tolerance in trees. Genes that were identified by several analyses or 594 

which were associated with wood traits or expressed under drought conditions in other studies can be 595 

considered as potential targets for further gene expression and landscape genomic studies focusing on 596 

drought response. These are critical resources to help inform assisted migration programs in the context 597 

of more severe and recurrent extreme climatic events.  598 

 599 
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Tables and Figures  887 

Table 1: Characteristics of the sampled locations. Latitude, longitude and elevation values were taken from the centroid of 888 
each plot. Temperature and precipitation data were downloaded from the Scenarios Network for Alaska and Arctic Planning 889 
(SNAP) for the 1950–2015 reference period. Average age was calculated using the oldest tree ring measured.  890 
 891 

Study site Brooks Range Interior Alaska Alaska Range 

Research plot BR F† BR T‡ Int F† Int T‡ AR F† AR T‡ 

Latitude 67.95 67.95 64.70 64.70 63.72 63.74 

Longitude 149.75 149.74 148.31 148.30 149.01 149.01 

Elevation (m a.s.l.) 876 923 181 180 802 1008 

Mean annual temperature 

in °C 

-8.18 -1.89 -3.58 

Total annual precipitation 

in mm 

314 305 511 

Density (trees per ha) 839 232 406 326 507 152 

Number of analyzed trees 94 44 105 49 106 60 

Average dbh ± SD (cm) 15.4 ± 5.3 13.9 ± 4.7 16.3 ± 5.2 17.6 ± 

5.6 

20.2 ± 8.8 12.9 ± 

4.2 

Average height ± SD (m) 8.5 ± 2.3 6.9 ± 2.1 13.1 ± 3.8 11.4 ± 

2.4 

10.2 ± 3.3 5.3 ± 1.2 

Average age ± SD (years) 136 ± 39 102 ± 49 76 ± 8 68 ± 9 133 ± 45 75 ± 26 

† forest plot 892 
‡ treeline plot 893 
 894 

 895 

Supplementary tables 896 

Table S 1: Population differentiation described by pairwise FST values between the white spruce (Picea glauca) plots 897 
calculated in R package DARTR. 898 

 
Brooks Range 

Forest 

Brooks Range 

Treeline 

Interior Alaska 

Forest 

Interior Alaska 

Treeline 

Alaska Range 

Forest 

Brooks Range 

Forest 
- - - - - 

Brooks Range 

Treeline 
0.005 - - - - 
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Interior Alaska 

Forest 
0.024 0.023 - - - 

Interior Alaska 

Treeline 
0.025 0.024 0.001 - - 

Alaska Range 

Forest 
0.025 0.024 0.023 0.024 - 

Alaska Range 

Treeline 
0.017 0.016 0.014 0.015 0.007 

 899 
 900 
 901 
Table S 2: Proportion of shared loci between duplicated samples of 2931 SNP loci. Mismatches are due to missing data.  902 

Tree ID Sample 1 Sample 2 Shared loci 

in % 

Loci with 

missing data 

sample 1 

Loci with 

missing data 

sample 2 

45508 P02_G06_45508 P02_G12_45508 99.8 9 7 

DF143 P05_A12_DF143 P05_E02_DF143 99.7 15 14 

BF070 P02_B05_BF070 P03_G11_BF070 99.6 14 13 

BF373 P03_E01_BF373 P03_F11_BF373 99.6 14 14 

45205 P06_D07_45205 P06_D10_45205 99.5 21 22 

45486 P04_C02_45486 P05_B12_45486 99.5 27 16 

DF266 P04_H10_DF266 P05_A02_DF266 99.4 8 18 

DF205 P05_E01_DF205 P06_F10_DF205 99.4 9 22 

45248 P01_F11_45248 P06_E10_45248 99.3 11 25 

45473 P04_A12_45473 P04_F01_45473 98.8 12 35 

45263 P01_C12_45263 P01_D11_45263 98.7 39 15 

 903 
 904 
Table S 3: Hyperparameters of the Bayesian Sparse Linear Mixed Mmodels (BSLMM) testing dendrophenotypes.  905 

Site 
Phenotypic 

trait 
Hyperparameters Mean 

Standard 

deviation 

2.5% 

Confidence 

interval 

97.5% 

Confidence 

interval 

Brooks 

Range 

Resistance 1993 

PVE† 0.33 0.20 0.02 0.75 

PGE‡ 0.43 0.30 0 0.97 

LE SNPs§ 61 77 0 270 

Resilience 1993 

PVE† 0.24 0.17 0.01 0.63 

PGE‡ 0.38 0.3 0 0.96 

LE SNPs§ 55 73 0 263 

Rel. resilience 

1993 

PVE† 0.25 0.17 0.01 0.64 

PGE‡ 0.38 0.3 0 0.96 

LE SNPs§ 59 77 0 268 

Recovery 1993 

PVE† 0.23 0.17 0.01 0.63 

PGE‡ 0.41 0.3 0 0.96 

LE SNPs§ 59 74 0 261 

Climate 

sensitivity 

PVE† 0.15 0.12 0 0.46 

PGE‡ 0.42 0.31 0 0.97 

LE SNPs§ 48 71 0 261 

Resistance 1998 PVE† 0.4 0.22 0.04 0.89 
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Interior 

Alaska 

PGE‡ 0.33 0.28 0 0.94 

LE SNPs§ 64 77 0 270 

Resilience 1998 

PVE† 0.53 0.23 0.1 0.98 

PGE‡ 0.33 0.28 0 0.94 

LE SNPs§ 67 79 0 273 

Rel. resilience 

1998 

PVE† 0.70 0.19 0.29 0.99 

PGE‡ 0.24 0.24 0 0.87 

LE SNPs§ 74 83 0 278 

Recovery 1998 

PVE† 0.62 0.21 0.20 0.99 

PGE‡ 0.28 0.26 0 0.91 

LE SNPs§ 79 83 0 275 

Resistance 2010 

PVE† 0.45 0.20 0.12 0.92 

PGE‡ 0.59 0.27 0.02 0.98 

LE SNPs§ 28 43 1 166 

Resilience 2010 

PVE† 0.21 0.15 0.01 0.56 

PGE‡ 0.38 0.30 0 0.96 

LE SNPs§ 61 76 0 265 

Rel. resilience 

2010 

PVE† 0.16 0.12 0.01 0.45 

PGE‡ 0.42 0.3 0 0.97 

LE SNPs§ 37 62 0 240 

Recovery 2010 

PVE† 0.12 0.11 0 0.39 

PGE‡ 0.38 0.3 0 0.96 

LE SNPs§ 49 72 0 261 

Climate 

sensitivity 

PVE† 0.38 0.23 0.03 0.91 

PGE‡ 0.34 0.29 0 0.95 

LE SNPs§ 63 78 0 269 

Alaska 

Range 

Resistance 1993 

PVE† 0.42 0.26 0.02 0.96 

PGE‡ 0.35 0.28 0 0.94 

LE SNPs§ 57 73 0 264 

Resilience 1993 

PVE† 0.44 0.26 0.02 0.97 

PGE‡ 0.33 0.28 0 0.94 

LE SNPs§ 63 80 0 271 

Rel. resilience 

1993 

PVE† 0.25 0.2 0.01 0.75 

PGE‡ 0.34 0.29 0 0.94 

LE SNPs§ 55 74 0 269 

Recovery 1993 

PVE† 0.22 0.19 0.01 0.70 

PGE‡ 0.36 0.30 0 0.95 

LE SNPs§ 55 76 0 269 

Resistance 1998 

PVE† 0.33 0.23 0.01 0.89 

PGE‡ 0.35 0.3 0 0.95 

LE SNPs§ 63 77 0 270 

Resilience 1998 

PVE† 0.26 0.20 0.01 0.74 

PGE‡ 0.35 0.29 0 0.95 

LE SNPs§ 69 82 0 275 

Rel. resilience 

1998 

PVE† 0.17 0.13 0.01 0.5 

PGE‡ 0.37 0.3 0 0.96 

LE SNPs§ 59 76 0 269 

Recovery 1998 

PVE† 0.19 0.14 0.01 0.53 

PGE‡ 0.36 0.3 0 0.95 

LE SNPs§ 60 78 0 272 

PVE† 0.77 0.20 0.30 0.99 
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Climate 

sensitivity 

PGE‡ 0.30 0.26 0 0.91 

LE SNPs§ 86 88 0 282 

† proportion phenotypic variance explained 906 
‡ proportion of PVE explained by large effect size SNPs 907 
§ large effect size SNPs 908 
 909 
 910 
 911 
 912 
 913 
 914 
Table S4:  Significantly associated SNPs identified with linear mixed models (LMM) and SNPs with posterior inclusion 915 
probabiity (PIP) > 0.1 identified by Bayesian sparse linear mixed models (BSLMM) with dendrophenotypes in Alaska Range 916 
(AR), Interior Alaska (Int) and Brooks Range (BR). SNPs are mapped on genes according to the GCATv3.3 gene catalog and 917 
sequence description and GO terms are obtained from blast2go runs. Literature review of genes known to be regulated 918 
under drought (Depardieu et al. 2021) and associated with wood traits (Lamara et al. 2016) in white spruce.  919 
 920 
 921 
 922 
 923 
Table S5: All initially selected SNPs for genotyping and filtering steps. 924 
 925 
 926 

 927 

 928 

 929 

 930 
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 931 

Figure 1: Studied locations and distribution range (green) of white spruce (Picea glauca) in Alaska (Prasad and Iverson 2003). 932 
The state of Alaska is coloured in light brown. Circles show the location of the three study sites Brooks Range, Interior Alaska 933 
and Alaska Range. 934 
 935 

 936 
Figure 2: Decision tree for pointer year identification induced by drought stress.  937 
 938 
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 939 
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Figure 3: Comparison of Lloret indices between the Brooks Range, Interior Alaska and Alaska Range study sites for different 940 
pointer years calculated in the R package pointRes and visualized with ggplot. Pairwise significance tested with Wilcoxon test. 941 
* means significant (p-value < 0.05), ns means not significant. Letters indicate significant different groups. 942 

 943 

 944 
Figure 4: Principal Component Analysis (A) and Bayesian clustering analysis (B) for K = 2 and K = 3 based on 2,463 SNP loci 945 
genotyped in white spruce (Picea glauca) individuals sampled from three different sites and forest/treeline plots. BR – 946 
Brooks Range, Int – Interior Alaska, AR – Alaska Range. 947 
 948 
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 949 
Figure 5: Results of the BSLMM analysis. Violin plots represent the posterior distributions of the proportion of the phenotypic 950 
variance explained by genetic variance (PVE). The median (black circle) and standard deviation (error bars) for each 951 
phenotypic trait is shown for Brooks Range (BR), Interior Alaska (Int) and Alaska Range (AR). 952 
 953 
 954 
Supplementary figures 955 
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 956 
Figure S 1: Population membership coefficient (A) of sampled white spruce (Picea glauca) individuals of the three different 957 
sites and forest/treeline plots obtained with treeline plots obtained with STRUCTURE for K = 2 based on ΔK (B) and 958 
loglikelohood distribution (C) based on five SSR loci described in (Zacharias et al. 2021).  F – forest, T – treeline.  959 
 960 
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 961 

 962 
Figure S 2: Results of the LMM analysis. Violin plots represent the absolute values of the effect sizes of the top one percent 963 
SNPs. The median (black circle) and standard deviation (error bars) for each phenotypic trait is shown for Brooks Range (BR), 964 
Interior Alaska (Int) and Alaska Range (AR). 965 
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 966 
Figure S 3: Results of the LMM analysis. Violin plots represent the phenotypic variance explained by the top one percent 967 
SNPs. The median (black circle) and standard deviation (error bars) for each phenotypic trait is shown for Brooks Range (BR), 968 
Interior Alaska (Int) and Alaska Range (AR). 969 
 970 
 971 
 972 
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 973 
Figure S 4: Results of the BSLMM analysis. Violin plots represent the posterior distributions of the proportion of PVE 974 
explained by large effect size SNPs (PGE). The median (black circle) and standard deviation (error bars) for each phenotypic 975 
trait is shown for Brooks Range (BR), Interior Alaska (Int) and Alaska Range (AR). 976 
 977 
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 978 
Figure S 5: Venn diagrams of significantly associated SNPs in BSLMM analysis for each phenotypic trait derived in sites. One 979 
SNP represents one gene. BR – Brooks Range, Int – Interior Alaska, AR -  Alaska Range. 980 
 981 
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Table S 4: Significantly associated SNPs identified with linear mixed models (LMM) and SNPs with posterior inclusion probabiity (PIP) > 0.1 identified by Bayesian sparse linear mixed models 
(BSLMM) with dendrophenotypes in Alaska Range (AR), Interior Alaska (Int) and Brooks Range (BR). SNPs are mapped on genes according to the GCATv3.3 gene catalog and sequence description 
and GO terms are obtained from blast2go runs. Literature review of genes known to be regulated under drought (Depardieu et al. 2021) and associated with wood traits (Lamara et al. 2016) in 
white spruce.  

Gene SNP ID chrom 

BSLMM LMM 

Sequence description GO terms§ 

Regulate

d under 

drought 

Wood 

traits¶ 

Syn
# site trait† PIP site 

trait
† 

effect 

size 
PVE‡ 

GQ03701_H09 ss524300164 9 

Int 

 

Rl98 0.15 

Int 

& 

AR 

Rl98 

0.05 0.04 auxin response factor 6 

P:regulation of 

transcription, DNA-

templated; P:response 

to hormone; P:auxin-

activated signaling 

pathway; F:DNA 

binding; C:nucleus 

   

GQ03417_G17 ss538950708 1 
Rl98, 

Rr98 

0.25, 

0.11 
-0.05 0.04 

uridine-cytidine kinase 

C 

P:UMP biosynthetic 

process; 

P:phosphorylation; 

F:uridine kinase 

activity; F:ATP 

binding; C:integral 

component of 

membrane 

   

GQ04005_G08 ss538952487 1 

  

 -0.09 0.03 

senescence/dehydration-

associated protein 

At4g35985, 

chloroplastic-like 

C:plasma membrane    

GQ0014_K23 ss538945558 10  -0.05 0.03 unnamed product 

C:membrane; C:integral 

component of 

membrane 

Down   

GQ0045_F02 ss518105220 5  -0.07 0.03 

zinc finger protein 

CONSTANS-LIKE 9-

like isoform X2 

 Down 
MFA/

MOE 
 

GQ03207_K07 ss538948979 7  -0.06 0.04 

PREDICTED: 

uncharacterized protein 

LOC107018276 

isoform X1 

P:cell redox 

homeostasis; P:obsolete 

oxidation-reduction 

process; P:cellular 

oxidant detoxification; 

F:antioxidant activity; 

F:oxidoreductase 

activity; C:obsolete cell 

   

GQ0043_O18 ss538945672 7  0.07 0.03 
F-box/kelch-repeat 

protein At1g22040 
 Down 

MOE/

RW 
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GQ04007_P09 ss538952592 3  -0.11 0.03 
28S ribosomal protein 

S33, mitochondrial 
    

GQ03706_G11 ss538944095 1  -0.09 0.04 
phospholipase D beta 2-

like 

F:phospholipase D 

activity; F:N-

acylphosphatidylethanol

amine-specific 

phospholipase D 

activity 

up MOE s 

GQ03113_N18 ss538948383 10  0.05 0.03 

mannosylglycoprotein 

endo-beta-mannosidase 

isoform X3 

F:hydrolase activity, 

hydrolyzing O-glycosyl 

compounds 

   

GQ04006_C07 ss538952518 12  0.17 0.06 

U2 small nuclear 

ribonucleoprotein B'' 

isoform X2 

F:nucleic acid binding up   

GQ03001_M17 ss538947781 1  0.09 0.04 

tRNA (cytosine(34)-

C(5))-

methyltransferase-like 

isoform X2 

    

GQ03814_E07 ss524905003 3 

BR 

Rc93, 

Rr93 

0.13, 

0.12 
    

O-fucosyltransferase 

23-like 

P:carbohydrate 

metabolic process; 

F:transferase activity 

   

GQ04105_B09 ss511222837 8 Rs93 0.25     
transcription factor 

SRM1-like isoform X1 
 up 

RW/

WD 
 

GQ04104_L11 ss538952912 10 Rs93 0.11     

beta-1,6-

galactosyltransferase 

GALT29A 

F:glycosyltransferase 

activity; C:membrane 
   

GQ02829_O21 ss538947535 3 CS 0.12     
vacuolar fusion protein 

CCZ1 homolog B-like 

P:vesicle-mediated 

transport; C:Mon1-Ccz1 

complex 

up   

WS00110_K01 ss538953160 4 

Int 

Rc98, 

Rs10 

0.11, 

0.44 
    

probable inactive 

leucine-rich repeat 

receptor-like protein 

kinase At3g03770 

P:protein 

phosphorylation; 

F:kinase activity; 

C:membrane 

   

GQ02809_D01 ss538946877 1 Rc98 0.11     

LRR receptor-like 

serine/threonine-protein 

kinase GSO2 

 down   

GQ03617_M21 ss538954933 10 Rs98 0.10     21 kDa protein-like 

P:negative regulation of 

catalytic activity; 

F:enzyme inhibitor 

activity; F:hydrolase 

activity; 

F:pectinesterase 

activity; C:membrane; 

down 
MOE/

WD 
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C:integral component of 

membrane 

GQ03308_B05 ss538950030 10 Rl98 0.11     
AT-hook motif nuclear-

localized protein 16 

F:minor groove of 

adenine-thymine-rich 

DNA binding; F:DNA-

binding transcription 

factor activity; 

C:nucleus; C:membrane 

up   

GQ03105_E13 ss538948127 3 Rs10 0.12     
ras-related protein 

Rab5-like 

F:GTPase activity; 

F:GTP binding 
 RW  

GQ03318_K18 ss538950306 6 Rs10 0.74          

GQ03123_B21 ss524904113 12 Rr98 0.11     

CTD small 

phosphatase-like protein 

2 isoform X1 

    

GQ03234_J18 ss538949723 11 Rr98 0.13     
protein SGT1 homolog 

B-like 
F:transferase activity    

GQ03312_O11 ss538943411 12 Rr10 0.17     
probable cinnamyl 

alcohol dehydrogenase 

P:lignin biosynthetic 

process; P:obsolete 

oxidation-reduction 

process; F:zinc ion 

binding; F:cinnamyl-

alcohol dehydrogenase 

activity; F:sinapyl 

alcohol dehydrogenase 

activity 

  s 

GQ03001_D10 ss538941983 10 CS 0.16     tubulin beta chain  down  s 

GQ03204_D08 ss538948868 4 

AR 

Rs93 0.25     
protein phosphatase 2C 

29-like 

P:protein 

dephosphorylation; 

F:protein 

serine/threonine 

phosphatase activity 

Down   

GQ04106_C04 ss524903752 7 Rs98 0.11     protein GPR107-like 
C:integral component of 

membrane 
   

GQ04101_B06 ss524905087 8 Rl93 0.16     
F-box protein 

At4g35930 
 Up   

GQ03006_D16 ss538942046 1 CS 0.12     
subtilisin-like protease 

SBT1 7 
F:peptidase activity  

WD/ 

RW 
s 

GQ03916_G13 ss538952280 4 CS 0.16     

uracil 

phosphoribosyltransfera

se isoform X1 

    

GQ02812_L03 ss538940375 4 CS 0.17     

protein 

DETOXIFICATION 

29-like 

  WD ns 
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GQ03711_F07 ss524904949 7 CS 0.26     farnesylcysteine lyase 

P:prenylated protein 

catabolic process; 

P:prenylcysteine 

catabolic process; 

F:prenylcysteine 

oxidase activity 

   

GQ02801_A19 ss511222916 7 CS 0.12     
probable glucan 1,3-

alpha-glucosidase 
 up   

GQ0035_E21 ss538945615 7 CS 0.12     
GDSL esterase/lipase 

At1g71691 

F:hydrolase activity, 

acting on ester bonds 
   

GQ03218_J10 ss538949337 9 CS 0.14     BUD13 homolog C:nucleus up   

WS00725_O13 ss538953241 9 CS 0.11       up   

GQ02828_D02 ss538947479 10 CS 0.10     

pentatricopeptide 

repeat-containing 

protein At1g07590, 

mitochondrial isoform 

X1 

    

GQ03808_P10 ss538944519 11 CS 0.20     
probable 

polygalacturonase 

P:carbohydrate 

metabolic process; 

P:cell wall organization; 

F:polygalacturonase 

activity; C:extracellular 

region 

up RW ns 

GQ03221_I23 ss538949416 12 CS 0.11          

 

Abbreviations:  †  CS: climate sensitivity, Rc: recovery, Rl: resilience, Rr: relative resilience, Rs: resistance 

  ‡ phenotypic variance explained 

   § P: biological process; C: cellular component, F: molecular function 

  ¶ WD: wood density, MOE: modulus of elasticity, RW: ring width, MFA: microfibril angle 

  # s: synonymous, ns: non-synonymous SNP 
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Xylem Anatomical Variability in White
Spruce at Treeline Is Largely Driven
by Spatial Clustering
Timo Pampuch1* , Alba Anadon-Rosell1, Melanie Zacharias2, Georg von Arx3 and
Martin Wilmking1

1 Landscape Ecology and Ecosystem Dynamics Working Group, Institute of Botany and Landscape Ecology, University
Greifswald, Greifswald, Germany, 2 General and Special Botany Working Group, Institute of Botany and Landscape Ecology,
University Greifswald, Greifswald, Germany, 3 Swiss Federal Institute for Forest, Snow and Landscape Research WSL,
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The ecological function of boreal forests is challenged by drastically changing climate
conditions. Although an increasing number of studies are investigating how climate
change is influencing growth and distribution of boreal tree species, there is a lack of
studies examining the potential of these species to genetically adapt or phenotypically
adjust. Here, we sampled clonally and non-clonally growing white spruce trees (Picea
glauca [Moench] Voss) to investigate spatial and genetic effects on tree ring width
and on six xylem anatomical traits representing growth, water transport, mechanical
support, and wood density. We compared different methods for estimating broad
sense heritability (H2) of each trait and we evaluated the effects of spatial grouping
and genetic grouping on the xylem anatomical traits with linear models. We found
that the three different methods used to estimate H2 were quite robust, showing
overall consistent patterns, while our analyses were unsuccessful at fully separating
genetic from spatial effects. By evaluating the effect size, we found a significant effect
of genetic grouping in latewood density and earlywood hydraulic diameter. However,
evaluating model performances showed that spatial grouping was a better predictor
than genetic grouping for variance in earlywood density, earlywood hydraulic diameter
and growth. For cell wall thickness neither spatial nor genetic grouping was significant.
Our findings imply that (1) the variance in the investigated xylem anatomical traits and
growth is mainly influenced by spatial clustering (most probably caused by microhabitat
conditions), which (2) makes it rather difficult to estimate the heritability of these traits in
naturally grown trees in situ. Yet, (3) latewood density and earlywood hydraulic diameter
qualified for further analysis on the genetic background of xylem traits and (4) cell wall
thickness seems a useful trait to investigate large-scale climatic effects, decoupled from
microclimatic, edaphic and genetic influences.

Keywords: boreal forest, broad-sense heritability, clonal trees, spatial clustering, treeline, white spruce, xylem
anatomy
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INTRODUCTION

Boreal forests are ecologically and commercially valuable
ecosystems that make up almost a third of the global forest
cover (Apps et al., 1993; Hansen et al., 2003). They act as a
sink for global atmospheric carbon dioxide (Arneth et al., 2010;
Tagesson et al., 2020) but are heavily influenced by human-
induced and natural cover loss (Hansen et al., 2010). According
to climate projections, boreal forests will face exceptional
changes in climatic conditions within the 21st century (Soja
et al., 2007; IPCC, 2013; Charney et al., 2016), threatening
ecosystem functions (Gauthier et al., 2015). To preserve their
functionality, it is of outmost importance to understand how
these ecosystems work and how boreal forest tree species adjust
to environmental changes.

A great majority of tree species are able to cope with a range
of environmental conditions (Reich et al., 2016). To this end,
they adjust phenotypically, adapt genetically and/or disperse into
new habitats to track their niche of suitable conditions (Lenoir
et al., 2008; Yeaman et al., 2016). In sessile and long-lived
organisms like trees, the ability to adjust to changing conditions is
essential (Schlichting, 1986). However, in the long term it is also
necessary for a population to adapt genetically. Adaptation can
occur when phenotypes of traits improving fitness are heritable.
A common way to quantify heritability of a trait is to estimate
the amount of phenotypic variance of the trait that occurs due
to genetic variance. Heritability can be estimated in a “narrow
sense” (h2, based on additive genetic variance) and a “broad
sense” (H2, based on total genetic variance; Visscher et al., 2008;
Wray and Visscher, 2008). Estimating heritability of traits in trees
can thus help to inform species distribution models to create
more precise predictions of future development of forests, and
can also guide projects aiming at maintaining the functionality
of boreal forests (e.g., assisted migration; Gauthier et al., 2015;
Correia et al., 2018).

White spruce (Picea glauca [Moench] Voss) is one of the
most common tree species of the North American boreal forests
(Little and Viereck, 1971). Due to its ability to grow at the
latitudinal and altitudinal treeline, it is widely used as a model
organism to study plasticity and adaptation patterns (Lloyd and
Fastie, 2002; Wilmking and Juday, 2005; Sherriff et al., 2017).
Most studies on this species focus on general tree growth,
often exclusively investigating annual (radial) growth increments.
While tree rings provide valuable information on the integrated
response to environmental conditions during the vegetation
period, investigating the xylem anatomical structure may reveal
crucial information on the tree functionality (Hacke et al., 2015;
Amoroso et al., 2017).

Studies investigating xylem anatomical traits that are directly
related to tree functioning such as tracheid lumen diameter or
cell wall thickness (Wiedenhoeft, 2012) have become increasingly
available for boreal tree species (Lange et al., 2019; Mvolo
et al., 2019). Yet, little is known about the genetic background
of xylem anatomical trait variation in white spruce (Lenz
et al., 2010; Hassegawa et al., 2019). White spruce is able to
vegetatively reproduce by layering (Stone and McKittrick, 1976;
Würth et al., 2018) and thus it is able to grow genetically

identical individuals (i.e., clones). Clones offer the unique
opportunity to study genetic effects (i.e., broad sense heritability)
on growth, hydraulic and structural traits in natural populations
(Nyquist and Baker, 1991).

In this study, we identified and sampled naturally growing
clones of white spruce at the latitudinal treeline in Alaska. We
aimed at estimating broad sense heritability (H2) of growth and
xylem anatomical traits of three trait groups (water transport,
mechanical support, and wood density) by comparing three
different methods: (1) using raw data, (2) using data predicted
with a linear mixed effects model and (3) using estimated
variance extracted from a linear mixed effects model. Since
vegetative reproduction in trees leads to an unavoidable spatial
clustering of individuals, we additionally focused on the spatial
patterns. We evaluated the results of our H2 estimations by
using models to identify whether spatial grouping is the main
driver for similarities in growth and xylem anatomical traits,
or if genetics also influence these patterns. The advantage of
this novel approach is that it combines spatial analyses with
genetic analyses at an anatomical level. This informs about which
xylem anatomical traits qualify for studying genetic patterns
potentially leading to genetic adaptation and which qualify
better for studying spatial patterns driven by the influence of
microenvironment or by climatic effects.

MATERIALS AND METHODS

Study Species and Site
White spruce grows under a variety of climatic conditions and its
distributional range covers most of the boreal area in Canada and
Alaska, and parts of the northernmost United States mainland
(Little and Viereck, 1971). It is often the dominant tree species at
the elevational and latitudinal treeline in the north-western parts
of its distributional range (Abrahamson, 2015), and is of large
economic importance (Attree et al., 1991).

The study site is located at the latitudinal treeline on a south-
facing slope of Nutirwik Creek valley, in the central Brooks
Range of Alaska (67◦56′N, 149◦44′W). The study site is a nearly
monospecific white spruce stand of approximately two hectares,
ranging in elevation from 860 to 940 m a.s.l. The mean annual
temperature is around −7.9◦C with a mean temperature of
around −23.8◦C in January (coldest month) and 11.1◦C in July
(warmest month). The annual precipitation is around 289 mm,
96 mm of which fall in July and August. The information about
precipitation and temperature is taken from Lange et al. (2019)
and based on modeled data averaged across the 1901–2013 data
period provided by the Natural Resources Canada, Canadian
Forest Service (NRCAN1; McKenney et al., 2011).

Sampling Design and Data Acquisition
In 2018, we sampled all the spatially clustered groups of white
spruce that were scattered throughout the study area ranging
from the forest line to the treeline and appearing to be the
result of vegetative reproduction (see Wilmking et al., 2017;

1http://cfs.nrcan.gc.ca/projects/3/1
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Würth et al., 2018) (Figure 1). We sampled all trees present
within each spatially clustered group (Supplementary Figure S1
and Supplementary Table S1). We took one bark-to-bark
increment core through the pith from 47 trees (thus resulting
in 94 radii) that grew in eleven spatially clustered groups with a
4.3 mm increment borer (Haglöf, Sweden) for growth and xylem
anatomical measurements. Additionally, we collected the most
recently grown needles from North-facing branches of each tree
for genetic analyses.

All cores were air dried and glued onto wooden sample
holders. The surface was polished with progressively finer
sandpaper (up to 800 grit) and scanned with a flatbed scanner
(Epson Perfection V700 Photo; Seiko Epson Corporation, Japan)
with 3200 dpi. Ring widths (TRW) were subsequently measured
using CooRecorder (version 9.3.1; Cybis Elektronik and Data
AB, Sweden) and all radii were cross-dated using CDendro
(version 9.3.1; Cybis Elektronik and Data AB, Sweden). We used
the cross-dated tree ring chronologies solely to correctly date
xylem anatomical measurements. For the analysis, we used TRW
measurements obtained from the anatomical sections together
with the other anatomical traits.

For the xylem anatomical measurements we cut 12 µm-
thick cross-sections from one radius of each tree using a rotary
microtome (Leica RM 2245; Leica Camera AG, Germany).
The cross-sections were stained with 1:1 safranin and astra
blue solution, rinsed with ethanol solutions of increasing
concentration (50%, 70%, 96%), mounted on microscope slides
with Euparal and dried at 60◦C for 48 h. We scanned the
slides with a slide scanner (Zeiss Axio Scan.Z1; Carl Zeiss AG,
Germany) at the Swiss Federal Institute for Forest, Snow and
Landscape Research (WSL), Birmensdorf, Switzerland. We used
the scans to quantify TRW and several xylem anatomical traits
(Supplementary Table S2) with the image analysis tool ROXAS
v3.0.326 (von Arx and Carrer, 2014; Prendin et al., 2017). Due
to the large amount of anatomical data to process in long cores,
we selected the growth years 2007–2017 for the measurements of
xylem anatomical traits. This allowed us to maximize the amount
of data while still maintaining a number of samples feasible to
process with high quality. Measurements on lumen diameter and
cell wall thickness were used to distinguish between early- and
latewood using Mork’s index (Denne, 1989). We calculated the
total mean, the mean for earlywood and the mean for latewood
per year of each trait using R v3.6.1 (R Core Team, 2019).

Earlywood ring width (EWW) and latewood ring width
(LWW) were detrended for each tree to minimize the influence
of low frequency growth trends without losing too much
information on the variance among the trees. For this, we
compared two linear models with raw ring width (EWW
and LWW separately) as a response variable and year as an
explanatory variable. One model was fitted with a linear term
of the explanatory variable while the other model was fitted
with a linear and a quadratic term of the explanatory variable.
We chose the better performing model based on the corrected
Akaike Information Criterion (AICc; Hurvich and Tsai, 1991)
and calculated the detrended EWW and LWW by adding the
model residuals to the mean annual growth of the investigated
time period. Mean hydraulic diameter (DH) was calculated for

earlywood (DH.ew) and latewood (DH.lw) of each ring based
on lumen area (LA) according to Kolb and Sperry (1999). We
estimated wood density (DEN) as the proportion of the estimated
cell wall area (CWA) to the total cell area [i.e., the sum of CWA
and lumen area (LA); Eq. 1] according to Björklund et al. (2017).

DEN =
CWA

CWA+ LA
(1)

DNA Isolation and SSR Genotyping
To identify clones, we genotyped all sampled trees. We ground
20 mg of silica-gel dried needle tissue in a Retsch ball mill MM301
(Retsch, Germany). For DNA extraction we used the Mag-Bind
plant DNA DS Kit (Omega, United States) in combination with
the KingFisherTM Flex 96-well plate robot system (ThermoFisher
Scientific, United States) following the manufacturer protocols.
For genotyping we combined 11 microsatellite loci developed by
Hodgetts et al. (2001) and Rajora et al. (2001) in two multiplex
reactions according to Eusemann et al. (2014) and Würth
et al. (2018). We performed PCR on Eppendorf Mastercyclers
(Eppendorf, Germany) using the Qiagen Multiplex PCR Plus
Kit (Qiagen, Netherlands) and a modified protocol with a total
volume of 10 µl and PCR conditions as described in Würth et al.
(2018) with initially 5 min/95◦C, 30 cycles 30 s/95◦C, 90 s/58◦C,
90 s/72◦C, final extension 10 min/68◦C. For fragment analysis we
used a 3130xl Genetic Analyzer (Life Technologies, United States)
using 1 µl undiluted PCR product, 0.15 µl 500 GeneScan LIZ R©

size standard (Life Technologies) and 12 µl HiDi Formamide
(Life Technologies).

We performed fragment size determination and binning with
the GeneMapper R© Software 5.0 (Life Technologies). To account
for genotyping errors, we used the algorithm programmed by
Schnittler and Eusemann (2010). Since genotyping errors are
much more likely to split than to merge clones, we set the
threshold for members of a clone to maximum two deviating
loci. For the analysis, we considered only trees with a maximum
of two null allele-containing loci. These settings are consistent
with Würth et al. (2018).

Of the 47 sampled trees in 11 spatially clustered groups, we
found that 35 trees belonged to nine clonal groups, while 12 trees
did not belong to any clonal group. Five spatially clustered groups
consisted of clonal trees only. In four groups, clones grew spatially
clustered with non-clonal individuals. Two groups consisted of
non-clonal individuals only (Figure 1).

Statistical Analysis
To reduce the number of study parameters, we explored the
relationship between the measured anatomical traits with a
principal component analysis (PCA) using the R function
prcomp (Grey et al., 1981) (Supplementary Figure S2). We
classified the traits in four groups according to the PCA: growth,
water transport, mechanical support, and wood density. We
chose one representative trait of each group for which we carried
out the analyses for earlywood and latewood separately (Table 1).

The first principle component (PC1) of the PCA
explained 41.3% of variance, the second principle
component (PC2) explained 28.7% and the third principle
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FIGURE 1 | Study design. Different clonal contexts and grouping types are indicated by differently colored trees and circles, respectively. Three clustering types were
analyzed in this study, with n being the number of study cases for each clustering type.

TABLE 1 | Explanation of growth and xylem anatomical traits selected for analysis
and their ecological function.

Group Selected
traits

Unit Explanation

Growth EWW, LWW µm Earlywood width, latewood
width

Mechanical
support

CWT.ew,
CWT.lw

µm Mean overall cell wall
thickness (earlywood,
latewood)

Wood density DEN.ew,
DEN.lw

Proportion Mean relative anatomical
wood density (earlywood,
latewood)

Water transport DH.ew, DH.lw µm Mean hydraulic diameter
(earlywood, latewood)

component (PC3) explained an additional 14.7% of variance
(Supplementary Figure S2). The PCA showed a strong
relationship among the traits within each group. Traits
associated with mechanical support were mostly explained by
PC1 while growth and water transport related traits were mainly
explained by PC2. Wood density traits were explained by both
PC1 and PC2 to a similar extent. Some latewood traits (e.g.,
latewood density (DEN.lw) and LWW) were mainly explained
by PC3. In the following analyses, we used EWW and LWW
as proxies for growth, DH.ew and DH.lw for water transport,
CWT.ew and CWT.lw for mechanical support and earlywood
density (DEN.ew) and DEN.lw for wood density (Table 1).

For the H2-estimations we only used data from trees that
were growing in groups of genetically identical individuals (i.e.,
a subset of 35 trees in nine groups). In order to explore the

potential of using estimated data compared to raw data, we used
three different methods to estimate H2. First (1), we estimated
H2 using raw data of all selected xylem anatomical traits (H2

raw;
Table 1; Eq. 2; For additional information see Eq. S1 – Eq. S5;
Klug et al., 2006). Second (2), we fitted a linear mixed effects
model for each trait using the nlme package (Pinheiro et al.,
2020), where the investigated trait was included as the response
variable, clonal group and year were included as fixed effects,
cumulative stem diameter at breast height (cDBH) was included
as a covariate and tree ID as a random effect. To correct for
autocorrelation in time between multiple measurements in each
individual, a first-order autoregressive correlation structure was
included in the model using the constructor corAR1 of the nlme
R package. The Constant Variance Function (varIdent) of the
same package was used to account for the non-homoscedastic
distribution of residuals between the clonal groups. Since tree
height has a strong influence on xylem anatomical traits (Carrer
et al., 2015), we used the model to predict trait values on a
new set of data where the cDBH (as a proxy for height) was
standardized to represent the average growth of the sampled trees
in the investigated time period (i.e., an increase of DBH from
11 to 12 cm during the 10-year period resulted in an average
annual growth of 0.1 cm). Heritability was then estimated on the
predicted values (H2

pred; Eq. 2; Eq. S1 – Eq. S5). Finally (3), we
fitted a linear mixed effects model, where the investigated trait
was the response variable, year was included as a fixed effect,
cDBH as a covariate and clonal group as a random effect. We used
the VarCorr function of the nlme R package to extract estimated
genetic variance (σ2

G) and the residual variance (σ2
R) from the

model. The modeled variance was then used to estimate H2

according to Eq. 3 (H2
mod). All models were fitted using restricted
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maximum likelihood estimation (REML).

H2
=

σ2
G

σ2
P

(2)

where σ2
G is the genetic variance and σ2

P the total phenotypic
variance.

H2
=

σ2
G

σ2
G + σ2

R
(3)

where σ2
R is the residual variance extracted from the models.

The coefficient of variation (CV) was calculated as an error
measurement for H2 estimations (Eq. 4; Everitt, 1999).

CV =

√
σ2

G

x̄
(4)

where σ2
Gis the genetic variance and x̄ the trait total mean.

To evaluate whether the calculated H2 values truly represent
genetic effects or rather a spatial pattern caused by the spatial
grouping of the clonal trees we used the full dataset of 47 sampled
trees in 11 spatially clustered groups, including clonal and non-
clonal individuals. We created two categorical groups, genetic
group and spatial group, and each tree was assigned a level
in each. For the genetic group, each tree was assigned either
the clonal group ID or, in non-clonal trees, the individual tree
ID; for the spatial group, all trees growing spatially clustered,
with a maximum distance of 3 m, were assigned the same code,
regardless of the genetic background (Figure 1). This method
did not allow us to isolate genetic grouping from the spatial
grouping, but allowed us to test whether spatial clustering had
a large effect on the variability of our study traits. To avoid
computational errors related to this issue we did not compare
spatial and genetic grouping in one model, but we compared
three different models for each trait: (i) a null model, (ii) a genetic
model and (iii) a spatial model. The (i) null model was fitted
using the selected trait as the response variable, year as a fixed
effect, cDBH as a covariate and tree ID as a random effect. The
(ii) genetic model was fitted with the genetic group and year as
fixed effects, cDBH as a covariate and tree ID as a random effect.
The (iii) spatial model was fitted with the spatial group and year as
fixed effects, cDBH as a covariate and tree ID as a random effect.
The corAR1 constructor was used in all three models to account
for autocorrelation in time within tree individuals. The varIdent
function was used in the spatial and genetic models to account for
non-homoscedastic distribution of the residuals between groups.
All models were fitted using REML.

For the comparison of the model performance we calculated
the corrected Akaike Information Criterion (AICc) for each
model and selected the model that performed best when
the AICc was lowest with more than four units difference.
Since AICc is only slightly penalizing small differences in the
number of parameters, we considered the null model best
in case of equal values, following the principle of parsimony
(Burnham and Anderson, 2002, 2004).

To evaluate the effect of spatial and genetic grouping and to
find potential significant effects of spatial or genetic clustering

that are independent of model performance we conducted an
analysis of variance (ANOVA; Chambers and Hastie, 1992). We
used R v 3.6.1 (R Core Team, 2019) for all statistical analyses.

RESULTS

H2 Estimates of Growth and Xylem
Anatomical Traits
The three different methods used to estimate H2 showed overall
similar results (Figure 2). In general, traits associated with growth
(EWW and LWW) showed the highest H2 values and traits
associated with mechanical support (CWT.ew and CWT.lw)
the lowest. Traits associated with wood density and water
transport (DEN.ew, DEN.lw, DH.ew, and DH.lw) showed low to
intermediate values (Figure 2).

In traits related to growth, H2
pred and H2

mod showed a pattern
of similar values, while H2

raw was slightly higher for EWW
and lower for LWW. For traits related to mechanical support,
wood density, and water transport, H2

pred showed the highest
values, while H2

raw and H2
mod showed similar values both for

earlywood and latewood.
Comparing earlywood and latewood, H2 values were similar

for growth and mechanical support across methods, while
earlywood H2 values were generally slightly higher for wood
density and notably higher for water transport.

The CV values for H2
raw in both EWW and LWW

were notably high (0.507 and 0.435), but for all other
estimates and traits they were relatively low (0.001–0.104,
mean = 0.052; Figure 2).

Comparing Genetic and Spatial Grouping
In general, spatial models outperformed all other models. In
one case the null model performed better and in two cases
genetic and spatial models performed similarly but better than
the null model. In no case did the genetic model outperform the
other model types.

For both growth traits (EWW, LWW) and all earlywood traits
(CWT.ew, DEN.ew, and DH.ew) the spatial model performed
better than the other models. For latewood density and latewood
CWT there was no difference between the genetic and the spatial
model, but in both cases the grouped models performed better
than the null model. For latewood DH the null model was
considered to show the best performance, as it had an AICc equal
to the spatial model and lower than the genetic model (Figure 3).

The analysis of the spatial and genetic models using ANOVA
showed that the spatial grouping was significant (p-value < 0.05)
for EWW and LWW, early- and latewood density and earlywood
DH. Genetic grouping was significant for EWW and LWW,
latewood density and earlywood DH. No significant grouping
effect was found in early- and latewood CWT and latewood DH.

DISCUSSION

The rapidly changing climate conditions threaten the functioning
of boreal forests. White spruce is one of the most important

Frontiers in Plant Science | www.frontiersin.org 5 October 2020 | Volume 11 | Article 581378

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-581378 October 15, 2020 Time: 17:12 # 6

Pampuch et al. Xylem Anatomy in White Spruce

FIGURE 2 | Broad sense heritability (H2) estimates for growth and xylem anatomical traits. Different colors indicate the method used (purple = heritability based on
raw measurements, green = heritability based on predicted values, yellow = heritability based on mixed-effect model), see “Materials and Methods” section for
details. Vertical numbers above the columns are the coefficients of variation (CV).

and abundant boreal forest tree species of North America. In
order to learn more about its potential to adapt to changing
environments, we explored its genetic background of xylem
anatomical trait variation. The goal of our study was to investigate
the broad sense heritability (H2) of growth and xylem anatomical
traits. We compared three methods to estimate H2, which overall
showed consistent patterns in the resulting values. However,
further analyses revealed a large influence of spatial clustering on
xylem anatomy, which seemed to overlay any genetic patterns.
Nonetheless, we found some evidence for a genetic influence on
early- and latewood growth (ring widths), latewood density and
earlywood hydraulic diameter.

H2 Estimates of Growth and Xylem
Anatomical Traits
The three methods of estimating H2 showed overall consistent
results, with the only inconsistency found in the estimates based
on raw data (H2

raw) of early- and latewood ring width. This
inconsistency was likely caused by a high dispersion in the raw
data, shown by high CVs (Figure 2). The H2 estimates for
EWW and LWW based on the raw data are therefore likely not
accurate (Everitt, 1999). All other H2 estimates showed much
lower CVs and more stable patterns. The H2 estimates based
on predicted data were higher in most cases. This pattern was
likely introduced by the method of using predictions from a
linear mixed effects model. By predicting new values under the
assumption of equal diameters in all trees we avoided size-related

effects, which are known to largely influence xylem anatomical
traits (Carrer et al., 2015). The higher values of H2

pred could
suggest an underestimation of H2

raw and H2
mod as a result of

this size effect.
In general, most of our calculated heritability estimates are in

line with other studies focusing on narrow sense heritability (h2)
of xylem anatomical traits in white spruce. Though narrow sense
heritability is based on additive genetic variance instead of total
genetic variance, h2 is comparable to H2 because over 50% of the
total genetic variance is usually additive (Hill et al., 2008; Wang
et al., 2013). Similar to our study, Lenz et al. (2010) reported a
high h2 in earlywood radial cell diameter (a trait that strongly
correlates with mean hydraulic diameter; Kolb and Sperry, 1999)
and a lower h2 in the latewood radial cell diameter in white spruce
on a provenance trial in East Canada. They also found a low h2

in latewood density and latewood cell wall thickness. In contrast
to our estimates, Lenz et al. (2010, 2011) reported a high h2 in
the earlywood cell wall thickness and earlywood density. These
opposite results could be explained by their populations being
less climatically constrained than our populations. The studies
of Lenz et al. (2010, 2011) were conducted on sites in Eastern
Canada (Quebec), where climatic conditions are milder and
wetter than at our treeline site in northern Alaska. It is possible
that the lower heritability estimates in our study are a result of a
larger climate control on earlywood parameters at the treeline.

Regarding growth-related traits like ring width, estimates of
heritability in white spruce are quite scarce in other studies and

Frontiers in Plant Science | www.frontiersin.org 6 October 2020 | Volume 11 | Article 581378

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-581378 October 15, 2020 Time: 17:12 # 7

Pampuch et al. Xylem Anatomy in White Spruce

FIGURE 3 | Column plot of the differences in AICc values between spatial and genetic models. A negative 1AICc means that the AICc of the spatial model is lower
than the AICc of the genetic model and vice versa. The color of the columns indicates, which model showed the best performance [purple = null model performed
either best, equal to one or equal to both of the other two models; green = spatial model performed best; yellow = grouped models (i.e., genetic and spatial models
did not differ significantly between each other but both performed better than the null-model)]. The letters over the columns indicate which model had a significant
group effect (S, spatial grouping sign.; G, genetic grouping sign.; significance threshold: p < 0.05 - based on ANOVA). Red lines show the thresholds for evaluating
differences between the models: |1AICc| < 4: no substantial differences (dashed lines); 4 < |1AICc| < 10: considerable differences (solid lines); |1AICc| > 10 -
essential differences (Burnham and Anderson, 2002).

considerably differ from our results. While Ying and Morgenstern
(1979) and Lenz et al. (2010) reported low, or insignificant
levels of h2 in DBH (0.04–0.10) and ring width (reported as
insignificant), respectively, Corriveau et al. (1991) and Merrill
and Mohn (1985) estimated intermediate values for ring width
(0.32) and DBH (0.35), respectively. This inconsistency in results
might occur due to the complex nature of secondary growth
itself (Rathgeber et al., 2016) and the strong influence of climatic
parameters (Hughes et al., 2011).

In general, we cannot accurately say how representative
our H2 estimates are. Per definition, heritability can only be
calculated for a specific population in a specific environment
(Stoltenberg, 1997). However, the analysis of spatial grouping
showed that we have strong spatial effects in our data,
which implies that the assumption of common environmental
conditions for heritability estimations was violated and thus
makes our estimates uncertain.

Spatial Grouping Has the Strongest
Effect on Trait Variability
Comparing models with genetic and spatial grouping showed
that in all earlywood traits the spatial model performed better
than the genetic model. In the latewood traits, the spatial model

was only better for latewood width, but the genetic model did not
outperform the spatial model for any trait.

Earlywood is formed at the beginning of the vegetation
period. During this time, trees ideally allocate most of the
available resources to grow in circumference and height, without
risking losing structural integrity or suffering from drought-
induced cavitation and other potential effects caused by resource
limitation (Willson and Jackson, 2006; Rathgeber et al., 2016;
Cartenì et al., 2018). Thus, a high plasticity in the earlywood
could promote efficient growth. This high plasticity is evidenced
in our results in the form of spatially structured patterns in
earlywood anatomical traits. These spatial patterns are probably
caused by small-scaled differences in resource availability (i.e.,
microclimatic and edaphic differences, which are potentially
caused by topographic characteristics of the area) between
clonal groups, leading to trait variability independent of the
genetic background.

At the end of the vegetation period, when latewood is formed,
height growth also declines. It becomes more important for the
tree to use available resources to produce cells with thicker cell
walls, which are responsible for mechanical support for the tree
body (Cartenì et al., 2018), while building new tissue for water
transport only plays a minor role (Domec, 2002; Tyree and
Zimmermann, 2002). Accordingly, latewood anatomy features
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were less variable in our study. Small-scale differences in resource
availability are more likely to cause differences in wood growth
and wood density than in hydraulic diameter at the end of
the growing season. Consequently, our results showed that for
latewood ring width the spatial model was performing best. For
the latewood density, genetics might also have an influence, since
both models were performing equally well.

Investigating the significance of spatial and genetic grouping
independent from the performance of the models revealed a
significant effect of genetic grouping on early- and latewood
width, latewood density and earlywood DH. Despite the high
heritability estimates for early- and latewood width, the effect of
genetic grouping was rather unexpected. As mentioned before,
secondary growth is strongly influenced by climatic parameters,
and several studies suggested that small-scale environmental
conditions rather than genetics affect growth (King et al., 2013;
Wilmking et al., 2017; Avanzi et al., 2018). Since our study was
performed in situ we were not able to truly decouple genetic from
spatial effects. Therefore, a combination of the strong impact of
micro-environmental conditions (i.e., spatial grouping; Avanzi
et al., 2018; Montpellier et al., 2018), combined with individual
growth characteristics (Carrer, 2011) could have led to the false
assumption of a significant genetic effect. We cannot exclude that
this also affected the traits latewood density and earlywood DH.
However, previous studies already indicated that variability in
lumen size and wood density were linked to adaptation to local
conditions (Carlquist, 1980; Aroca, 2012; Hacke et al., 2015; Klisz
et al., 2019). Thus, it is likely that a genetic effect on latewood
density and earlywood DH actually exists.

Both early- and latewood CWT were not significantly
influenced by spatial or genetic grouping, indicating that in our
study species at our site CWT is not strongly determined by
neither small-scale environmental nor genetic effects. We did
not test correlations with climatic parameters since our time
series (2007–2017) are very short. However, other studies found
significant correlations between CWT and climatic parameters in
white spruce (Lange et al., 2019) and also in black spruce (Puchi
et al., 2020). Placing our results in the context of these studies
suggests that CWT qualifies as a proxy for climatic conditions
at larger scales (i.e., range-wide differences and past climatic
variability), decoupled from strong small-scale environmental
and genetic influences. This view is also supported by a study
with Scots pine showing that the thickness of the radial cell walls
in the latewood registers a stronger temperature signal than any
other tree-ring proxy including the commonly used maximum
latewood density (Björklund et al., 2020).

CONCLUSION

The vegetative reproduction of white spruce at the latitudinal
treeline offered the opportunity to gather data on genetically
identical trees in situ. The comparison of three methods
to estimate broad sense heritability (H2) resulted in mostly
consistent patterns. This suggests that in general the estimates
are quite robust, independent from the method used for
their calculation. However, due to spatial clustering of the

trees we had to evaluate our heritability measures by testing
the strength of the grouping effect. The analyses showed
that spatial clustering had a strong influence on the xylem
anatomy, especially in the earlywood. We assume that
this strong spatial effect is related to differences in micro-
environmental conditions, which implies that it is rather difficult
to estimate the magnitude of genetic effects in a naturally
grown population.

Nonetheless, we found some evidence for genetic effects
in early- and latewood ring width, latewood density and
earlywood hydraulic diameter. Based on previous studies we
assume that results on early- and latewood width might
rather be reflecting environmental conditions and individual
growth patterns than actual genetics. Latewood density and
earlywood hydraulic diameter, however, show a plausible
significant genetic component, suggesting they are suitable traits
for assessing potential local adaptation. Cell wall thickness,
on the other hand, seems neither to be influenced by
small-scale spatial (i.e., differences that occur within one
study site) nor genetic patterns, potentially qualifying as a
proxy for climatic conditions on a larger scale (e.g., range-
wide differences).

Exploring the interacting effects of phenotypic plasticity and
genetic adaptation in xylem anatomical traits related to wood
density and tree hydraulics will lead to a more comprehensive
understanding of the adaptation potential of tree species to
global change in general, and of white spruce in particular. Yet,
it is challenging to balance the reliability of experimental set-
ups, which may be far from real-life conditions, with real-world
studies, which may have high error potential. We believe that
real-world studies dealing with clonal trees are valuable, but
highlight the necessity to carefully evaluate any potential spatial
effects, as they can drastically influence the growth of trees and
obscure any potential genetic signal.
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Supplementary Material 

 

Figure S1: Map of sampled trees. Dots represent the sampled trees on a relative 

coordinate system in metric units. Distances were measured using a Vertex Laser Geo 

(Haglöf, Sweden). Colors indicate the spatial group. For some groups not all trees can be 

represented, since the distance between the trees was smaller than the measuring error 

(ultra-sound accuracy: 1%). Numbers above the groups show the group mean elevation 

in meters above sea level, derived from GPS coordinates measured with the Vertex Laser 

Geo (GPS accuracy: 2.5m in open terrain). 



97 
 

 

Figure S2: Principal component analysis (PCA) of all measured growth and xylem 

anatomical traits. Colors indicate different trait groups (green = growth, orange = 

mechanical support, purple = water transport, pink = wood density).  
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Table S1: Metadata on sampled trees 

ID 
CORING 
DIRECTIO
N 

CORIN
G 
HEIGHT 
(CM) 

DBH 
(CM
) 

HEIGHT (M) 
CLONE_GROU
P 

SPATIAL_GROU
P 

RELATIVE 
LONGITUD
E (M) 

RELATIV
E 
LATITUD
E (M) 

ALTITUD
E (M 
A.S.L.) 

101B N_S 130 18 11.2 BT_F BT_4 22.3 25.7 917 

102B E_W 140 13 8.40 BT_F BT_4 22.4 24.6 917 

103.1B NE_SW 110 11 7.70 BT_F BT_4 22.9 23.9 917 

103.2B N_S 115 9 4.55 BT_F BT_4 22.9 23.9 917 

112B E_W 80 6.5 3.60 BT_B BT_5 55.3 24.1 914 

114B N_S 110 14.5 6.20 BT_B BT_5 56.4 25.6 914 

115B E_W 100 11.5 5.58 BT_B BT_5 56.1 24.8 914 

116B N_S 120 8 3.70 BT_B BT_5 56.6 24.9 914 

126B NE_SW 110 8 4.12 BT_D BT_6 17.9 58.8 922 

128B NW_SE 110 9 4.55 BT_D BT_6 17.6 58.5 922 

131B N_S 145 13 7.50 BT_D BT_6 17.9 59.1 922 

47B N_S 85 12 7.50 BT_D BT_6 17.9 59.6 922 

150B N_S 100 8 5.00 BF_C BF_1 -29.6 -8.7 895 

151B N_S 95 12 5.50 BF_C BF_1 -29.8 -8.7 895 

152B E_W 75 10 6.80 152b BF_1 -30.3 -8.0 895 

216B N_S 150 16 7.33 216b BF_2 0.6 -34.1 881 

217B S_N 120 14 6.57 217b BF_2 1.0 -34.4 881 

218B W_E 135 16.5 7.52 218b BF_2 1.5 -34.1 881 

279B NW_SE 150 15.5 7.14 BF_A BF_3 28.4 -50.4 876 

281B N_S 160 13.5 6.37 BF_A BF_3 26.1 -49.3 876 

284B NW_SE 115 15 6.95 BF_A BF_3 25.5 -50.3 876 

285B N_S 115 11.5 5.58 BF_A BF_3 26.0 -49.5 876 

292B NE_SW 80 11.5 5.58 BF_D BF_4 23.7 -59.6 866 

293B NW_SE 120 10.5 5.17 BF_D BF_4 23.4 -60.2 866 

294B N_S 135 10.5 5.17 BF_D BF_4 23.3 -60.0 866 

295B NE_SW 110 13.5 6.37 BF_D BF_4 22.4 -59.6 866 

296B W_E 115 12 5.78 BF_D BF_4 21.9 -60.9 866 

32.1A N_S 110 14 5.20 BT_E BT_1 -69.2 86.7 937 

32.2A N_S 110 11.5 5.58 32.2a BT_1 -69.2 86.7 937 

32.3B E_W 135 8.5 4.34 BT_E BT_1 -69.2 86.7 937 

32.4B NW_SE 120 10.5 5.17 BT_E BT_1 -69.2 86.7 937 

33B S_N 75 11 8.00 33b BT_1 -68.8 84.5 937 

355B NW_SE 115 15 6.95 355b BF_5 -20.0 -42.7 881 

356B N_S 100 9 4.55 356b BF_5 -19.8 -43.4 881 

357B NW_SE 95 13 6.17 357b BF_5 -20.8 -43.5 881 

358A N_S 50 24 10.27 358a BF_5 -20.7 -44.6 881 

361B W_E 130 15 6.95 361b BF_5 -21.6 -42.9 881 

81.1B W_E 125 18 8.00 BT_C BT_2 28.1 44.8 916 

81.2B N_S 120 18.5 8.27 BT_C BT_2 28.1 44.8 916 

81.3A S_N 100 18.5 8.27 BT_C BT_2 28.1 44.8 916 

81.4B SE_NW 135 10.5 5.17 BT_C BT_2 28.1 44.8 916 
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81.5B SE_NW 130 9.5 4.76 BT_C BT_2 28.1 44.8 916 

95B S_N 120 10.5 4.80 95b BT_3 36.6 31.4 909 

96A N_S 135 11.5 5.80 BT_A BT_3 35.7 31.3 909 

97B N_S 115 8.5 3.80 BT_A BT_3 35.6 31.4 909 

98B NE_SW 115 11.5 5.80 BT_A BT_3 34.8 31.2 909 

99B E_W 125 11.5 5.40 BT_A BT_3 34.6 32.0 909 
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Table S2: List of all measured traits. 

 

Abbreviation Trait Group 

TRW Tree ring width Growth 

EWW Earlywood width Growth 

LWW Latewood width  Growth 

MCWT Mean cell wall thickness Mechanical support 

CWT.ew Earlywood cell wall thickness Mechanical support 

CWT.lw Latewood cell wall thickness Mechanical support 

MCWTrad Mean radial cell wall thickness Mechanical support 

CWTrad.ew Earlywood radial cell wall thickness Mechanical support 

CWTrad.lw Latewood radial cell wall thickness Mechanical support 

MCWTtan Mean tangential cell wall thickness Mechanical support 

CWTtan.ew Earlywood tangential cell wall 

thickness 

Mechanical support 

CWTtan.lw Latewood tangential cell wall 

thickness 

Mechanical support 

MDEN Mean wood density based on cwt Wood density 

DEN.ew Earlywood density based on cwt Wood density 

DEN.lw Latewood density based on cwt Wood density 

MDCWA Mean wood density based on cell 

wall area 

Wood density 

DCWA.ew Earlywood density based on cell 

wall area 

Wood density 

DCWA.lw Latewood density based on cell wall 

area 

Wood density 

MLA Mean lumen area Water transport 

LA.ew Earlywood lumen area Water transport 

LA.lw Latewood lumen area Water transport 

MDH Mean hydraulic diameter Water transport 

DH.ew Earlywood hydraulic diameter Water transport 

DH.lw Latewood hydraulic diameter Water transport 
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Equation S1 𝜎𝑃
2  =  𝜎𝐺

2  + 𝜎𝑝
2 

Where 𝜎𝑝
2 is the mean clonal group trait variance, calculated as: 

Equation S2 𝜎𝑝
2 =  

∑ 𝜎𝑗
2𝑁

𝑗=1

𝑁
 

Where 𝜎𝑗
2is the trait variance in group j and N is the number of clonal groups: 

Equation S3 𝜎𝑗
2  =  

∑ (𝑥𝑖𝑗 − �̅�𝑗)2 
𝑛𝑗
𝑖 = 1

𝑛𝑗−1
 

Where 𝑥𝑖𝑗 is the mean of the investigated trait across the study years 2007-2017 in individual i 

of clonal group j, �̅�𝑗 is the mean of the investigated trait in clonal group j and n is the number 

of individuals in group j: 

Equation S4 �̅�𝑗  =  
∑ 𝑥𝑖𝑗

𝑛𝑗
𝑖 = 1

𝑛𝑗
 

Equation S5 𝜎𝐺
2  =  

∑ (�̅�𝑗 − �̅�)2 𝑁
𝑗 = 1

𝑁−1
 

Where �̅� is the trait total mean. 
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4. Synthesis  

Within this thesis I investigated the adaptive potential of white spruce in the context of climate 

change. The adaptive potential of trees is proportional to their standing genetic variation, their 

degree phenotypic plasticity, as well as to their dispersal capacity which allows to cope with 

novel local conditions and track their preferred habitats (Aubin et al., 2016; Sultan, 2016). To 

assess the adaptive potential of white spruce, my co-authors and I studied the rate of gene flow 

and neutral genetic diversity using SSR markers, the adaptive genetic diversity using SNPs and 

the phenotypic plasticity of tree growth and wood traits of natural populations in Alaska. This 

region is strongly affected by global warming (Collins et al., 2013; Girardin et al., 2016; Reich 

et al., 2018) and thus, perfect to study adaptation to rapid climate change. Further, we chose 

treeline populations because they are assumed to react directly and strongly to climate change 

(Case and Taper, 2000; Hampe and Jump, 2011; Hampe and Petit, 2005; Restoux et al., 2008). 

Here, I studied adaptation processes in natural populations by investigating local adaptation and 

phenotypic plasticity of white spruce to better estimate adaptation of trees to climate change to 

support our forest ecosystems. 

 

4.1. Genetic diversity  

Neutral genetic diversity 

I investigated the population structure and gene flow of three natural white spruce populations 

of one drought and two cold-limited treeline ecotones in Alaska using SSR markers. SSR 

markers are mainly located in non-coding regions which only enables the investigation of 

neutral genetic variation (Vieira et al., 2016). In addition, white spruce has a large genome with 

highly repetitive sequences and to the present day, the genome of white spruce is not fully 

sequenced (Birol et al., 2013). This hampers the development and applicability of SSR markers, 

which I experienced by the high amount of null alleles and homozygous excess in the SSR data 

set. Therefore, I needed to account for these problems by using software which considers for 

null alleles (Huang et al., 2016). Nevertheless, the relatedness between individuals was most 

likely underestimated but probably did not change the overall outcome of the study (Carlsson, 

2008). Further, significantly fewer alleles in the microsatellites of Alaskan white spruce 

populations are described relative to outside Alaska, highlighting the limited applicability of 

genetic markers developed on local populations (Anderson et al., 2011). 

The genetic differentiation among populations was low, even though the studied populations 

were distinct by large geographical distances and environmental differences. At the same time, 

there was a high genetic diversity within the populations. The high genetic diversity within and 

the low genetic differentiation among populations can be explained by the extensive long-

distance pollen dispersal of white spruce (O'Connell et al., 2007). This hypothesis is also 

supported by the high observed pollen and seed immigration rates into the plots. The high 

pollen-mediated gene flow in wind-pollinated and wind-dispersed conifers keeps populations 

connected (Avanzi et al., 2020; Leonarduzzi et al., 2016; Liepelt et al., 2002; Piotti et al., 2009), 

resulting in a high genetic diversity within and low genetic differentiation among populations. 

This was found for several conifer species (Hamrick and Godt, 1996; O'Connell et al., 2007; 

Rajora et al., 2005; Roschanski et al., 2016). The particularly high pollen and seed immigration 

rates into the treeline populations, pointing towards a colonization of the treeline ecotones from 

seed sources outside the plots, like reported for other coniferous treeline ecotones (Johnson et 

al., 2017; Leonarduzzi et al., 2016). This effect is even more pronounced due to lower seed 
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production and variability in treeline ecotones (Crofts and Brown, 2020; Johnson et al., 2017; 

Piotti et al., 2009). Especially at advancing treelines on cold-limited sites, high gene flow can 

be an advantage when preadapted alleles from warmer regions are introduced into the local 

population to promote adaptation to a warming climate (Aitken et al., 2008; Bontrager and 

Angert, 2018). One the other hand, gene flow can also counteract local selection processes by 

intogression of maladapted alleles into the local gene pool, called outbreeding depression 

(Lenormand, 2002; O'Connell et al., 2007; Rajora et al., 2005), leading to adaptation lags in 

climate margin populations (Fréjaville et al., 2019). High gene flow and the resulting high 

genetic diversity within populations could provide a broad set of phenotypes, potentially 

increasing the evolvability of the species (Houle, 1992). Moreover, white spruce is a wind-

dispersed species with light seeds, resulting in a high dispersal capacity which helps colonize 

new suitable habitats (Aitken et al., 2008; Mimura and Aitken, 2007; Nienstaedt and Zasada, 

1990). 

The analyses suggested that the low genetic differentiation among populations was rather 

caused by isolation by distance than isolation by environment, like reported for other conifers 

(Mimura and Aitken, 2007; Mosca et al., 2014). Although, the investigation of only three 

populations in regard of isolation by distance vs. isolation by environment analyses limits the 

validation. Results indicate genetic drift as the main driver of population differentiation 

(Anderson et al., 2011). The mean annual temperature explained only a minor part of the 

differentiation, pointing towards a selective influence by the environment.  

 

Adaptive genetic diversity 

As neutral markers, SSR motifs respresent only a minor part of the present genetic variation 

and the estimation of natural selection by environmental conditions is limited. Therefore, I 

focused on SNP markers in my second study. I investigated the genetic basis of drought 

tolerance in the three contrasting treeline populations by using SNPs. I used growth declines 

caused by drought stress as phenotypic data because drought events increase in frequency and 

intensity under global warming (IPCC, 2021). In dendroecology there is no standardized 

method to identify growth decline caused by drought stress (Schwarz et al., 2020). Therefore, 

my co-authors and I developed a standardized and evidence-based decision tree to identify 

growth decline associated with drought stress. To explore the genetic basis of drought-tolerant 

phenotypes, I applied two different approaches of genotype-phenotype association analyses. I 

used SNPs in candidate genes which already showed some sort of association with climate or 

phenotypic traits in previous studies (Pavy et al., 2017).  

The genetic basis of drought tolerance contrasted between the treeline ecotones. Most genes 

were identified in the drought-limited site, as well as the SNPs with the strongest associations, 

indicating a comparatively strong selection of drought-tolerant phenotypes within the site. The 

differences in adaptive genetic variation among populations were probably shaped by drought 

events which exert intense selection pressure on populations and thereby shape genetic variation 

at adaptive loci (Grant et al., 2017). However, high gene flow, as highlighted by the SSR data, 

keeps populations connected and could counteract local adaptation (O'Connell et al., 2007; 

Rajora et al., 2005). The divergent genetic structures underlying drought tolerance indicate 

differing selection pressure of the contrasting treelines which led to a covariance of alleles with 

drought-tolerant phenotypes. Even the two cold-limited treeline ecotones differed in their 

genetic structures underlying drought tolerance. In addition to drought, frost tolerance may be 

a strong selective driver. To my knowledge, genotype-phenotype associations using drought 
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indices in white spruce were so far exclusively investigated in common garden settings in 

Eastern Canada (Depardieu et al., 2020; Depardieu et al., 2021; Laverdière et al., 2022). Here, 

I provide insights into the genetic structures underlying drought-tolerance in natural 

populations, which also enables us to compare drought-tolerance associated genes from 

different geographical parts of the white spruce distribution range. Drought-related genes in 

Alaskan populations differed from the genes identified in Canadian populations, suggesting that 

drought adaptation acts on a local scale and differs in populations with restricted gene flow 

(Rellstab et al., 2017). Divergent genetic structures underlying drought tolerance and therefore 

signatures of selection are population-specific and led to different alleles associated with 

drought-tolerant phenotypes, like reported for Picea abies (Trujillo-Moya et al., 2018). 

Furthermore, genetic variation among populations plays a significant role in growth resilience 

in response to drought (Depardieu et al., 2020).  

Moreover, the association approach which took into account multiple SNPs and their 

interactions together with small effect-size SNPs, identified a much higher number of 

associations than the second approach. This points towards a polygenic architecture of drought 

tolerance in white spruce, like it is reported for traits involved in local adaptation to climate in 

conifers (Csilléry et al., 2018; Sork, 2017). Adaptation is rather driven by interacting small-

effect size alleles instead of a few large-effect alleles, especially in populations with high gene 

flow and recent selection events (Hornoy et al., 2015; Le Corre and Kremer, 2012). 

I identified 40 genes associated with dendrophenotypic traits, some of them already associated 

with wood traits or regulated under drought in other studies (Depardieu et al., 2021; Lamara et 

al., 2016). In contrast to the used SSR markers, the SNPs could be annotated to genes and for 

some genes, even molecular functions were identified. Still, the selected SNPs represent only a 

small portion of the white spruce genome. I tried to specify the analysis by using SNPs in 

candidate genes which were developed for analyses of wood traits or adaptation to climate. 

Further, the costs of next generation sequencing methods limit the number of trees which can 

be analysed. Therefore, I needed to select a subset of the available trees with about the same 

age and size. Moreover, a second drought-limited treeline site would have been helpful to 

validate the results. Nevertheless, the identified genes demonstrated their relevance in capturing 

signals of local adaptation and qualified for further analyses. 

 

4.2. Phenotypic plasticity  

To further explore the adaptation potential, my co-authors and I investigated the phenotypic 

plasticity of tree growth and wood anatomy in white spruce. Therefore, the study combined 

neutral genetic markers (SSR) with dendrochronological and climatic data to investigate the 

individual growth. The individual-based dendrochronological approaches demonstrated a high 

phenotypic plasticity of growth performance rather influenced by microenvironmental features 

than genetic similarity. The effects of climate on growth differed between sites and were smaller 

than the effect of tree size. There was a large inter-individual variability in growth responses 

indicating the high phenotypic plasticity of white spruce. 

Second, the individual growth response to drought stress using the dendrochronological and 

climatic data of the three populations was investigated. Climate sensitivity and the growth 

responses to drought stress differed in the contrasting treeline populations. Trees at the treeline 

reacted more sensitive to the climate than trees in the forest, due to the more extreme 

environment. The differing drought stress responses in growth showed a high variability among 

individuals and among sites.  
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Additionally, my co-authors and I investigated xylem anatomical traits representing growth, 

water transport, mechanical support and wood density on clonally and non-clonally growing 

white spruce trees at one of the cold-limited treelines. Using these data, broad sense heritability 

of each trait and the effects of spatial and genetic grouping could be estimated. The xylem 

anatomical traits were mainly influenced by spatial clustering and therefore most probably 

microenvironmental conditions, similar to the analyses of tree growth. Although, in latewood 

density and earlywood hydraulic diameter, a significant effect of genetic grouping could be 

detected.  

 

Tree growth is known to show a high variation affected by several factors like competition or 

masting events, but especially climate (Hacket-Pain et al., 2015; Trouillier et al., 2018; 

Wilmking et al., 2020). Within the thesis, several analyses showed a high inter-individual 

variability in tree growth, suggesting a high phenotypic plasticity. Even the same individuals 

responded differently to different drought events. The higher climate sensitivity of the trees at 

the treeline further shows the high phenotypic response to extreme environmental conditions. 

Within this environment the species experiences its physiological limits because growth is 

limited by water availability or low temperatures (Hampe and Jump, 2011). The resulting 

stronger climate signal led to the preference of treeline populations in dendrochronological 

studies when investigating the influence of climate variables (Cook and Kairiukstis, 1990; 

Fritts, 1976).     

The high phenotypic plasticity of trees helps to cope with short-term environmental changes 

(Valladares et al., 2014). Whereby, the high phenotypic plasticity of white spruce probably led 

to the wide distribution range of the species which covers a wide range of environmental 

conditions (OECD, 1999). Further, phenotypic plasticity was positively correlated with gene 

flow, which is high among the investigated populations according to the results of the SSR 

analyses (Lind et al., 2011). Still, with the available data I cannot estimate to which extent the 

phenotypic plasticity is genetically determined and to which extent selection for phenotypic 

plasticity is present. 

The results of tree growth and xylem anatomical analyses were coharent in the sense that they 

are mostly influenced by environmental conditions, which was also found in other conifer 

species (Avanzi et al., 2019; King et al., 2013; Rozas et al., 2020). Nevertheless, there was a 

moderate heritability of the wood anatomical traits and I identified genes associated with 

growth responses to drought, indicating some genetic basis of the investigated traits. This is 

coherent with the literature, which reports moderate heritabilities and genes associated with 

wood traits and drought-tolerant phenotypes in white spruce (Beaulieu et al., 2011; Depardieu 

et al., 2020; Depardieu et al., 2021; Lamara et al., 2016; Laverdière et al., 2022), Norway spruce 

(Baison et al., 2018; Trujillo-Moya et al., 2018) and other conifer species (Dillon et al., 2010; 

Heer et al., 2018). Even for the highly variable trait climate sensitivity, I could identify some 

genetic basis. These traits are suitable to assess potential local adaptation, because natural 

selection can only act on traits which are heritable (Depardieu et al., 2020). Still, we need to 

consider anatomical influences like tree size when investigating tree growth and wood traits 

(Trouillier et al., 2018). 
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5. Conclusion and outlook 

The high phenotypic plasticity of white spruce could buffer short-term environmental changes 

but could also reduce the selection pressure, resulting in slower genetic adaptation. More 

research is needed to explore the genetic basis of and selection for phentoypic plasticity in white 

spruce and other tree species. The high genetic diversity within white spruce populations may 

provide a wider range of phenotypes which enhances the efficiency of selection when the 

species is facing rapid climatic changes. This can be seen as a phenomenon counterbalancing 

tree longevity: in the investigated region, environmental conditions did considerably change 

over the life time of most adult trees. The high genetic diversity is favored by the high pollen-

mediated gene flow rates of white spruce. On one hand, the high gene flow into the local gene 

pool can counteract adaptation by the introduction of maladapted alleles (outbreeding 

depression). On the other hand, the introduction of alleles preadapted to a warmer climate could 

accelerate adaptation, especially at the cold-limited treelines of white spruce. Genetic drift 

seems to be the main driver of the low population differentiation in neutral genetic diversity. 

Nevertheless, environmental differences probably led to different selection pressure shaping 

divergent adaptive genetic diversity among populations. Moreover, adaptation to drought 

involves small frequency shifts in several interacting genes and seems rather to act on a local 

scale. My results highlight a set of genes that genetically determines wood traits critical for the 

establishment and persistence of tomorrow´s forests under climate change. These genes can be 

further used to study the genetic basis of drought tolerance in trees, especially conifers. 

Moreover, the developed method to identify growth decline caused by drought stress can be 

applied in future studies to investigate the genetic basis of drought-tolerant phenotypes.  

The costs of genotyping are continuously decreasing, which will enable us to conduct analyses 

including a higher amount of trees to validate the results. This knowledge can be used to support 

trees in climate adaptation by assisted migration or by the development of marker-based 

breeding of drought-tolerant phenotypes to maintain the necessary resilience of forest 

ecosystems and their ecosystem services. Still, more research is needed to further explore the 

adaptation processes in white spruce and other tree species. 

  



107 
 

References 

 
Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. Adaptation, migration or extirpation: 

climate change outcomes for tree populations. Evol Appl 2008;1(1):95–111. 10.1111/j.1752-

4571.2007.00013.x. 

Allan JR, Venter O, Maxwell S, Bertzky B, Jones K, Shi Y et al. Recent increases in human pressure 

and forest loss threaten many Natural World Heritage Sites. Biol Conserv 2017;206:47–55. 

10.1016/j.biocon.2016.12.011. 

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M et al. A global 

overview of drought and heat-induced tree mortality reveals emerging climate change risks for 

forests. Forest Ecol Manag 2010;259(4):660–84. 10.1016/j.foreco.2009.09.001. 

Anderson JT, Willis JH, Mitchell-Olds T. Evolutionary genetics of plant adaptation. TIG 

2011;27(7):258–66. 10.1016/j.tig.2011.04.001. 

Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ et al. Terrestrial biogeochemical 

feedbacks in the climate system. Nature Geosci 2010;3(8):525–32. 

https://www.nature.com/articles/ngeo905. 

Aubin I, Munson AD, Cardou F, Burton PJ, Isabel N, Pedlar JH et al. Traits to stay, traits to move: a 

review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees 

to climate change. Environ. Rev. 2016;24(2):164–86. 10.1139/er-2015-0072. 

Avanzi C, Heer K, Büntgen U, Labriola M, Leonardi S, Opgenoorth L et al. Individual reproductive 

success in Norway spruce natural populations depends on growth rate, age and sensitivity to 

temperature. Heredity 2020;124(6):685–98. https://www.nature.com/articles/s41437-020-0305-0. 

Avanzi C, Piermattei A, Piotti A, Büntgen U, Heer K, Opgenoorth L et al. Disentangling the effects of 

spatial proximity and genetic similarity on individual growth performances in Norway spruce 

natural populations. Sci total environ 2019;650(Pt 1):493–504. 10.1016/j.scitotenv.2018.08.348. 

Baison J, Vidalis A, Zhou L, Chen Z-Q, Li Z, Sillanpää MJ et al. Association mapping identified 

novel candidate loci affecting wood formation in Norway spruce. bioRxiv 2018:292847. 

10.1101/292847. 

Beaulieu J, Doerksen T, Boyle B, Clément S, Deslauriers M, Beauseigle S et al. Association genetics 

of wood physical traits in the conifer white spruce and relationships with gene expression. 

Genetics 2011;188(1):197–214. 10.1534/genetics.110.125781. 

Beaulieu J, Nadeau S, Ding C, Celedon JM, Azaiez A, Ritland C et al. Genomic selection for 

resistance to spruce budworm in white spruce and relationships with growth and wood quality 

traits. Evolutionary Applications 2020;13(10):2704–22. 10.1111/eva.13076. 

Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA et al. Assembling the 20 Gb 

white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 

(Oxford, England) 2013;29(12):1492–7. 10.1093/bioinformatics/btt178. 

Björklund J, Seftigen K, Schweingruber F, Fonti P, Arx G von, Bryukhanova MV et al. Cell size and 

wall dimensions drive distinct variability of earlywood and latewood density in Northern 

Hemisphere conifers. New Phytol 2017;216(3):728–40. 10.1111/nph.14639. 

Bonamour S, Chevin L-M, Charmantier A, Teplitsky C. Phenotypic plasticity in response to climate 

change: the importance of cue variation. Phil. Trans. R. Soc. Lond. B 2019;374(1768):20180178. 

10.1098/rstb.2018.0178. 

Bontrager M, Angert AL. Gene flow improves fitness at a range edge under climate change. Evolution 

Letters 2018;3(1):55–68. 10.1002/evl3.91. 

Botero CA, Weissing FJ, Wright J, Rubenstein DR. Evolutionary tipping points in the capacity to 

adapt to environmental change. Proceedings of the National Academy of Sciences of the United 

States of America 2015;112(1):184–9. 10.1073/pnas.1408589111. 

Burns RM, Honkala BH. Silvics of North America. Volume 1. Conifers. 1st ed. Washington; 1990. 



108 
 

Cabon A, Peters RL, Fonti P, Martínez-Vilalta J, Cáceres M de. Temperature and water potential co-

limit stem cambial activity along a steep elevational gradient. New Phytol 2020;226(5):1325–40. 

10.1111/nph.16456. 

Carlsson J. Effects of microsatellite null alleles on assignment testing. J Hered 2008;99(6):616–23. 

10.1093/jhered/esn048. 

Case, Taper. Interspecific Competition, Environmental Gradients, Gene Flow, and the Coevolution of 

Species' Borders. Am Nat 2000;155(5):583–605. 10.1086/303351. 

Chapin FS. Alaska's changing boreal forest. Oxford, New York: Oxford University Press; 2006. 

Collins M, Reto Knutti, Julie Arblaster, Jean-Louis Dufresne, Thierry Fichefet, Pierre Friedlingstein et 

al. Long-term Climate Change: Projections, Commitments and Irreversibility. Climate Change 

2013 - The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment 

Report of the Intergovernmental Panel on Climate Change 2013:1029–136. 

https://research.monash.edu/en/publications/long-term-climate-change-projections-commitments-

and-irreversibil. 

Cook ER, Kairiukstis LA. Methods of Dendrochronology: Applications in the Environmental 

Sciences. Dordrecht, The Netherlands: Springer Science & Business Media; 1990. 

Crofts AL, Brown CD. The importance of biotic filtering on boreal conifer recruitment at alpine 

treeline. Ecography 2020;43(6):914–29. 10.1111/ecog.04899. 

Csilléry K, Rodríguez-Verdugo A, Rellstab C, Guillaume F. Detecting the genomic signal of 

polygenic adaptation and the role of epistasis in evolution. Mol Ecol 2018;27(3):606–12. 

10.1111/mec.14499. 

Dauphin B, Rellstab C, Schmid M, Zoller S, Karger DN, Brodbeck S et al. Genomic vulnerability to 

rapid climate warming in a tree species with a long generation time. Global Change Biol 

2021;27(6):1181–95. 10.1111/gcb.15469. 

Depardieu C, Gérardi S, Nadeau S, Parent GJ, Mackay J, Lenz P et al. Connecting tree-ring 

phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of 

drought adaptation in a widespread conifer. Mol Ecol 2021;30(16):3898–917. 10.1111/mec.15846. 

Depardieu C, Girardin MP, Nadeau S, Lenz P, Bousquet J, Isabel N. Adaptive genetic variation to 

drought in a widely distributed conifer suggests a potential for increasing forest resilience in a 

drying climate. The New phytologist 2020;227(2):427–39. 10.1111/nph.16551. 

Dillon SK, Nolan M, Li W, Bell C, Wu HX, Southerton SG. Allelic variation in cell wall candidate 

genes affecting solid wood properties in natural populations and land races of Pinus radiata. 

Genetics 2010;185(4):1477–87. 10.1534/genetics.110.116582. 

Filipescu CN, Comeau PG. Aspen competition affects light and white spruce growth across several 

boreal sites in western Canada. Can. J. For. Res. 2007;37(9):1701–13. 10.1139/X07-011. 

Fonti P, Arx G von, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H et al. Studying global 

change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 

2010;185(1):42–53. 10.1111/j.1469-8137.2009.03030.x. 

Fréjaville T, Vizcaíno-Palomar N, Fady B, Kremer A, Benito Garzón M. Range margin populations 

show high climate adaptation lags in European trees. Global Change Biol 2019. 

10.1111/gcb.14881. 

Frenne P, Graae BJ, Rodríguez‐Sánchez F, Kolb A, Chabrerie O, Decocq G et al. Latitudinal gradients 

as natural laboratories to infer species' responses to temperature. J Ecology 2013;101(3):784–95. 

10.1111/1365-2745.12074. 

Fritts HC. Tree rings and climate. 1976th ed. Caldwell, N.J: Blackburn Press; 1976. 

Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG. Boreal forest health and 

global change. Science 2015;349(6250):819–22. 10.1126/science.aaa9092. 

Girardin MP, Hogg EH, Bernier PY, Kurz WA, Guo XJ, Cyr G. Negative impacts of high 

temperatures on growth of black spruce forests intensify with the anticipated climate warming. 

Global Change Biol 2016;22(2):627–43. 10.1111/gcb.13072. 



109 
 

Grant PR, Grant BR, Huey RB, Johnson MTJ, Knoll AH, Schmitt J. Evolution caused by extreme 

events. Phil. Trans. R. Soc. Lond. B 2017;372(1723). 10.1098/rstb.2016.0146. 

Gratani L. Plant Phenotypic Plasticity in Response to Environmental Factors. Advances in Botany 

2014;2014:1–17. 10.1155/2014/208747. 

Hacke U. Functional and ecological xylem anatomy. Cham: Springer; 2015. 

Hacket-Pain AJ, Friend AD, Lageard JGA, Thomas PA. The influence of masting phenomenon on 

growth-climate relationships in trees: explaining the influence of previous summers' climate on 

ring width. Tree Physiol 2015;35(3):319–30. 10.1093/treephys/tpv007. 

Hall CM, Scott D, Gössling S. Forests, climate change and tourism. Journal of Heritage Tourism 

2011;6(4):353–63. 10.1080/1743873X.2011.620252. 

Hampe A, Jump AS. Climate Relicts: Past, Present, Future. Annu. Rev. Ecol. Evol. Syst. 

2011;42(1):313–33. 10.1146/annurev-ecolsys-102710-145015. 

Hampe A, Petit RJ. Conserving biodiversity under climate change: the rear edge matters. Ecology 

Letters 2005;8(5):461–7. 10.1111/j.1461-0248.2005.00739.x. 

Hamrick J, Godt MJW. Effects of life history traits on genetic diversity in plant species. Phil. Trans. 

R. Soc. Lond. B 1996;351(1345):1291–8. 10.1098/rstb.1996.0112. 

Handorf D, Jaiser R, Dethloff K, Romanowsky E, Nakamura T, Ukita J et al. The role of synoptic-

planetary wave interactions for the linkage between Arctic climate change and mid-latitude 

atmospheric circulation changes. AGU Fall Meeting Abstracts 2017;2017:A44B-04. 

Harsch MA, Bader MY. Treeline form - a potential key to understanding treeline dynamics. Global 

Ecol Biogeogr 2011;20(4):582–96. 10.1111/j.1466-8238.2010.00622.x. 

Heer K, Behringer D, Piermattei A, Bässler C, Brandl R, Fady B et al. Linking dendroecology and 

association genetics in natural populations: Stress responses archived in tree rings associate with 

SNP genotypes in silver fir (Abies alba Mill.). Mol Ecol 2018;27(6):1428–38. 10.1111/mec.14538. 

Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature 2011;470(7335):479–

85. https://www.nature.com/articles/nature09670. 

Hornoy B, Pavy N, Gérardi S, Beaulieu J, Bousquet J. Genetic Adaptation to Climate in White Spruce 

Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes. Genome biol 

evol 2015;7(12):3269–85. 10.1093/gbe/evv218. 

Houle D. Comparing evolvability and variability of quantitative traits. Genetics 1992;130(1):195–204. 

10.1093/genetics/130.1.195. 

Housset JM, Nadeau S, Isabel N, Depardieu C, Duchesne I, Lenz P et al. Tree rings provide a new 

class of phenotypes for genetic associations that foster insights into adaptation of conifers to 

climate change. New Phytol 2018;218(2):630–45. 10.1111/nph.14968. 

Huang K, Ritland K, Dunn DW, Qi X, Guo S, Li B. Estimating Relatedness in the Presence of Null 

Alleles. Genetics 2016;202(1):247–60. 10.1534/genetics.114.163956. 

Hynes A, Hamann A. Moisture deficits limit growth of white spruce in the west-central boreal forest 

of North America. Forest Ecol Manag 2020;461:117944. 10.1016/j.foreco.2020.117944. 

IPCC 2. IPCC, 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change; 2021. 

Johnson JS, Gaddis KD, Cairns DM, Krutovsky KV. Seed dispersal at alpine treeline: an assessment 

of seed movement within the alpine treeline ecotone. Ecosphere 2017;8(1):e01649. 

10.1002/ecs2.1649. 

Juday GP, Alix C. Consistent negative temperature sensitivity and positive influence of precipitation 

on growth of floodplain Picea glauca in Interior Alaska. Can. J. For. Res. 2012;42(3):561–73. 

10.1139/X2012-008. 

Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK. Microsatellite markers: an overview of the recent 

progress in plants. Euphytica 2011;177(3):309–34. 

https://link.springer.com/article/10.1007/s10681-010-0286-9. 

King GM, Gugerli F, Fonti P, Frank DC. Tree growth response along an elevational gradient: climate 

or genetics? Oecologia 2013;173(4):1587–600. 10.1007/s00442-013-2696-6. 



110 
 

Körner C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits: Springer 

Science & Business Media; 2012. 

Lamara M, Raherison E, Lenz P, Beaulieu J, Bousquet J, Mackay J. Genetic architecture of wood 

properties based on association analysis and co-expression networks in white spruce. New Phytol 

2016;210(1):240–55. 10.1111/nph.13762. 

Lamhamedi MS, Labbé L, Margolis HA, Stowe DC, Blais L, Renaud M. Spatial Variability of 

Substrate Water Content and Growth of White Spruce Seedlings. Soil Sci. Soc. Am. J. 

2006;70(1):108–20. 10.2136/sssaj2005.0109. 

Laverdière J-P, Lenz P, Nadeau S, Depardieu C, Isabel N, Perron M et al. Breeding for adaptation to 

climate change: genomic selection for drought response in a white spruce multi‐site polycross test. 

Evol Appl 2022. 10.1111/eva.13348. 

Le Corre V, Kremer A. The genetic differentiation at quantitative trait loci under local adaptation. Mol 

Ecol 2012;21(7):1548–66. 10.1111/j.1365-294X.2012.05479.x. 

Lenormand T. Gene flow and the limits to natural selection. Trends Ecol Evol 2002;17(4):183–9. 

10.1016/S0169-5347(02)02497-7. 

Lenz P, Cloutier A, Mackay J, Beaulieu J. Genetic control of wood properties in Picea glauca — an 

analysis of trends with cambial age. Can. J. For. Res. 2010;40(4):703–15. 10.1139/X10-014. 

Leonarduzzi C, Piotti A, Spanu I, Vendramin GG. Effective gene flow in a historically fragmented 

area at the southern edge of silver fir (Abies alba Mill.) distribution. Tree Genet Genomes 

2016;12(5):1–14. https://link.springer.com/article/10.1007/s11295-016-1053-4. 

Li P, Beaulieu J, Corriveau A, Bousquet J. Genetic variation in juvenile growth and phenology of 

white spruce provenance-progeny test. Silvae Genetica 1993;42(1):52–60. 

Liepelt S, Bialozyt R, Ziegenhagen B. Wind-dispersed pollen mediates postglacial gene flow among 

refugia. Proceedings of the National Academy of Sciences of the United States of America 

2002;99(22):14590–4. 10.1073/pnas.212285399. 

Lind MI, Ingvarsson PK, Johansson H, Hall D, Johansson F. Gene flow and selection on phenotypic 

plasticity in an island system of Rana temporaria. Evolution 2011;65(3):684–97. 10.1111/j.1558-

5646.2010.01122.x. 

Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J et al. Climate change 

impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Manag 

2010;259(4):698–709. 10.1016/j.foreco.2009.09.023. 

Lines ER, Zavala MA, Purves DW, Coomes DA. Predictable changes in aboveground allometry of 

trees along gradients of temperature, aridity and competition. Global Ecol Biogeogr 

2012;21(10):1017–28. 10.1111/j.1466-8238.2011.00746.x. 

McLachlan JS, Hellmann JJ, Schwartz MW. A framework for debate of assisted migration in an era of 

climate change. Conservation biology the journal of the Society for Conservation Biology 

2007;21(2):297–302. 10.1111/j.1523-1739.2007.00676.x. 

Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL. Global climate 

change and terrestrial net primary production. Nature 1993;363(6426):234–40. 

https://www.nature.com/articles/363234a0. 

Merilä J, Hendry AP. Climate change, adaptation, and phenotypic plasticity: the problem and the 

evidence. Evol Appl 2014;7(1):1–14. 10.1111/eva.12137. 

Mimura M, Aitken SN. Adaptive gradients and isolation-by-distance with postglacial migration in 

Picea sitchensis. Heredity 2007;99(2):224–32. 10.1038/sj.hdy.6800987. 

Mosca E, González-Martínez SC, Neale DB. Environmental versus geographical determinants of 

genetic structure in two subalpine conifers. New Phytol 2014;201(1):180–92. 10.1111/nph.12476. 

Namroud M-C, Beaulieu J, Juge N, Laroche J, Bousquet J. Scanning the genome for gene single 

nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Mol 

Ecol 2008;17(16):3599–613. 10.1111/j.1365-294X.2008.03840.x. 



111 
 

Nienstaedt H, Zasada JC. Picea glauca (Moench) Voss White Spruce. In: United States Department of 

Agriculture and Forest Service, editor. Silvics of North America. Washington, DC; 1990. p. 204–

226. 

O'Connell LM, Mosseler A, Rajora OP. Extensive long-distance pollen dispersal in a fragmented 

landscape maintains genetic diversity in white spruce. Heredity 2007;98(7):640–5. 

10.1093/jhered/esm089. 

OECD. Consensus document on the biology of Picea glauca (Moench) Voss (white spruce); 1999 13. 

Ohse B, Jansen F, Wilmking M. Do limiting factors at Alaskan treelines shift with climatic regimes? 

Environ. Res. Lett. 2012;7(1):15505. 10.1088/1748-9326/7/1/015505. 

Orr HA. The genetic theory of adaptation: a brief history. Nat Rev Genet 2005;6(2):119–27. 

https://www.nature.com/articles/nrg1523. 

Pan Y, Birdsey RA, Phillips OL, Jackson RB. The Structure, Distribution, and Biomass of the World's 

Forests. Annu. Rev. Ecol. Evol. Syst. 2013;44(1):593–622. 10.1146/annurev-ecolsys-110512-

135914. 

Pavy N, Gagnon F, Rigault P, Blais S, Deschênes A, Boyle B et al. Development of high-density SNP 

genotyping arrays for white spruce (Picea glauca ) and transferability to subtropical and nordic 

congeners. Mol Ecol Resour 2013;13(2):324–36. 10.1111/1755-0998.12062. 

Pavy N, Lamothe M, Pelgas B, Gagnon F, Birol I, Bohlmann J et al. A high-resolution reference 

genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications 

and correspondence with physical distance. Plant J 2017;90(1):189–203. 10.1111/tpj.13478. 

Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I et al. Enhancing genetic mapping of 

complex genomes through the design of highly-multiplexed SNP arrays: application to the large 

and unsequenced genomes of white spruce and black spruce. BMC genomics 2008;9:21. 

10.1186/1471-2164-9-21. 

Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J. A spruce gene map infers ancient plant 

genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant 

conifers. BMC biology 2012;10:84. 10.1186/1741-7007-10-84. 

Piotti A, Leonardi S, Piovani P, Scalfi M, Menozzi P. Spruce colonization at treeline: where do those 

seeds come from? Heredity 2009;103(2):136–45. 10.1038/hdy.2009.42. 

Rajora OP, Mann IK, Shi Y-Z. Genetic diversity and population structure of boreal white spruce 

(Picea glauca ) in pristine conifer-dominated and mixedwood forest stands. Can. J. Bot. 

2005;83(9):1096–105. 10.1139/b05-083. 

Reich PB, Sendall KM, Stefanski A, Rich RL, Hobbie SE, Montgomery RA. Effects of climate 

warming on photosynthesis in boreal tree species depend on soil moisture. Nature 

2018;562(7726):263–7. 10.1038/s41586-018-0582-4. 

Rellstab C, Fischer MC, Zoller S, Graf R, Tedder A, Shimizu KK et al. Local adaptation (mostly) 

remains local: reassessing environmental associations of climate-related candidate SNPs in 

Arabidopsis halleri. Heredity 2017;118(2):193–201. 10.1038/hdy.2016.82. 

Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental 

association analysis in landscape genomics. Mol Ecol 2015;24(17):4348–70. 10.1111/mec.13322. 

Restoux G, Silva DE, Sagnard F, Torre F, Klein E, Fady B. Life at the margin: the mating system of 

Mediterranean conifers. Web Ecol. 2008;8(1):94–102. 10.5194/we-8-94-2008. 

Rigault P, Boyle B, Lepage P, Cooke JEK, Bousquet J, MacKay JJ. A white spruce gene catalog for 

conifer genome analyses. Plant physiology 2011;157(1):14–28. 10.1104/pp.111.179663. 

Roland CA, Schmidt JH, Johnstone JF. Climate sensitivity of reproduction in a mast-seeding boreal 

conifer across its distributional range from lowland to treeline forests. Oecologia 

2014;174(3):665–77. 10.1007/s00442-013-2821-6. 

Roschanski AM, Csilléry K, Liepelt S, Oddou-Muratorio S, Ziegenhagen B, Huard F et al. Evidence 

of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba 

Mill. in the French Mediterranean Alps. Mol Ecol 2016;25(3):776–94. 10.1111/mec.13516. 



112 
 

Rozas V, Sampedro L, Vázquez-González C, Solla A, Vivas M, Lombardero MJ et al. Site conditions 

exert more control than genetic differentiation on modulation of secondary growth and climate 

sensitivity of Pinus pinaster. Dendrochronologia 2020;63:125732. 10.1016/j.dendro.2020.125732. 

Savolainen O, Pyhäjärvi T, Knürr T. Gene Flow and Local Adaptation in Trees. Annu. Rev. Ecol. 

Evol. Syst. 2007;38(1):595–619. 10.1146/annurev.ecolsys.38.091206.095646. 

Schwarz J, Skiadaresis G, Kohler M, Kunz J, Schnabel F, Vitali V et al. Quantifying Growth 

Responses of Trees to Drought—a Critique of Commonly Used Resilience Indices and 

Recommendations for Future Studies. Curr Forestry Rep 2020;6(3):185–200. 10.1007/s40725-

020-00119-2. 

Shaw RG, Etterson JR. Rapid climate change and the rate of adaptation: insight from experimental 

quantitative genetics. New Phytol 2012;195(4):752–65. 10.1111/j.1469-8137.2012.04230.x. 

Sork VL. Genomic Studies of Local Adaptation in Natural Plant Populations. Journal of Heredity 

2017;109(1):3–15. 10.1093/jhered/esx091. 

Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB. Putting the landscape into the 

genomics of trees: approaches for understanding local adaptation and population responses to 

changing climate. Tree Genet Genomes 2013;9(4):901–11. 10.1007/s11295-013-0596-x. 

Stone EL, McKittrick RC. On the layering of white spruce. Tree Planters' Notes 1976;27(1):14. 

Sultan SE. Eco-Evo-Devo. In: La Nuno de Rosa L, Müller G, editors. Evolutionary developmental 

biology: A reference guide. [Switzerland?]: Springer International Publishing; 2016. p. 1–13. 

Tagesson T, Schurgers G, Horion S, Ciais P, Tian F, Brandt M et al. Recent divergence in the 

contributions of tropical and boreal forests to the terrestrial carbon sink. Nat Ecol Evol 

2020;4(2):202–9. https://www.nature.com/articles/s41559-019-1090-0. 

Trouillier M, van der Maaten-Theunissen M, Scharnweber T, Würth D, Burger A, Schnittler M et al. 

Size matters—a comparison of three methods to assess age- and size-dependent climate sensitivity 

of trees. Trees 2018;259:660. 10.1007/s00468-018-1767-z. 

Trujillo-Moya C, George J-P, Fluch S, Geburek T, Grabner M, Karanitsch-Ackerl S et al. Drought 

Sensitivity of Norway Spruce at the Species' Warmest Fringe: Quantitative and Molecular 

Analysis Reveals High Genetic Variation Among and Within Provenances. G3 (Bethesda, Md.) 

2018;8(4):1225–45. 10.1534/g3.117.300524. 

Valladares F, Matesanz S, Guilhaumon F, Araújo MB, Balaguer L, Benito-Garzón M et al. The effects 

of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate 

change. Ecol Letters 2014;17(11):1351–64. 10.1111/ele.12348. 

van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ et al. Widespread 

increase of tree mortality rates in the western United States. Science 2009;323(5913):521–4. 

10.1126/science.1165000. 

Vieira MLC, Santini L, Diniz AL, Munhoz CdF. Microsatellite markers: what they mean and why 

they are so useful. Genet mol biol 2016;39(3):312–28. 10.1590/1678-4685-GMB-2016-0027. 

Viereck LA. The Alaska Vegetation Classification: U.S. Department of Agriculture, Forest Service, 

Pacific Northwest Research Station; 1992. 

Viereck LA, van Cleve K, Dyrness CT. Forest Ecosystem Distribution in the Taiga Environment. In: 

Forest Ecosystems in the Alaskan Taiga: Springer, New York, NY; 1986. p. 22–43. 

Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S. Quantifying phenological plasticity to 

temperature in two temperate tree species. Funct Ecol 2010;24(6):1211–8. 10.1111/j.1365-

2435.2010.01748.x. 

Wang GG, Klinka K. White spruce foliar nutrient concentrations in relation to tree growth and soil 

nutrient amounts. Forest Ecology and Management 1997;98(1):89–99. 10.1016/S0378-

1127(97)00048-0. 

Wells JV, Dawson N, Culver N, Reid FA, Morgan Siegers S. The State of Conservation in North 

America’s Boreal Forest: Issues and Opportunities. Front. For. Glob. Change 2020;3. 

10.3389/ffgc.2020.00090. 



113 
 

Wilmking M, Buras A, Eusemann P, Schnittler M, Trouillier M, Würth D et al. High frequency 

growth variability of White spruce clones does not differ from non-clonal trees at Alaskan 

treelines. Dendrochronologia 2017;44:187–92. 10.1016/j.dendro.2017.05.005. 

Wilmking M, Harden J, Tape K. Effect of tree line advance on carbon storage in NW Alaska. J. 

Geophys. Res. 2006;111(G2):n/a-n/a. 10.1029/2005JG000074. 

Wilmking M, Juday GP, Barber VA, Zald HSJ. Recent climate warming forces contrasting growth 

responses of white spruce at treeline in Alaska through temperature thresholds. Global Change 

Biol 2004;10(10):1724–36. 10.1111/j.1365-2486.2004.00826.x. 

Wilmking M, van der Maaten-Theunissen M, van der Maaten E, Scharnweber T, Buras A, Biermann 

C et al. Global assessment of relationships between climate and tree growth. Global Change Biol 

2020;26(6):3212–20. 10.1111/gcb.15057. 

Wuerth DG, Eusemann P, Trouillier M, Burras A, Burger A, Wilmking M et al. Environment drives 

spatio-temporal patterns of clonality in white spruce (Picea glauca) in Alaska. Can. J. For. Res. 

2018. 10.1139/cjfr-2018-0234. 

Yangyang X, Ramanathan V, Victor DG. Global warming will happen faster than we think. Nature 

2018;564(7734):30–2. https://www.nature.com/articles/d41586-018-07586-

5?fbclid=IwAR1qd0gD98NNOs0S2929UMtbSXwdJdpKsOZ9I_CUEobfD1jluZdtcDelEAg. 

Yarie J, van Cleve K. Long-term monitoring of climatic and nutritional affects on tree growth in 

interior Alaska. Can. J. For. Res. 2010;40(7):1325–35. 10.1139/x10-114. 

 

 

 

 

 

 

 

 

 

 



114 
 

Eigenständigkeitserklärung 

 

Hiermit erkläre ich, dass diese Arbeit bisher von mir weder an der Mathematisch-

Naturwissenschaftlichen Fakultät der Universität Greifswald noch einer anderen wissenschaftlichen 

Einrichtung zum Zwecke der Promotion eingereicht wurde.  

Ferner erkläre ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als die darin 

angegebenen Hilfsmittel und Hilfen benutzt und keine Textabschnitte eines Dritten ohne 

Kennzeichnung übernommen habe. 

 

                                                                                Greifswald den _________, ____________________ 

                                                                                                                                   Melanie Zacharias 

 

 

 

 

 

 



115 
 

 

Curriculum Vitae  ____________________________________________                                                                                   

 

Work experience  

04/2018 – present  University Greifswald (Germany), Insitute of Botany and 

Landscape Ecology  

PhD position in the research training group RESPONSE 

01/2017 – 09/2017  University of Auckland (New Zealand)  

Internship 

06/2014-12/2016  Technical University Dresden (Germany), Institute for Forest 

Botany  

Student assistant 

 

Education  

2014 – 2018  Technical University Dresden (Germany)  

Master of Science in Forestry 

2011 – 2014  Technical University Dresden (Germany)  

Bachelor of Science in Forestry 

2011    Bernhard-von-Cotta-Gymnasium, Brand-Erbisdorf (Germany) 

    Abitur 

     

Memberships 

2013 – 2018   International Forestry Students‘ Association (IFSA) 

    Member 

04/2015 – 11/2016   International Forestry Students‘ Association (IFSA) 

    Representative of the local committee Tharandt 

 

Skills 

Languages    German Native 

    English Fluent 

    French  Basics 

Computing skills  R  Advanced skills in statistical analyses 

  Python  Basic skills 

  MS Office  Advanced skills in MS Word and MS Excel 

 



116 
 

    Teaching experience  

2019    supervision of Master thesis of Seema Naupane 

 

Conference contributions 

January 2020   Poster "Spatial genetic differentiation in Picea glauca stands in                   

Alaska", Gentree conference - Genetics to the rescue, Avignon 

Université (France) 

May 2021  Poster “Population structure and the influence of 

microenvironment and genetic similarity on individual growth at 

Alaskan white spruce treelines”, 2021 Forest Genetics Student 

Symposium (virtual event) 

September 2021 Presentation “Genetic signatures of drought stress tolerance in 

contrasting treeline ecotones of a widespread conifer in 

Alaska”, EvolTree Conference 2021 – Genomics and 

Adaptation in Forest Ecosystems, WSL Birmensdorf 

(Switzerland) 

 

    Publications  

2020 Xylem anatomical variability in white spruce at treeline is 

largely driven by spatial clustering 

Authors: Timo Pampuch, Alba Anadon-Rosell, Melanie 

Zacharias, Georg von Arx & Martin Wilmking 

Journal: Frontiers in Plant Science 

URL: https://doi.org/10.3389/fpls.2020.581378 

 

2021 Population structure and the influence of microenvironment 

and genetic similarity on individual growth at Alaskan white 

spruce treelines 

Authors: Melanie Zacharias, Timo Pampuch, Katrin Heer, 

Camilla Avanzi, David G. Würth, Mario Trouillier, Manuela 

Bog, Martin Wilmking, Martin Schnittler 

Journal: Science of the Total Environment 

URL: https://doi.org/10.1016/j.scitotenv.2021.149267 

 

2022 Genetic basis of growth reaction to drought stress differ in 

contrasting high-latitude treeline ecotones of a widespread 

conifer 

 Authors: Melanie Zacharias, Timo Pampuch, Benjamin 

Dauphin, Lars Opgenoorth, Carl Roland, Martin Schnittler, 

Martin Wilmking, Manuela Bog, Katrin Heer  

Journal: Molecular ecology (submitted)



117 
 

 

Acknowledgements  

 

I want to thank all people who supported me on this journey. First of all my supervisors Martin  

Schnittler and Manuela Bog. I also want to thank Martin Wilmking for the support in field work  

and in the dendrochronological questions. I especially want to thank my external supervisor  

Katrin Heer for her scientific and emotional support, which was far beyond the responsibilities 

of a external supervisor. I also would like to thank Timo Pampuch for the nice collaboration 

during our PhDs and his help with all this modelling stuff. And I want to thank Andreas Burger 

and Sabine Lichtnau for their help in field work and the nice times in Alaska.  

Further, I thank my several collaborators of the University of Marburg, Swiss Federal Research 

Institute WSL and the Denali National Park and Preserve as well as Nathalie Isabel and Manuel 

Lamothe of the Canadian Forest Service for their advice. Great thanks also to the DFG for 

funding my research and the people of the RESPONSE research training group. I am thankful 

for all the friends I got to know within the RESPONSE graduate collegue.  

Last, I want to thank my boyfriend, Christian Dittrich, and my family and friends for supporting 

me during these turbulent times with motivating words and welcome diversions. 

 

 

 


	Population structure and the influence of microenvironment and genetic similarity on individual growth at Alaskan white spr...
	1. Introduction
	2. Materials and methods
	2.1. Study sites
	2.2. Genetic data
	2.3. Dendrochronological data
	2.4. Climatic data
	2.5. Statistical analyses
	2.5.1. Population structure
	2.5.2. Isolation by distance vs. isolation by environment
	2.5.3. Influence of gene flow on population differentiation
	2.5.4. Influence of genetic similarity and spatial structure on individual growth performances


	3. Results
	3.1. Genetic diversity
	3.1.1. Population structure
	3.1.2. Isolation by distance vs. isolation by environment
	3.1.3. Influence of gene flow on population differentiation

	3.2. Influence of genetic similarity and spatial structure on individual growth performances
	3.2.1. Random slope mixed-effects model
	3.2.2. Influence of genetic similarity and spatial structure on individual growth performances


	4. Discussion
	4.1. Genetic differentiation
	4.2. Drivers of tree growth
	4.3. Conclusions and outlook

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

	Xylem Anatomical Variability in White Spruce at Treeline Is Largely Driven by Spatial Clustering
	Introduction
	Materials and Methods
	Study Species and Site
	Sampling Design and Data Acquisition
	DNA Isolation and SSR Genotyping
	Statistical Analysis

	Results
	H2 Estimates of Growth and Xylem Anatomical Traits
	Comparing Genetic and Spatial Grouping

	Discussion
	H2 Estimates of Growth and Xylem Anatomical Traits
	Spatial Grouping Has the Strongest Effect on Trait Variability

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References




