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One of the two objects of my Peruvian journey and of our last passage over the Chain 

of the Andes failed; but on the other hand I had, at the critical moment, the rare good 

fortune of a perfectly clear day, during a very unfavourable season of the year, on the 

misty coast of Low Peru. I observed the passage of Mercury over the Sun at Callao, an 

observation which has become of some importance towards the exact determination 

of the longitude of Lima, and of all the south-western part of the New Continent. Thus 

in the intricate relations and graver circumstances of life, there may often be found, 

associated with disappointment, a germ of compensation. 
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General Abstract 
 

Species abundance and distribution metrics are cornerstones of conservation 

planning, for example, in establishing extinction risk and selecting priority areas, 

but abundance data are scarce and costly to obtain in comparison to those on 

species occurrence. Occurrence records, often from citizen science or non-

systematic surveys, are increasingly used to model species’ distributions using 

environmental predictors. Methods to relate occurrence models to abundance, and 

therefore, provide greater understanding of patterns of abundance across species’ 

ranges and population size estimates could bring important benefits for 

conservation decisions. 

 

This thesis aims to develop tools, combining different analytical techniques, 

field data and GIS, to provide improved estimates of species distribution and 

abundance in support of extinction risk assessments in threatened Neotropical 

bird species. To achieve this aim, a case study was implemented over the ranges of 

14 dry forest birds from the Tumbesian region of Peru –an area of critical 

conservation importance due to high endemism and severe anthropogenic 

threats– with the following objectives: to model the distribution of study species 

(Chapter 2); to estimate local abundance of species across their ranges using 

covariate Distance sampling (Chapter 3); to explore range-wide variation in 

abundance (Chapter 4); to explore the relationship between relative probability of 

occurrence, derived from modelling, and bird abundance, derived from field 

studies (Chapter 5). 

 

First, ensemble species distribution models, using four modelling methods, 

were built with a median of 150 occurrence records per species, bioclimatic 

variables and vegetation indices. Modelled Extent of Occurrence, using a 5% 

omission error threshold to define presence and absence, was compared to 

existing range estimates used in extinction risk assessment. Additionally, field data 

were obtained on the local abundance of the study species and habitat 

characteristics along four 2.5 km transects at 26 sites over the study area. 

Covariate Distance sampling was used to estimate bird abundances at each site. 

Where sites represented discrete or delimited units (e.g. protected areas), specific 
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population sizes were estimated. Local abundance was compared across sites and 

by range core versus edge; spatial autocorrelation was examined with multivariate 

Mantel tests; and, relationships with environmental variables were examined 

using Generalised Additive Models. Finally, relationships between abundance 

estimates, obtained from the field study, and relative probability of occurrence, 

obtained from distribution models, were tested using correlations, and where 

significant relationships were found, these were modelled using hierarchical 

logistic regression. 

 

Individual species distribution modelling methods performed adequately and 

coincided highly in terms of ranked correlation but differed in the distribution of 

their predicted values. Range size estimates, from thresholded models, were 

generally smaller than, but coincided spatially with, published ranges, with the 

exception of three species of conservation interest. Local abundance varied by one 

or two orders of magnitude across sites for almost all species, with abundance not 

necessarily highest at the centre of species’ ranges. Sites of maximum abundance 

for individual species did not coincide – nine different sites held the highest 

densities of at least one species. Eleven of 14 species showed significant positive 

correlations between their abundance and modelled occurrence for at least one 

modelling technique. 

 

Modelling techniques are discussed in light of complementing existing 

techniques to estimate Extent of Occurrence for extinction risk assessments. 

Abundance estimates, using methods that incorporate detectability, can be 

obtained for rare species over very patchy habitats with relatively low survey 

effort, using a suitably designed sampling protocol. The extreme variation in 

species' abundances and the complexity in relationships with environmental 

variables has conservation implications, for example, in the design of conservation-

motivated surveys and regarding the need for multiple reserves to capture high 

local abundances of key species. The relationship between modelled species' 

occurrence and local abundance is a promising area of research with a view to 

obtaining better abundance information with less survey effort. In terms of 

biodiversity conservation in north Peru, critical sites are recommended for urgent 

protection, and updated extinction risk categories are given for threatened species.  
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Resumen general  
 

La información sobre la abundancia y distribución de las especies son 

componentes claves en la planeación para la conservación y más específicamente, 

en la evaluación de riesgo de extinción y en la selección de áreas prioritarias. Sin 

embargo, frente a los datos de ocurrencia de especies, los datos de abundancia son 

escasos y difíciles de obtener. Los registros de ocurrencia provenientes de la 

ciencia ciudadana o de muestras no sistemáticas son los más usados para modelar 

la distribución de especies utilizando predictores ambientales. Encontrar métodos 

para relacionar los modelos de ocurrencia con la abundancia ofrecería grandes 

beneficios para la toma de decisiones para la conservación, generando un mayor 

conocimiento de los patrones de abundancia a lo largo de las áreas de distribución 

de especies o para estimar sus tamaños poblacionales. 

 

El objetivo de esta tesis fue desarrollar herramientas para mejorar los 

estimativos de la distribución y abundancia de especies a través de diferentes 

técnicas analíticas, sistemas de información geográfica y trabajo de campo.  Esto 

permite dar un mejor soporte a las evaluaciones de riesgo de extinción para las 

aves amenazadas del Neotrópico. Para lograr este objetivo, se realizó un estudio a 

lo largo del área de distribución de 14 especies de aves de bosque seco de la región 

Tumbesina de Perú. Esta es un área de importancia para la conservación debido a 

la alta tasa de endemismo y la alta presión antropogénica. Los objetivos de la tesis 

fueron: modelar la distribución de las especies de estudio (Capítulo 2); estimar la 

abundancia local de las especies a lo largo de sus áreas de distribución usando el 

muestreo Distance por covariados (Capítulo 3); explorar la variación de 

abundancia a lo largo del área de distribución (Capítulo 4); explorar la relación 

entre la probabilidad de ocurrencia relativa derivada de los modelos y la 

abundancia de aves derivada del trabajo de campo (Capítulo 5). 

 

Primero, se hizo un ensamblaje de cuatro métodos de modelos de distribución 

de especies usando una mediana de 150 registros de ocurrencia por especie, 

variables bioclimáticas e índices de vegetación. La Extensión de Ocurrencia, 

modelada con un umbral de 5% de error de omisión para definir presencia y 

ausencia, fue comparada con el área de distribución actual usada en las 
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evaluaciones de riesgo de extinción de la IUCN. Adicionalmente, se obtuvieron 

datos de campo acerca de la abundancia local de las especies de estudio y las 

características de hábitat a lo largo de transectos de 2.5 km en 26 sitios del área de 

estudio. Se empleó el método de muestreo Distance para estimar la abundancia de 

las aves en cada sitio. En sitios donde había unidades delimitadas específicas (por 

ejemplo, áreas protegidas), se estimaron tamaños poblacionales por sitio. Se 

comparó la abundancia local entre el centro y los márgenes de las áreas de 

distribución; se examinó la autocorrelación espacial con pruebas multivariadas 

Mantel y se analizaron las relaciones entre abundancia y variables ambientales con 

Modelos Aditivos Generalizados. Finalmente, la relación entre la abundancia 

estimada, obtenida del trabajo de campo, y la probabilidad de ocurrencia relativa, 

obtenida de los modelos de distribución, fue evaluada usando correlaciones y en 

caso de encontrarse relaciones significativas se modeló con regresiones logísticas 

jerárquicas. 

 

Los modelos de distribución de especies individuales dieron resultados 

aceptables y coincidieron altamente en términos de correlación no paramétrica 

entre los valores predichos pero no en su distribución. Las áreas de distribución 

estimadas, que fueron calculadas aplicando un umbral a los modelos, resultaron 

generalmente más pequeñas que las áreas de distribución publicadas con 

excepción de tres especies de interés para la conservación. La abundancia local 

varió por uno o dos órdenes de magnitud entre sitios para casi todas las especies, 

además la abundancia máxima no necesariamente estuvo localizada en el centro 

del área de distribución de las especies. Los sitios de abundancia máxima para cada 

especie no coincidieron, ya que en nueve sitios diferentes se encontró la 

abundancia máxima de por lo menos una especie. Once de 14 especies tuvieron 

una correlación positiva significativa entre su abundancia y la ocurrencia 

modelada en por lo menos uno de los métodos de modelamiento. 

 

Se discutieron los métodos de modelamiento con el fin de complementar 

técnicas existentes para estimar la Extensión de Ocurrencia para las evaluaciones 

de riesgo de extinción de la IUCN. Estimar abundancia con métodos que 

incorporan la detectabilidad es viable con relativamente bajo esfuerzo de 

muestreo en hábitats muy fragmentados para especies raras, empleando un 
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protocolo de muestreo adecuado.  La variación extrema entre la abundancia de las 

especies y la complejidad de las relaciones con las variables ambientales tiene 

implicaciones para la conservación, por ejemplo, en el diseño de muestreos con 

fines de conservación, y en la necesidad de tener múltiples áreas de conservación 

para capturar la abundancia máxima local de diferentes especies claves. La 

relación entre la ocurrencia modelada de las especies y la abundancia local es un 

área prometedora para la investigación con el fin de obtener mejor información 

sobre la abundancia con menos esfuerzo de trabajo de campo. En cuanto a la 

conservación de la biodiversidad del norte de Perú se proponen sitios críticos para 

ser protegidos urgentemente para las especies estudiadas y se actualizan las 

categorías de riesgo de extinción para las especies amenazadas. 
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Chapter 1 
 

Introduction 
 

1 Biodiversity loss and the need for conservation ecology 

In recent times, the rate of biodiversity loss has surpassed the natural base rate of 

extinction (Pimm et al., 1995; Mace et al., 2005) to such an extent that there is 

consensus the world is on the verge of a sixth mass extinction event (Thomas et al., 

2004; Barnosky et al., 2011). The underlying causes for changes to the planet’s 

biodiversity – habitat loss, degradation and fragmentation, overexploitation, 

invasive species, pollution and global climate change (Groom et al., 2006) – are all 

fuelled by a rapid rate of increase of human economic activity (Steffen et al., 2015). 

Efforts to stem this increasing biodiversity loss, such as the Convention on 

Biological Diversity and its 2010/2020 Targets, and the Millennium Goals, have 

largely been unsuccessful (Rands et al., 2010; Tittensor et al., 2014) as 

development across the globe continues to be unsustainable (UN, 2010). Even 

recognising that biodiversity conservation is a fundamental part of poverty 

reduction – given the higher dependence on ecosystem services of the poorest 

sectors of society (Roe & Elliott, 2004; MEA, 2005) – and one of the three pillars of 

sustainable development, has not triggered a concerted global effort to change the 

way natural resources are used (UN, 2012). 

 

Conservation biology, as an academic discipline, was founded to provide 

principles and tools resulting from scientific research to counteract these threats 

and preserve biological diversity (Soulé, 1985). Building on environmental 

movements, such as those responding to bird feather fashions of the late 1890s 

(Chapman, 1886; Doughty, 1975), and utilitarian de facto conservation, for 

instance, hunting preserves (Grove, 1992), the conservation ethic of the 20th 

century was consolidated in wildlife management. Although perspectives within 

conservation biology have changed, most recently in debates over fundamental 

principles, exemplified in conserving ecosystem services above biodiversity 

(Kareiva et al., 2011; Soulé, 2013), a defining quality of a crisis discipline remains 

that decisions need to be made before all the information is at hand (Soulé, 1985). 

Seven key gaps in biodiversity data were recently identified (Cardoso et al., 2011; 
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Hortal et al., 2015), two of which play crucial roles in a large number of 

conservation decisions and are at the crux of ecology: knowledge of species’ 

distribution and abundance (Ladle & Whittaker, 2011). 

 

2 The importance of distribution and abundance data in conservation 

decisions 

Given the shortfall in funding available to conserve biodiversity (McCarthy et al., 

2012), setting priorities is a fundamental part of conservation planning and 

management. This involves at least three basic questions (Redford et al., 2003; 

Game et al., 2013): What to focus conservation efforts on? Where to focus efforts? 

And, how to do this? An additional, and vital, follow up involves evaluating the 

effectiveness of the conservation process. With the exception of priority setting at 

the global scale (Brooks et al., 2006), all of these stages rely heavily on distribution 

and abundance data, either measured directly, or in surrogate form where data 

gaps exist (Table 2.1). The importance of the sub-global scale is that conservation 

management is usually implemented at this level. Resolving questions of what and 

where to conserve often include extinction risk assessment, value appraisals (e.g. 

biological, phylogenetic, economic or cultural) analyses of complementarity or 

irreplaceability, reserve selection mechanisms, priority area identification, and 

metapopulation models, among others (Pullin, 2002; Moilanen et al., 2009). 

 

The most widely used measure of species extinction risk is the IUCN Red List 

(Lamoreux et al., 2003; Rodrigues et al., 2006). Both distribution (range size) and 

abundance (population size and trends) represent the basic building blocks of 

species’ data for assessments (IUCN, 2001). In four of the five principal criteria, 

standardised thresholds of range or population size, in combination with other 

sub-criteria, are used to assess extinction risk directly. However, measuring 

population size reductions is far more data demanding than range size, and may be 

inferred from declines in area or quality of habitat (IUCN, 2001). The fifth criterion 

makes use of population data indirectly through population viability analysis and 

is used in a tiny number of taxa. IUCN Red List categories are an integral part of 

single species conservation programmes (IUCN/SSC, 2008),  area-based 

conservation priority setting schemes (Eken et al., 2004), multilateral 

environmental agreements (e.g. CITES, 1973), among others. 
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Alternative measures of extinction risk, based on population and occurrence 

data have also been developed. The much-debated Species' Ability to Forestall 

Extinction (SAFE) index is calculated by subtracting the logarithm of minimum 

viable population (MVP) size from the logarithm of population size to rank 

’distance from extinction’ among species (Clements et al., 2011). If MVP is set at a 

constant 5,000, then the index essentially ranks population size among species. 

However, the index, lacks aspects such as fluctuations in population size, 

fragmentation, and measures of population decline which are also symptoms of a 

species’ extinction risk (Akçakaya et al., 2011; McCarthy et al., 2011). Probabilistic 

methods of measuring extinction risk, based purely on sightings or occurrence 

records (e.g. from museum specimens) have also been developed (Boakes et al., 

2015). As well as shedding light on whether species are actually extinct or not (e.g. 

Solow et al., 2012), they provide methods of prioritising threat when data on range 

size and population are lacking, but museum specimens are present (Robbirt et al., 

2006). 

 

Many initiatives have attempted to prioritise sites for conservation as a 

preliminary step to establishing protected areas. As such, most schemes designate 

areas without an initial conference of protection status or commitment on the part 

of the landowner. Sites are typically identified at national or international level, 

based mainly on biological criteria, although their potential for conservation 

management is taken into account when delimited (e.g. current use, size and 

protection status). These initiatives may be taxon based (e.g. shorebirds: Myers et 

al., 1987; plants: Plantlife International, 2004; butterflies: van Swaay & Warren, 

2006; birds: Devenish et al., 2009; hoverflies: Vujić et al., 2016) multi taxa (all taxa: 

Eken et al., 2004; freshwater biodiversity: Darwall & Vié, 2005) or based on last 

remaining populations of highly threatened species (Alliance for Zero Extinction - 

AZE sites; Ricketts et al., 2005). Different methods exist amongst them, but 

generally follow a conservation planning framework of balancing vulnerability 

with irreplaceability (Margules & Pressey, 2000), both of which require 

distribution and abundance data at site and regional level. Typically, species are 

first assessed for vulnerability through extinction risk or a vulnerability inherent 

in their life cycle (e.g. migration bottlenecks, congregatory behaviour). Second, an 
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initial network of sites containing populations of these species above certain 

thresholds may be assessed for complementarity to ensure geographic and 

taxonomic representation. Finally, given that most are site-based initiatives, the 

feasibility of site management is a further important criterion (e.g. Myers et al., 

1987; Ricketts et al., 2005; Devenish et al., 2009). 

 

Table 2.1. Uses of abundance and distribution data in principal conservation planning schemes. 
Asterisks indicate which metric is the main focus of criteria where more than one is given. 
Parenthesis indicate optional criteria. Schemes marked + require more than abundance and 
distribution data. 

Conservation planning scheme 

Abundance Distribution 

Population 

trend 

Population 

size 
Range size 

Presence/ 

absence 

Extinction risk assessment     

IUCN Red List – Criterion A X*  X  

                          – Criterion B  X  X*  

                          – Criterion C X X*   

                          – Criterion D  X X  

SAFE index +  X   

Probabilistic (sighting records)    X 

Population viability analysis+  X   

Priority area identification     

Important Bird areas+ – Criterion A1  X  X 

                                          – Criterion A2   X* X 

                                          – Criterion A3    X 

                                          – Criterion A4  X   

AZE sites+ X X X X 

Reserve selection algorithms     

Marxan+, C-plan+  (X)  X 

Multilateral environmental 

agreements 
    

CITES X X X  

Ramsar  X   

CBD (2010/2020 targets)+ X X X  

EU Habitats & Birds directive X X X X 

Species /site management X   X 
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Multilateral environmental agreements to use abundance and distribution data 

include CITES, Ramsar and the Convention on Biological Diversity (CBD). CITES 

use criteria based on the IUCN Red List criteria to specify which species are 

included in Appendix 1 (CITES, 2013), which strictly regulates international trade 

in the listed species. The Ramsar Convention identifies wetlands of conservation 

importance, and includes criteria based on population numbers of congregatory 

and migratory birds (Ramsar, 2007). The Aichi 2020 targets of the CBD employ 

indicators based on abundance and distribution of threatened species (target 12; 

CBD, 2011). Other conservation planning mechanisms to use abundance and 

distribution data include minimum viable population analysis, harvest models, and 

metapopulation models (e.g. to prioritise sites), among many other local or 

national schemes and proposed mechanisms in the scientific literature. 

 

Conservation decision-making should be adaptive, responding to feedback from 

the system being conserved (McCarthy & Possingham, 2007; Lindenmayer & 

Likens, 2009). Population data from conservation targets, for example, collected 

through monitoring programmes for protected areas, is a direct information 

source to assess effectiveness of conservation programmes over time and guide 

site or species management plans (Hockings et al., 2006). Although such a 

mechanism is favoured within an evidence-based conservation management 

(Pullin & Knight, 2001), monitoring programmes are notoriously difficult to 

implement well (Legg & Nagy, 2006; Nichols & Williams, 2006), and published 

evidence of species population trends within protected areas is scarce (Geldmann 

et al., 2013). Notwithstanding, indirect evidence for the effectiveness of protected 

areas, ultimately based on population trend and range size data, comes from the 

Red List index. This indicator measures change in extinction risk across multiple 

species/taxa over time (Butchart et al., 2007). When applied to birds, mammals 

and amphibians with differing representation in protected areas, it showed that 

the general increase in extinction risk over the last two decades was significantly 

lower for those species with most coverage within protected areas (Butchart et al., 

2012). 

 

In some conservation planning mechanisms, distribution data is reduced to 

presence/absence information, either due to lack of abundance data, but also to 
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facilitate analysis (e.g. presence/absence data in reserve selection), especially at 

larger scales (e.g. species richness in hotspot identification; Myers et al., 2000). 

However, some recent studies have shown that abundance data may improve, or 

provide different results to presence/absence data (Johnston et al., 2015; Veloz et 

al., 2015). 

3 Research on species' distribution and abundance 

 

3.1 Defining the determinants of species’ distributions and abundance 

Determining the factors controlling species distribution and abundance has been a 

fundamental objective of ecology since its inception as a scientific discipline (Elton, 

1927; Begon et al., 2006). Such factors are often represented in a hierarchical, 

nested order, where distribution and abundance are first determined by responses 

to the environment (e.g. topography and climate), and then modified by biotic 

interactions and disturbance, among other factors (Figure 3.1a; Hutchinson, 1978; 

Wiens, 1992). The differentiation between these two (or more) types of factors has 

been varied, with several authors proposing different ways of categorising them, 

including whether they are biotic or abiotic, whether they are consumed by the 

species, or the spatial scale at which they are measured. Peterson et al., (2011) 

proposed a differentiation, following on from Hutchinson’s concept of the 

fundamental niche (Hutchinson, 1978), of whether factors are dynamically affected 

by a species. For those that are not, such as climate and topography, there is no 

density dependent process (e.g. consumption, predation) affecting them. These 

variables were termed scenopoetic by Hutchinson, from the Greek for ‘setting the 

scene’ and are typically, but not exclusively, large scale environmental factors 

(Franklin, 2009). The other set of variables are those that are dynamically linked, 

and include biotic interactions, such as competitors, predators, resources that are 

consumed and disturbance factors. When these are taken into account, then a 

subset of the fundamental niche is reduced to the occupied or realised niche 

(Figure 3.1b). Hutchinson originally described the realised niche as that which 

remains after a species is limited by competition from other species. This niche 

model has subsequently been expanded to include other factors, beyond 

competition, which influence species' observed distributions, such as niche width, 

habitat availability and dispersal (Pulliam, 2000). 
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The difference between types of factors influencing distribution is important, 

given that variables dynamically linked to a species’ population will require a 

different representation in mathematical modelling to those which are not linked 

(Peterson et al., 2011). However, most models of species distributions and, to a 

lesser extent, abundance, consider a ‘snap shot’ of a single time period, rather than 

attempting to approximate the true dynamic nature of distributions. The 

Hutchinsonian model of the niche, as an n-dimensional hypervolume, set at a single 

point in time, has become a standard representation within statistical modelling of 

niche relationships, including species distribution modelling. Nevertheless, there is 

disagreement as to whether that being modelled is a fundamental or realised niche 

(Araújo & Guisan, 2006). Complications arise as to the role of positive biotic 

interactions (e.g. mutualism) and dispersal in defining the realised niche. In fact, 

Araújo & Guisan (2006) question the usefulness of the fundamental and realised 

niche concepts for modelling and suggest reverting to the Grinnellian niche, as 

updated by Chase & Leibold (2003), as the environmental conditions allowing a 

species to persist where the species’ impacts on those conditions is taken into 

account. Debate will no doubt continue over how to define and represent those 

factors determining species’ distributions and abundance. Clearly stating the 

purpose and the expected conceptual outcome of a study will help clarify 

definitions. If the interest is in representing a species’ actual distribution at a given 

moment in time, then both linked and non-linked factors must be taken into 

account, and can be achieved at different scales (Pearson et al., 2004). 
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Figure 3.1. a) Factors and processes influencing the distribution and abundance of species. 
Individualistic responses to environmental factors are modified by other processes such as biotic 
interactions. Figure redrawn from Wiens (1992). b) Fundamental and realised niches in geographic 
(axes x, y) and environmental space (axes E1, E2). Figure redrawn from Peterson et al., (2011). 
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Research on niche relationships may be considered as ‘bottom-up’ (cf. 

mechanistic) or ‘top-down’ (cf. correlative), with the former representing 

individualistic, species-specific responses to niche axes, typically measured in the 

field or laboratory (Figure 3.1a) and the latter representing population level 

relationships between species occurrence points and gridded layers of niche axes, 

typically from remotely sensed data (Figure 3.1b). Ecological studies on the former 

make up a large body of research, for example, of small-scale ecological studies 

describing species-habitat relations (James et al., 1984; Wiens, 1992). Research on 

the latter, in the form of species distribution modelling has increased exponentially 

in the last 15 years (see below), with models increasingly used for conservation 

decision making (Guisan et al., 2013). An active area of current research aims to 

integrate such mechanistic approaches into species distribution modelling 

(Buckley et al., 2010; Kearney et al., 2010), including the use of more dynamically 

linked variables, such as biotic interactions and demographic data (Trainor & 

Schmitz, 2014; Pletterbauer et al., 2016). Further areas of development include 

combining different spatial scales (McGarigal et al., 2016) and temporal scales, 

including factors such as migration, dispersal, and historical events (Franklin, 

2010; Génard & Lescourret, 2013). 

 

3.2 Defining and delimiting species ranges 

Defining and delimiting a species’ range is not an easy task. For most purposes (e.g. 

atlases, IUCN Red List categorisation), a complex spatial and temporal pattern is 

reduced to an irregular two-dimensional outline (Brown et al., 1996; Fortin et al., 

2005). Mapping ranges this way reduces the range edge, a dynamic space of 

repeated colonisation and local extinction of huge evolutionary importance 

(Sexton et al., 2009), to a binary threshold. Furthermore, such two-dimensional 

polygons (e.g. Extent of Occurrence, see below) are typically based on species 

occurrence points (or occupied grid squares), but without qualification of the 

frequency of occurrence or demographic rates associated with them. As such, an 

occurrence point may represent a regular occurrence, a vagrant record, from a 

population in decline or growth. In demographic terms, a species is delimited 

within an area where its growth rate exceeds zero (Lawton, 1993; Holt et al., 

1997), provided that the species is not in decline. However, such a definition 

requires much more data to map the range than one based on occurrence records. 
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Currently, two approaches are used to map range sizes as polygons for IUCN 

extinction risk assessments: Extent of Occurrence (EOO) and Area of Occupancy 

(AOO; Gaston, 1991; IUCN, 2001). EOO and AOO can be seen as different scales of 

measuring range size, with EOO as the geographical space encompassed by the 

outermost bounds of all locality records at one end of the scale, and AOO as the 

actual space used by a species within those limits at the other extreme (Maurer, 

1994). Alternatively, the AOO may be considered as the sum of individual home 

ranges. Each method has different implications, and each is suited to different 

applications. For example, EOO can be useful in assessing the vulnerability of a 

species to threats across its entire range, including all subpopulations (IUCN, 

2016), whereas AOO is more suited to ecological analyses, where habitat 

occupancy is an important factor (Gaston, 1991). 

 

3.2.1 Measuring Extent of Occurrence 

The simplest way of measuring EOO is to draw around the outer bounds of locality 

records of a species’ occurrence. The IUCN uses a definition (IUCN, 2001) based on 

the shortest continuous boundary drawn to encompass all the known, inferred or 

projected sites of present occurrence of a taxon, often measured as a minimum 

convex polygon. Further refinements can be made by changing the method of 

joining the occurrence points or using techniques giving similar techniques, for 

example, alpha hulls, merged buffers surrounding each point, kernel density 

methods or non-linear regression (Rapoport, 1975; Fortin et al., 2005). According 

to the IUCN definition, EOO can exclude discontinuities in the species’ distribution 

(IUCN, 2016), but is not recommended when EOO is used to assess the impact of a 

single threatening process over the entire range of species. 

 

3.2.2 Measuring Area of Occupancy 

This measure is based on the occupancy of habitats by a particular species and is 

necessarily a subset of EOO. However, calculating AOO depends very much on the 

scale at which occupancy is measured. AOO can be a sum of the number of 

localities where the species is found, or more commonly, the number of grid cells 

occupied across an area of interest encompassing the range of the species. The 

IUCN has attempted to standardise the measurement of AOO by defining it as the 

area within the EOO occupied by a taxon (IUCN, 2001). A recommended scale at 
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which to measure occupancy of grid cells across the EOO has been set at a size of 

2 km (4 km2) for many taxa (IUCN, 2016). 

 

Mechanisms controlling the limits of species ranges are intrinsically linked to 

those controlling distribution and abundance (see above). These include physical 

barriers, such as coastlines, rivers and mountains; climate factors, such as 

gradients of precipitation and temperature; habitat factors (mainly for animal 

species); biotic factors such as interspecific relations (e.g. competition, predation, 

mutualism, parasitism) and dispersal ability (Gaston, 2003; Sexton et al., 2009). A 

further major impact on current range sizes is human activity, this may be direct 

(e.g. resource exploitation, land use change) or indirect (anthropogenic climate 

change, introduction of non-native species). Functionally, the above factors can be 

seen as either limiting dispersal to unoccupied areas or representing environments 

for which adaptation is limited (Eckhart et al., 2011).  

 

3.3 Inside ranges: patterns and drivers of abundance 

That species' densities are heterogeneous across their ranges is well established 

(e.g. Grinnell, 1914; Klomp, 1963; Hengeveld & Haeck, 1981; Brown et al., 1995; 

Sagarin et al., 2006). Species tend to have low abundances throughout most of 

their range, but with small areas of high density, i.e. a positively skewed 

intraspecific abundance distribution (Gaston, 1990; Brown et al., 1995; McGill & 

Collins, 2003). How the peaks of abundance are spatially distributed remains a key 

question for research, with important implications for evolutionary studies and 

conservation science. The most widely described pattern of abundance 

distributions is the ‘abundant centre hypothesis’ (Rapoport, 1975; Brown, 1984; 

Hengeveld, 1990) which suggests that species have greater abundances in the 

centres of their ranges than at the range margins. The hypothesis encompasses 

both unimodal and multimodal distributions (Brown, 1984, 1995; Hengeveld, 

1990; McGeoch & Price, 2004), in the sense that abundance may have one or 

multiple peaks, but within a central region (Figure 3.2a). 
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Theoretical frameworks describing patterns in species’ local abundances rely on 

correlations with underlying environmental variables. The optimum surface 

model, as consolidated by Hengeveld and Haeck (1981), describes the relationship 

between a species' occurrence and spatial trends in environmental variables. As 

relationships are not necessarily linear, complex variation in local abundance 

across a species' geographical range can be expected. Similarly, Brown (1984) 

described the ‘abundant centre’ pattern as a reflection of local abundance, 

determined by species’ responses to local conditions meeting niche requirements. 

Additionally, metapopulation models predict that local abundance is positively 

correlated with the number of patches occupied (Lawton, 1993) so if the number 

of patches occupied decreases with increasing distance from the range centre 

(Figure 3.1c), then a concomitant reduction in density would be expected. Despite 

theoretical grounding for the above hypothesis (Brown, 1984; Guo et al., 2004), 

there is general acknowledgement that it is an oversimplification, too reliant on 

geography rather than species’ ecology and the spatial patterns of responses to 

environmental conditions (Lawton et al., 1994; Sagarin & Gaines, 2002; Sagarin et 

al., 2006). Further, there are many examples of species that do not conform to this 

pattern (Sagarin & Gaines, 2002; Gaston, 2003; Samis & Eckert, 2007). Factors that 

may alter the general pattern predicted by the abundant centre hypothesis can 

include the shape of ranges, particular barriers, or 'sharp' edges to ranges (e.g. 

mountain ranges, coasts), and biotic interactions, such as competition (Brown, 

1995).   

a

. 
b

. 

c

. 

Towards range edge 

Figure 3.2. Depiction of spatial variation in species' density, a) across a model species 
range; across a section from the centre to edge in terms of b) average density, and c) real 
density. After Figure 1 (Klomp, 1963) and Figures 67 and 68 (Rapoport 1975), 
respectively. 
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Drivers of variation in abundance across a species’ range come from a range of 

factors acting at different scales (see above; Pearson & Dawson, 2003; Guisan & 

Thuiller, 2005), to which, anthropogenic factors are occasionally added separately 

(e.g. Smith, 1868; Yackulic et al., 2011). The spatial pattern of these factors, 

including, for example, autocorrelation of environmental variables, will show 

through in patterns of local abundance. Several authors have investigated the 

pattern in the spatial autocorrelation of density as distances increase between 

sites (Brown et al., 1995; Brewer & Gaston, 2003; McGeoch & Price, 2004). A 

commonality is that significant autocorrelation exists at small distances between 

density estimates. However, at larger distances, relationships become less clear, 

with only some studies showing autocorrelation, which Brown et al (1995) 

attribute to similarly low densities of species occurring at the range margins. 

 

3.4 State of knowledge and limitations of occurrence and abundance data 

Knowledge of biodiversity is of course incomplete. For many extant species, their 

numbers and distribution will never be known (May & Beverton, 1990), not to 

mention all those that are now extinct (Erwin, 2008). A lack of knowledge of seven 

key aspects of biodiversity information (taxonomy, distribution, abundance, 

evolution, function, response and interaction) has been cited as one of the current 

challenges of conservation biology (Hortal et al., 2015). For the conservation 

biologist, this shortfall is confounded further by the fact that less information 

exists precisely where it is needed most, in the most biodiverse, and threatened 

areas of the planet (Meyer et al., 2015), such as the Neotropics. 

 

In contrast, more data are now available on bird occurrences than ever before, 

as a result of online initiatives to collect new data and through making historic 

data available (Graham et al., 2004; Soberón & Peterson, 2004). Historic 

occurrence data, mainly from museum specimens, is widely available, albeit with 

some issues of quality, taxonomy, ease of use and completeness (Graham et al., 

2004). Although the Global Biodiversity Information Facility data (GBIF; 

www.gbif.org) was found to be a useful source of information on invertebrate 

species’ ranges, manual collation of data from literature and museums was more 

effective (Beck et al., 2013). VertNet (Constable et al., 2010) goes a long way to fill 
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this role for vertebrates, including birds, but still lacks completeness due to 

absence of some museums, or incomplete data provided by some participants. 

eBird is the largest of several online observation recording systems focused 

entirely on birds (Sullivan et al., 2009, 2014). By mid-2013, more than 140M 

records from 150,000 observers had been accumulated in the decade since the 

project was started. However, the data set remains geographically biased towards 

north America, where its target recorders –birdwatchers– are most active 

(Sullivan et al., 2014). 

 

Fewer data exist on species population sizes or abundance than on occurrence, 

especially in the Neotropics. Long term data sets, such as the Breeding Bird Survey 

in north America (50 years of data in 2016 representing over 100,000 surveys; 

Downes et al., 2016) and Europe (18 country surveys by 2003, with the earliest 

from 1980; Gregory et al., 2005) are used to monitor population trends. However, 

comparable data sets are not available for the Neotropics. The longest term data 

sets are likely to be the Christmas Bird Counts lead by Audubon Society (since mid 

1980s at > 50 sites; Pashley & Martin, 1988; Boyle & Sigel, 2015) and Neotropical 

waterbird Census, organised by Wetlands International (average of 300 sites per 

year in 9 countries since 1990; Blanco & Carbonell, 2001; López-Lanus et al., 

2005). However, data, especially from the earlier years are patchy, and coverage is 

low compared to the size of the region. The Living Planet Index is a global database 

of species population time series for vertebrates, extracted from literature and 

unpublished reports (Loh et al., 2005). Currently, the database holds over 6,500 

records of terrestrial species, of which, 66% are from North America and Europe. A 

total of 533 records are from Latin America, of which just 18 (five from birds) are 

from Ecuador and Peru, from just five sites (LPI, 2016). 

 

Occurrence data for birds has been used to produce Extent of Occurrence range 

maps for all extant species (BirdLife International & NatureServe, 2012) which are 

used in conservation assessments. The more complete nature of this data set, 

compared to that on population sizes, has placed greater reliance on range size to 

determine relative extinction risk (Gaston, 2003). However, such measures of 

range size have certain limitations, related to bias or errors in the original 

occurrence points, the method used to draw the range, and the frequency with 
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which it is updated. Museum and observer records may be geographically biased 

towards areas of greater accessibility or interest, e.g. near roads or within 

protected areas; may be taxonomically biased against rarer species; may have 

georeferencing errors, and may be affected by historical events, such as military 

conflicts (Hijmans et al., 2000; Graham et al., 2008; Hortal et al., 2008; Newbold, 

2010). How range maps are drawn will affect errors of omission and commission 

with respect to species occurrences, especially with respect to excluding 

discontinuities within a range (IUCN, 2016). Extent of Occurrence maps have been 

shown to overestimate ranges in a study with more than 1000 bird species (Jetz et 

al., 2008). Another study found both overestimation and underestimation of 

species occurrences in a control data set when compared to EOO maps adjusted for 

suitable habitat (Beresford et al., 2011). It is important that EOO data is used 

cautiously in conservation planning, and that coarse resolutions are not used for 

fine-scale solutions (Rodrigues, 2011). An estimation of both omission and 

commission errors from occurrence data could provide an important additional 

component of conservation planning (Rondinini et al., 2006). Lastly, using 

overlapping species range maps to determine spatial patterns of functional traits 

assumes that a particular trait, e.g. body mass, is unrelated to abundance, which 

varies across a range. Although one study found mostly positive correlations 

between methods adjusting for abundance and those that did not, relationships 

were weak for some traits. The authors conclude that local abundance data are 

urgently needed to provide better estimates of functional diversity (Newbold et al., 

2012).  

 

Abundance, that is, measures of individuals per unit area, rather than 

population counts, are less common still. A recent literature survey found 

abundance data for only 25% of 356 parrot species, of which only 22 species had 

estimates from more than a single study (Marsden & Royle, 2015), and multiple 

density estimates, allowing comparison across space or time, in only 23% of 

species. This is concerning given the spatial variation in abundance over the 

geographical range of a species (Brown et al., 1995); single, or few estimates over 

large ranges (e.g. > 50,000 km2), are not likely to be representative. The Red List 

relies on abundance estimates, as part of most criteria (see above; IUCN, 2001), but 

allows population decline to be inferred from reduction in habitat area. Given the 
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lack of detailed information on population trends in South American birds, range 

loss, especially as a surrogate for population decline, has acquired greater 

importance in quantifying degree of threat in the region. For instance, of the 121 

threatened birds in South America classified under present or past population 

change (i.e. IUCN criteria A1, A2, A4), 98 were inferred from measures such as 

range loss rather than directly from population decline (IUCN, 2015). Furthermore, 

threat categories for 40% of all globally threatened birds in 2004 were classified 

based on ‘poor’ quality data, that is, population size and trend was based on 

qualitative but not quantitative data (Butchart et al., 2005). 

 

Use of remotely sensed data and habitat change models are increasingly used in 

conservation and recent studies have linked changes, or projected changes, in 

forest cover to extinction risk (Buchanan et al., 2008; Bird et al., 2011; Tracewski 

et al., 2016). However, despite the biological and conservation importance of dry 

forests, these habitats remain relatively little studied, both in terms of flora and 

fauna (Linares-Palomino, 2006; Pizano & García, 2014) and with regard to using 

remote sensing to detect changes (Hesketh & Sánchez-Azofeifa, 2014), especially 

compared to other forest types. Despite recent advances in global, fine resolution, 

deforestation data sets (Hansen et al., 2013; Chen et al., 2015), coverage of dry 

forest is often inadequate due to dry forest not qualifying within the ‘forest’ 

definitions employed, as well as general difficulty in the supervised classification of 

this type of habitat. Dry forest has been mapped with MODIS data (Miles et al., 

2006), but to date, a global data set of change in dry forest cover has not been 

produced. 

 

3.5 Tools for modelling species' occurrence 

In species distribution models (SDM), a species’ occurrence is predicted  from its 

response to variation in multiple environmental factors through a statistical 

relationship. Due to the scarcity of data on species’ absences (and the difficulty of 

defining certain absences; Peterson et al., 2011), methods focus on using presence-

only data, that is, records of species’ known occurrences. Environmental values at 

presence points are compared to a random background sample or from values at 

‘pseudoabsences’ (selected from areas of non-presence) to produce a relative 

probability of occurrence (Guisan & Zimmermann, 2000). 
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Figure 3.3. Increase in use of  species distribution modelling 1995 – 2015, as the total number of 
publications, and those referencing ‘Maxent’ or ‘Ensemble’ in the title, abstract or keywords and 
those citing the WorldClim data base in references. 

 

The contribution of species distribution models to the ecological literature has 

increased exponentially over the last 20 years, in part, due to the improved 

accessibility of species’ occurrence data (see above), gridded predictors, and 

software (Figure 3.3). Remotely sensed data, such as global gridded climate layers 

(Hijmans et al., 2005), digital elevation models (e.g. SRTM, Aster), vegetation 

indices (e.g. from MODIS or Landsat) have recently been made available globally 

(e.g. Landsat archive freely available since 2008, with pre-processed vegetation 

indices since 20151). Additionally, many national data sets, including land use and 

cover, geology and soils have recently become available (e.g. through national 

military geographical institutes in Colombia, Ecuador and Peru). Dedicated 

software for species distribution modelling has proliferated over the last 10 years, 

with user-friendly, standalone software, such as Maxent, used in half of all 

publications (Phillips & Dudík, 2008; Figure 3.3), and openModeller (de Souza 

                                                             
1 http://landsat.usgs.gov//high_level_science_data_access.php 
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Muñoz et al., 2011), several R packages (e.g. dismo: Hijmans et al., 2016; biomod2: 

Thuiller et al., 2016), and GIS plugins (e.g. SDMtoolbox for ArcGIS2, DIVA-GIS). 

Methods for species distribution modelling fall into broad categories including 

statistical regression methods (e.g. Generalised Linear Models, Generalised 

Additive Models), machine learning techniques (e.g. Boosted Regression Trees, 

Random Forests, Maximum Entropy), and bioclimatic envelope methods (e.g. 

bioclim, Mahalanobis distance; Franklin, 2009). Ensemble methods have been 

proposed to combine results from different methods, in part due to lack of 

consensus on which method performs best (Araújo & New, 2007). Critical 

decisions within the modelling process include choosing the modelling method 

itself (Elith et al., 2006), defining the size of the study area (Barve et al., 2011); 

selecting the number and location of pseudoabsences or background points 

(Barbet-Massin et al., 2012); selecting predictor variables (Parra et al., 2004; 

Peterson & Nakazawa, 2007); defining the resolution of the model (Guisan et al., 

2007); choosing the evaluation metric (Fielding & Bell, 1997; Allouche et al., 2006; 

Lobo et al., 2008); and selecting an occupancy threshold, if a binary 

presence/absence map is required (Liu et al., 2013). 

 

Species distribution models can be traced back to studies of habitat suitability 

and resource selection functions (Scott et al., 2002). Since then, their purpose has 

diversified on a par with their increased use in ecology and models are now 

frequently used in conservation planning and decisions (Guisan et al., 2013; 

McShea, 2014). Examples from the Neotropics include: guiding field expeditions to 

find new populations (Ferreira de Siqueira et al., 2009); conservation planning 

(e.g. Fajardo et al., 2014); predicting changes in distribution resulting from climate 

change (e.g. Ramirez-Villegas et al., 2014); range reductions (Ferrer-Paris et al., 

2014); assessing range sizes for extinction risk assessment (Syfert et al., 2014); 

species reintroductions (Hendricks et al., 2016), and assessment of non-native 

species (Devenish & Arzuza, 2007). Recently, research using species distribution 

models has focused on the internal structure of species ranges, including how 

spatial variation in probability of occurrence is related to changes in abundance 

across a range (e.g. Legault et al., 2013). Of at least 20 research papers on this 

                                                             
2 http://sdmtoolbox.org/ 
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topic, the overwhelming majority conclude that a significant positive relationship 

exists between modelled occurrence and abundance (see full review in Chapter 5). 

 

3.6 Tools for measuring abundance 

To date, most methods to count animal populations involve large investments of 

time and effort in the field. To minimise costs, indices of abundance (e.g. encounter 

rates, or counts using a standardised field protocol) are often used instead of 

actual abundance (e.g. density of individuals per unit area or total population size). 

However, comparing such indices over space (e.g. between habitats) or over time 

may lead to inaccurate inferences by not taking into account variations in 

detectability (Buckland et al., 2008). Such variability primarily depends on 

distance from the observer, but also, on species traits (e.g. frequency and 

amplitude of vocalisations changing between seasons), habitat characteristics 

changing over space (e.g. dense or open habitat) or differential experience 

between observers (Marques et al., 2007; Johnston et al., 2014). If measuring 

detectability is not incorporated into the study design, then either detectability 

must be assumed to be homogeneous across the study, or all individuals must be 

counted (e.g. spot mapping). Neither of these is easy to ensure (Buckland et al., 

2008). Over the last 20 years, Distance sampling, has become one of the most 

widely used methods to estimate animal abundance. Despite being most popular in 

North America and Europe, approximately 10% of studies have been from the 

Neotropics over recent years (Figure 3.4; Thomas et al., 2010). In recent survey of 

density estimates of parrots worldwide, Distance sampling was found to be the 

method of choice for 84% of all the density estimates (Marsden & Royle, 2015). 

 

Figure 3.4. Increase in publications using Distance sampling to measure abundance 1995 – 2015, 
showing proportion of studies in Neotropical realm. 
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Distance sampling (Buckland et al., 2001; Thomas et al., 2010) is an extension of 

line transect abundance estimation (e.g. Emlen, 1971) where a correction factor is 

introduced to account for the expectation that objects at greater distances from the 

transect line are less likely to be detected (Buckland et al., 2001). The fundamental 

concept in distance sampling is the incorporation of an estimate of the proportion 

of objects detected into the calculation of the density estimate. For example, in 

strip transect sampling where all objects, n, within a specified distance, w, from the 

transect line of total length, L, are counted, then the estimate, �̂�, of the population 

density, D, is given by 

 

�̂� = 
𝑛

2𝑤𝐿
 

 

Incorporating an estimate of the proportion of objects detected (probability of 

detection), �̂�𝑎 , gives 

 

�̂� = 
𝑛

2𝑤𝐿�̂�𝑎

 

 

The detection function, g(x) is the probability of detecting an object at distance, x, 

from the transect line, which generally decreases with increasing distance from the 

transect line. A critical assumption of distance sampling is that objects on the line 

are always detected, that is, g(0) = 1 (Buckland et al., 2001). The detection function 

can be estimated from the probability density function rescaled to 1, f(x) of the 

detection distances. Then 

�̂�𝑎 =   
�̂�

𝑤⁄ , where �̂� =  1
𝑓(0)

⁄  

The effective strip width, 𝜇, is the distance from the transect at which as many 

objects are detected beyond 𝜇 as missed within 𝜇 (Thomas et al., 2002). 

 

Critical decisions in a distance sampling study include choice of transects or 

point counts (may depend on habitat, and cost-efficiency); site selection (e.g. 

stratified or random sampling design; Buckland et al., 2001); placement of 

transects or points (e.g. on tracks or paths; Española, 2013); obtaining accurate 

distance measures (Alldredge et al., 2007); model selection and whether to model 

detection functions separately per species/site (e.g. dependent on quantity of data 

and availability of covariates; Marques et al., 2007). Recent developments have 

incorporated spatial models of density into distance sampling (Hedley & Buckland, 
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2004; Miller et al., 2013), allowing density surfaces to be created, conceptually 

similar to modelling density with environmental predictors. Such methods, as with 

those relating occurrence models to abundance (see above), are able to reduce 

survey costs by interpolating density values across non-surveyed areas. In further 

integrations with GIS, spatial data can also be managed directly within Distance 

software since version 6.0 (Thomas et al., 2010). Both density surface modelling 

and regular distance sampling are currently being developed as R packages. 

 

4 Study area - Tumbesian region of Ecuador and Peru 

 

4.1 Conservation importance of the Tumbesian region 

Biological diversity is, of course, not evenly distributed over the planet (Kleidon & 

Mooney, 2000; Grenyer et al., 2006). Where the most biodiverse areas coincide 

with peaks of current anthropogenic pressures (mostly tropical, less developed 

areas), hotspots have been defined to focus biodiversity conservation (Brooks et 

al., 2002; Myers, 2003). South America contains eight biodiversity hotspots (Myers 

et al., 2000; Mittermeier, 2004), occupying 30% of the continental area, the largest 

proportion of all continents. Hotspots in South America represent 23% of the total 

hotspot area in 12% of the planet’s area. Threatened species are also unevenly 

distributed throughout the continent (Beissinger et al., 1996), concentrated in 

certain areas, such as the Tropical Andes in the north of the continent, the Cerrado 

and Atlantic Forest in Brazil, and the Tumbes region on the Ecuadorian and 

Peruvian border (Collar et al., 1997; Devenish et al., 2009). Since the beginnings of 

systematic assessment of extinction risk in birds across the South American 

continent (Collar et al., 1992), more than 10% of species have been threatened 

with extinction (BirdLife International, 2015), with the degree of threat increasing 

over this period (Devenish, 2012). 

 

The Tumbesian Endemic Bird Area (EBA), a lowland coastal region, straddling 

the Ecuadorian-Peruvian border (Figure 4.1a), is a global priority for conservation 

(Stattersfield et al., 1998), lying within the Magdalena-Chocó-Tumbes Biodiversity 

Hotspot (Mittermeier, 2004). The latter designation, by definition, implies that the 

area has lost more than 70% of its natural habitat. The study area also includes 

two priority habitats within the Global 200 ecoregions (Olson & Dinerstein, 2002). 
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In a Latin American forerunner to the global ecoregion analysis, the conservation 

status of the Ecuadorian Dry Forests and Tumbes/Piura Dry Forests was classified 

as Critical and Endangered, respectively. Together, these two ecoregions were 

included in the highest categories for both biological distinctiveness and 

conservation priority as part of the same analysis (Dinerstein et al., 1995). The 

Tumbesian region stands out among EBAs as holding one of the largest numbers of 

restricted-range species (4th in the world). Of the 55 species restricted to this EBA, 

18 are globally threatened (Stattersfield et al., 1998; Devenish et al., 2009). 

 

 

Figure 4.1. Northwest Peru in the context of a) priority conservation designations and b) Cracraft’s 
areas of endemism. From Cracraft (1985). 

 

The Tumbesian area is of great evolutionary importance in South America, 

representing a centre of endemism and dispersal for fauna (Chapman et al., 1926; 

Cracraft, 1985) as well as having a high proportion of evolutionary distinct species 
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(Jetz et al., 2014). In his seminal work, Chapman  (1926), attempted to characterize 

bird distributions in Ecuador, with a view to clarifying evolutionary patterns. 

Based on a classification of elevational life zones populated by unique bird species, 

Chapman defined an Equatorial Arid zone, representing a transition area between 

the more humid forests of northwestern Ecuador and the deserts of Peru. 

Subsequently, Cracraft (1985), building on work by Müller (1972), defined the 

‘Tumbesian Center’ as one 33 areas of bird endemism in South America, with 

geographical scope similar to the present day definition of the EBA (Figure 4.1b). 

 

4.2 Geography of the Tumbesian region 

The Tumbesian region is sandwiched between the Andes and the Pacific coast and 

represents a transition zone between one of the wettest places (Chocó rainforests 

of the Colombian Pacific coast) and one of the driest places on earth (Atacama 

desert in South Peru and Chile). The cold Humboldt current running northwards 

up Peru’s coast until close to the Ecuadorian border, together with the north-south 

Andean range, are largely responsible for an abrupt change in precipitation 

patterns, and thus, the region’s terrestrial ecosystems (CDC, 1992; Kricher, 2008). 

The cold current is also responsible for an almost permanent layer of cloud and fog 

over the drier, southern part of the region, providing humidity, although there is 

virtually no precipitation in the south (Ferreyra, 1983). The region has a single wet 

season in the north, approximately from December to May, with practically no rain 

at other times of the year (Figure 4.2a). Temperature is slightly higher during the 

wet season (CDC, 1992). Precipitation, and temperature, show a decreasing north-

south gradient in the lowland plains (Figure 4.2a,b), with average annual 

precipitation in Tumbes at 45.6 mm (range: 0.4 – 139.8 mm), and in Ancash, 

approximately 650 km to the southeast, at 0.5 mm (range: 0.01 – 2.0 mm). 

Similarly, annual average temperature in Tumbes is 25.5°C while Ancash is 21.6°C 

(SENAMHI, 2013). A west-east gradient in temperature and precipitation also 

exists, with increasing elevation over the Andes. Temperature decreases with 

height, and precipitation increases, although, even the higher western slopes of the 

Andes in the study region are much drier than the corresponding eastern, 

Amazonian, slopes (Figure 4.2). The region is also strongly impacted by the El 

Niño–Southern Oscillation phenomenon. El Niño is defined by an anomalous 

warming of the Pacific Ocean around the equator, to the west of Peru, caused by a 
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break down in the high-pressure system approximately every 8-15 years (CDC, 

1992; Hanley et al., 2003). Its major impact is an increase in precipitation and 

temperature over northern Peru, with considerable impact on the region’s 

economy, livelihoods and biodiversity (Rodríguez et al., 2005). Cycles of traditional 

agriculture, forest growth (Ektvedt et al., 2012), and possibly bird populations, are 

all dependent on this climate phenomenon. Strong El Niño phenomena occurred 

most recently prior to fieldwork in 1982-83 and 1997-98. 

 

 

 

 

Figure 4.2. Variation in a) precipitation, b) temperature, and c) elevation across the study area, north Peru. 

 

c. a. b. 
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Peru’s northern coast has a long history of human exploitation, boasting the 

oldest civilisation in the Americas at Caral, established some 5000 years ago (Solis, 

2006). Since this time, irrigation and farming have constantly changed the 

landscape: from the early beginnings of farming on the continent at Caral to large-

scale, permanently irrigated cropland just before the Spanish Conquest (Netherly, 

1984; Haas et al., 2004; Dillehay et al., 2005). As a result of the expansion, and 

collapse of human populations due to earthquakes, historic climate change and El 

Niño events (Sandweiss et al., 2009; Beresford-Jones et al., 2011), areas of dry 

forest –habitat to the birds of this study– have been lost to agriculture, and 

subsequently recovered during these millennia (Hocquenghem, 1999).  

a. 

e. 

d

. 
c. 

b

. 

f. 

Figure 4.3. Vegetation on Peru’s north coast. a) Looking over the vast area of scrub forest 
in eastern Piura (e.g. site 11, see Chapter 3); b) desert scrub (site 22); c) dunes and coastal 
desert scrub (site 16); d) lower montane dry forest (site 2); e) Lowland savannah forest 
(site 3); Lowland savannah forest – wet season (site 9). See Figure 2.1 (Chapter 3) for key 
to sites. Photos, a-e: C. Devenish; f: E. Nuñez. 
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Furthermore, ecosystems in the region are naturally fragmented, with large 

patches of desert and low scrub between more fertile river valleys with seasonal 

dry forest (Figure 4.3, Figure 4.4). Vegetation gradients from forest to low desert 

scrub run east-west, with increasing distance from the Andes, and away from the 

rivers (north-south, south-north) coming down from the Andes. Plant richness 

increases towards the equator and with increasing elevation (Tarazona Reyes & 

Proyecto Algarrobo, 1998). However, endemism is equally high in both lowland 

and montane dry forests, with 19 of 103 and 36 of 193 species endemic to these 

forest types, respectively, across Ecuador and Peru (Linares-Palomino, 2006). 

Characteristic woody species of the equatorial lowland seasonal dry forests 

(Figure 4.3a, e, f) include spiny Acacia trees and scrub, Acacia sp., trees of the 

mesquite family, Algorrobo Prosopis sp., the green-barked Palo Verde Parkinsonia 

sp., Sapote and Bichayo Capparis sp., Overo Cordia lutea and cactus in drier areas, 

e.g. Armatocereus cartwrightianus. Species composition and structure changes with 

elevation, with larger trees present in montane dry forests (Figure 4.3d), such as 

Gualtaco Loxopterygium huasango and Palo Santo Bursera graveolens (Ferreyra, 

1983; Linares-Palomino, 2006). 

 

Although habitat is naturally fragmented, the wider Tumbesian area, to which 

northwest Peru belongs, has suffered massive deforestation and is considered one 

of the most severely threatened areas on earth in terms of biological extinction 

(Dodson & Gentry, 1991). Less than 5% of the original forest is estimated to 

remain in the Tumbes region (Best & Kessler, 1995). Currently, north Peruvian dry 

forests have one of the highest rates of conversion to agriculture in South America 

(Jarvis et al., 2010), with selective logging for charcoal production (Figure 4.5), 

firewood gathering (Ektvedt, 2011), and grazing also among the main threats (Best 

& Kessler, 1995; More, 2002; Linares-Palomino, 2006; Flanagan et al., 2009). All of 

these pressures are associated with the high accessibility to the dry forests in 

north Peru (Jarvis et al., 2010) due to high human population densities in cities and 

important road networks along the coast. Major transport routes not only connect 

coastal cities, but also Lima to Andean cities in the north. Habitat alteration and 

destruction comes both from large-scale industrial plantations (e.g. fruit and 

vegetables for export) encouraged by national and regional governments, and local 

scale, traditional farming. Several projects exist or are planned, to bring water 
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through the Andes in tunnels to irrigate vast areas of desert scrub (see Chapter 3; 

ECSA Ingenieros, 2011; Gobierno Regional de Lambayeque, 2016). Mineral 

resource exploitation, such as oil and gas exploration and mining are also threats 

to biodiversity (Flanagan et al., 2009; Jarvis et al., 2010). Legal mining impacts 

biodiversity at large-industrial scales and informal, small-scale mines, often 

lacking in adequate mitigation measures. Additionally, illegal mining, and illegal 

industries associated with resource exploitation such as informal oil refining and 

smuggling represent further, unregulated threats.  

 

 

Figure 4.4. Vegetation over the north Peru coast. a) Categories of land cover and use under 500 m 
elevation (MINAM, 2012); b) Maximum Normal Difference Vegetation Index, showing greatest 
extent of vegetation (including crops) during 2013. 

 

Protected area coverage in the region is poor, both geographically (in northwest 

Peru), and by ecosystem type (in dry forest). A 2008 study estimates that just 5% 

of the remaining 55,000 km of seasonally dry forest from the Equatorial region is 
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protected (Linares-Palomino et al., 2009). National protected areas in the region 

with significant areas of lowland dry forest are Santuario Histórico Bosque de 

Pomac, Illescas Reserve (currently pending final category) and Coto de Caza Los 

Angolos (Figure 4.6). Pomac, at just 58 km2, is currently the largest single extent of 

protected lowland dry forest in the region. New protected areas have recently been 

designated at regional level by Piura and Lambayeque local governments (e.g. 

Gerencia de Recursos Naturales del Gobierno Regional de Lambayeque, 2009), but 

both these areas, and projects to identify priority areas (e.g. More Cahuapaza et al., 

2014) tend to focus on foothill regions rather than dry forest on the plains. 

However, a process to designate a further dry forest regional protected area at 

Talara, Piura is underway. Other conservation initiatives include designation of 

Important Bird Areas and Alliance for Zero Extinction sites (Figure 4.6), some of 

which have been important precursors of regional protected areas (Angulo, 2009).   

 

Figure 4.5. The informal charcoal industry is a major cause of habitat destruction in Peru´s dry 
forests. a) Algarrobo Prosopis sp. trees are targeted; b) Only the larger trunks and branches are 
used. c) Charcoal production is also a fire risk to the rest of the forest. d) Carbon is transported as 
far as the capital Lima, for use in restaurants. Photos: C. Devenish. 

 

 

 

a. b. 

c. d. 
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Few resources are available for the management of protected areas in Peru. 

Encroachment into the region’s only national park, protecting lowland dry forest, 

occupied almost a third of its area over a period of years, with a village and 

farmland established during this time. Biodiversity conservation on the coast is 

necessarily a social and economic problem, where often small scale use of 

biodiversity is part of subsistence livelihoods in isolated communities, lacking in 

basic services (Hocquenghem & Dammert Ego Aguirre, 1999; Linares-Palomino, 

2006). 

 

 

  

 

Figure 4.6. Protected areas, Important Bird 
Areas (IBAs), Alliance for Zero Extinction (AZE) 
sites in south Ecuador and north Peru.  
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4.3 Study species 

A subset of the Tumbesian EBA restricted-range species are mostly found in the 

drier lowland forest or scrub habitats, corresponding to a decreasing elevational 

and latitudinal gradient in precipitation (Figure 4.2). These species have most of 

their distributions in northern Peru (typically > 50% of total range) where these 

habitats dominate, and are generally found below an elevation of 500 m above sea 

level (Ridgely, 2001; Schulenberg et al., 2007; Figure 4.7, 4.8). Although some of 

these species are known to exceed this elevation (Table 4.1), the majority of their 

distributions are below this limit. An additional factor to choosing species was to 

include both species of conservation interest and common species. Several Tumbes 

species have sister species in the Marañon valley, Peru (Chapman et al., 1926) 

whereas others remain at subspecies following current taxonomy (Remsen et al., 

2016). For this study, geographically isolated subspecies, on Isla de la Plata, 

Ecuador (Mimus longicaudatus platensis) and in the Marañón valley (Phaeomyias 

murina maranonica, Synallaxis stictothorax chinchipensis, Mimus longicaudatus 

maranonicus) were not treated here. In fact, Mouse-coloured Tyrannulet 

Phaeomyias murina and Necklaced Spinetail Synallaxis stictothorax have recently 

been split into several species in the forthcoming Illustrated Checklist of the Birds 

of the World (N. Collar, pers. comm.). 

 

Scant published information is available for the 14 study species (Figure 4.9). A 

search on the Scopus database, using species’ scientific names and 17 synonyms as 

key words returned just 12 publications related to eight species in the study area. 

However, additional published information is available but not indexed. For 

example, for the Endangered Peruvian Plantcutter Phytotoma raimondii and 

Rufous flycatcher Myiarchus semirufus, the Scopus search turned up two and one 

articles, but at least 14 and 7 further papers exist for these species, respectively. 

Most of these unindexed articles are focused specifically on the species (e.g. 

nesting, diet, population, threats, phylogenetics), of which eight were published 

before 1990, and 13 post 2000, in local journals (e.g. BOC bulletin, Revista Peruana 

de Biología, Boletín UNOP, Ornithologisher Anzeiger). Further information is 

available in grey literature, for example, project reports and management plans, 

but even less easily than unindexed journals. 
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Table 4.1. Bird species included in study, showing threat status and typical altitudinal limits. Threat 
status: EN - Endangered, NT - Near Threatened, LC - Least Concern (BirdLife International, 2014). 
For further criteria on species selection and subspecies, see Chapter 2. 

Taxon English Name Family 

IUCN Red 

List 

Category 

Altitudinal 

range (m 

above sea 

level) 

Average 

weight 

(g)3 

Generation 

length4 

Myrmia micrura 
Short-tailed 

Woodstar 
Trochilidae LC 0 – 1000 - 4.2 

Forpus coelestis Pacific Parrotlet Psittacidae LC 0 – 2000 22.9 4.1 

Synallaxis 

stictothorax 

maculata & S. s. 

stictothorax 

Necklaced 

Spinetail 
Furnariidae LC 0 - 300 8.6 3.8 

Phaeomyias murina 

inflava & P. m. 

tumbezana 

Mouse-coloured 

Tyrannulet 
Tyrannidae LC 0 - 2000 9.6 3.6 

Pseudelaenia 

leucospodia 

Grey-and-white 

Tyrannulet 
Tyrannidae LC 0 - 800 11.5 3.6 

Tumbezia salvini Tumbes Tyrant Tyrannidae NT 0 - 1000 - 3.6 

Myiarchus 

semirufus 

Rufous 

Flycatcher 
Tyrannidae EN 0 - 500  22.3* 5.1 

Phytotoma 

raimondii 

Peruvian 

Plantcutter 
Cotingidae EN 0 - 600 39.8+ 4.6 

Campylorhynchus 

fasciatus 
Fasciated Wren Troglodytidae LC 0 - 1500 30.0+ 3.6 

Cantorchilus 

superciliaris 

Superciliated 

Wren 
Troglodytidae LC 0 - 1000 20.3 3.9 

Mimus 

longicaudatus 

albogriseus & M. l. 

longicaudatus 

Long-tailed 

Mockingbird 
Mimidae LC 0 - 2400 66.6+ 5.3 

Piezorina cinerea Cinereous Finch Thraupidae LC 0 - 200 - 3.8 

Sicalis taczanowskii 
Sulphur-

throated Finch 
Thraupidae LC 0 - 300 9.7 3.8 

Rhynchospiza 

stolzmanni 

Tumbes 

Sparrow 
Emberizidae LC 0 - 1000 - 3.7 

                                                             
3 Weight sources: + BirdLife International (2016); * Lanyon 1975, all others: Diego García Olaechea 
(pers. com) 
4 BirdLife International (2016) 
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The breeding season for birds in the dry forest is highly correlated with rainfall, 

tending to start after the beginning of the rainy season (Marchant, 1959). The 

breeding period generally lasts between six weeks and three months with most 

breeding records for the study species from February/March to April through to 

June. The longest breeding season is for Tropical Mockingbird Mimus 

longicaudatus, between December and June (Marchant, 1959, 1960; Lanyon, 1975; 

Williams, 1981a, 1981b; Flanagan & Millen, 2008; Barrio et al., 2015). Breeding 

may be earlier towards the south of the ranges of most these species, and later in 

the north, following precipitation patterns (Lanyon, 1975). No published breeding 

records are known for Tumbes Tyrant Tumbezia salvini (Heming et al., 2013). The 

Peruvian Plantcutter was suggested to have a bimodal nesting period in Pomac 

National Park, with 19 active nests found in February and April, but not between 1-

28 March (Nolazco & Roper, 2014). However, nesting records exist in March and 

December in other areas (Rosina & Romo, 2012). All species for which breeding 

records exist nest within bushes or small trees, except for the Rufous Flycatcher 

which appears to use both cavities (e.g. tree cavities and nest boxes) and very dark, 

thickets (Lanyon, 1975; F. Angulo, pers. com; Figure 4.6). The only information on 

nesting success is for Peruvian Plantcutter. A low success rate was found (Nolazco 

& Roper, 2014); of 19 nests, only two were successful, with most nests failing due 

to predation by birds (White-tailed Jay Cyanocorax mystacalis, Superciliated Wren 

Cantorchilus superciliaris, Peruvian Pygmy-Owl Glaucidium peruanum) and 

Guayaquil squirrel (Sciurus stramineus). 

 

 

Figure 4.7. Site of first nest description (Acacia macracantha bush to right) and typical habitat of 
Myiarchus semirufus, as reported by Lanyon (1975). Note the proximity of the Pan-American 
Highway. 
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None of the study species are known to make migratory movements but few 

data are available. Migratory movements are known for some non-resident species 

(e.g. Black and White Tanager Conothraupis speculigera and Snowy-throated 

Kingbird Tyrannus niveigularis; Barrio et al., 2015), but not for seasonal 

movements of residents. A congener of the threatened Peruvian Plantcutter 

Phytotoma raimondii, White-tipped Plantcutter Phytotoma rutila was found to 

change food source according to availability in dry and wet seasons, but remained 

resident in one study (López-Calleja & Bozinovic, 2000). Peruvian Plantcutters 

seem to be able to adapt to novel food sources, and may be less dependent on 

certain food plants than previously thought (see Chapter 3). Some movement to 

adapt to changing food availability may be a possibility. Published information on 

diet for most species is also scant, but most is known about Peruvian Plantcutter. It 

has been suggested that certain plants are vital to its diet, including Prosopis 

pallida and Grabowskia boerhaviifolia, with young leaves, flowers and fruit eaten 

(Rosina & Romo, 2012; Nolazco et al., 2014). However, sites with high abundance 

of Plantcutters exist without a significant presence of these two species (data from 

this study) and at least 10 further plant species are listed in its diet (Romo & 

Rosina, 2012; Rosina & Romo, 2012). It is not known to eat any non-vegetable 

matter. In a laboratory trial, the congener, Rufous-tailed Plantcutter Phytotoma 

rara, consumed between twice and five times its body weight in wet vegetable 

matter per day, according to the dietary quality of the food source (Bozinovic, 

1999). 

 

 

Figure 4.8. Illustrations of a) Rufous Flycatcher and b) Peruvian Plantcutter from original species 
descriptions (Sclater & Salvin, 1878; Taczanowski, 1882); holotypes were collected towards 
southern (a) and northern extremes (b) of each species' range where they are now locally extinct. 
Illustrations: J. Smit 

a. b. 
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All endemic species are threatened to a certain extent by habitat loss, however, 

two of the most threatened are Peruvian Plantcutter Phytotoma raimondii and 

Rufous Flycatcher Myiarchus semirufus (Figure 4.8). Both species are classified as 

Endangered (BirdLife International, 2015) and currently documented only from 

scattered localities on the dry coastal plain (Schulenberg et al., 2007; Flanagan et 

al., 2009; Romo et al., 2015). Records are especially lacking in the southern limits 

of both species’ former ranges. Nevertheless, the Rufous Flycatcher was described 

as uncommon in 1975, with never more than two adults seen at any one site 

(Lanyon, 1975), and ‘wary of humans’ at the time of its description (Taczanowski, 

1882), indicating that it may always have been scarce. Both species are singular in 

many aspects; the plantcutters were formerly classified within their own family, 

Phytotomidae, but now are the only non-forest members of the Cotingidae 

(Remsen et al., 2016) with a primary diet of leaves (Snow, 2004). Rufous 

Flycatcher has recently been shown to be phylogenetically different to all other 

species of Myiarchus, hinted at by Zimmer (1938), and may even belong in a 

monotypic genus (Joseph et al., 2004). Specific threats to the Plantcutter include 

informal squid processing camps and other forest disturbance near Talara, one of 

its population strongholds (More 2002; Flanagan et al. 2009), conversion of forest 

belonging to an industrial food company to agriculture at Paiján, La Libertad. In the 

case of the Rufous Flycatcher, lack of nesting cavities, especially in large Algarrobo 

Prosopis sp. trees, as well as removal of dead limbs used as perches (Taczanowski, 

1884), may be limiting factors to its survival (Lanyon, 1975; Joseph et al., 2004). 
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5 Photo credits (all Creative Commons license). (a,i) Amy McAndrews; (b) peterdehaas2317; 

(c) Ardeola; (d) budgora; (e) Jorge Montejo; (f,h,l) David Cook; (g) Francesco Veronesi; (j) Richard 

Gibbons; (k) L. Ordóñez-Delgado. 

a. 

i. h. 

j. 

f. 

c. b. 

e. 

k. l. 

Figure 4.9. Study species (not to scale)5. a) Short-tailed Woodstar Myrmia micrura; b) 
Pacific Parrotlet Forpus coelestis; c) Necklaced Spinetail Synallaxis stictothorax; d) Mouse-
coloured Tyrannulet Phaeomyias murina; e) Grey-and-white Tyrannulet Pseudelaenia 
leucospodia; f) Tumbes Tyrant Tumbezia salvini; g) Fasciated Wren Campylorhynchus 
fasciatus; h) Superciliated Wren Cantorchilus superciliaris; i) Long-tailed Mockingbird 
Mimus longicaudatus; j) Cinereous Finch Piezorhina cinerea; k) Sulphur-throated Finch 
Sicalis taczanowskii; l) Tumbes Sparrow Rhynchospiza stolzmanni. 
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5 Map of the thesis 

 

5.1 Thesis aims and objectives 

The overall aim of the thesis is to develop tools, combining different analytical 

techniques, field data and GIS, to provide improved estimates of species 

distribution and abundance in support of extinction risk assessments in 

threatened Neotropical bird species. 

 

To achieve this aim, the following specific objectives will be implemented: 

 

Chapter 2. Estimate the ranges of study species with ensemble species 

distribution models 

Chapter 3. Estimate local abundance of study species across their ranges using 

covariate distance sampling 

Chapter 4. Explore range-wide variation in abundance across ranges of study 

species 

Chapter 5. Explore the relationship between relative probability of occurrence, 

derived from modelling and bird abundance, derived from field 

studies 

Chapter 6. Discuss findings and implications for conservation 

 

5.2 Chapter outlines 

 

Chapter 2 

Modelling distributions of Tumbesian endemic birds: how well do species 

distribution models match our current understanding of species ranges? 

Overview: Species distributions are modelled using ensemble species distribution 

models created from GLMs, GAMs, Maxent and Bioclim. Data for the models consist 

of species occurrences records, obtained from museum records and observation 

records, and environmental data, obtained from the worldclim database, and 

vegetation (Normal Difference Vegetation Index; NDVI) from MODIS. Modelling 

methods are compared, and predicted ranges are compared to existing ranges 

maps created by BirdLife International and NatureServe for extinction risk 

assessment. 
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Chapter 3 

Estimating local abundance in patchy habitats: a case study on dry forest 

endemic birds of the Tumbes region 

Overview: Covariate Distance sampling is used to estimate local abundance of 14 

dry forest endemic bird species at 26 sites over their ranges in northern Peru. The 

sampling protocol is designed to maximise chances of obtaining bird records while 

ensuring geographical coverage based on a preliminary distribution model. Four 

parallel transects are used to count birds and evaluate vegetation characteristics at 

each site. Population sizes at discrete sites are calculated and discussed in light of 

threats and opportunities for conservation. 

 

Chapter 4 

Extreme variation and complex correlates of local abundance – lessons from 

a range-wide, multispecies survey 

Overview: Patterns in abundance across the ranges of 14 dry forest species are 

explored, including variation in abundance across range and between range edge 

and core; congruence of abundance hotspots across species (i.e. do sites of highest 

abundances coincide?); spatial autocorrelation of abundance; and the nature and 

strength of correlates of local abundance. Correlates of abundance are regressed 

against species’ densities, represented as Non-metric Multidimensional Scaling 

axes, using GAMs. Recommendations for surveys and conservation management 

are made.  

 

Chapter 5 

The relationship between occurrence modelling and abundance estimates 

Overview: The relationship between local abundance (from field surveys) and 

relative probability of occurrence (from species distribution models) is explored 

using correlations. Hierarchical regression models between field-based abundance 

and modelled occurrence are built where relationships exist. Species- and site-

level factors are explored to assess why model predictions may differ from field 

data. Species’ global population sizes are estimated using the above regression 

models. 
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Chapter 6 

General conclusions and future directions 

Overview: Findings from the above chapters are discussed in a wider context of 

conservation research. Specific recommendations for future work are made to 

further explore methods treated here. Specific conservation assessments based on 

results are discussed for the study area and study species, e.g. changes in IUCN 

categories, population sizes, and key sites for conservation. 
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Chapter 2 
 

Modelling distributions of Tumbesian endemic birds: how 
well do species distribution models match our current 

understanding of species ranges? 
 

1 Abstract 

Species distribution models (SDMs) are an increasingly important tool supporting 

critical conservation decisions. Diverse modelling techniques, using species 

occurrence data from a variety of non-systematic surveys, together with climate 

and remote-sensed environmental data, facilitates the creation of distribution 

models for rare or endangered species lacking in field work and published 

literature. However, models are not routinely used to establish species range 

limits, despite the ubiquitous application of range sizes (Extent of Occurrence and 

Area of Occupancy) in establishing extinction risk. As a first step to comparing 

modelled occurrence and abundance, this study aims to provide the most up to 

date range size estimates for 14 endemic Tumbesian birds, including three 

threatened or near threatened species, using an extensive database of current 

occurrence records (2000-2015) and environmental layers. A median of 150 

records (range: 68 - 791) per species was used to model species' occurrence over 

their entire Tumbesian ranges, without spatial duplicates within 1 km. An 

ensemble model was built using Generalised Additive Models, Generalised Linear 

Models (ridge regression), Maxent, and Domain, using a 5% omission error 

threshold to define presence and absence. A species-specific study area was 

restricted to just 25 km around the convex hull of all the species' occurrence 

points. Modelled ranges were compared to existing range estimates used in 

extinction risk assessment. Model AUC values of the ensemble model ranged from 

0.81 to 0.87. The different modelling methods coincided highly in terms of ranked 

correlation but differed in the distribution of their predicted values. Range size 

estimates were generally smaller than, but coincided spatially with, published 

ranges, with the exception of the three species of conservation interest. Two 

threatened species (Peruvian Plantcutter Phytotoma raimondii and Rufous 

Flycatcher Myiarchus semirufus) had modelled ranges an order of magnitude larger 

than those published which were limited to the areas around known occurrences. 

A further species, the Near threatened Tumbes Tyrant Tumbezia salvini coincided 
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over only 18% of the published range. I suggest that published ranges are likely to 

underestimate the presence of rare and threatened species and that distribution 

models are included as additional tools to check inconsistencies and improve the 

process of establishing ranges for red listing purposes. 
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2 Introduction 

 

The ability to predict the probability of occurrence of a species across its entire 

range is a desirable quantity for many conservation related problems (Guisan et 

al., 2013; Guillera-Arroita et al., 2015). Applications of species distribution models 

(SDMs) in this area already include ecological and biogeographical inference 

(including effects of climate change on biodiversity, determinants of range limits); 

species management (including invasive species, and guiding surveys); ecological 

restoration (including species reintroductions); and conservation 

planning/priority setting (Franklin, 2009; Peterson et al., 2011; Guillera-Arroita et 

al., 2015). 

 

The use of species distribution models in the ecological literature has increased 

exponentially over the last 20 years (see Figure 3.3, Chapter 1), in part, due to the 

improved accessibility of predictors, such as global gridded climate layers 

(Hijmans et al., 2005); more extensive online species occurrence data, such as 

eBird or VertNet (Graham et al., 2004; Soberón & Peterson, 2004); and user-

friendly software, such as Maxent (Phillips & Dudík, 2008; see Figure 3.3, Chapter 

1). New methods are also constantly being developed or adapted from other 

disciplines, within the main groups of envelope methods, statistical regression 

techniques and machine learning (e.g. Blonder, 2015; Chen, 2015; Renner et al., 

2015). However, despite comparisons between methods (Segurado & Araújo, 

2004; Elith et al., 2006), no clear best method prevails, which has led researchers 

to suggest ‘ensemble’ approaches. These aim to reduce the uncertainty across 

different modelling methods by combining model outputs from a variety of 

methods to produce a consensus model based on a weighted summary (Araújo & 

New, 2007). 

 

Despite the advances in SDMs, modelling methods are not routinely used to 

corroborate or support the establishment of range sizes for conservation 

processes, such as red listing. Changes in range sizes are a fundamental part of 

establishing extinction risk in species, acting as a signal of a reducing population 

(IUCN, 2001). Methods to determine range sizes as part of IUCN guidelines have 

been in place for at least 25 years (Mace et al., 1992; IUCN, 1994). Mapping the 

range of a species involves reducing a complex spatial and temporal pattern to an 
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irregular two-dimensional outline (Brown et al., 1996). Differences in method and 

approach, can therefore lead to different results, often dependent on purpose. In 

establishing extinction risk of species, two different measures are employed to 

measure range size, Extent of Occurrence (EOO) and Area of Occupancy (AOO) 

(Gaston, 1991; IUCN, 2001). However, the difference between the two can be 

subject to interpretation of definitions, with uncertainty liable to be introduced at 

different stages, for example how an ‘occurrence’ is interpreted (Akçakaya et al., 

2000). Each measure could be considered to lie at either end of a continuum, with 

EOO as the geographical space encompassed by the outermost bounds of all 

locality records at one end of the scale, and AOO as the actual space used by a 

species within those limits (Maurer, 1994) at the other extreme. EOO is based on 

the shortest continuous boundary drawn to encompass all the known, inferred or 

projected sites of present occurrence of a taxon (IUCN, 2001), often measured as a 

minimum convex polygon. The IUCN definition allows discontinuities in the 

species’ distribution to be excluded. The scale and degree of such exclusions can be 

seen as a factor to distinguish both measures. 

 

This chapter aims to define the ranges of 14 Tumbesian endemic birds using a 

comprehensive data set of recent occurrence records, as an essential first step for 

comparing occurrence probability with abundance. Specifically, it will: 

 

 use a range of distribution modelling methods to map relative probability of 

occurrence of study species; 

 validate models and compare resultant distributions across modelling 

methods; 

 compare modelled distributions to mapped ranges (BirdLife International & 

NatureServe, 2015) and examine where differences occur. 
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3 Methods 

 

3.1 Species occurrence points 

Distribution models were built for fourteen Tumbesian species (see Table 4.1, 

Chapter 1). Geographically isolated subspecies, for example, on Isla de la Plata, 

Ecuador (Mimus longicaudatus platensis) and in the Marañón valley, Peru 

(Phaeomyias murina maranonica, Synallaxis stictothorax chinchipensis, Mimus 

longicaudatus maranonicus) were not included. In fact, Mouse-coloured Tyrannulet 

Phaeomyias murina and Necklaced Spinetail Synallaxis stictothorax have recently 

been split into several species in the Illustrated Checklist of the Birds of the World 

(del Hoyo & Collar, 2016). 

 

Species occurrences at point localities were collated from observation records 

and museum specimens through literature searches, museum visits and online 

databases (principally VertNet, Xenocanto and eBird). In the case of eBird, 

observations were excluded where survey effort exceeded 5 km (linear route) or 

500 ha (area count), given that a single location is given for the whole survey. 

Where occurrence records did not have geographic coordinates, but contained 

detailed locality data, an attempt was made to georeference the records, using 

online tools (e.g. GEOLocate1), gazetteers for Peru (Stephens & Traylor, 1983) and 

Ecuador (Paynter, 1993), national digital cartography and georeferenced records 

at the same locality. Records without detailed locality data, coordinates or dates 

were removed from the data set. Occurrence records were checked for correct 

positioning of coordinates using ArcGIS and R (within country land boundaries, 1st 

degree administrative boundaries or elevational limits, Table 4.1 Chapter 1). 

Records failing to meet these checks were flagged for manual processing. Records 

were also checked with known species distributions, e.g. distribution shapefiles 

(BirdLife International & NatureServe, 2015) and guide books (Schulenberg et al., 

2007). Records at known distributional or elevational limits were evaluated using 

criteria such as reliability of observer, frequency/presence of nearby records and 

distance from known limits. Furthermore, to avoid sampling bias, exact spatial 

duplicates and records within 1 km of each other were removed so that only one 

record per grid cell was used in the models given that the predictors were at 1 km 

                                                             
1 http://www.museum.tulane.edu/geolocate/default.html 



Modelling distributions of Tumbesian birds Chapter 2 

62 

resolution (Stockwell & Peterson, 2002; Graham et al., 2004). Spatial duplicates do 

not necessarily correspond to areas with higher frequency of occurrence of birds, 

but may represent areas most visited by collectors or birdwatchers (e.g. close to 

roads). Spatial filtering of data, by removing observations within a certain distance 

of each other, has been shown to improve model performance by counteracting the 

inflation of validation metrics such as AUC as a result of spatial autocorrelation of 

presence points (Boria et al., 2014; Radosavljevic & Anderson, 2014). Occurrence 

records prior to 2000 were removed from the data set in order to match the 

temporal scale of some predictors and the field work. Occurrence records obtained 

from the PhD fieldwork to estimate density for this study were not used in building 

the species distribution models, although previous occurrence records from 

similar localities were included. 

 

3.2 Selection of environmental predictors 

Three types of environmental variables are readily available over the whole study 

area at 1 km spatial resolutions, topographical measures based on Digital Elevation 

Models (e.g. slope, altitude), climatological indices based on interpolated ground 

station data (e.g. annual temperature, precipitation) and remotely sensed data (e.g. 

vegetation indices; Figure 3.1). The latter two are available at monthly temporal 

resolutions, allowing bioclimatic variables (Xu & Hutchinson, 2013) to be 

processed for each, such as annual and/or periodic means, minimums and 

maximums, and seasonality indices. For this study, the hole-filled SRTM Digital 

Elevation Model (Jarvis et al., 2008) was used to create calculate derived variables, 

such as slope and associated variability. Calculations were performed at a scale of 

100 m and subsequently averaged at 1 km resolution. Climatological data were 

obtained from the updated version of the Worldclim data base (Hijmans et al., 

2005), including temperature, precipitation and solar radiation data, averaged 

over the period 1970-2000. Although regional climate layers exist, their resolution 

of 5 km was not adequate for this study (Manz et al., 2016). For vegetation indices, 

Normalised Difference Vegetation Index (NDVI) was used from the monthly MODIS 

product, MOD13A3 (Didan, 2015), averaged across the period 2010-2015. This 
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allowed for almost complete coverage of the region (only 0.05% of land pixels had 

cloud cover for every month during this period), whilst data were also collected 

within three years either way of the field study in 2013. Monthly precipitation 

 

Figure 3.1. Environmental variables used for species distribution modelling over the study 
area, north Peru. Bioclimatic variables (a, b, d) are based on monthly values of precipitation and 
temperature and vegetation indices (c, f) are derived from monthly values of NDVI obtained 
from MODIS. a) Temperature of the warmest quarter; b) Temperature standard deviation; c) 
Highest quarter of NDVI values; d) Precipitation during wettest month of the year; e) Maximum 
solar radiation throughout year; f) Standard deviation of NDVI. 

 

kJ m-2 day-1 
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across the study area is very seasonal, following a unimodal distribution, peaking 

in March. Monthly NDVI follows a similar pattern, but with a lag, that is, its peak 

extends into April (Figure 3.2). A recognised wet season extends from January 

through to April and a dry season from May to December (CDC, 1992). 

 

The predictors were selected using three criteria. First, in terms of ecological 

significance, second, in their predictive ability, and third, to avoid multicollinearity. 

Given the seasonality of the rainfall and the generally dry environment (the 

maximum monthly mean rainfall is just over 150 mm, Figure 3.1, 3.2), areas 

retaining some moisture over the dry period could be important to dry forest 

birds. Minimum rainfall and minimum NDVI may provide an indication of this, in 

particular, NDVI, given the generally low quality of rainfall data in this region 

(Manz et al., 2016). However, if NDVI is used to predict species occurrence, care 

must be taken with the extent of irrigated crops over the study area. As such, NDVI 

should be in such a format as to be able to separate between crops and natural 

habitat. The NDVI variables were assessed for their ability to differentiate between 

different land cover types (MINAM, 2012), both visually through boxplots, and 

using Kruskal-Wallis tests (Appendix 1). 

 

 

Figure 3.2. Standardised monthly precipitation and NDVI across the study area. NDVI peaks after 
rainfall has peaked. Range of precipitation and NDVI values correspond to 14.6 to 151.6 mm, and 
0.41 to 0.56, respectively. 

Variables were assessed for predictive ability by running univariate Generalised 

Linear Models for each species (binomial with logit link) and each of 35 potential 

predictors, with and without quadratic terms, and averaging the explained 

deviance over species. In all cases, predictive performance improved with the 

0 
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addition of a quadratic term, therefore quadratics were always included (GAMs 

excepted). Potential predictors were also assessed for collinearity using 

scatterplots and pairwise Spearman’s correlation coefficients. Predictive ability 

and pairwise correlations were combined graphically (Appendix 2). Using this 

graphic, a selection was made whilst bearing in mind ecological rationale, 

attempting to maximise total explained deviance from the combined predictors, 

and avoiding predictors with absolute pairwise correlation coefficients greater 

than 0.7. In a review of methods to counter collinearity, Dormann et al., (2013) 

found that this method was almost as effective as some of the other more complex 

methods to counter collinearity. Predictors were chosen for all species 

simultaneously to aid comparison among species, and because all species are 

endemic to the same broad habitat. 

 

3.3 Modelling methods 

Four modelling methods were used: regression based techniques Generalised 

Linear Models (GLMs) and Generalised Additive Models (GAMs), the machine 

learning ‘Maxent’ (Phillips & Dudík, 2008), and the climate envelope, or similarity 

metric-based method ‘Domain’ (Carpenter et al., 1993). The first three are popular 

species distribution modelling techniques which perform well in method 

comparisons (Elith et al., 2006). The latter is distance-based, and of interest to the 

comparison of modelled occurrence with field-based density estimates (Chapter 5) 

given that a similar method was recently shown to be important in species 

distribution model - abundance comparisons  (Martínez-Meyer et al., 2012). The 

methods below provide for a variety of species response distributions, including 

unimodal, using quadratic terms in GLM, and more flexible distributions with 

Maxent and GAMs.  

 

For all modelling methods, a species-specific study area was constructed from 

which to select background points. A convex hull, with a 25 km buffer, was drawn 

round all presence points, representing the species’ effective area utilised (Barve 

et al., 2011; Peterson et al., 2011). Then, 5000 background points were randomly 

selected from this area for all modelling methods except for Domain, which uses 

presence records only. Finally, species’ distributions were predicted using each 

modelling method over the same study area with a further 25 km buffer applied, 
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allowing maps to show relative probability of occurrence up to 50 km beyond all 

known presences. For all methods, predictor values were extracted at presence 

and background locations using the R package raster (Hijmans, 2016). For the 

regression techniques (GLM and GAM), observation weights were included in the 

model specification to the effect that the sum of presence weights was equal to the 

sum of absence weights (Hirzel et al., 2006; Barbet-Massin et al., 2012) . This 

technique effectively adjusts the sample prevalence to a value of 0.5, rather than 

letting the model be strongly influenced by the high ratio of background to 

presence points, given that as the number of background points increases to 

infinity, the predicted occurrence tends to zero (Warton & Shepherd, 2010). 

Maxent software also assumes a sample prevalence of 0.5. In all cases, the true 

prevalence (the ratio of presences to absences) is unknown.  

 

3.3.1 Regularised Generalised Linear Models 

Regularisation of GLMs was used to include an element of variable selection within 

this regression method. Ridge and lasso regression employ a shrinkage penalty 

which is added to the residual sum of squares during the fitting procedure. As with 

least squares regression, coefficients are chosen that minimise this value. This has 

the effect of shrinking coefficient estimates towards zero, depending on a tuning 

parameter, λ (James et al., 2013). The R package glmnet (Friedman et al., 2010) 

employs cross validation to find the value of λ which gives the minimum mean 

squared error. Furthermore, the package provides a link between ridge regression 

(coefficients approach zero) and the lasso (coefficients may be equal to zero) 

through a further parameter, α, which can be set exclusively for either type of 

shrinkage or at intermediate values between them. Cross validation with 10 folds 

were used to select λ, with presences and absences selected randomly, but in the 

same proportion as the full dataset (Guillera-Arroita et al., 2014). Different values 

of α were trialled, and final models were built with α = 0 (i.e. ridge regression). 

 

3.3.2 Generalised Additive Models 

GAMs represent a flexible approach to modelling allowing species’ responses to 

environmental variables to take on non-linear, asymmetric forms (Austin, 2007). 

GAMs were implemented using the R package mgcv, using thin plate regression 

splines with a modified smoothing penalty allowing the whole term to be shrunk to 

zero (Wood, 2006), thus allowing a degree of variable selection. Additionally, both 
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the x and y coordinates of each presence and background point were included 

within an isotropic smooth term. 

 

3.3.3 Maxent 

Maxent is a machine-learning method that fits a distribution to the environmental 

predictors most closely approximating a uniform distribution (maximum entropy), 

subject to the constraint of the empirical distribution of the environmental 

variables at the presence points (Franklin, 2009). Maxent also implements a type 

of variable selection through its regularisation coefficient (Merow et al., 2013). 

Maxent was implemented through the R package dismo (Hijmans et al., 2016), 

using the same randomly selected background points as the other methods. 

Default settings were employed apart from omitting threshold and product 

features. 

 

3.3.4 Domain 

Domain assigns a classification between 0 and 1 to each grid cell based on the 

value of the Gower distance (a similarity metric) to the nearest presence point in 

climate space, that is, the maximum similarity between a particular grid cell and all 

presences (Carpenter et al., 1993). As such, it does not use background points, but 

rather, evaluates the similarity metric over the full set of grid cells. Domain was 

implemented in the R package dismo (Hijmans et al., 2016), which follows the 

original specification with the exception of truncating values below 0, so that the 

output is in the range 0-1. 

 

3.4 Model validation 

For each modelling method, 5-fold cross validation was performed and the 

validation metric (Area under the Receiver Operating Curve - AUC) were averaged 

across all folds. Each fold was chosen with the same proportion of presences and 

absences as in the full data set. For the final prediction, all presence points were 

used to build the model. Despite criticisms of the use of AUC to validate models 

(Lobo et al., 2008), no universally accepted alternatives exist, and it remains the 

most widely used evaluation metric for species distribution models. Despite 

suggested benefits of alternatives to AUC, such as partial AUC, where AUC is 

evaluated only over part of a modified ROC curve (Peterson et al., 2008), or AUC 

with ‘spatial sorting bias’ removed (Hijmans, 2012), these were not included in this 
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analysis. All methods here predict values over the whole range between 0 and 1, 

and used a standard method to set the size of the study area, which justifies use of 

the standard AUC. Even though a validation metric based on the error associated 

with presence points (partial AUC; Peterson et al., 2008) is of interest, it still 

requires setting a subjective threshold over which AUC is to be evaluated, which 

complicates comparison (Liu et al., 2011) among models or species. Models with 

AUC values over 0.7 are considered to have good model accuracy (Manel et al., 

2001). 

 

3.5 Consensus model 

To assess similarity between individual modelling methods, models were 

compared with pairwise correlations of 2500 random points across the predicted 

areas of each species between all four model types (i.e. resulting in 14 4x4 matrices 

of correlation coefficients). The mean and standard deviation of the pairwise 

correlation coefficients across all species were compared to evaluate similarity 

between models. 

 

A consensus model was then created as a weighted average of the four 

individual models. Weights were constructed to overcome the difficulty that 

different modelling techniques do not produce absolute values of probability of 

occurrence (Hastie & Fithian, 2013) and are therefore not directly comparable. 

Therefore, weights provide a measure of the relative difference in predicted values 

at presence points between the models. Weights, w, equal the median predicted 

value, p, at n presence points, averaged over m models, divided by median. 

 

𝑤1…𝑚 =
∑ �̃�𝑚

1

𝑚
�̃�1…𝑚⁄  ,   where �̃�1…𝑚 =  𝑚𝑒𝑑𝑖𝑎𝑛(𝑝1, … 𝑝𝑛) 

 

Therefore, models with generally higher value at presence points than others are 

penalised (w < 1), whereas models with generally lower values at presence points 

are weighted favourably (w > 1). 

 

Models were compared among methods (including the consensus model) in 

terms of ranked correlation and distribution of model values. Spearman’s 

correlation coefficient was used to compare across values from 10,000 random 
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samples from each model. To compare the distribution of model values, index plots 

of ranked values by species were made for each method (i.e. ranked model value 

against proportion of area covered). Species were grouped according to a measure 

of rarity/commonness, approximated by creating four groups using hierarchical 

clustering with standardised values of modelled range size (see below) and 

average abundance (see Chapter 3). 

 

3.6 Threshold  

Multiple methods exist for applying thresholds to species distribution models to 

define likely species presence or absence. A method shown to have good 

performance is the threshold at which sensitivity (True Positive Rate) + specificity 

(True Negative Rate) reaches a maximum (Jiménez-Valverde & Lobo, 2007; Liu et 

al., 2013). However, other authors (Peterson et al., 2011) prefer thresholds not 

calculated with absences when background data, rather than true absences, are 

used in models. One such measure, relates to an acceptable omission rate defined 

for the species occurrence data, based on its perceived or measured quality, while 

minimising the predicted area (Engler et al., 2004; Peterson et al., 2008). A 

threshold is calculated as the percentile of predicted values at presence points, 

corresponding to the omission rate for the occurrence data. This limit has 

previously been used to define Extent of Occurrence from distribution models 

(Fivaz & Gonseth, 2014). If occurrence data are deemed perfect, e.g. with no 

geographic or taxonomic errors, then a 0% omission rate can be used, conceptually 

similar to a convex hull method for establishing Extent of Occurrence, and the 

threshold corresponds to the minimum predicted value at  presence points. For 

this study, a 5% error rate was chosen, which was considered to balance the high 

quality data verification process, and yet allow for some location errors and 

vagrancy (i.e. individuals recorded at atypical locations). Therefore, a threshold 

was set for each species where 95% of occurrence points remained within a 

minimal predicted area. The thresholded models were compared to published 

range maps (BirdLife International & NatureServe, 2015). BirdLife ranges were 

plotted over model outputs, and percentage differences in area and overlap 

between the two were calculated in R (R Core Team, 2016). 
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4 Results 

 

4.1 Species occurrence records 

A total of 13,423 species occurrence records were collated (Appendix 3), of which 

over 7,400 were spatial duplicates. Of the total data set, 93% of records came from 

observations, with 7% from specimens and recordings. Sources of the final data 

set, after elimination of duplicated records, in decreasing numbers of records were 

eBird, literature and unpublished fieldwork, VertNet and other museums, and 

xenocanto (Table 4.1). The final selection had a median of 150 records per species, 

with a minimum of 68 for Sulphur-throated Finch Sicalis taczanowskii and a 

maximum of 791 for Long-tailed Mockingbird Mimus longicaudatus (Table 4.2). 

 

Table 4.1. Summary of data sources for species occurrence points 

Source Record type 
Percentage 

of records 
Online references 

eBird Observations 66 http://ebird.org/content/ebird/ 
Literature and 

unpublished 
reports 

Observations 
and specimens 

30 n/a 

Museum 
databases 

(VertNet and 
other museums) 

Museum 
specimens 

2 

http://vertnet.org/ 
http://www.lsu.edu/mns/collections/ornithology.php 
(Museums visited - Ecuador: Museo Ecuatoriano de 
Ciencias Naturales, Instituto de Ciencias, Biológicas 
Escuela Politécnica Nacional; Peru: Museo de Historia 
Natural, Universidad Nacional Mayor de San Marcos, 
Colección de Aves, CORBIDI) 

Xenocanto 
Sound 

recordings 
2 http://www.xeno-canto.org/ 

 

Table 4.2. Species occurrence points collated, showing final number of points used in models and 
numbers of spatial duplicates and records within 1000 m 

Species 
Points 

used in 
models 

Spatial duplicates 
Total within 

1000 m 
exact 

Myrmia micrura 141 73 191 405 

Forpus coelestis 572 326 1,221 2,119 

Synallaxis stictothorax 241 117 369 727 

Phaeomyias murina 181 71 325 577 

Pseudelaenia leucospodia 148 99 258 505 

Tumbezia salvini 81 50 132 263 

Myiarchus semirufus 123 78 153 354 

Phytotoma raimondii 140 97 146 383 

Campylorhynchus fasciatus 518 312 1,338 2,168 

Cantorchilus superciliaris 321 272 644 1,237 

Mimus longicaudatus 791 662 2,182 3,635 

Piezorina cinerea 157 67 181 405 

Sicalis taczanowskii 68 13 57 138 

Rhynchospiza stolzmanni 145 130 232 507 

Total 3,627 2,367 7,429 13,423 



Chapter 2  Modelling distributions of Tumbesian birds 

71 

4.2 Species distribution models 

Species distribution models were produced for 14 species, using four different 

methods. GAMs scored highest mean AUC, followed by Maxent, GLM and finally 

Domain. AUC values were consistent within methods, with less than 4% variation 

observed in each (Table 4.3). AUC was not significantly correlated with numbers of 

species presence points used in models (rs =  -0.10, p = 0.74, n = 14), with Peruvian 

Plantcutter Phytotoma raimondii and Tumbes Tyrant Tumbezia salvini both scoring 

high AUC values but with low numbers of presence points (Table 4.2). 

 

Table 4.3. Model validation metrics: mean (± standard deviation) AUC value per species with 5-fold 
cross validation for individual methods and consensus model 

Species GLM GAM Maxent Domain 
Mean per 

species 
Consensus 

Myrmia micrura 0.76 0.8 0.78 0.72 0.76±0.03 0.83 

Forpus coelestis 0.82 0.85 0.83 0.75 0.81±0.04 0.84 

Synallaxis 
stictothorax 

0.78 0.86 0.81 0.76 0.80±0.04 0.86 

Phaeomyias 
murina 

0.72 0.82 0.75 0.72 0.75±0.05 0.82 

Pseudelaenia 
leucospodia 

0.78 0.84 0.8 0.76 0.80±0.03 0.84 

Tumbezia salvini 0.8 0.86 0.82 0.78 0.81±0.03 0.87 

Myiarchus 
semirufus 

0.76 0.8 0.78 0.75 0.77±0.02 0.83 

Phytotoma 
raimondii 

0.81 0.86 0.83 0.76 0.81±0.04 0.87 

Campylorhynchus 
fasciatus 

0.79 0.85 0.82 0.75 0.80±0.04 0.84 

Cantorchilus 
superciliaris 

0.76 0.82 0.77 0.75 0.78±0.03 0.81 

Mimus 
longicaudatus 

0.81 0.87 0.83 0.74 0.81±0.05 0.85 

Piezorina cinerea 0.77 0.86 0.79 0.76 0.80±0.05 0.86 

Sicalis 
taczanowskii 

0.76 0.76 0.77 0.73 0.76±0.02 0.83 

Rhynchospiza 
stolzmanni 

0.78 0.83 0.82 0.78 0.80±0.03 0.85 

Mean per 
method 

0.78±0.03 0.83±0.03 0.80±0.03 0.75±0.02  0.84 

 

Modelling methods produced systematic differences in relative probability of 

occurrence, with GAMs generally producing the highest values, and Maxent and 

Domain, generally the lowest (Appendix 4, Appendix 5) and is also reflected in the 

response curves (Figure 4.1). Species response curves for each species showed 

similar patterns across methods for each predictor (Figure 4.1), especially in the 

case of GAMs and Maxent, both of which allow most flexibility in modelling 

responses. GAMs showed the strongest degree of variable selection, with several 

coefficient values almost unchanging across the range of a particular predictor. 
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Variables showing least contribution (that is, least positive or negative responses 

across the predictors) were seasonality of NDVI, and maximum solar radiation. The 

remaining four predictors showed similar levels of contribution, with mean 

temperature of warmest quarter, precipitation of wettest month, mean NDVI of 

highest quarter showing most variation (Figure 4.1). In general, patterns between 

models were similar for each species and each predictor. 

 

Table 4.4. Similarity across modelling methods. Mean (upper triangle) and standard deviation 
(lower triangle) of correlation coefficients 

 GLM GAM Maxent Domain 

GLM  +0.86 +0.94 +0.87 

GAM 0.08  +0.89 +0.82 

Maxent 0.02 0.07  +0.88 

Domain 0.04 0.10 0.03  

 

Species distribution maps, predicted across the study areas showed similar 

patterns (Figure 4.2) across methods. In general, GAMs produced less pixels (i.e. 

smaller areas) with higher probabilities and reflecting the higher flexibility of 

GAMs to overfit (Figure 4.2a). In contrast, Domain produced the largest areas of 

higher probabilities (Figure 4.2d). GLMs (Figure 4.2b) and Maxent (Figure 4.2c) 

produced the most visually similar patterns but with GLMs showing higher 

absolute values of relative probability of occurrence. This similarity between 

models was borne out by pairwise comparisons between modelling methods 

across all species (Table 4.4). Maxent and GLM were most strongly correlated with 

the smallest standard deviation in correlation coefficients, followed by Maxent and 

GAM. All individual correlations were highly significant (p < 0.001). Mean 

correlation coefficients by species (across all models) ranged from 0.74 in Mouse-

coloured Tyrannulet Phaeomyias murina, through six species > 0.80, to seven > 

0.90, including the three threatened species in the latter group. 
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Figure 4.1. Response curves for each predictor variable by species for three modelling 
methods. Predictors (from left to right): mean annual temperature, mean annual 
precipitation, minimum solar radiation, maximum solar radiation,  NDVI seasonality, 
minimum NDVI. 
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Figure 4.2. Predicted species distribution maps – a) GLM  
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b). GAM  
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c). Maxent  
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d). Domain
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e). Consensus model
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Although models were very similar to each other overall (i.e. ranked 

correlation), the distributions of model values were different among 

modelling methods, and between species (Figure 4.3, Appendix 5). GAM 

and Maxent values tended to drop off faster than all other methods, 

whereas Domain maintained higher values across a larger area, in other 

words, Domain created areas of more homogenous model values. 

Within species, all distributions were significantly different to a 

common distribution function as assessed by a k-sample Anderson 

Darling test (p < 0.001 for all species). Both between methods and 

species, predicted values appear to coincide more at higher than lower 

values. For some species, differences between models were marked. For 

example, in Long-tailed Mockingbird Mimus longicaudatus, there is a 

difference of almost 50% of the total area between the lowest and 

highest model values when applying the same threshold value (Figure 

4.3). 

 

4.3 Comparison to published range maps 

Species ranges, calculated with a 5% omission error threshold 

produced generally smaller range estimates than those published by 

BirdLife International and NatureServe (2015) but coincided spatially, 

except for notable differences in the three threatened species in the 

study (Table 4.4, Figure 4.4). Peruvian Plantcutter Phytotoma raimondii 

and Rufous Flycatcher Myiarchus semirufus were the only species to 

have (considerably) larger ranges in the models than the expert drawn 

areas. Both species were over 10 times larger than the published range 

areas (Table 4.4). In the case of Tumbes Tyrant Tumbezia salvini, this 

species showed the least overlap of all the species, with the modelled 

range coinciding with less than 20% of the area of the published range. 

Conversely, almost all the modelled ranges of Peruvian Plantcutter and 

Rufous Flycatcher were contained within the modelled range (Figure 

4.4). 
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Figure 4.3. Ranked values for GLM, GAM, Maxent, Domain and Consensus models for 
each species. The consensus threshold value, used to create presence/absence range 
maps, is shown as a horizontal, grey, dotted line. 
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Figure 4.4. Comparison of EOO range maps produced by species distribution models 
in this study and BirdLife International EOO range maps, used to establish extinction 
risk. Note different scale of each map. 
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Table 4.5. Comparison of position and size of thresholded consensus model and 
BirdLife ranges. Comparisons (final two columns) are with respect to BirdLife ranges; 
e.g. -50% difference implies that the model range is half the size of the BirdLife 
polygon, whereas 100% overlap implies that model range is entirely within the 
BirdLife polygon. 

Species 
Area (km2) Model : BirdLife comparison 

Model range 
maps 

BirdLife 
range maps 

% difference % overlap 

Campylorhynchus fasciatus 101,394 102,478 -1 71 

Cantorchilus superciliaris 72,718 96,797 -25 66 

Forpus coelestis 103,806 146,892 -29 63 

Mimus longicaudatus 95,044 128,415 -26 68 

Myiarchus semirufus 35,066 2,882 1117 88 

Myrmia micrura 51,035 72,136 -29 61 

Phaeomyias murina 71,036 108,593 -35 60 

Phytotoma raimondii 31,720 2,726 1063 79 

Piezorina cinerea 32,850 37,227 -12 74 

Pseudelaenia leucospodia 53,823 51,890 4 77 

Rhynchospiza stolzmanni 29,172 48,974 -40 53 

Sicalis taczanowskii 36,462 41,412 -12 61 

Synallaxis stictothorax 42,920 49,643 -14 69 

Tumbezia salvini 20,867 30,227 -31 18 

 

  



Chapter 2  Modelling distributions of Tumbesian birds 

83 

5 Discussion 

 

Distribution models were made for 14 Tumbesian species, as a first step 

in comparing modelled occurrence with field-based abundance (see 

Chapter 5). Different modelling methods were combined in a consensus 

ensemble model to produce the final estimates of species’ range sizes 

and habitat suitability. Although the values of individual component 

models of the ensemble method were highly correlated, their 

distributions were different. Given the low sample size, discerning 

patterns among species is preliminary. Species that show less area 

under the curve (a faster drop off), may tend towards having more 

fragmented distributions, i.e. a multimodal distribution of hotspots of 

suitability across their range, given that larger extents of unsuitable 

areas are predicted within the full predictable area (convex hull around 

presence points). However, only in Domain, did variability in 

abundance appear to show any agreement with this suggestion 

(Appendix 5). If the distribution of relative probability of occurrence is 

linked to the distribution of abundance across a range (e.g., Legault et 

al., 2013; see Chapter 5), then some patterns such as these might be 

expected. Differences in distributions also have potential to effect range 

size estimates when applying thresholds to different modelling 

methods. Such effects could be taken into account when choosing 

thresholding methods (Liu et al., 2013). These differences also lend 

more importance to the methods used to combine individual models in 

a consensus model. The method used here aimed to compensate for 

systematic differences between individual models, for example, values 

of relative probability of occurrence for GAMs were generally higher 

than values of other methods. The consensus models presented here 

performed better than individual components. Other studies have 

found that using average functions to combine models performed well 

compared to other methods (Marmion et al., 2009), although weights in 

the aforementioned study were based on model performance. 

 

This study found that species distribution models can highlight 

inconsistencies and improve upon published range maps. Several 
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studies have recently compared species distribution models to 

published ranges of Neotropical species, used in red listing (Herzog et 

al., 2012; Mota-Vargas & Rojas-Soto, 2012; Fourcade et al., 2013; Fivaz 

& Gonseth, 2014; Syfert et al., 2014; Peterson et al., 2016). The authors 

agree about the utility of using species distribution models as tools in 

defining ranges, although opinions are divided as to the extent of 

reliance on models (Sérgio et al., 2007; Attorre et al., 2013). Herzog et 

al., (2012), assessing the ranges of Bolivian endemics, found a similar 

pattern to this study in that EOOs of non-threatened species were larger 

than modelled ranges while EOOs of threatened species were smaller.  

 

It may be expected that modelled ranges are slightly smaller than 

published EOOs in this study due to the threshold method excluding 5% 

of presence points. However, modelled range sizes of two threatened 

species was more than an order of magnitude larger than published 

EOOs. In both Peruvian Plantcutter Phytotoma raimondii and Rufous 

Flycatcher Myiarchus semirufus, larger range size estimates could lead 

to a change in IUCN Red List category. Both species are currently listed 

under criteria B1ab (BirdLife International, 2016a, 2016b), due to a 

fragmented EOO estimated at less than 5,000 km2, showing continuing 

decline (IUCN, 2001). Downgrading the current Red List category, to 

Vulnerable or Near Threatened, would depend on how much area is 

excluded from the final EOO estimate. At present, the published range 

maps exclude much potential habitat that is likely to be, or is actually 

occupied, resulting from different methods employed to map 

threatened and non-threatened birds. Threatened birds have more 

areas excluded than would be the case based on habitat preference and 

elevation range alone. The size of the estimated EOO for Rufous 

Flycatcher warrants downgrading its current threat category (see also 

comments on population size in Chapter 3). For the Plantcutter, the 

highly fragmented distribution and its scarce nature make 

discontinuities or unsuitable habitat within its EOO more difficult to 

define (see Chapter 3 and 4). 
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Species’ geographic ranges consist of complex, dynamic spatial and 

temporal patterns (Maurer, 1994; Fortin et al., 2005). Current methods 

to map species’ ranges (e.g. Extent of Occurrence and Area of 

Occupancy) are still focused on 2-dimensional outlines yet modelling 

methods are better able to approximate the true nature of species 

ranges as probability surfaces, for example, taking into account 

dispersal, patchiness and disturbance over specific periods of time 

(Franklin, 2010). I do not suggest using species distribution models to 

replace current methods to estimate species ranges for IUCN red listing. 

However, models are a useful tool to check inconsistencies and improve 

published ranges (Fourcade et al., 2013) and their (backward-

compatible) integration into red listing warrants further exploration. It 

would therefore be timely to urge their routine use within existing 

guidelines for employing models within the Red List process (IUCN, 

2016). Also, tools commonly employed in validating species 

distribution models, could also be employed to validate EOOs produced 

by other methods, such as checking omission rates of current 

occurrence records (Peterson et al., 2016). A careful combination of 

modelling and topological methods, as well as assessment techniques, 

including internal (e.g. cross validation), independent (e.g. testing data 

collected separately) and expert validation could yield important 

improvements to extinction risk prediction. Some key points to 

complement guidelines provided by the IUCN on using models with 

respect to climate change and extinction threat, but also of wider 

relevance, are provided below. 

 

 Quality of species data, selection of background or pseudoabsence 

points, the spatial extent of the study area and thresholds to 

create binary models from probability surfaces interdependent 

aspects that need to be considered simultaneously. Using IUCN 

established methods to construct EOO (i.e. convex hull or alpha 

hull) is a useful starting point in providing a spatial extent for 

using species distribution models to estimate ranges (Sangermano 

& Eastman, 2012; Attorre et al., 2013; Fivaz & Gonseth, 2014; 
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Syfert et al., 2014). However, this utility is dependent on the 

threshold used; a hull based on presence points will necessarily 

include the whole model output with a zero omission threshold. 

Furthermore, if using a threshold based on a percentage omission 

(including 0), then the degree of filtering of species occurrence 

data will directly relate to this, i.e. the more confident one is about 

data quality, the lower the omission percentage can be used as a 

threshold. 

 

 Range-wide occurrence data should be used, even if categorising 

extinction risk at the national level, to ensure full response curves 

are included in training models (Kadmon et al., 2003). However, 

the study area must be limited sensibly to the area considered 

reachable by species (Peterson et al., 2011), and in a standardised 

way between species to increase comparability, for example, by 

using buffered convex hulls constructed around presence points. 

This latter method will, again, be influenced by the filtering of 

presence points. 

 

 Use of recent species occurrence data, and temporal coincidence 

between occurrence data and predictors is important given that 

EOO should provide current range estimates (IUCN, 2016). This 

study used data from the last 15 years. Although land use may 

change considerably during such a period, a balance must be 

sought between having sufficient data and appropriate temporal 

resolution, e.g. based on three generation lengths of the species in 

question. Data from different time periods can give large 

differences in range estimates (Fivaz & Gonseth, 2014).  

 

 Using expert opinion to complement the model validation process 

(Sérgio et al., 2007; Marcer et al., 2013; Syfert et al., 2013) 

increases the information input, especially since this type of 

information is difficult to use within predictor layers. Online 

services provide useful platforms for engaging experts to validate 
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models (e.g. BioModelos in Colombia2). Post-model validation is a 

common format for expert input, but it is also valuable at earlier 

stages such as selecting predictors and verifying occurrence 

records. 

 

 Predictors not included in models that influence distribution often 

include biotic and anthropogenic factors. Land cover or use has 

been recommended as a measure of the latter (IUCN, 2016), 

however, it may be difficult to obtain high resolution layers of 

land use at required time periods. NDVI, or other vegetation 

indices (e.g. Enhanced Vegetation Index, Leaf Area Index, Soil 

Humidity) may provide useful proxies with high spatial and 

temporal resolution data freely available globally (van Ewijk et al., 

2014). In this study seasonal NDVI indices proved to be important 

in modelling, and were also capable of distinguishing types of land 

cover. 

 

  

                                                             
2 http://biomodelos.humboldt.org.co/ 
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7 Appendices 
 

Appendix 1. Different measures of NDVI (following the ‘bioclimatic’ indices) across 
different land cover types. In all cases, Kruskal-wallis and post-hoc multiple 
comparison tests showed significant differences (at α = 0.05) between crops and 
natural forest types. 
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Appendix 2. Predictor selection. a) Median percentage deviance explained from 
univariate models across all species for all potential predictors. Numbers show those 
predictors with absolute values of pairwise Spearman’s correlation coefficients > 0.7; 
for example, the first predictor (bio 04) is correlated to the seventh predictor (bio 03), 
and vice versa. See table below for predictor codes. Coloured bars (and numbers) 
correspond to final predictors selected for models. 

 

c. Predictor codes 

 

 

 

 

 

 

 

 

 

 

 

 Code Predictor 

B
b

io
cl

im
a

ti
c 

 

bio01 Annual Mean Temperature 

bio02 
Mean Diurnal Range (Mean of monthly (max 

temp - min temp)) 

bio03 Isothermality (bio02/bio07) (* 100) 

bio04 
Temperature Seasonality (standard 
deviation *100) 

bio05 Max Temperature of Warmest Month 

bio06 Min Temperature of Coldest Month 

bio07 Temperature Annual Range (bio05-bio06) 

bio08 Mean Temperature of Wettest Quarter 
bio09 Mean Temperature of Driest Quarter 
bio10 Mean Temperature of Warmest Quarter 

bio11 Mean Temperature of Coldest Quarter 

bio12 Annual Precipitation 
bio13 Precipitation of Wettest Month 

bio14 Precipitation of Driest Month 

bio15 
Precipitation Seasonality (Coefficient of 
Variation) 

bio16 Precipitation of Wettest Quarter 
bio17 Precipitation of Driest Quarter 

bio18 Precipitation of Warmest Quarter 
bio19 Precipitation of Coldest Quarter 

   

 

 Code Predictor 

T
o

p
o

g
ra

p
h

ic
 altitude Altitude above sea level 

altitude sd Standard deviation of altitude 

mean slope Slope of altitude 

slope sd Standard deviation of slope 

roughness Topographic Roughness Index 

   

 distance to 
river 

Distance to nearest river (km) 

   

V
e

g
e

ta
ti

o
n

 i
n

d
ic

e
s 

ndvi01 Annual mean NDVI 

ndvi02 Mean diurnal range NDVI (as bio02) 

ndvi03 ndvi02 / ndvi07 

ndvi04 Seasonality (standard deviation) 

ndvi05 
Max NDVI of month with highest 
NDVI 

ndvi06 Min NDVI of month with lowest NDVI 

ndvi07 NDVI annual range (ndvi05 – ndvi06) 

ndvi10 
Mean NDVI of quarter with highest 
NDVI 

ndvi11 
Mean NDVI of quarter with lowest 
NDVI 

   

R
a

d
ia

ti
o

n
 

max 
radiation 

Maximum solar radiation 

min 
radiation 

Minimum solar radiation 
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Appendix 3. Occurrence records per species used in models 

 



Chapter 2  Modelling distributions of Tumbesian birds 

97 

Appendix 4. Variation in predicted values at presence points within and between 
modelling methods per species. GAMs generally show highest values, with Maxent and 
Domain generally lower.  
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Appendix 5. Differences in distribution of GLM, GAM, Maxent, Domain and Consensus 
model values for each species. Species are coloured in order of increasing variability 
in abundance from red to blue (see key for indicative species order). The x-axis can be 
read as a cumulative proportion of area (i.e. number of pixels) covered by the model at 
each value. 
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Chapter 3 
 

Estimating local abundance in patchy habitats: a case study on 
dry forest endemic birds of the Tumbes region 

 

1 Abstract 

Estimating local abundance (population densities) of species in tropical 

environments is often logistically and economically challenging. However, local 

abundance, and derived metrics, such as population sizes, are a vital part of many 

conservation planning mechanisms, including priority area selection and red 

listing. Patchy environments across extents of occurrences add to challenges in 

estimating local abundance, especially in terms of selecting study sites given 

limited resources for fieldwork. This case study, on birds of conservation 

importance from the dry forests of the Tumbes region in Peru, aims to estimate 

local abundance and site-specific population sizes using novel methods for site 

selection. In all, 26 sites were selected across the ranges of 14 bird taxa using 

criteria to maximise chances of encountering target species while encompassing 

most of species' ranges. Sites were selected using two criteria, to obtain records 

among large areas of unsuitable habitat and across the ranges of the study species. 

Samples were randomly selected from strata based on a geographical division of 

the study area, and on the relative probability of occurrence of study species 

obtained from exploratory species distribution models. At each site, I walked four 

parallel 2.5 km transects to evaluate bird abundance and habitat characteristics. 

Bird densities were estimated per species with distance sampling, using type of 

record (auditory/sight) and habitat characteristics as covariates. A total of 7,505 

bird records were obtained, with local abundances ranging from 0.9 to 340 

individuals km-2 across all species. Site areas were estimated using existing 

boundaries of management areas, suitable vegetation extent, or arbitrary 10 km2 

plots around transects. The summed population sizes of the threatened Peruvian 

Plantcutter and Rufous Flycatcher from just the study sites alone were greater 

than current estimates of their whole populations. Major strongholds of Peruvian 

Plantcutter, especially in the south of its range, are currently unprotected, and 

proposed protected areas fail to capture important populations of both species 

lying just outside their boundaries. Key sites are recommended for urgent 
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protection, and a vast area of lowland dry savannah forest, that may hold 

important populations of key species, is highlighted as the last remaining expanse 

of dry forest in the northwest of Peru, already threatened by urbanisation and 

large-scale irrigated agriculture. 
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2 Introduction 

Local abundance (population density) is an essential building block in constructing 

reliable estimates of population size, itself, a cornerstone of conservation 

instruments such as IUCN Red Lists and priority area designation (IUCN 2001; 

Rodrigues et al. 2006). However, quantitative data on population sizes and trends 

are lacking, including in birds – one of the best known taxonomic groups (Marsden 

and Royle 2015). For example, 121 birds are currently listed as threatened (CR, 

EN, or VU) in South America based, in part, on past reductions of population size, 

however, data comes from direct observation in just five of these species, and from 

abundance indices in 18 (IUCN 2015). The remainder were inferred from other 

sources, such as changes in extent of habitat. 

 

Distance sampling (Thomas et al. 2010) has been widely used to estimate bird 

abundance in temperate regions (Buckland et al. 2000) but is still relatively 

underemployed in tropical areas where so many threatened taxa occur. In 

biodiverse regions such as the Neotropics, mainly comprising so-called developing 

countries, obtaining density estimates from the field, and then translating these to 

population sizes, is a challenging process (Danielsen et al. 2003). The logistics of 

data collection are complicated by factors such as local social and political 

conditions, climate and topography, while lack of training can encumber data 

analysis (Danielsen et al. 2005). The nature of the species' population and 

distribution can also create additional methodological challenges, for example, in 

the case of rare or very patchily distributed species (Thompson 2004), that is, 

where the area of occupancy is much smaller than the extent of occurrence (see for 

example, Attorre et al. 2013). Surveying vast areas under these circumstances 

requires setting up surveys carefully to maximise detections of target species and 

ensure efficiency, using techniques such as stratification based on occurrence 

probability (Guisan et al. 2006; Aizpurua et al. 2015) and accounting for spatial 

variation (Yoccoz et al. 2001). 

 

The northwest of Peru is a global priority for conservation, with several rare, 

threatened and patchily distributed species(Stattersfield et al. 1998; Rodríguez 

and Young 2000; Olson and Dinerstein 2002; Mittermeier 2004). The area is 

strongly influenced by the cold Humboldt current along the coast of Peru, reducing 

precipitation on the coastal areas (CDC 1992). As a consequence, the distribution 
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of vegetation closely follows river valleys crossing the dry plains from east to west 

as they descend from the Andes (Figure 2.1). Vegetation is predominantly patches 

of dry forest or scrub savannah, among desert areas, dominated by Prosopis sp. 

Acacia sp. Cordia sp. and Capparis sp., among others (Schulenberg et al. 2007). 

Although habitat is naturally fragmented, the wider Tumbesian area, to which 

northwest Peru belongs, has suffered from massive deforestation and is 

considered one of the most severely threatened areas on earth in terms of 

biological extinction (Dodson and Gentry 1991). The area lies within three major 

conservation priority-setting schemes (Figure 2.1): the Magdalena-Chocó-Tumbes 

Biodiversity Hotspot (Mittermeier 2004), which, by definition, implies that more 

than 70% of its natural habitat has been lost; the Global 200 ecoregions (Olson and 

Dinerstein 2002), a priority ranking of the world's most threatened habitats; and 

the Tumbes Endemic Bird Area (Stattersfield et al. 1998), a region delimited by 55 

restricted-range species, of which, 18 are globally threatened (Devenish et al. 

2009). The area had previously been identified by Chapman et al., (1926) and 

Cracraft (1985) as a centre of bird endemism.  The principal threats to bird species 

are from degradation or loss of habitat, with the main causes including conversion 

of dry forest to agriculture, mining, grazing by goats and logging for firewood or 

charcoal (Best and Kessler 1995; More 2002; Flanagan et al. 2009). Trees outside 

protected areas are seldom left to grow large, which could affect nesting habitat, 

especially of obligate cavity nesters, such as the Rufous Flycatcher Myiarchus 

semirufus (Lanyon 1975). 
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Figure 2.1. Northwest Peru in the context of a) conservation designations and b) vegetation types 
below elevations of 500 m. Major cities are shown in b). 

 

This study aims to cover a shortfall in abundance data for a region of high 

conservation importance using recent innovations in distance sampling and survey 

design. It provides local abundance and site-specific population estimates for a 

suite of endemic birds, including rare and threatened species, in a patchy habitat. 

Specifically, this chapter will: 

 

 develop a practical method for survey site selection in patchy populations; 

 estimate local abundances of dry forest endemic birds using covariate 

distance sampling, constituting the first ever range-wide survey of these 

species; 

 produce population size estimates at important and discrete sites, and 

discuss threats and opportunities for their conservation in the region.  

a. b. 
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3 Methods 

 

3.1 Step 1 - Field site selection 

The study area was located along the north Peruvian coast, comprising most of the 

known ranges of the study species, from approximately 3.5° to 9° S, representing a 

distance of over 600 km (Figure 3.2). Bird habitat for the study species consists 

mainly of dry forest and scrub savannah amongst larger desert areas, located in a 

narrow band between the Andes and the coast below an elevation of 

approximately 500 m (CDC 1992). Given the size of the study area, it was 

logistically impossible to implement a random sampling strategy and obtain 

sufficient species records. Therefore, to meet the requirements of obtaining 

sufficient bird records from a wide geographic spread of sites across species' 

ranges, sites were selected randomly from within two strata layers. Strata were 

defined according to the relative probability of obtaining species records and 

geographically by dividing the study area into a 50 x 50 km grid. To identify the 

'occurrence probability' strata, a species distribution model was created using 

occurrence records of four bird species, whose distributions and broad habitat 

associations were representative of the community as a whole and for which there 

were good numbers of presence points (Grey-and-white Tyrannulet Pseudelaenia 

leucospodia, Rufous Flycatcher Myiarchus semirufus, Cinereous Finch Piezorina 

cinerea, Peruvian Plantcutter Phytotoma raimondii). Environmental predictors 

(Appendix 1) used in the model were climate based: eight bioclimatic variables 

based on precipitation and temperature  (Hijmans et al. 2005) and habitat based: 

maximum and minimum Normalized Difference Vegetation Index from the dry and 

wet seasons. Maxent (Phillips et al. 2006), run through the R package Dismo 

(Hijmans et al. 2013), was used to create a distribution model for each species, and 

these were evaluated with mean AUC from 5-fold cross validation. AUC ranged 

from 0.89 to 0.95 for the individual species models. The final models were 

constructed using all the data points, and then summed to create a single surface, 

providing regions of high and low suitability for the four species. Despite criticisms 

of using AUC as a means to validate models (Lobo et al. 2008), it is still the most 

widely used threshold-independent method of judging model performance, in part, 

due to lack of more appropriate alternatives (Merow et al. 2013). To create the 

geographic strata, a regular 50 km grid was drawn across the study area and 

identified the top ten cells in terms of highest average model scores. Twenty-six 
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sites were selected randomly from only the top three deciles of the probabilities of 

occurrence from the final model, using double weights for the top decile, i.e. 

sampling was restricted to avoid areas of high unsuitability for the species, 

including desert and urban areas. Sampling was repeated until at least one site fell 

in the top ten 50 km grid cells. In the field, sites were chosen as close as possible to 

the randomly selected sites, and were only moved when safety or access issues 

prevented the researchers from reaching the site. Two additional sites at Pomac 

National Park were added. All sites, except for the southernmost, were within the 

current or former ranges of all study species as mapped by BirdLife International 

& NatureServe (2012). Sites ranged from 27 to 369 m above sea level, from 3 to 

101 km from the coast, and with a median distance between sites of 150 km 

(interquartile range: 161 km). 

 

 

 

Figure 3.1. Model results for exploratory species distribution models, showing stratification of 
study area based on probability of occurrence of sampled species. 
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3.2 Step 2 - Field surveys 

Surveys were implemented from June to October 2013, by CD and Elio Nuñez 

Cortez, an undergraduate student from the Universidad Nacional de Piura, Peru. 

Fieldwork was only conducted during the dry season (outside the main breeding 

season) to avoid environmental seasonality affecting bird abundance as a result of 

changing resources within their habitat (Tinoco 2009). Both observers 

participated in pilot studies at six sites in 2012 to practise distance estimation, 

learn bird calls and trial field methods. Local abundances of 14 dry forest endemic 

bird species (see Table 4.1, Chapter 1), without known seasonal movements and 

small ranges (< 115,000 km2), were estimated at each site. The survey design 

consisted of four 2.5 km parallel, straight transects, separated by 500 m at each 

site. Habitat was sufficiently open to allow transects to be walked without major 

difficulty and did not require previous clearing of vegetation. Transects were not 

located on paths or tracks, and were occasionally moved to avoid them falling 

along the length of features such as irrigation canals or stream beds (Buckland et 

al. 2001). The two observers walked the transects together, using preloaded way 

markers on GPS for guidance. Each transect was walked once at a speed of 1-1.5 

km h-1 to gather bird data, and once to measure habitat characteristics at twelve 

plots located 200 m apart on each transect. 

 

Distances to birds were estimated either by eye, or for distances greater than 

around 25 m, with laser rangefinders. Two transects were completed per day 

where conditions permitted, with bird data collected between 6:15 and 11:00. For 

each bird encounter, the following were noted: species; number of individuals; 

type of detection (aural or visual); and perpendicular distance from transect line to 

individual or to the centre of a group of birds. Habitat characteristics were taken 

within a 10 m radius circular plot and included tree species present; % vegetation 

cover at two vertical strata (<3 m, >3 m; estimated visually); diameter at breast 

height (dBH; with tape measure) and height (estimated visually) of three largest 

trees; total number of stems with dBH > 10 cm; and presence/absence of grass. 

Topographic measurements at each plot included elevation above sea level (using 

a barometric GPS) and slope, average of two measurements using an inclinometer 

at 90° to each other. Human pressure on the habitat was also measured at each 

plot as a count of felled trees (cut tree trunks) and a count of livestock dung (goat, 

cow, horse, donkey). 
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3.3 Bird density estimation 

Distance sampling is a method of estimating density of biological populations 

(Buckland et al. 2001; Thomas et al. 2010) that takes account of the detectability of 

the objects under survey to adjust the encounter rates in estimating density. 

Detectability is modelled as a function of distance from the transect to the object 

(Buckland et al. 2001) employing the fundamental basis that detectability 

decreases with increasing distance from the transect line. It is also possible for 

covariates to be included in modelling the detection function (Buckland et al. 2004; 

Marques et al. 2007), that is, those that may affect the detectability of a species. 

These can be related to the species itself (e.g. temporal frequency and volume of 

calling; Alldredge et al. 2007), to its environment (e.g. density of habitat cover or 

 

No. Site name 
Administrative 

region 

1 Tucillal Tumbes 

2 
Fernandez 

Bajo 
Tumbes/Piura 

3 Enace Piura 

4 Lancones Piura 

5 
Puerta 

Pulache 
Piura 

6 
Pampa 
Larga 

Piura 

7 
Progreso 

Bajo 
Piura 

8 
Cruz de 

Caña 
Piura 

9 
Sagrado 
Corazón 

Piura 

10 Islilla Piura 

11 Ancajima Piura 

12 Ñapique Piura 

13 Ñaupe Piura 

14 Piedra Mora Lambayeque 

15 Las Norias Lambayeque 

16 Illescas Piura 

17 Pañalá Lambayeque 

18 La Peña Lambayeque 

19 
Pomac - 
Poma III 

Lambayeque 

20 
Pomac - 

Zona 
Recuperada 

Lambayeque 

21 
Pomac - 
Salinas 

Lambayeque 

22 La Viña Lambayeque 

23 Cañoncillo La Libertad 

24 Mocan La Libertad 

25 La Arenita La Libertad 

26 
Monte 

Zarumo 
Ancash 

Figure 3.2 . Study area with study sites 
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factors affecting food availability; Winiarski et al. 2013), or to the fieldwork 

process itself (e.g. observer differences, time of observation; Marques et al. 2007). 

A disadvantage of using distance sampling for rare species is that a minimum 

number of records, e.g. 60-80 (Buckland et al. 2001), are required to be able to fit a 

detection function. When attempting to estimate abundance at different sites, 

ideally, site-specific detection functions should be used, given that differences may 

exist in detectability between sites. However, this is often logistically difficult, 

therefore, site-level covariates were included in the detection function fitted to the 

complete dataset (Buckland et al. 2004; Marques et al. 2007), effectively taking 

into account site level variation. 

 

Data were analysed in Distance 6.0 (Thomas et al. 2010) as clusters, i.e. 

modelling the detectability of groups of one or more individuals of the same 

species. Distance data were grouped into bins of equal intervals prior to analysis 

and truncated, following guidelines to improve fit of detection functions (Buckland 

et al. 2001). Preliminary analyses with different truncation distances and numbers 

of intervals were trialled and a truncation distance, number of intervals and 

candidate model key function type (e.g. half-normal, uniform, hazard-rate) were 

set for each species based on visual inspection of histograms and goodness of fit 

tests (Appendix 2). To maximise the number of records used in the analysis, both 

aural and visual records were used, with a covariate included to account for any 

differences in detectability between these two detection modes. To estimate group 

size (numbers of individuals) for groups that were heard only, a random group size 

was taken from the visual records of the same species. To account for a possible 

effect of detection distance on size of groups, all recorded distances per species 

were divided into two bands, above and below the median, and the group size was 

randomly sampled by species and distance band. Whether the frequency of aural 

records changed as the field season progressed was also evaluated by plotting 

percentage of aural records against month (Appendix 3). 

 

The suitability of habitat variables as candidate covariates was assessed with 

respect to collinearity, effect on detection distance and variability across sites. 

Also, a maximum of two or three covariates to minimise failure rates in computing 

model likelihood were chosen. First, correlations between covariates were visually 
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inspected using scatterplots; variation of covariates across sites using boxplots; 

and the effect of covariates on the distances recorded per species or number of 

detections using linear regression (Appendix 3). All exploratory analyses were 

implemented in R (R Core Team 2014). Final covariates were chosen to avoid 

correlated covariates and to favour those showing variability between sites and 

those perceived to affect detection distances or number of detections. For each 

species, models were built using the established key function type, with different 

combinations of covariates and series expansions. Of these, a final model was 

selected through AIC minimisation, after checking χ2 goodness of fit. Density was 

estimated at the site level, using the global detection function, adjusted with the 

site-level covariates. As well as site-specific density estimates, an overall, region-

wide estimate was produced by combining the site level estimates. Given that the 

site level density estimates are calculated using the same global detection function, 

they are not independent, obligating variance to be calculated via bootstrapping 

(Thomas et al. 2010). Finally, density of groups km-2 was converted to individuals 

km-2 using average cluster size per site. Given that correlations between cluster 

size and detection distance were not significant at α = 0.05 for all species, a 

regression-based method to eliminate bias in cluster size affecting detectability 

was not applied (Thomas et al. 2010). 

 

In the case of two rare species (Rufous Flycatcher Myiarchus semirufus and 

Tumbes Tyrant Tumbezia salvini), individuals were not observed on the transects 

at six sites and one site, respectively, but were observed within the transect area 

when walking from one transect to another. Given their presence, they were given 

arbitrarily low density values of 0.5 ind. km-2 (lower than the minimum estimated 

density for both species) for subsequent analysis, following Brewer & Gaston 

(2002). 

 

3.4 Local population size estimation 

Population sizes were calculated for species at each field site by multiplying the 

density of individuals km-2 by the area of the site, calculated in one of three ways. 

In the case of sites having an official or proposed protection category 

corresponding to a formally delimited area, this was intersected with ArcGis 10.2 

with a vegetation cover map (MINAM 2012) and the area of suitable habitat types 
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within the conservation area was summed. Habitats were deemed suitable if they 

occurred over the transects themselves at the study site (Table 3.2). If study sites 

did not have a delimited area, then one of two approaches were taken. If existing 

patches of vegetation were delimited by landscape features (such as valleys, 

surrounding agriculture or desert), then these areas were summed, using the 

vegetation cover map. Alternatively, if study sites were part of a much larger area 

of continuous vegetation of suitable habitat type, then a circular plot of 10 km2 

around the transects was used (Appendix 4). In one case (Enace), two such circular 

plots were used, corresponding to the study site from this study and from the 2012 

pilot site less than 5 km away, were similar densities of birds were recorded 

(Appendix 4). Rapid Eye 5 m resolution, multispectral satellite images were used 

to further guide the delimitation by vegetation types. Finally, a site importance 

index was created. Population size by site was ranked for each species, and for 

each site, the number of species with a top three rank was assigned as the 

importance index. Thus, the index ranges from 0 to 14, where a site with a value of 

14 would imply that the site holds one of the top three population sizes for all 

species. 

 

Table 3.1. Habitat types within circular plot of 10 km2 at study sites according to 2011 vegetation 
map (MinAm 2013). 

Broad vegetation type Original vegetation type Area (km2) % 

Agriculture Coastal and Andean agriculture 38.8 15 

Desert Coastal desert 39.5 15 

Dry forest 
 

Savannah dry forest 77.8 

70 

Foothills dry forest 32.7 

Upper hills dry forest 26.0 

Slope dry forest 17.3 

Lower hills dry forest 9.7 

Riverine dry forest Riverine Prosopis sp. dry forest 17.0 

Total  260 
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4 Results 

 

4.1 Species presence and encounter rates at sites 

In total, 7,505 records of the 14 study species were recorded over a total of 104 

transects at 26 sites. At least five species endemic to the Tumbesian region 

(Stattersfield et al. 1998) were present at each site, with a maximum of 16 at 

Ñaupe (site 13, Figure 1). Encounter rates (groups km-1) at individual sites ranged 

from 0.09 (Baird's Flycatcher Myiodynastes bairdii, Short-tailed Woodstar Myrmia 

micrura, Tumbes Tyrant Tumbezia salvini) to a maximum of 15.80 (Mouse-

coloured Tyrannulet Phaeomyias murina; Appendix 5). Overall encounter rates per 

species ranged from 0.3 to 6.3 (Table 4.1). In terms of individuals of all species, 

encounter rates averaged 28.7 individuals per km, equivalent to approximately 7 

birds every 10 minutes at the average walking speed. 

 

Table 4.1. Summary encounter rates and group sizes by species (see Appendix 5 for encounter 
rates by site) 

Species 
Mean encounter 

rate (groups km-1 ± 
standard error) 

Mean group size 
(individuals ± 

standard error) 

Total number of 
groups observed 

Myrmia micrura 0.5 ± 0.08 1.1 ± 0.04 132 

Forpus coelestis 1.0 ± 0.09 4.3 ± 0.44 253 

Phytotoma raimondii 1.4 ± 0.30 1.2 ± 0.05 379 

Phaeomyias murina 3.3 ± 0.47 1.2 ± 0.02 858 

Pseudelaenia leucospodia 3.3 ± 0.22 1.0 ± 0.01 876 

Tumbezia salvini 0.4 ± 0.09 1.1 ± 0.04 103 

Myiarchus semirufus 0.3 ± 0.05 1.1 ± 0.04 70 

Synallaxis stictothorax 2.9 ± 0.24 1.4 ± 0.03 761 

Campylorhynchus fasciatus 0.8 ± 0.11 1.8 ± 0.06 199 

Cantorchilus superciliaris 2.9 ± 0.20 1.1 ± 0.02 768 

Mimus longicaudatus 6.3 ± 0.37 1.4 ± 0.03 1651 

Rhynchospiza stolzmanni 1.7 ± 0.20 1.8 ± 0.04 443 

Piezorina cinerea 3.1 ± 0.24 1.7 ± 0.05 811 

Sicalis taczanowskii 0.8 ± 0.10 31.2 ± 7.56 201 

 

4.2 Covariate selection 

Following the selection procedure, three covariates were chosen for inclusion in 

models. These were: mode of detection (vocalising or non-vocalising, following 

Marques et al. 2007); tree height; and percentage of vegetation cover < 3 m (low 

cover). Bird records on transects were evenly split between vocalising and non-

vocalising, with 41.5% of records exclusively aural and 40.5% exclusively visual 
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(18% were both seen and heard). Non-vocalising records had a median detection 

distance greater than vocalising records (Appendix 3a), justifying its inclusion as a 

covariate. This was also apparent on the detection function, with vocalising birds 

more detectable than non-vocalising individuals (Figure 4.1). Survey month did 

not appear to affect numbers of vocalising records (Appendix 3b) and was not 

included as a covariate. Given that surveys were conducted outside the main 

breeding season, numbers of vocalising birds was not expected to change over the 

four months of the survey. 

 

As with other multivariate regressions, it is not recommended to include 

strongly correlated variables, therefore, of the habitat variables, high cover, and 

basal area were excluded (due to correlations with low cover and tree height; 

Appendix 3c). Number of stems (as a measure of habitat density) was excluded due 

to lack of perceived effect on detection distance (Appendix 3d), as evidenced by a 

lack of significant linear regression coefficients between detection distance and 

number of stems for each species. Tree species richness was excluded because it 

did not vary greatly across sites (Appendix 3e). Additionally, low cover and tree 

height were among the most variable across sites, an important characteristic, 

given that the main objective of using covariates was to improve site level density 

estimates without using separate detection functions at this level. 

 

 

Figure 4.1. a) Illustrative detection function for non-vocalising and vocalising records for all species 
showing composite detection function. Species were analysed separately, but detection functions 
are typically as shown here. b) Detection function for Phytotoma raimondii for different values of 
low cover, with remaining covariates kept constant (non-vocalising and tree height at mean of 3.7 
m). 
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Covariate coefficients from species-specific detection functions showed similar 

patterns among species (Figure 4.2). In all species, non-vocalising records 

compared to vocalising records had a negative effect on detectability. In the case of 

Rufous Flycatcher Myiarchus semirufus, over 95% of records were visual, with the 

coefficient almost at zero. In contrast, Peruvian Plantcutter Phytotoma raimondii 

was detected aurally 54% of the time, and the absolute value of the coefficient is 

larger. In terms of habitat covariates, low cover negatively affected detectability in 

almost all cases, i.e. higher percentages of low cover decreased detectability 

(Figure 4.1b). Exceptions include Rufous Flycatcher Myiarchus rufus and Tumbes 

Tyrant Tumbezia salvini, both of which can occur in habitats with larger trees. 

Finally, tree height also negatively affected detectability. However, coefficient 

values are calculated by maintaining the remaining covariates at a stable value (as 

non-vocalising for the categorical covariate, and at the mean values of the 

continuous covariates). In the case of the habitat covariates, this could produce 

variable effects depending on the interaction between both, for example, birds 

vocalising from tree tops, and should therefore be interpreted with care. 
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Figure 4.2. Covariate coefficient values for species; error bars show standard errors. Vocalising is a 
factor covariate with two levels (vocalising, non-vocalising), coefficient value compares ‘non-
vocalising’ to ‘vocalising’ as a baseline. 

 

4.3 Local abundance estimates 

Local abundance by site varied greatly within and between species, with non-zero 

values ranging from 0.9 to over 340 individuals km-2. Confidence limits ranged 

from 5% to 24% of the overall estimates of density, but with much greater 

variation on the lower estimates (Table 4.2). Variance of the encounter rate 

contributes the highest component of the overall variance; where there were very 

low numbers of records at sites, species were not always observed on all four 

transects, greatly inflating the variance of the encounter rate. Sites where species 

registered particularly high coefficients of variation did not generally coincide 

(Figure 4.3). The highest density estimate comes from Sulphur-throated Finch 

Sicalis taczanowskii, a species commonly found in flocks numbering in the 100s or 
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even 1,000s (Schulenberg et al. 2007). The lowest mean density estimates are from 

two threatened flycatchers, Tumbes Tyrant Tumbezia salvini and Rufous 

Flycatcher Myiarchus semirufus. The latter had low density estimates across almost 

all sites, although its distribution is widespread. At least four species reach the 

limits of their distributions within the study area and have zero abundance at the 

southernmost sites (Figure 4.3). 

 

Table 4.2. Summary density estimates per species (see Appendix 5 for local abundance by site). The 
combined estimate represents the overall density estimate for all sites. Minimum values represent 
minimum density where present. 

Species 
Density estimate:  ind. km-2 (% coefficient of variation) 

Combined 
(across all sites) 

Minimum 
(where present) 

Maximum 

Myrmia micrura 19.1 (23.3) 2.3 (91.9) 113.9 (46.2) 

Forpus coelestis 51.2 (13.1) 0.9 (92.0) 210.7 (44.4) 

Phytotoma raimondii 27.5 (18.3) 1.8 (87.2) 104.7 (31.9) 

Phaeomyias murina 60.1 (10.3) 3.8 (59.2) 284.4 (42.3) 

Pseudelaenia leucospodia 44.5 (6.3) 3.0 (95.7) 103.2 (10.3) 

Tumbezia salvini 4.1 (18.1) 0.9 (102.9) 38.4 (16.1) 

Myiarchus semirufus 5.9 (19.9) 1.9 (89.9) 44.6 (25.6) 

Synallaxis stictothorax 63.2 (5.9) 4.6 (53.5) 157.1 (18.4) 

Campylorhynchus fasciatus 12.9 (15.2) 0.7 (85.4) 97.6 (34.7) 

Cantorchilus superciliaris 38.8 (5.8) 1.0 (92.0) 90.0 (15.6) 

Mimus longicaudatus 142.9 (5.5) 22.9 (28.6) 305.5 (10.5) 

Rhynchospiza stolzmanni 77.4 (7.2) 5.0 (52.5) 344.9 (14.7) 

Piezorina cinerea 65.1 (5.0) 4.4 (84.8) 161.7 (8.1) 

Sicalis taczanowskii 341.6 (24.4) 6.6 (89.7) 3060.2 (53.8) 
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Figure 4.3. Density estimates with lower and upper confidence limits by species and study sites. Site 
names refer to labels in Figure 3.1 and are ordered north to south. The first estimate (G) is the 
combined (or global) estimate across all sites. Densities of 0 (absence from a site) are shown by 
black dots. 
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4.4 Local population size estimates 

Areas were calculated for 13 sites, using suitable habitat within management areas 

at five, landscapes features at four, and circular plots at four (Table 4.3, 

Appendix 4). In two cases (Enace, Illescas) the bird surveys were conducted just 

outside the limits of the management area. Population sizes for the Peruvian 

Plantcutter ranged from 50 to 890 individuals, and for the Rufous Flycatcher from 

20 to 280 individuals per site (Table 4.4). Three species (Long-tailed Mockingbird, 

Mimus longicaudatus, Tumbes Sparrow Rhynchospiza stolzmanni and Sulphur-

throated Finch Sicalis taczanowskii) had estimated population sizes over 10,000 at 

five different sites (Table 4.4). Larger sites generally had higher population 

estimates and therefore scored higher in the site importance rank. Fernandez Bajo, 

as the largest site, held the highest number of species within their top three 

population size estimates (Table 4.3). However, Huacrupe regional protected area 

and the proposed conservation area at La Peña, both less than half the size of 

Fernandez Bajo, had very similar site importance scores. That is, they held almost 

the same number of species with population estimates within their top three 

(Table 4.3). 

 

Table 4.3. Site areas and protection status. 

No Site name Region 
Conservation area name (IUCN 

category) 

Suitable 
area 

(km2) 

Total size of 
conservation 

area 

Site 
importance 

index 

2 
Fernandez 

Bajo 
Piura Coto de Caza El Angolo (VI) 116.1 653.4 8 

3 Enace Piura 
Área de Conservación Regional 

Estribaciones al Sur de los 
Amotapes (proposed) 

20.0 274.9 0 

10 Islilla Piura  10.0  0 

13 Ñaupe Lambayeque  10.0  3 

14 Piedra Mora Lambayeque 
Área de Conservación Regional 

Bosque Huacrupe - La Calera (VI) 
35.8 72.7 8 

15 Las Norias Lambayeque  24.9  4 

16 Illescas Piura Zona Reservada (Illescas) 10.0  0 

18 La Peña Lambayeque 
Área de Conservación Privada 

San Francisco de Asís (proposed) 
67.7 107.9 7 

19,20,
21 

Pomac Lambayeque 
Santuario Histórico Bosque de 

Pómac (III) 
49.8 58.9 6 

23 Cañoncillo La Libertad 
Área de Conservación Privada 

Bosque Natural El Cañoncillo (VI) 
5.3 14.9 2 

24 Mocan La Libertad  4.1  1 

25 La Arenita La Libertad  4.3  0 

26 
Monte 

Zarumo 
Ancash  17.2  3 

7,8,9,1
1 

Chulucanas - 
La Matanza 

Piura  > 2500  n/a 
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Table 4.4 Population sizes (95% confidence intervals) at case study sites. A ‘+’ means that the species was observed at the site, but not during the transect census. 
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Fernandez 
Bajo 

 
1037 
(490-
1839) 

7726 
(2887-
13338) 

14067 
(11012-
18141) 

+ 
1771 
(562-
3042) 

   351 (0-
1097) 

28107 
(21343-
36071) 

41434 
(16496-
70334) 

1588 
(610-
2798) 

224 (0-
471) 

Enace 
 

1011 
(703-
1410) 

850 (135-
1907) 

2256 
(1955-
2575) 

+ 
 

1265 
(852-
1731) 

397 (265-
581) 

619 (411-
872) 

148 (0-
334)  

4279 
(1333-
7572) 

742 (583-
946) 

 

Islilla  453 (256-
642) 

 367 (267-
494) 

80 (0-
204) 

  174 (44-
323) 

609 (396-
887) 

232 (87-
378) 

  912 (527-
1263) 

 

Ñaupe 
90 (21-

161) 
779 (623-

989) 

2106 
(479-
4165) 

2816 
(1591-
4261) 

67 (15-
184) 

398 (133-
737) 

1912 
(1534-
2311) 

159 (0-
403) 

408 (218-
682) 

427 (261-
677) 

2236 
(1673-
2784) 

202 (0-
570) 

1030 
(880-
1177) 

209 (169-
277) 

Piedra Mora 
745 (205-

1389) 
713 (284-

1107) 

4069 
(758-
8588) 

3975 
(1854-
5369) 

+ 
1943 

(1356-
2634) 

416 (229-
656) 

 
4126 

(2923-
5099) 

1975 
(1126-
2618) 

5838 
(4077-
7588) 

42984 
(9580-
74881) 

1596 
(756-
2243) 

143 (62-
233) 

Las Norias 

132 (43-

234) 

494 (363-

645) 

2014 

(455-

3684) 

3466 

(2369-

4718) 

150 (0-

331) 

162 (0-

344) 

1762 

(1258-

2366) 
+ 

1863 

(857-

2522) 

1495 

(1076-

2160) 

4035 

(2082-

6668) 

13692 

(6685-

18441) 

752 (272-

1127) 

83 (0-

148) 

Illescas  354 (254-
445) 

 229 (113-
368) 

19 (0-58)   52 (9-
119) 

804 (680-
958) 

200 (132-
253) 

  
1362 
(961-
1670) 

 

La Peña 
50 (0-

148) 

2616 
(1978-
3319) 

742 (0-
1611) 

7500 
(4351-
11476) 

+ 
185 (0-

524) 

6886 
(5379-
8455) 

 
7633 

(4523-
10535) 

6994 
(5756-
8473) 

7487 
(6207-
8964) 

448 (0-
1409) 

1256 
(866-
1654) 

351 (108-
660) 

Pomac  
1330 

(1015-
1735) 

2875 
(2250-
3675) 

1485 
(815-
2710) 

12845 
(10775-
15310) 

230 (115-
450) 

2385 
(1585-
3595) 

205 (90-
465) 

865 (560-
1335) 

4205 
(3300-
5365) 

3370 
(2930-
3880) 

 8570 
(1640-
44755) 

3265 
(2535-
4205) 

85 (45-
165) 
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Cañoncillo 
513 (270-

958) 
118 (64-

187) 
82 (25-

158) 
454 (390-

527) 
234 (120-

380) 
 20 (0-47)   374 (264-

513) 
  826 (562-

1128) 
201 (143-

260) 

Mocan  4 (0-13) 
424 (168-

803) 
854 (688-

1011) 
20 (0-75)  920 (706-

1133) 
431 (261-

791) 
115 (75-

140) 
236 (157-

334) 
    

La Arenita 
59 (33-

91) 
4 (0-13) 

356 (133-
594) 

1046 
(887-
1225) 

  
1226 
(258-
2343) 

405 (215-
618) 

101 (69-
139) 

121 (39-
215) 

    

Monte 
Zarumo 

   
1298 
(992-
1604) 

280 (71-
527) 

 
1965 

(1417-
2729) 

613 (420-
894) 

128 (42-
183) 

300 (242-
357) 
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5 Conservation implications: population size estimates, priority sites and 

threats to endemic birds in northwest Peru 

 

The north coast of Peru, comprising the regions of Tumbes, Piura, Lambayeque, La 

Libertad and Ancash, is one of the most economically important areas of the country, 

representing less than 10% of Peru’s area, but home to 25% of the country’s urban 

population (INEI 2007). The region is responsible for 15% of GDP, with large-scale, 

irrigated agriculture and mining making up significant components of the region’s 

economy (INEI 2014). Conservation issues affecting the northwest region revolve 

around habitat loss and habitat degradation. Dry forests are being lost to urban 

development, large-scale irrigated agriculture, open cast mining and at a smaller scale, 

smallholder farming. Habitat degradation is also serious, with selective logging 

effectively wiping out large individual trees, especially Prosopis sp., for the production of 

charcoal (CDC 1992). The following sections discuss population size estimates for key 

species and priority sites in light of challenges facing biodiversity conservation, 

including creation of protected areas, urban development, large- and small-scale 

agriculture and mining. 

 

5.1 Populations of key species across the Tumbesian region 

Three bird species in northwest Peru are listed on the IUCN Red List: Peruvian 

Plantcutter Phytotoma raimondii (Endangered), Rufous Flycatcher Myiarchus semirufus 

(Endangered) and Tumbes Tyrant Tumbezia salvini (Near Threatened). The latter two 

both had the lowest mean and the lowest maximum abundance across sites. Published 

estimates of population size or population density for these species are scarce; 

estimates only exist in literature for Peruvian Plantcutter in a small part of its range, 

Pomac National Park (Nolazco et al. 2014). Results from the present study and Nolazco 

et al., (2014) show a similar geographic distribution of the species in the National Park. 

An area with recovering habitat (i.e. a mix of abandoned farmland, scrub and small 

patches of trees) held the highest local abundances. This sector of the park was 

reclaimed by the authorities in 2009 after an illegal invasion of settlers had cleared, 

farmed and built houses over most of this area (SERNANP 2011). The overall population 

estimate of 865 (95% CI 560 – 1,335) obtained in the present study (Table 4.4) was 

larger than the 488 individuals of the previous estimate (confidence intervals not 
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given). Higher encounter rates, and greater numbers of females were found during the 

present study. An unpublished study in 2006 to assess presence of both Peruvian 

Plantcutter and Rufous Flycatcher visited nine sites over a period of 20 days in the 

northern part of the present study area (Chávez Villavicencio et al. 2006). Encounter 

rates found by Chávez et al. were highly variable, as in this study, but mean values were 

remarkably similar to this study (correlation of mean encounter rates for 11 species: 

rs = 0.91, p-value < 0.001;Appendix 7), providing some evidence for a recent stability in 

species presence and abundance at sites. 

 

Locations of known sites for Peruvian Plantcutter Phytotoma raimondii were 

published for the whole of Peru in 2009 (Flanagan et al. 2009) and updated in 2015 

with a population estimate of less than 500 individuals (Romo et al. 2015). The present 

study has found more individuals at eight sites than the above global population 

estimate. The methods used by Romo et al., (2015) did not include systematic surveys 

and did not take into account detection probability; rather, they were mostly limited to 

summing individual plantcutters sighted on field visits or from casual observations. As a 

result, there are large differences in population sizes at sites common to this study and 

Romo et al., (2015). For example, La Arenita in the province of Paiján, La Libertad, has 

one of the highest abundance estimates from the present study (94.1 ind. km-2 ± 23.2; 

Appendix 6) with an estimated population of 450 individuals, whereas Romo et al. 

estimated a population of 40. 

 

The Endangered Rufous Flycatcher Myiarchus semirufus (IUCN 2015), was observed 

at all but three study sites. The flycatcher’s distribution was described shortly after its 

description as covering most of the study area, with records ranging from Tumbes to 

Chimbote (Zimmer 1938). The species is still widespread throughout the nortwest of 

Peru, but generally at low densities. The current population estimate (used for red 

listing purposes) stands at 1,500-7,000 (BirdLife International 2016). This is 

undoubtedly an underestimate given that there are more than 25,000 km2 of dry forest 

savannah and desert scrub (MINAM 2012) –suitable habitats for the species– within its 

range as defined by this study. Average local abundance across the study area was 5.9 

(95% CI 3.5 - 8.2). A population of approximately 1,500 individuals is estimated from 

the study sites alone (485 km2 of suitable habitat), but its global population size could 
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well be one or two orders of magnitude larger. Factors limiting its abundance may be 

connected to nesting sites, i.e. a lack of tree cavities (Lanyon 1985) or at least, very dark, 

thick thorny thickets (Lanyon 1975). Large trees are largely absent across the lowland 

plains forest in northwest Peru. Density was highest at the private reserve of Cañoncillo, 

the site with the largest Prosopis sp. ‘Algarobo’ trees recorded. Further evidence of a 

lack of nesting sites comes from a project on Tumbes Swallow Tachycineta stolzmanni at 

Pomac National Park (Stager et al. 2012) where at least four nestboxes put out for 

swallows were first occupied by Rufus Flycatchers (F. Angulo, pers. comm). 

 

Population density estimates for Sulphur-throated Finch Sicalis taczanowskii may 

suffer from higher uncertaintly than other species given their life history. This species 

tends to form large flocks numbering 100s of individuals (Schulenberg et al. 2007). 

Distance sampling is more effective when there are many smaller clusters than few 

large clusters, as is mostly the case in this species, due to less detections made per given 

effort for large clusters, leading to less precise estimates of encounter rate (Buckland et 

al. 2001). When a species is almost entirely found in a single group, then estimation 

techniques such as complete counts may be more appropriate. However, a median of 14 

encounters per site was recorded (range: 1 - 30) at the 16 sites were the species was 

found, compared to 17 per site across all species. Furthermore, the species had a very 

large variability in flock size (from 1 to 400 individuals), which also contributes to the 

density estimate variance, although not as much as the contribution of the encounter 

rate variance. 

 

5.2 Key sites for conservation 

The Pacific Equatorial Coast and Subtropical Pacific biomes, covering the study area, 

have the lowest representation of protected areas in Peru, at 6.4% and 5.1% of their 

area, respectively. In contrast, 34% of the Southern Amazon biome is protected 

(calculated from Olson et al. 2001; IUCN and UNEP-WCMC 2016). Additionally, lowland 

dry forest is generally underrepresented in site-based conservation priority setting 

schemes (e.g. CDC 1992; Rodríguez and Young 2000; Peralvo et al. 2007; Véliz Rosas et 

al. 2008; SERNANP 2009; Gobierno Regional Piura 2009; Arnillas et al. 2011; More 

Cahuapaza et al. 2014; Fajardo et al. 2014), sometimes used to implement new 

protected areas (Gerencia de Recursos Naturales del Gobierno Regional de Lambayeque 
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2009). This lack of protection is highlighted by the fact that several hotspots of local 

abundance for important species occur at unprotected and/or threatened sites. Three 

main issues occur: a lack of protection at key sites for the patchily distributed Peruvian 

Plantcutter, lack of a large continuous block of protected lowland dry forest, and a 

general lack of protected sites in the southern parts of the ranges of the Tumbes 

endemics. 

 

For the Peruvian Plantcutter, of particular importance are the sites at Mocan and La 

Arenita (sites 24, 25; Figure 3.2), in La Libertad. Density estimates at these very small 

sites are among the highest estimates for this species (Appendix 6). The sites are owned 

by a large food company with extensive sugar cane plantations across the area. 

Although the site at La Arenita is not currently planned for conversion to agriculture, 

the site at Mocan is, and neighbouring fields have already been cleared. These sites are 

important strongholds for the plantcutter in the southern part of its range, along with 

Monte Zarumo, another unprotected site, further south still, in Ancash. Population sizes 

at each of the three sites are over 400 individuals. Additionally, the sites near the town 

of Paiján, La Libertad, demonstrate how different models of agriculture affect 

biodiversity. To the south of the town, agriculture generally corresponds to 

smallholdings, interspersed with small patches (i.e. < 5 ha) of scrub and dry forest. 

Among these, plantcutters have been found regularly (Pollack Velásquez 2011). To the 

north, industrial scale monocultures dominate, where Plantcutters have formerly been 

recorded (Flanagan et al. 2009) but are now restricted to the sites at La Arenita and 

Mocan. Furthermore, at La Arenita, the Plantcutter was observed to use olive 

plantations next to the small area of dry scrub as a novel food source. Population 

densities within the olive plantation were similar to those in the dry scrub. Habitat 

mosaics of small-scale agricultural and natural habitats could be exploited as part of 

conservation initiatives aimed at protecting threatened species beyond protected areas. 

Two other geographically important sites, Illescas and Enace (sites 3, 16; Figure 3.2), 

hold significant populations of Plantcutters, but remain just outside proposed 

conservation areas. At both sites, it was not possible to extend the limits of the 

protected areas, despite information on Plantcutter distributions being available. A 

major obstacle to establishing new conservation areas in Peru lies in navigating 

permissions related to land use, for example, with holders of mining concessions and 
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peasant farmer communities (e.g. land for goat grazing), both of which have rights to 

land use, although often not ownership (see Figure 5.3). 

 

A notable region, outstanding for its lack of roads, villages and settlements, but also 

for its lack of biodiversity information lies between the new and old Panamerican 

highways, straddling the regions of Piura and Lambayeque (Figure 5.1). The 

conservation value of this area, given its continuous habitat, is exceptional, providing 

connectivity between numerous protected areas and important sites, especially along 

the base of the Andes, and with Ñapique (site 12; Figure 5.3). The biodiversity value of 

this area could be enormous, and could represent the largest contiguous populations of 

many of the low altitude dry forest endemics of the Tumbes region. A combined 

abundance estimate from study sites within the same habitat type of dry forest 

savannah surrounding this area (sites 7, 8, 9, 11,14, 15, 17; Figure 5.1) was calculated 

for Rufous Flycatcher as 4.6 ind. km-2 (95% CI 2.2-9.6), which over an area well in 

excess of 5,000 km2 implies a significant population. This region is threatened by large-

scale agriculture in the south and along the base of the Andes, (see below) and by urban 

sprawl from the city of Piura in the north. A site on the northern edge of this area, on the 

outskirts of the city of Piura, with a previously studied population of Peruvian 

Plantcutters Phytotoma raimondii, has already been cleared for construction (Chávez 

Villavicencio et al. 2006). This vast area should be taken into account in projects to 

define new protected areas. 

 

Many of the endemic species have lost more of their former ranges at their southern 

extremes than at the north. Further south, as the coastal plains are reduced in area with 

the increasing proximity of the Andes to the sea, two changes occur in land cover. First, 

as the climate becomes drier, desert becomes the dominant natural land cover (Figure 

2.1). Second, the proportion of agriculture to natural land cover increases sharply. Small 

fragments of dry forest in the river valleys among the desert, where not already lost to 

agriculture, need to be conserved and connected, including for example, the study site at 

Monte Zarumo (Appendix 4l), where one of the highest population densities of Peruvian 

Plantcutter is found (Table 4.2). A network of sites should be protected here to maintain 

populations of endemic species at the present range extremes and to prevent further 

range loss. 
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Figure 5.1. Area of lowland plains dry forest with very low population and road density, showing study 
sites and occurrence records of threatened species. 
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5.3 Major threats to biodiversity conservation in northwest Peru 

Large-scale irrigation projects along the coast involve bringing water from the 

Amazonian basin, east of the Andes, via reservoirs, canals and tunnels to feed export 

agriculture on the drier coastal plains. Engineering projects such as these have been 

planned since at least the 1920s (Gobierno Regional de Lambayeque 2016), and 

irrigation canals feeding coastal agriculture from rivers on the west side of the Andes 

have existed in places for several millennia (Hocquenghem 1999). At least three large 

irrigation projects are at different stages of completion in the present study area: Alto 

Piura, Olmos-Tinajones in Lambayeque and Chavimochic in La Libertad, promising 

development and improved local economies (Figure 5.1, Figure 5.2). The Olmos project 

has already constructed a reservoir on the Rio Huancabamba east of the Andes, and 

canals now bring water to the region around Olmos (study sites 15 and 17; Figure 5.1). 

An area of 38,000 ha is due to be irrigated for industrial use, while smaller areas 

totalling 5,500 ha will be irrigated for community use, including the whole of the study 

area of Las Norias, implying the loss of most of its avifauna (Table 4.4). At average 

densities of sites surrounding this area, this conversion could entail the loss of 

approximately 1,730 (95% CI: 820-3,665) Endangered Rufous Flycatchers Myiarchus 

semirufus. However, the global population is probably an order of magnitude higher 

than current estimates (see above), therefore this number, although alarming, does not 

represent such a drastic population decline as would be calculated with current global 

population estimates. 

 

 

Figure 5.2. A series of stills from a promotional video showing the proposed benefits of the Olmos large-
scale irrigation project. The 'desert' on the left, i.e. a vast lowland savannah dry forest, is transformed to 
green monocultures. 

A worrying aspect of these large-scale projects is not only the habitat loss, but also 

how mitigation and offsets are managed within the framework of environmental impact 

assessments. Peru has recently developed legislation requiring ecological equivalence 

within environmental mitigation measures (MINAM 2014; MINAM 2016). Currently, the 

bird components of environmental impact assessments are mostly limited to very short 
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field surveys with reports providing species lists and diversity indices, such as Shannon 

and Simpson (for example, see official guidelines; MINAM 2015). The environmental 

impact assessment for the industrial irrigation area did not report any of the threatened 

bird species found by this study at the same sites (ECSA Ingenieros 2011). This is very 

worrying. Furthermore, mitigation measures, in terms of equivalent area of habitat 

reforested or protected, are evidently less than the area impacted (ECSA Ingenieros 

2011) and include recommendations for reforestation with species of economic interest 

for local communities.  A similar pattern is seen in the environmental impact 

assessment at Illescas (site 16; Figure 3.2) with regard to the Bayovar mine (Golder 

Associates Perú S.A. 2008). Surveys during impact assessments need to be improved 

and ecological equivalence calculations improved, for example with bird abundance 

data. 

 

Mining is on the increase in Peru (Devenish and Gianella 2012) and large areas of the 

country are given over to mining concessions (Figure 5.3). Mining takes place at both 

industrial and artisanal scales, with different legislation controlling each, whilst illegal 

mining, given its lack of regulation, represents an additional threat to biodiversity 

conservation. Mining, in any of its forms, was occurring at seven sites during the study. 

Although the total area of any one concession will likely not be exploited, land use is 

restricted for the duration of the concession, making the establishment of new 

protected areas difficult. A strip of dry forest at the base of the Illescas Cerros, currently 

outside the proposed national reserve (Appendix 4g) but within the mining concession, 

holds around 450 Plantcutters and over 150 Rufous Flycatchers as estimated by this 

study, comparable to some of the highest population estimates at other protected areas. 

Furthermore, both these species have not been recorded within the limits of the 

proposed area itself, mostly made up of rocky scrub with very low, or absent vegetation. 

 

A further site, Islilla (site 10; Figure 3.2), completely covered by an active Andalusite 

mining concession, represents a geographically important site on the coast, with an 

estimated 80 individuals of Rufous Flycatcher and around 175 Peruvian Plantcutters in 

just the 10 km2 plot around the transects. The area of desert scrub here actually benefits 

from the water discharged from the mining operation, and apparently is free from 

chemical waste due to the mechanical nature of the mining operation. Furthermore, the 
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area of vegetation, although within the concession, is not under active exploitation, and 

currently represents a de facto reserve, albeit, without long-term protection (compare 

to similar cases, e.g. Forero-Montaña et al. 2003). Opportunities exist to work with 

mining companies to protect habitat within the areas of mining concessions, but 

requires forging agreements and long-term commitments on the part of industry, 

conservation NGOs and regional governments. 

 

 

Figure 5.3. Location of mining concessions and subsistence farming community territories in northwest 
Peru. 
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6 Key recommendations 

 Incorporate key sites for Peruvian Plantcutter into regional government 

biodiversity strategies as proposed sites for protection. 

 Work with industry to protect key sites within mining concessions and to 

incorporate natural habitat patches within large-scale agriculture. 

 Safeguard the vast area of lowland dry forest savannah, currently used as grazing 

areas, through cooperative agreements with farming communities and protect 

from large-scale industrial development. 

 Establish a network of proposed protected areas in the southern extreme of the 

Tumbes region, working with the regional governments of La Libertad, Ancash 

and Lima. 

 Support existing initiatives, such as private conservation areas, that conserve key 

populations of important species, for example, by increasing effectiveness of site 

protection. 

 Improve survey techniques within environmental impact assessments to include 

a measure of abundance and employ this in ecological equivalence calculations 

for mitigation measures. 
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8 Appendices 

 

Appendix 1. Predictors used in exploratory species distribution model for defining sampling strata. 

Model variable Source 

Annual Mean Temperature bio1: Hijmans et al. 2005 

Mean Temperature of Warmest Quarter bio10: Hijmans et al. 2005 

Mean Temperature of Coldest Quarter bio11: Hijmans et al. 2005 

Annual Precipitation bio12: Hijmans et al. 2005 

Precipitation of Driest Month bio14: Hijmans et al. 2005 

Precipitation Seasonality (Coefficient of Variation) bio15: Hijmans et al. 2005 

Precipitation of Wettest Quarter bio16: Hijmans et al. 2005 

Precipitation of Driest Quarter bio17: Hijmans et al. 2005 

Dry season maximum NDVI MODIS product: MODQ13A1, 5 year average 

2007-2012  

Dry season minimum NDVI MODQ13A1 

Wet season maximum NDVI MODQ13A1 

Wet season minimum NDVI MODQ13A1 

 

Appendix 2. Interval and truncation distances per species for distance sampling analysis 

Species Number of 
records 
(groups) 

Intervals Truncation 
distance 

Key 
function 

Adjustment 
terms 

Myrmia micrura 132 7 60 Hazard rate - 

Forpus coelestis 244 7 90 Half normal - 

Synallaxis stictothorax 758 9 80 Hazard rate Simple 
polynomial 

Phaeomyias murina 851 9 80 Hazard rate - 

Pseudelaenia leucospodia 871 9 80 Hazard rate Simple 
polynomial 

Tumbezia salvini 101 7 80 Hazard rate - 

Myiarchus semirufus 69 6 60 Half normal - 

Phytotoma raimondii 370 6 100 Hazard rate - 

Campylorhynchus fasciatus 196 7 90 Hazard rate - 

Cantorchilus superciliaris 752 6 80 Hazard rate - 

Mimus longicaudatus 1578 10 70 Half normal Cosine 

Piezorina cinerea 780 7 80 Half normal - 

Sicalis taczanowskii 197 7 80 Half normal Cosine 

Rhynchospiza stolzmanni 440 6 60 Half normal Cosine 
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Appendix 3. Covariate exploratory analysis 

a). Perpendicular distance by aural and non-aural records; the blue line marks median distance. 
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b). Percentage of heard records per species at each study site, plotted in chronological order of field 
surveys. Point area is proportional to sample size (see (l) for key), sites are only included where sample 
size is ≥ 10. Mean percentage ± standard deviation bar shown at right of each series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Estimating local abundance   Chapter 3 

138 

c) Correlations among potential habitat covariates. Lower diagonal shows spearman correlation 
coefficients (stars indicate significance as follows: *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05 ); diagonal panel 
shows distribution of covariate. Panels are shaded where correlations are significant (p < 0.05) and 
where coefficients indicate strong correlations (rs > |0.5|) 
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d) Effect of potential habitat covariates on distances recorded. Perpendicular distances recorded for birds 
along transects are plotted against six potential habitat covariates. Linear regression lines (and whether 
they are significantly different to zero) are shown for each bird species separately. 
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e) Variation of covariates across sites. Site numbers on x-axis follow those in Appendix 5 and Figure 3.2. 
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Appendix 4. Study sites showing areas used in population size case studies. See Figure 3.1 for location of 
sites (site numbers in brackets as in Figure 3.1). See Table 4.3 for full names of protected areas. 
Vegetation types follow MINAM (2012).
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Appendix 5. Encounter rates (± standard error) expressed as groups km-1 for all records of all species across sites. See Figure 3.2 for location of numbered sites. 
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1 Tucillal 0.09 ± 
0.09 

1.90 ± 
0.52 

0 ± 0 0 ± 0 0 ± 0 0.09 ± 
0.10 

0 ± 0 0 ± 0 0.66 ± 
0.45 

1.04 ± 
0.33 

6.07 ± 
1.30 

0.28 ± 
0.29 

0.85 ± 
0.32 

1.90 ± 
0.14 

2 Fernandez 
Bajo 

0.48 ± 
0.19 

1.55 ± 
0.52 

0.68 ± 
0.29 

0 ± 0 0.19 ± 
0.19 

0.19 ± 
0.11 

0 ± 0 0 ± 0 0 ± 0 0.68 ± 
0.19 

5.72 ± 
0.94 

0 ± 0 1.45 ± 
0.29 

4.07 ± 
0.57 

3 Enace 0 ± 0 0.96 ± 
0.37 

2.02 ± 
0.34 

3.07 ± 
0.59 

0.48 ± 
0.36 

0 ± 0 0 ± 0 1.82 ± 
0.45 

0 ± 0 4.32 ± 
0.77 

5.09 ± 
0.61 

2.02 ± 
0.39 

1.44 ± 
0.23 

0 ± 0 

4 Lancones 1.47 ± 
0.38 

2.93 ± 
0.54 

3.98 ± 
0.42 

1.05 ± 
0.25 

2.62 ± 
0.63 

0.10 ± 
0.11 

0.31 ± 
0.11 

0 ± 0 0.21 ± 
0.12 

2.93 ± 
0.59 

8.48 ± 
1.41 

1.47 ± 
0.51 

0.42 ± 
0.25 

3.14 ± 
0.35 

5 Puerta 
Pulache 

0.20 ± 
0.11 

1.09 ± 
0.30 

0.20 ± 
0.11 

2.59 ± 
0.24 

3.88 ± 
0.27 

1.59 ± 
0.29 

0.10 ± 
0.10 

0 ± 0 0.40 ± 
0.16 

1.39 ± 
0.12 

3.18 ± 
0.18 

0 ± 0 0 ± 0 1.29 ± 
0.31 

6 Pampa 
Larga 

0.20 ± 
0.11 

0.80 ± 
0.24 

3.09 ± 
0.35 

1.69 ± 
0.20 

1.99 ± 
0.34 

0 ± 0 0.10 ± 
0.10 

0 ± 0 0 ± 0 3.09 ± 
0.81 

7.67 ± 
1.10 

2.69 ± 
0.26 

1.29 ± 
0.22 

0.30 ± 
0.09 

7 Progreso 
Bajo 

0 ± 0 0.10 ± 
0.10 

5.46 ± 
0.86 

1.63 ± 
0.66 

4.31 ± 
1.30 

0 ± 0 0.86 ± 
0.50 

0 ± 0 1.53 ± 
0.20 

3.06 ± 
0.15 

4.21 ± 
1.13 

3.45 ± 
0.78 

1.82 ± 
0.07 

0.77 ± 
0.32 

8 Cruz de 
Caña 

0.60 ± 
0.20 

0.30 ± 
0.10 

5.31 ± 
0.69 

2.90 ± 
0.44 

4.51 ± 
0.53 

0 ± 0 0 ± 0 0.10 ± 
0.10 

0.30 ± 
0.19 

5.61 ± 
0.38 

3.70 ± 
0.40 

7.71 ± 
0.55 

3.00 ± 
0.82 

3.60 ± 
0.37 

9 Sagrado 
Corazón 

0.40 ± 
0.16 

0.79 ± 
0.16 

3.08 ± 
0.91 

5.66 ± 
0.59 

3.48 ± 
0.30 

0 ± 0 0.10 ± 
0.10 

1.49 ± 
0.76 

0 ± 0 4.37 ± 
0.77 

5.06 ± 
0.61 

6.26 ± 
0.68 

1.39 ± 
0.47 

4.77 ± 
0.42 

10 Islilla 0 ± 0 0 ± 0 4.86 ± 
1.03 

0 ± 0 1.78 ± 
0.58 

0 ± 0 0.50 ± 
0.30 

1.68 ± 
0.66 

0 ± 0 3.96 ± 
0.77 

1.98 ± 
0.29 

3.47 ± 
0.76 

0 ± 0 0 ± 0 

11 Ancajima 2.59 ± 
0.66 

1.30 ± 
0.34 

4.98 ± 
0.86 

6.98 ± 
1.26 

3.69 ± 
0.38 

0.40 ± 
0.28 

0.20 ± 
0.12 

0.60 ± 
0.11 

1.50 ± 
0.41 

6.28 ± 
0.73 

6.08 ± 
0.58 

3.39 ± 
1.01 

0.30 ± 
0.19 

6.58 ± 
0.49 

12 Ñapique 0 ± 0 0.42 ± 
0.18 

6.88 ± 
1.49 

0 ± 0 0.85 ± 
0.43 

0 ± 0 0.53 ± 
0.25 

0 ± 0 0.95 ± 
0.64 

3.49 ± 
0.89 

1.38 ± 
0.58 

1.27 ± 
0.42 

0 ± 0 0 ± 0 

13 Ñaupe 1.09 ± 
0.38 

2.28 ± 
0.56 

4.26 ± 
0.56 

9.12 ± 
0.70 

2.77 ± 
0.58 

2.48 ± 
0.30 

0.30 ± 
0.10 

1.68 ± 
1.32 

0.30 ± 
0.10 

5.55 ± 
0.76 

10.01 ± 
2.10 

1.88 ± 
0.60 

0.20 ± 
0.11 

4.46 ± 
0.74 

14 Piedra 
Mora 

1.56 ± 
0.16 

1.95 ± 
0.49 

2.34 ± 
0.53 

0.88 ± 
0.25 

4.29 ± 
0.96 

0.39 ± 
0.16 

0 ± 0 0 ± 0 1.46 ± 
0.61 

1.76 ± 
0.60 

5.46 ± 
1.20 

5.17 ± 
0.79 

2.44 ± 
0.34 

3.71 ± 
0.47 

15 Las Norias 0.19 ± 
0.11 

0.97 ± 
0.12 

1.36 ± 
0.44 

4.87 ± 
0.81 

4.87 ± 
0.80 

0.39 ± 
0.23 

0.29 ± 
0.19 

0 ± 0 0.29 ± 
0.10 

1.56 ± 
0.28 

6.04 ± 
1.27 

3.70 ± 
1.02 

2.34 ± 
0.46 

3.70 ± 
1.16 

16 Illescas 0 ± 0 0 ± 0 6.55 ± 
0.62 

0 ± 0 1.59 ± 
0.28 

0 ± 0 0.10 ± 
0.10 

0.60 ± 
0.34 

0 ± 0 3.18 ± 
0.43 

1.49 ± 
0.41 

3.87 ± 
0.41 

0 ± 0 0 ± 0 



Chapter 3   Estimating local abundance 

143 

No. Name 

M
yr

m
ia

 m
ic

ru
ra

 

F
o

rp
u

s 
co

el
es

ti
s 

S
yn

a
ll

a
xi

s 
st

ic
to

th
o

ra
x 

P
h

a
eo

m
yi

a
s 

m
u

ri
n

a
 

P
se

u
d

el
a

en
ia

 
le

u
co

sp
o

d
ia

 

T
u

m
b

ez
ia

 s
a

lv
in

i 

M
yi

a
rc

h
u

s 
se

m
ir

u
fu

s 

P
h

yt
o

to
m

a
 

ra
im

o
n

d
ii

 

C
a

m
p

yl
o

rh
yn

ch
u

s 
fa

sc
ia

tu
s 

C
a

n
to

rc
h

il
u

s 
su

p
er

ci
li

a
ri

s 

M
im

u
s 

lo
n

g
ic

a
u

d
a

tu
s 

P
ie

zo
rh

in
a

 
ci

n
er

ea
 

S
ic

a
li

s 
ta

cz
a

n
o

w
sk

ii
 

R
h

yn
ch

o
sp

iz
a

 
st

o
lz

m
a

n
n

i 

17 Pañalá 0.59 ± 
0.25 

0.10 ± 
0.10 

4.41 ± 
0.48 

1.86 ± 
0.97 

4.50 ± 
0.58 

0 ± 0 0 ± 0 0 ± 0 1.27 ± 
0.33 

3.33 ± 
0.24 

5.87 ± 
0.58 

6.66 ± 
0.49 

0.39 ± 
0.28 

1.37 ± 
0.34 

18 La Peña 0.10 ± 
0.10 

0.30 ± 
0.19 

1.09 ± 
0.19 

6.95 ± 
0.99 

8.44 ± 
0.76 

0.50 ± 
0.25 

0 ± 0 0 ± 0 0.10 ± 
0.10 

3.28 ± 
0.41 

4.47 ± 
0.98 

4.07 ± 
0.59 

0.10 ± 
0.10 

2.98 ± 
0.20 

19 Pomac - 
Poma III 

0.50 ± 
0.10 

0.30 ± 
0.19 

3.69 ± 
0.64 

0 ± 0 5.78 ± 
0.60 

0.30 ± 
0.10 

0.30 ± 
0.10 

0.30 ± 
0.30 

1.89 ± 
0.34 

4.39 ± 
0.81 

10.37 ± 
1.20 

3.99 ± 
1.04 

0 ± 0 0 ± 0 

20 Pomac - 
Zona 
Recuperada 

2.09 ± 
0.38 

1.29 ± 
0.34 

2.28 ± 
0.50 

0 ± 0 4.47 ± 
0.75 

0.10 ± 
0.10 

0.10 ± 
0.10 

4.87 ± 
1.12 

1.19 ± 
0.36 

3.48 ± 
0.75 

13.61 ± 
0.83 

4.37 ± 
1.02 

0 ± 0 0 ± 0 

21 Pomac - 
Salinas 

0.90 ± 
0.19 

0.80 ± 
0.43 

2.99 ± 
0.70 

0.80 ± 
0.33 

5.38 ± 
0.38 

0.10 ± 
0.10 

0.30 ± 
0.19 

0.30 ± 
0.30 

2.19 ± 
0.20 

5.48 ± 
1.05 

10.07 ± 
2.24 

5.08 ± 
0.69 

0.30 ± 
0.19 

0 ± 0 

22 La Viña 0.10 ± 
0.10 

0.40 ± 
0.23 

0 ± 0 0 ± 0 4.28 ± 
0.82 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 1.89 ± 
0.41 

8.95 ± 
3.22 

6.46 ± 
1.19 

1.99 ± 
0.54 

1.19 ± 
0.56 

23 Cañoncillo 0 ± 0 0.78 ± 
0.17 

6.27 ± 
1.12 

0.49 ± 
0.29 

5.20 ± 
1.06 

3.53 ± 
0.72 

1.86 ± 
0.19 

0 ± 0 4.51 ± 
0.20 

1.96 ± 
0.49 

3.92 ± 
0.25 

0 ± 0 0 ± 0 0 ± 0 

24 Mocan 0 ± 0 2.09 ± 
0.37 

0 ± 0 11.43 ± 
1.20 

4.07 ± 
0.66 

0 ± 0 0.22 ± 
0.25 

10.55 ± 
2.46 

0 ± 0 0.11 ± 
0.11 

8.90 ± 
0.83 

1.10 ± 
0.33 

0 ± 0 0 ± 0 

25 La Arenita 0 ± 0 1.88 ± 
0.34 

0 ± 0 15.80 ± 
6.40 

2.27 ± 
0.97 

0 ± 0 0 ± 0 10.07 ± 
2.38 

0.89 ± 
0.19 

0.10 ± 
0.10 

12.24 ± 
0.90 

1.68 ± 
0.30 

0 ± 0 0 ± 0 

26 Monte 
Zarumo 

0 ± 0 0 ± 0 0 ± 0 8.22 ± 
0.86 

1.49 ± 
0.11 

0 ± 0 0.79 ± 
0.33 

4.46 ± 
0.29 

0 ± 0 0 ± 0 4.26 ± 
0.29 

0.40 ± 
0.16 

0 ± 0 0 ± 0 
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Appendix 6. Bird density estimates per site: (ind km-2) ± standard error, sample size (in parentheses). ‘+’ means species was observed at site but not on transect. 

No. Site M. micrura F. coelestis S. stictothorax P. murina P. leucospodia T. salvini M. semirufus 

 Mean of all sites 19.1 ± 4.5 (132) 51.2 ± 6.7 (244) 63.2 ± 3.7 (758) 60.1 ± 6.2 (851) 44.5 ± 2.8 (871) 4.1 ± 0.7 (101) 5.9 ± 1.2 (69) 

1 Tucillal 4.8 ± 4.2 (1) 120.5 ± 29.9 (20) 0 0 0 3.5 ± 9.1 (1) 0 

2 Fernandez Bajo 15.3 ± 5.5 (5) 66.5 ± 23.8 (15) 13.7 ± 4.9 (7) 0 3.0 ± 2.9 (2) 1.9 ± 1.1 (2) + 

3 Enace 0 42.5 ± 23.6 (10) 37.1 ± 4.5 (21) 63.3 ± 11.6 (32) 7.4 ± 4.4 (5) 0 + 

4 Lancones 42.3 ± 12.0 (14) 145.7 ± 49.7 (27) 83.6 ± 9.3 (38) 15.8 ± 2.7 (10) 35.8 ± 9.1 (25) 2.3 ± 1.8 (1) 8.2 ± 3.2 (3) 

5 Puerta Pulache 6.7 ± 3.7 (2) 24.8 ± 10.0 (9) 4.6 ± 2.4 (2) 35.1 ± 6.1 (26) 50.4 ± 2.8 (39) 18.1 ± 9.0 (16) 2.2 ± 2.0 (1) 

6 Pampa Larga 9.5 ± 5.6 (2) 48.5 ± 33.4 (8) 48.8 ± 7.1 (29) 33.6 ± 5.1 (17) 22.9 ± 3.9 (20) 0 2.0 ± 1.8 (1) 

7 Progreso Bajo 0 2.2 ± 1.9 (1) 146.1 ± 21.7 (57) 25.4 ± 10.0 (17) 67.4 ± 19.7 (45) 0 18.5 ± 10.4 (9) 

8 Cruz de Caña 23.1 ± 9.2 (6) 27.3 ± 18.3 (3) 118.8 ± 13.6 (53) 64.5 ± 10.4 (29) 65.0 ± 6.2 (45) 0 + 

9 Sagrado Corazón 16.8 ± 8.9 (4) 49.0 ± 24.5 (8) 59.4 ± 11.7 (31) 138.5 ± 14.9 (57) 54.3 ± 4.0 (35) 0 2.2 ± 2.3 (1) 

10 Islilla 0 0 91.2 ± 19.4 (49) 0 23.2 ± 7.2 (18) 0 8.0 ± 5.4 (4) 

11 Ancajima 113.9 ± 52.6 (26) 60.7 ± 17.4 (13) 124.3 ± 16.7 (50) 159.5 ± 28.2 (70) 58.1 ± 10.9 (37) 3.5 ± 2.3 (4) 4.7 ± 4.5 (2) 

12 Ñapique 0 34.9 ± 23.3 (3) 143.9 ± 34.1 (65) 0 9.6 ± 4.7 (8) 0 13.0 ± 5.8 (5) 

13 Ñaupe 39.8 ± 16.6 (11) 210.7 ± 93.5 (22) 103.1 ± 7.7 (43) 191.2 ± 19.8 (92) 42.8 ± 11.6 (28) 21.0 ± 2.7 (23) 6.8 ± 4.4 (3) 

14 Piedra Mora 54.3 ± 11.2 (16) 113.7 ± 59.1 (19) 44.6 ± 10.9 (24) 11.6 ± 3.2 (9) 55.2 ± 10.9 (43) 4.0 ± 1.4 (4) + 

15 Las Norias 6.6 ± 4.3 (2) 81.1 ± 32.7 (9) 30.3 ± 9.0 (14) 70.9 ± 11.7 (49) 60.2 ± 12.1 (48) 3.4 ± 1.8 (4) 6.1 ± 3.4 (3) 

16 Illescas 0 0 136.3 ± 17.6 (65) 0 20.1 ± 3.2 (16) 0 1.9 ± 1.8 (1) 

17 Pañalá 15.7 ± 5.9 (6) 0.9 ± 0.9 (1) 86.4 ± 8.3 (45) 27.8 ± 13.2 (19) 52.7 ± 5.9 (45) + + 

18 La Peña 2.7 ± 2.3 (1) 11.0 ± 7.1 (3) 18.6 ± 3.0 (11) 101.7 ± 11.5 (70) 103.2 ± 10.6 (84) 5.2 ± 2.1 (5) + 

19 Pomac - Poma III 20.2 ± 7.9 (5) 17.2 ± 12.8 (3) 91.6 ± 16.0 (37) 0 78.6 ± 9.7 (58) 3.0 ± 0.9 (3) 5.9 ± 2.1 (3) 

20 Pomac - Zona Recuperada 91.9 ± 23.9 (21) 41.1 ± 13.3 (12) 45.5 ± 8.1 (23) 0 55.4 ± 10.3 (45) 0.9 ± 1.0 (1) 2.1 ± 1.9 (1) 

21 Pomac - Salinas 31.4 ± 9.3 (9) 31.3 ± 14.0 (8) 59.6 ± 12.6 (30) 12.4 ± 4.6 (8) 69.1 ± 7.6 (54) 1.1 ± 1.0 (1) 5.8 ± 3.5 (3) 

22 La Viña 2.3 ± 2.1 (1) 10.2 ± 5.1 (4) 0 0 49.5 ± 8.5 (43) 0 0 

23 Cañoncillo 0 15.7 ± 7.0 (8) 157.1 ± 28.9 (64) 3.8 ± 2.3 (5) 71.3 ± 12.1 (53) 38.4 ± 6.2 (36) 44.6 ± 11.4 (19) 

24 Mocan 0 103.0 ± 38.9 (19) 0 223.2 ± 26.8 (102) 57.4 ± 11.1 (37) 0 5.0 ± 5.2 (2) 

25 La Arenita 0 82.7 ± 27.4 (19) 0 284.4 ± 120.4 (159) 28.3 ± 11.0 (23) 0 0 

26 Monte Zarumo 0 0 0 114.1 ± 19.9 (80) 17.4 ± 1.8 (15) 0 16.3 ± 6.9 (8) 
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No. Site P. raimondii C. fasciatus C. superciliaris M. longicaudatus P. cinerea S. taczanowskii R. stolzmanni 

 Mean of all sites 27.5 ± 5.0 (370) 12.9 ± 2.0 (196) 38.8 ± 2.3 (752) 142.9 ± 7.9 (1578) 65.1 ± 3.3 (779) 341.6 ± 83.3 (197) 77.4 ± 5.6 (440) 

1 Tucillal 0 13.6 ± 8.3 (7) 13.6 ± 3.5 (11) 173.2 ± 23.2 (61) 4.4 ± 3.8 (3) 221.7 ± 73.6 (9) 89.7 ± 15.1 (19) 

2 Fernandez Bajo 0 0 8.9 ± 3.2 (7) 121.1 ± 15.9 (56) 0 356.7 ± 126.0 (15) 242.0 ± 33.5 (42) 

3 Enace 19.9 ± 3.9 (19) 0 50.6 ± 9.4 (44) 112.8 ± 7.8 (52) 31.0 ± 5.8 (21) 214.0 ± 91.0 (15) 0 

4 Lancones 0 3.3 ± 1.7 (2) 38.8 ± 7.0 (28) 200.8 ± 38.9 (80) 30.8 ± 10.1 (14) 113.5 ± 66.9 (4) 130.4 ± 24.7 (30) 

5 Puerta Pulache 0 6.4 ± 2.3 (4) 18.7 ± 4.0 (14) 58.0 ± 8.1 (28) 0 0 62.3 ± 14.7 (13) 

6 Pampa Larga 0 0 34.0 ± 9.2 (30) 157.1 ± 22.8 (71) 46.2 ± 6.5 (24) 210.6 ± 90.9 (13) 5.0 ± 2.6 (2) 

7 Progreso Bajo 0 25.1 ± 6.4 (16) 39.0 ± 6.5 (31) 106.4 ± 29.5 (42) 85.8 ± 23.9 (36) 3060.2 ± 1645.3 (19) 42.9 ± 19.5 (8) 

8 Cruz de Caña 1.8 ± 1.6 (1) 4.2 ± 2.2 (3) 76.9 ± 7.6 (56) 78.0 ± 9.4 (37) 161.7 ± 13.1 (76) 1108.1 ± 654.8 (29) 146.4 ± 17.1 (36) 

9 Sagrado Corazón 14.0 ± 6.5 (14) 0 61.4 ± 12.1 (44) 132.5 ± 15.5 (50) 139.3 ± 9.0 (61) 188.6 ± 63.0 (14) 207.0 ± 26.0 (48) 

10 Islilla 17.5 ± 7.0 (17) 0 45.3 ± 10.2 (37) 36.7 ± 5.9 (19) 61.0 ± 12.5 (34) 0 0 

11 Ancajima 7.4 ± 1.6 (6) 22.6 ± 8.1 (15) 90.0 ± 14.1 (63) 186.0 ± 17.5 (61) 114.5 ± 29.6 (34) 40.3 ± 34.2 (3) 344.9 ± 50.7 (66) 

12 Ñapique 0 14.0 ± 7.7 (9) 40.8 ± 12.8 (31) 26.8 ± 12.6 (12) 19.6 ± 6.9 (10) 0 0 

13 Ñaupe 16.0 ± 10.8 (16) 9.0 ± 3.6 (3) 78.0 ± 9.2 (56) 281.6 ± 67.8 (99) 40.9 ± 12.7 (19) 20.2 ± 16.3 (2) 223.7 ± 28.4 (45) 

14 Piedra Mora 0 20.8 ± 9.1 (15) 19.9 ± 6.4 (18) 111.1 ± 26.6 (54) 115.3 ± 16.2 (52) 1201.0 ± 644.5 (25) 163.1 ± 25.7 (38) 

15 Las Norias + 5.3 ± 1.9 (3) 19.9 ± 3.0 (16) 139.5 ± 25.3 (57) 75.0 ± 18.0 (38) 551.0 ± 109.4 (22) 162.4 ± 48.9 (38) 

16 Illescas 5.3 ± 2.8 (6) 0 35.4 ± 5.0 (28) 22.9 ± 6.6 (14) 80.4 ± 6.8 (35) 0 0 

17 Pañalá 0 16.5 ± 3.9 (12) 39.6 ± 3.1 (33) 116.0 ± 10.8 (53) 139.8 ± 7.0 (64) 441.6 ± 353.1 (4) 39.1 ± 10.8 (13) 

18 La Peña 0 0.7 ± 0.6 (1) 38.6 ± 5.2 (33) 110.7 ± 28.9 (45) 112.7 ± 22.2 (40) 6.6 ± 5.9 (1) 110.5 ± 10.5 (30) 

19 Pomac - Poma III 2.5 ± 2.3 (3) 35.7 ± 7.4 (19) 62.1 ± 10.5 (44) 234.1 ± 37.5 (104) 73.8 ± 17.1 (39) 0 0 

20 Pomac - Zona Recuperada 46.7 ± 11.3 (49) 15.7 ± 5.0 (11) 41.9 ± 8.6 (35) 305.5 ± 32.0 (130) 72.8 ± 13.0 (41) 0 0 

21 Pomac - Salinas 2.6 ± 2.3 (3) 28.7 ± 3.9 (22) 69.4 ± 14.8 (54) 233.9 ± 57.9 (99) 106.9 ± 12.6 (50) 516.7 ± 377.2 (3) 0 

22 La Viña 0 0 21.7 ± 4.9 (18) 163.7 ± 58.1 (79) 119.0 ± 15.7 (57) 453.0 ± 155.6 (19) 32.4 ± 14.5 (12) 

23 Cañoncillo 0 97.6 ± 33.9 (45) 22.6 ± 6.0 (19) 86.5 ± 6.7 (40) 0 0 0 

24 Mocan 104.7 ± 33.4 (96) 0 1.1 ± 1.0 (1) 207.2 ± 20.6 (78) 27.9 ± 3.8 (10) 0 0 

25 La Arenita 94.1 ± 23.2 (102) 13.8 ± 3.6 (9) 1.0 ± 0.9 (1) 242.7 ± 19.8 (116) 23.5 ± 4.3 (17) 0 0 

26 Monte Zarumo 35.6 ± 7.1 (38) 0 0 75.4 ± 9.0 (41) 7.4 ± 2.2 (4) 0 0 
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Appendix 7. Comparison of abundances over a seven-year period: NBC study (Villavicencio et al, 2006) 
and this study (2013) across all sites, showing a), variation and b), comparison of mean (± se) encounter 
rates by species. 

 

 

 

 

a. 

b. 
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Chapter 4 
 

Extreme variation and complex correlates of local abundance 
– lessons from a range-wide, multispecies survey 

 

1 Abstract 

Understanding patterns and drivers of variation in abundance across species full 

ranges is crucial in conservation science and macroecology but remain little 

studied, especially in the tropics. It is generally expected that species will have few 

hotspots of high abundance within large areas of low abundance, with hotspots 

concentrated at geographical range centres. This study looked across 14 endemic 

birds of the Tumbesian region with a view to; a) identifying patterns in variation of 

abundance across sites; b) examining congruence of abundance hotspots across 

species and spatial autocorrelation of abundance within species; and c) assessing 

the nature and strength of environmental correlates (topography, habitat and 

human pressure) of abundance. Data were collected from 26 sites, separated by a 

maximum distance of c.600 km, in dry forest habitat, covering most of the species' 

ranges. Sites in this patchy habitat were selected randomly from strata derived 

from species distribution models and a 50 km grid. At each site, four parallel 2.5 

km transects were used to evaluate bird abundance and habitat characteristics. 

Local abundance, or bird densities, was estimated using covariate Distance 

sampling methods. Abundance was compared across sites and by range core 

versus edge, relationships with environmental variables were examined using 

GAMs, and spatial autocorrelation was examined with multivariate Mantel tests. 

Although most species were recorded at most sites, abundance varied by one or 

two orders of magnitude across sites. Several species showed a humped rather 

than the classic skewed abundance distribution, with abundance not necessarily 

highest at the centre of species’ ranges. Spatial autocorrelation in species’ local 

abundance was evident only at distances less than 50 km. Sites of maximum 

abundance for individual species did not coincide – nine different sites held the 

highest densities of at least one species. The relationship between local abundance 

and environmental predictors was generally non-linear, with some evidence that 

current habitat measures were stronger predictors of abundance than human 

pressure. The extreme variation in species abundances and the complexity in their 
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relationships with environmental variables have important implications, both for 

design of conservation-motivated surveys, for which some recommendations are 

offered, and regarding the need for multiple reserves to capture high local 

abundances of key species. 
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2 Introduction 

That local abundance varies across species’ ranges is well established (e.g. Grinnell, 

1914; Hengeveld & Haeck, 1981; Brown et al., 1995; Sagarin et al., 2006), but how 

precisely it varies, and what drives this variation, remain key questions for 

research, with important implications for macroecology, evolutionary studies and 

conservation science. The majority of species are believed to have low abundance 

throughout most of their range with small areas of high density (Gaston, 1990; 

Brown et al., 1995; McGill & Collins, 2003). These ‘hotspots’ of high abundance 

tend towards the centre or multiple core areas of species’ ranges with local 

abundance lower at the range margins (the abundance centre hypothesis: 

Rapoport, 1975; Brown, 1984; Hengeveld, 1990). Despite both theoretical and 

empirical support for this hypothesis (Brown, 1984; Guo et al., 2004), there are 

examples of species that do not conform to the pattern (Sagarin & Gaines, 2002; 

Gaston, 2003; Samis & Eckert, 2007), while there is general acknowledgement that 

it is an oversimplification (Sagarin et al., 2006), relying on the geographical centre 

rather than the niche centre, as well as omitting factors such as biogeographical 

barriers and species interactions (Brown, 1995). Drivers of local abundance are 

likely to be complex, arising from a range of non-biotic (e.g. climate and habitat) 

and biotic factors (e.g. competition and dispersal; Pearson & Dawson, 2003; Guisan 

& Thuiller, 2005), to which, anthropogenic factors are occasionally added 

separately (e.g. Smith, 1868; Yackulic et al., 2011). 

 

Understanding the above patterns and drivers is of particular importance in 

conservation science, for example, for effective population estimation or detection 

of abundance trends, identification of key sites, or identification of environmental 

pressures that limit abundance (Lawton, 1993; Mace et al., 2008). However, our 

understanding is severely limited by a lack of range-wide data on actual abundance 

(Sagarin & Gaines, 2002; Marsden & Royle, 2015), especially for threatened species 

and multiple species within important areas (Brooks et al., 2006). From a 

conservation viewpoint, there are great benefits if local abundance can be 

predicted from local environmental measures, or even from spatial patterns of 

abundance themselves. Scarce resources for conservation (McCarthy et al., 2012) 

can also be saved by taking similar approaches for multiple species. With this in 

mind, this chapter has the following specific objectives: 
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 How does local abundance vary across species’ ranges, and is this variation 

consistent across species? Is local abundance at nearby sites autocorrelated 

and does abundance relate predictably to location within range? 

 Do local hotspots of abundance exist for multiple species sharing broad 

habitats and ranges? If so, can this congruence help in protected area 

selection? 

 How does local abundance across the assemblage respond to environmental 

correlates? If so, can these relationships be used to reliably predict 

abundance or threats to species? 
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3 Methods 

 

3.1 Site selection 

A total of 26 sites were selected in dry forest and scrub habitat, below an altitude 

of 500 m, in northwest Peru (Figure 3.1) Given the size of the study area, it was 

logistically unfeasible to implement a random sampling strategy and obtain 

sufficient species records. Therefore, to meet the requirements of obtaining 

sufficient bird records from a wide geographic spread of sites across species' 

ranges, sites were randomly selected from three strata representing higher 

probabilities of species occurrences and 25 geographic strata across the study 

area. To identify the 'occurrence probability' stratum, species distribution models 

were built using occurrence records from four target bird species, representative 

of study species’ habitat requirements and distributions within the study area 

(Schulenberg et al., 2007). Environmental predictors used in the model were 

climate based: mean annual rainfall, mean annual temperature (Hijmans et al., 

2005), and habitat based: maximum and minimum Normalized Difference 

Vegetation Index from the dry and wet seasons (processed from MODIS product, 

MOD13QA1). Maxent software (Phillips et al., 2006), run through the R package 

Dismo (Hijmans et al., 2013), was used to create a distribution model for each 

species, and were evaluated with mean AUC from 5-fold cross validation. The final 

models were constructed using all the data points, and then summed to create a 

single composite surface, providing regions of high and low probability of 

occurrence for study species. Despite criticisms of using AUC as a means to validate 

models (Lobo et al., 2008), it is still the most widely used threshold-independent 

method of judging model performance, in part, due to lack of alternatives (Merow 

et al., 2013). To create the geographic strata, a regular 50 km grid was drawn 

across the study area and the top ten cells were identified in terms of highest 

average model scores. Sites were randomly selected from only from the top three 

deciles of the probability of occurrence from the final model, using double weights 

for the top decile, i.e. sampling was restricted in order to avoid the large areas of 

high unsuitability for the species, including desert and urban areas. Sampling was 

repeated until at least one site fell in the top ten 50 km grid cells. In the field, sites 

were chosen as close as possible to the randomly selected sites, and were only 

moved when access or safety issues prevented the researchers from reaching the 

site. All sites, except for the southernmost, were within the extant or former ranges 
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of all study species as mapped by BirdLife International & NatureServe (2012). 

Median distance between sites was 150 km (range: 5-625 km). 

 

3.2 Field methods 

All fieldwork was carried out from June to October 2013 by CD and Elio Nuñez 

Cortez. Both observers participated in pilot studies at six sites in 2012 to practise 

distance estimation, learn bird calls and trial other field methods. A variable width 

transect method was used to estimate bird abundances, with two observers 

walking four 2.5 km parallel, straight transects at each site (not located on trails), 

separated by 500 m, using just GPS for guidance. Each transect was walked once at 

a speed of 1-1.5 km h-1 to gather bird data. Distances to birds were estimated 

either by eye, or for distances greater than approximately 25 m, with laser 

rangefinders. Two transects were completed per day where conditions permitted, 

with bird data collected between 6:00 and 11:00. For each bird encounter, the 

following were noted: species; number of individuals; type of detection (aural or 

visual); and perpendicular distance. Habitat characteristics were measured within 

10 m radius circular plots at twelve points positioned 200 m apart on each 

transect. Features included tree species present; % of vegetation cover at two 

vertical strata (<3 m, >3 m); diameter at breast height (dBH) and height of three 

largest trees; total number of stems (dBH > 10 cm); grass cover; presence of 

epiphytes. Topographic characteristics measured were altitude and slope. Human 

pressure was assessed at each plot as presence of felled trees (cut tree trunks) and 

a count of ungulate dung. An additional human pressure index was later calculated 

to combine urban and rural population pressure, road proximity and protection 

status of sites as  

 

(Popurban + Poprural) x (1/Road dist) x Protection status 

 

where Popurban is the number of inhabitants of cities within 25 km; Poprural is 

rural population size of the 2nd degree administrative region containing the study 

site; Road dist is distance to nearest main road (km); and unfavourable protection 

status is penalised: 1: non-protected, 0.5: protected. 
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Figure 3.1. Study sites in northern Peru, with maximum NDVI values over the wet season 
(December to May) to illustrate extent of ground vegetation cover and desert/scrub areas. See 
Figure 3.2, Chapter 3 for key to site names. 

 

3.3 Data analysis 

Local abundance at sites was estimated using the multiple covariate engine of 

Distance 6.1 (Buckland et al., 2001; Marques et al., 2007). An advantage for rare 

species is that this method enables a single detection function to be fitted across all 

sites and adjusted with site-specific covariates. Data were analysed as clusters and 

distance data were binned and truncated, following guidelines (Buckland et al., 

2001) to improve fit of detection functions. Preliminary analyses with different 

truncation distances and intervals were trialled and a truncation distance, number 

of intervals and candidate model families (e.g. half-normal, uniform, hazard-rate) 

were set for each species based on visual inspection of histograms and goodness of 
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fit tests. Covariates were selected by assessing correlations between potential 

covariates, variation between sites, and their effect on the distances recorded per 

species. Detection functions with type of detection (heard or not heard) and 

habitat density (total number of stems) as covariates were trialled. Final models 

were selected per species using AIC minimisation. Density of groups per km2 was 

converted to individuals per km2 using average cluster size, given that correlations 

between cluster size and detection distance were not significant at α = 0.05 for all 

species. 

 

Histograms were plotted of species densities across all sites and symmetry of 

the distribution was measured via skewness (Zar, 1999). Species abundance 

distributions were considered skewed when this value was significantly different 

from zero, following tables of critical values of the skew measure (Zar, 1999). To 

assess differences in abundance between the centre and periphery of species’ 

distributions, species' ranges were represented as convex hulls constructed from 

post-1970 occurrence records from museum specimens and observations 

(following manual and automated validation). The coastline and upper altitudinal 

limits were used to exclude areas from each convex hull to further approximate 

range shape. Although convex hulls have their limitations (Rapoport, 1975), the 

method facilitates comparison between species, in that each range was 

constructed following a standardised method. Local abundance was compared 

between core and edge areas using Wilcoxon (Mann-Whitney) two sample tests 

(Zar, 1999) which is robust to different sample sizes, and small numbers in each 

group (Fowler & Cohen, 1992). Core areas were defined as the inner polygon 

occupying 50% of the total convex hull area with a perimeter equidistant to the full 

range perimeter. Sites with absences were only included in the analysis if they lay 

within the convex hull range. 

 

To identify congruence of local abundance hotspots across species, sites holding 

maximum density and the highest three densities were identified for each species. 

To assess whether species' densities varied in similar ways across sites, 

Spearman’s rank correlation coefficients were calculated for density between all 

species pairs at all sites (n = 91). A multivariate Mantel correlogram (Legendre & 

Legendre, 1998) was used to examine spatial autocorrelation of local abundance 
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across sites for all species. First, distances between sites were grouped into seven 

50 km distance bands between 0 and 350 km, with sample sizes of 34, 57, 71, 47, 

36, 25 and 25, respectively (sample size per band was insufficient beyond this 

distance). A correlogram then plots each correlation between a similarity matrix of 

all species’ densities (calculated with the Jaccard metric) and the matrix of 

geographical distances between sites in each band. Significance of correlations was 

evaluated using permutation tests. Spatial autocorrelation was also evaluated for 

each species separately, using Moran’s I over five distance bands. 

 

The nature and strength of ten environmental correlates of local bird abundance 

were evaluated. First, predictors were assigned to one of three groups: topography 

(altitude, slope); habitat structure and composition (understorey cover, tree 

height, number of stems, grass cover, tree species richness); and anthropogenic 

pressures (grazing pressure, logging pressure, human population pressure). 

Variables in each group were inspected for collinearity using multiple scatterplots 

and Variance Inflation Factors (VIF). Any variable with VIF > 5 was removed (Zuur 

et al., 2007), and the group checked again until all VIF values were < 5. Generalised 

Additive Models (GAMs) were used to evaluate the linearity and relative strength 

of the relationship between each predictor and local bird abundances. First, an 

ordination based on species abundances at each site was performed using non-

metric multidimensional scaling (NMDS; Legendre & Legendre, 1998; as 

implemented in R package, vegan Oksanen et al., 2015) in order to examine 

correlates of local abundance across the dry forest bird community as a whole. 

Each predictor was then modelled as a function of the site scores on both 

ordination axes simultaneously using a thin plate spline isometric smoother in R 

package mgcv (Wood, 2006) with varying numbers of smoother parameters. 

Deviance changes with respect to these increasing numbers of smoother 

parameters were examined as a way to approximate the complexity of the 

relationship between density and predictors. Predictors with more complex 

relationships were expected to show increases in explained deviance with 

increasing numbers of smoother parameters. Models were evaluated for fit, 

significance of smoother term and an appropriate number of knots using 

techniques suggested by Wood (2006). For models with a significant smooth term 

(α < 0.05), predicted values were plotted as contours over the species ordination 
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to visualise the relationship between the species’ density and predictors. Species 

centroids, weighted by density values at each site, were plotted on the NMDS axes 

(Oksanen et al., 2015). R (R Core Team, 2014) was used for all statistical analyses 

and all significance tests were evaluated at α = 0.05. 
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4 Results 

 

4.1 Variation of abundance across species' ranges 

A total of 7,505 bird encounters were recorded over the 26 transects for 14 

species. Encounter rates averaged 28.7 individuals per km, equivalent to 

approximately 7 birds every 10 minutes at the average walking speed. Overall, 

non-zero local abundances ranged from less than 1 to over 3,000 individuals per 

km2 (Table 4.1, see Appendix 6, Chapter 3). Two broad patterns of variation in 

species' densities across their ranges are distinguishable. Nine species showed 

extreme variation in local abundance across sites, with species having low 

densities at most sites and higher densities at relatively few. These species have a 

positively skewed intraspecific abundance distribution (Figure 4.1a-i) with skew 

significantly different from zero (skew, g1 = 1.19 to 3.37, n = 26, p < 0.05). Median 

densities for these species are less than 10% of their maximum density (Table 4.1). 

 

 

Figure 4.1. Distribution of species’ local abundance at 26 sites, ordered by decreasing skewness. 
The first bar (black) shows zeros at sites, the following bars are of equal width in each histogram. 

 

A second group (five species; Figure 4.1j-m) showed a humped density 

distribution, that is, species had consistently high densities across their ranges, 

with relatively few sites with extreme high or low local abundance. Median density 

values were generally > 40% of the maximum density value. Species’ abundance 

distributions were not significantly skewed (skew, g1 = 0.01 to 0.38, n = 26, p > 

0.20) and excess kurtosis was negative, implying that distribution of abundance is 

relatively flat. This group also shows generally high and less variable densities 
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(Table 4.1). The presence of sites with zero density did not affect the groupings of 

the species' abundance distributions. 

 

Table 4.1. Maximum, minimum, median and coefficient of dispersion (interquartile range/median) 
of species abundance across 26 sites. Species are ordered by increasing variability in density. 
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Maximum 103.2 90.0 305.5 161.7 157.1 210.7 97.6 44.6 113.9 284.4 344.9 
3060.

2 
38.4 104.7 

Minimum 
(>0) 

3.0 1.0 22.9 4.4 4.6 0.9 0.7 1.9 2.3 3.8 5.0 6.6 0.9 1.8 

Median 51.5 38.7 126.8 66.9 54.1 38.0 5.9 2.2 6.6 26.6 35.7 76.9 0.5 0.9 

IQR/median 0.7 0.8 0.8 1.3 1.6 1.7 2.8 3.0 3.4 3.5 4.0 5.5 7.4 16.8 

Percentage 
of sites 
occupied 

96 96 100 88 81 88 65 88 65 69 57 62 54 50 

 

In all species, maximum and minimum densities (> 0) varied by at least an order 

of magnitude, and by two orders of magnitude in three species. Where densities 

showed most variability between sites, the interquartile range was over five times 

greater than the median (Table 4.1). A significant positive correlation was found 

between number of sites occupied and median local abundance (rs = 0.57, p = 0.02, 

n = 26). Additionally, species with higher numbers of sites occupied had lower 

variability between local abundances (rs = -0.92, p < 0.01 , n = 26; Table 4.1). 

 

Different spatial arrangements of local abundance were found, with the highest 

species' densities not always occurring at the centres of their geographical ranges. 

Four species had significantly higher local abundances within the central areas of 

their ranges compared to the periphery (Figure 4.2, Appendix 1) while all the 

others showed no significant relationship. Two species showing significant 

relationships (Cinereous Finch Piezorina cinerea and Grey-and-white Tyrannulet 

Pseudelaenia leucospodia) were among the most abundant overall, and among 

those with highest overall presences at sites (Figure 4.1m-n, Table 4.1). 



Chapter 4  Variation and correlates of abundance 

159 

 

Figure 4.2. Variation in local abundance across species' ranges. Minimum convex polygons show 
core and edge areas (see methods) with abundance at sites expressed in quartiles to facilitate 
comparison. Boxplots show difference in abundance (individuals km-2) between the two regions, 
those bordered in red are significantly different (α = 0.05) according to Wilcoxon two sample test. 
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4.2 Spatial autocorrelation in local abundances 

Spatial autocorrelation in species’ densities across sites was significant only at the 

smallest distance band of 0–50 km (rs = 0.18, n = 34, p = 0.003). Correlation 

coefficients decreased with increasing distance between sites, but were weak for 

the remaining six distance bands, varying between 0.2 and -0.2. Correlograms for 

individual species also showed a generally decreasing pattern with larger distance 

bands; significant correlations were found in six of fourteen species at the smallest 

distance band (Appendix 2). 

 

4.3 Congruence of abundance hotspots across species 

Sites of maximum abundance for individual species did not coincide. Nine different 

sites held highest densities of at least one species, and 20 of 26 sites held 'top 

three' abundances for at least one species (Appendix 3). Of 91 pairwise 

correlations between species' densities, 21 species' pairs were significantly 

correlated, but only ten correlation coefficients were > 0.5 (Figure 4.3). The highest 

correlation coefficient was 0.68, for Necklaced Spinetail Synallaxis stictothorax and 

Superciliated Wren Cantorchilus superciliaris, both of which occupy lower strata of 

the dry scrub. Local abundances of two species pairs had significant negative 

correlations. 

 

Figure 4.3. Frequency of Spearman’s rank correlation coefficients for pairwise correlations between 
densities at 26 sites (n = 91). Red and blue lines show critical values of Spearman's correlation 
coefficient for p values corresponding to 0.05 and 0.01. 
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4.4 Environmental correlates of species’ local abundances 

Ordination on two axes of species’ densities at sites using non-metric 

multidimensional (NMDS) had a final stress value of 0.145. McCune et al (2002) 

state that most ecological data produce stress values between 0.10 and 0.20, with 

values of < 0.15 being satisfactory. Eight of the ten predictors were significantly 

related to densities, that is, GAMs showed significant smooth terms (p < 0.001 in all 

cases). Explained deviance varied from 55-75% when the maximum number of 

spline terms was employed Table 4.2). All relationships between predictors and 

density were non-linear with the exception of 'mean number of stems'. 

 

Table 4.2. Complexity of relationship between predictors and bird densities represented by change 
in explained deviance with increasing number of smooth terms in GAMs. Approximate significance 
of smooth terms indicated as follows: * p < 0.05; ** p < 0.01; *** p < 0.001. 

Predictor 
Link 

family 

Deviance explained (rank) Range:  

max - min 

(rank) 
3 smooth terms 

6 smooth 

terms 

9 smooth 

terms 

Understorey cover Gaussian 6.8% (9) 8.3% (9) 7.7% (9) 5.4 (9) 

Tree height Gaussian 43.0% (5)** 66.9% (1)*** 65.6% (4)*** 36.4 (4) 

Mean no. stems Gaussian 51.6% (2)*** 51.6% (6)*** 51.6% (8)*** 0.0 (10) 

Grass cover (presence) Binomial 47.3% (3)*** 49.6% (7)*** 58.5% (6)*** 32.0 (5) 

Tree species richness Gaussian 58.8% (1)*** 60.2% (3)*** 71.2% (3)*** 16.0 (7) 

Slope Gaussian 44.0% (4)** 56.5% (5)** 62.6% (5)** 23.2 (6) 

Altitude Gaussian 16.6% (6) 60.0% (4)** 74.8% (1)*** 66.7 (2) 

Grazing pressure Poisson 16.1% (7)*** 47.2% (8)*** 56.7% (7)*** 49.3 (3) 

Logging pressure (presence) Binomial 5.7% (10)*** 65.3% (2)*** 74.8% (2)*** 76.7 (1) 

Human pressure Gaussian 9.7% (8) 6.9% (10) 3.2% (10) 7.6 (8) 

 

The non-habitat based predictors, 'altitude', 'grazing pressure' and 'logging 

pressure' showed the most complex relationship with density (Figure 4.4), with 

sharp gains in explained deviance as additional smoothing parameters were 

added. This group of predictors also had the largest range between minimum and 

maximum explained deviance with increasing numbers of parameters. Explained 

deviance was more stable with increasing smoothing parameters in 'tree height', 

'tree species richness', 'grass cover' and 'grazing pressure' (Table 4.2). Neither 

'understorey cover' nor 'human pressure' showed a significant smooth term with 

any number of splines. 
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Figure 4.4.  NMDS ordination (stress = 0.15) based on species densities across 26 sites with fitted 
GAM surfaces (using six spline terms for each plot) representing smooth trends between species 
densities and habitat-based, topographic, and pressure-related predictors. GAM surfaces were 
classified into three equal-sized groups of predicted values (low, medium and high) to facilitate 
interpretation. The plots are ordered according to decreasing complexity.  



Chapter 4  Variation and correlates of abundance 

163 

5 Discussion 

 

5.1 Variation in density across species' ranges 

Variation in local abundance was extreme across the ranges of most species. 

Although differences in abundance of at least one order of magnitude have been 

found in other studies encompassing the whole ranges of species (e.g. Curnutt et 

al., 1996; Brewer & Gaston, 2003; Filloy & Bellocq, 2006), most studies evaluating 

spatial variation in abundance do not cover the whole range of species (Samis & 

Eckert, 2007). In general, species with lower median densities showed more 

variation in density. Nine of fourteen species in our study showed the classic 

skewed distribution of local abundances, where species are rare at most sites but 

abundant at a few sites (Gaston, 1990; Brown et al., 1995; Brewer & Gaston, 2003; 

McGill & Collins, 2003). The other five, showing humped local abundance 

distributions, were among the commonest species. Common species across a 

number of taxonomic groups have been found to occupy more central niche 

positions (e.g. habitat dimensions) than rare species (e.g. Gregory & Gaston, 2000; 

Marsden & Whiffin, 2003; Heino, 2005). Martínez-Meyer et al. (2012) found a 

decline in abundance as distance from central niche positions increased. For such 

species, density can fall away on all sides, whereas species with niche positions at 

one extreme cannot. The five species with humped abundance distributions did 

tend to occupy mid-range conditions within our study area, at least for some 

environmental variables (Figure 4.4). 

 

Hotspots of local abundance were, as found in other studies, often multiple 

rather than singular (Maurer & Villard, 1994; Sagarin & Gaines, 2002; Sagarin et 

al., 2006), and not necessarily concentrated in the centres of species’ ranges 

(Sagarin & Gaines, 2002; Kluth & Bruelheide, 2005; Murphy et al., 2006). The 

‘abundant centre hypothesis’ is more likely to refer to the niche centre than the 

geographic centre of the range (Blackburn et al., 1999; McGeoch & Price, 2004; 

Martínez-Meyer et al., 2012), or as Hengeveld and Haeck (1981) termed it, 

ecologically 'marginal' or 'central' rather than geographically 'marginal' or 

'central'. Carter and Prince (1981) noted that many plants are abundant at their 

limits, implying an abrupt response to the climatic gradients that control the 

distribution. Brown (1984) hypothesised that contributing factors to this response 
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may include abrupt changes in availability of resources, such as caused by 

coastlines and mountains, important features within our study area. 

 

Despite sharing similar ranges and broad habitats, different species did not tend 

to occur at their highest local densities at the same sites. This result is also 

consistent both with the lack of grouping of species when plotted on the two NMDS 

axes, and with findings elsewhere. For example, Mehlman (1994), working with US 

Breeding Bird Survey data, reported little overlap between sites of species’ highest 

abundances. A study comparing pairwise density of 14 shrubsteppe species in 

northwest US found just eight species with significant correlations between 

density values at sites (Wiens & Rotenberry, 1980). If species in our study had 

been clumped within ‘hotspots’ of coincident high density, then certain drivers of 

density that acted on different species in similar ways might have been expected, 

but this was not the case leading to the conclusion that determinants of local 

density are generally distinct for each species. A completely random sampling 

scheme, as opposed to that used in this study, may have increased the congruence 

somewhat between species. However, the sampling scheme made the majority of 

the occupied habitat available for selection (Figure 3.1, Chapter 3), and includes a 

significant gradient across habitat quality. This may be reflected in the very wide 

range of densities found across sites for each species. Furthermore, from a 

conservation perspective, sites of interest to conserve, are those that hold the 

largest parts of species’ populations (Winston & Angermeier, 1995) rather than 

sites in the tail of the abundance distribution. 

 

Variation in local bird abundances covaried in a linear way with just one of the 

predictors – 'mean number of stems'. Relatively few studies have investigated 

correlates of local abundance, with most focusing on species richness or 

occupancy. Nevertheless, habitat variables were found to influence bird abundance 

more than climate variables at a mesoscale (1,700 km latitudinal gradient) in a 

study of 88 grassland species in Argentina (Filloy & Bellocq, 2013). Marsden and 

Whiffin (2003) found no relationship or weak correlations between local bird 

abundance and three composite habitat axes in a Neotropical forest. In our study, 

the least complex responses, indicative of similarity across species' responses, 

were found among the habitat-based predictors. Therefore, factors such as 'mean 
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number of stems', 'grass cover', and 'tree species richness' may be useful as 

general indicators of avifaunal health, especially as they are relatively easy to 

measure in the field. No single group of environmental correlates (habitat, 

topography and human pressure) stood out as particularly useful predictors, 

although more complex relationships with local abundances were found for 

pressure-based predictors than for habitat predictors. Other authors have also 

found variability in response of abundance to pressure-based predictors in the 

Neotropics: Piana and Marsden (2014) found opposing responses to cattle grazing 

among different raptor species, and Filloy and Bellocq (2006) found mixed 

responses among Sporophila seedeaters to agricultural development. There is a 

long history of human alteration of environments on the Peruvian coast with cycles 

of agricultural expansion and contraction (Shimada & Shimada, 1985; 

Hocquenghem, 1998, 1999), which have surely influenced current patterns of 

distribution and abundance. 

 

5.2 Implications for conservation 

A shortfall in conservation funding (James et al., 1999; McCarthy et al., 2012), 

especially in the most biodiverse countries (Brooks et al., 2006), has led to 

conservation prioritisation schemes such as Red Listing (IUCN, 2001; Rodrigues et 

al., 2006), often informed by data on population sizes and trends. Extreme 

heterogeneity in local abundances across species’ ranges has important 

implications for the generation of such data. Many species of conservation 

importance lack even a single density estimate from anywhere within their range 

(Marsden & Royle, 2015). For example, one of the best-studied parrot species, the 

Scarlet Macaw Ara macao has just four density estimates from an extent of 

occurrence greater than 5 million km2. Single density estimates cannot reflect the 

likely complex variation in local abundance across species’ ranges, and scaling up 

from such estimates runs the risk of local data not being representative of the 

species as a whole (Hengeveld & Haeck, 1981). In terms of survey design, the more 

local abundance varies across the range of a species, the more field sites will be 

needed to capture this variability. The negative relationship between proportion of 

sites occupied and variability in local densities indicates that a desk-based survey 

of presence/absence of the target species (e.g. using online occurrence databases) 

may help to inform how many sites need to be visited. It may also be useful to 
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examine encounter rates/density estimates for the target species at sites as the 

survey progresses or during pilot studies. Again, high variability may indicate that 

a greater number of sites needs to be surveyed. I argue that this study obtained 

high numbers of records for the target species despite covering a tiny proportion 

of the 50,000 km2 study area. This was achieved by disregarding many areas of 

unsuitable habitat by stratifying the study area using probability of occurrence 

from species distribution models and adjusting survey effort in areas of low 

probability accordingly (see also Aizpurua et al., 2015). Finally, our study indicated 

that survey sites at geographically marginal sites should not be neglected and may 

contribute significantly to overall abundance, given that range margins do not 

always coincide with ecological margins (Chardon et al., 2015).  

 

Spatial autocorrelation of local abundance was strong only very locally 

(typically < 50 km), a pattern found in most, but not all, studies (e.g. Eber & Brandl, 

1994; Brewer & Gaston, 2003; Murphy et al., 2006). Distances over which spatial 

autocorrelation of local abundances is significant could be determined from a pilot 

study and guide minimum distances between survey sites to reduce survey effort. 

This distance may also be useful when evaluating the effect of disturbance on 

species’ abundance. Such studies often designate 'natural' or control (undisturbed) 

sites as baselines and then compare them with disturbed sites at different  

locations (e.g. Barthlott et al., 2001) rather than comparing the same sites before 

and after disturbance. However, extreme variation in local abundance could 

confound changes in abundance attributed to disturbance (Gardner et al., 2007). 

For example, despite a heavily altered study area, Jones et al (2003) found that 

habitat variables were more important in controlling abundance than pressure 

variables. In these kind of studies, sites should be positioned within distances 

where spatial autocorrelation makes them comparable. 

 

There was little congruence in local abundance hotspots across species due to 

complex responses to environmental correlates, as found among communities 

elsewhere (Garrido et al., 2003; McGeoch & Price, 2004). This means that multiple 

protected/management areas will be required to capture large proportions of the 

populations of each species, given the large differences in abundance between 

sites. Most conservation planning algorithms are based on species presence and/or 
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species richness (e.g. site selection algorithms, priority site identification; Brooks 

et al., 2006; Fleishman et al., 2006). This may lead to an insufficient network of 

sites being suggested when patterns of species’ presence or absence is similar but 

local abundance varies greatly. Recent studies provide further evidence for 

improving systematic conservation planning and site selection algorithms with 

site-based abundance estimates (Johnston et al., 2015; Veloz et al., 2015). 

However, the added costs of collecting abundance data may not always outweigh 

the benefits, especially in the case of more common species (Joseph et al., 2006). 

Further research is still needed to find cost-efficient methods to determine 

patterns of range-wide abundance in species without implementing full surveys. 

Promising results in quantifying changes in abundance, which may be possible to 

adapt to the above needs, have been shown with a widespread, poorly known 

species (Senyatso et al., 2013). Other techniques, such as interpolating density 

surfaces from several local abundance estimates across a range (e.g. Thomas et al., 

2010), combined with carefully planned surveys, may also increase the utility and 

cost-efficiency of using local abundance to inform conservation.  
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7 Appendices 

 

Appendix 1. Wilcoxon two sample tests between local abundance in centre and edge of species' 
ranges 

Species 

Wilcoxon two sample test between core 

 and edge local abundance 

W (nedge, ncore) p 
Δ median 

(core - edge) 

Short-tailed Woodstar Myrmia micrura 7 (5,13) 0.01 18.4 

Pacific Parrotlet Forpus coelestis 66 (10,13) 0.976 -4.5 

Necklaced Spinetail Synallaxis stictothorax 59 (12,13) 0.313 31.8 

Mouse-coloured Tyrannulet Phaeomyias murina 60 (6,17) 0.55 -54.7 

Grey-and-white Tyrannulet Pseudelaenia 

leucospodia 
41 (12,14) 0.027 33.6 

Tumbes Tyrant Tumbezia salvini 53 (5,14) 0.102 -3.6 

Rufous Flycatcher Myiarchus semirufus 58 (10,14) 0.497 1.4 

Peruvian Plantcutter Phytotoma raimondii 90 (9,14) 0.077 -16 

Fasciated Wren Campylorhynchus fasciatus 43 (6,17) 0.596 1.9 

Superciliated Wren Cantorchilus superciliaris 42 (10,15) 0.071 10.6 

Long-tailed Mockingbird Mimus longicaudatus 38 (7,19) 0.107 53 

Cinereous Finch Piezorina cinerea 36 (12,13) 0.024 56.4 

Sulphur-throated Finch Sicalis taczanowskii 27 (10,9) 0.152 144.4 

Tumbes Sparrow Rhynchospiza stolzmanni 32 (6,12) 0.743 62.4 
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Appendix 2. Spatial autocorrelation between density estimates over five distance bands (66, 190, 
314, 439, 563 km) with n = 126, 120, 55, 17, 7 per band, respectively. Green points represent 
significant Moran’s I values (p < 0.05) as evaluated through permutation tests.

 

 

  



Chapter 4  Variation and correlates of abundance 

175 

Appendix 3. Sites holding species' top three density values. 
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Chapter 5 
 

The relationship between occurrence modelling and 
abundance estimates 

 

1 Abstract 

Species abundance metrics are cornerstones of conservation planning, in fields 

such as establishing extinction risk, priority areas and harvest models. However, 

abundance data are scarce and costly to obtain, especially when compared to data 

on species’ presence and absence. A growing field in conservation ecology relates 

such occurrence data to environmental gradients in models that predict species’ 

distributions. Recently, an increasing number of studies have found positive 

relationships between occurrence model predictions and abundance estimates, 

with applications of this relationship including population size estimates and 

priority habitat selection. This chapter first reviews recent literature on using 

occurrence models to predict abundance, highlighting commonalities and 

challenges. Then, a case study, addressing certain challenges identified above, aims 

to establish a working relationship between occurrence and abundance in order to 

estimate population sizes. Local abundance estimates were obtained from range-

wide surveys for 14 Neotropical bird species, taking into account detectability 

through distance sampling. Relationships were modelled between abundance 

estimates and relative probability of occurrence, obtained from four different 

distribution modelling techniques. Eleven of 14 species showed significant positive 

correlations between abundance and occurrence for at least one technique. 

Relationships were modelled using hierarchical logistic regressions with varying 

numbers of parameters, allowing for non-linearities, for eight species and used to 

estimate global population sizes. Differing model predictions to abundance 

estimates are discussed with relation to the scale and type of predictor variables, 

and site level pressures. 
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2 Introduction 

 

2.1 The relationship between occurrence and abundance 

The distribution and abundance of animals can be considered different aspects of 

the same ‘problem’ in ecology (Andrewartha & Birch, 1954). For instance, 

distribution can be defined in terms of net growth rate or other demographic 

metrics related to abundance (Lawton, 1993; Holt et al., 1997). Abundance, 

therefore, is an inherent ingredient of any relationship between a species’ 

distribution and its environment, or niche dimensions. To date, models of such 

relationships have been dominated by environmental conditions and 

presence/absence distribution data (e.g. Guisan et al., 2013). Abundance, however, 

is a key component of conservation-related research, including protected area 

selection, harvest models and setting conservation priorities (Rodrigues et al., 

2006), yet is a scarce and costly data resource (Marsden & Royle, 2015). If a link 

can be established in the relationship between those factors controlling a species’ 

distribution and those factors controlling a species’ abundance, the growing suite 

of methods and body of research invested in the former may provide more efficient 

methods for obtaining estimates of the latter. 

 

Since 2001, at least 21 studies1 have specifically investigated the question of 

whether abundance can be predicted from species distribution models using 

presence only data (Table 2.1). Using a variety of methods, the articles compare 

predictions of relative probability of occurrence with independent measurements 

of abundance. A brief review of these papers is provided below as a manner of 

introducing a case study exploring this topic in the Neotropics. Related studies 

have examined the relationship between abundance and occupancy or resource 

selection functions (Kunin, 1998; Royle & Nichols, 2003; Conlisk et al., 2009; Duff 

et al., 2012; Clare et al., 2015; Boyce et al., 2016) but are not considered here. 

 

                                                             
1 A literature search was performed in Scopus and Google Scholar, using combinations of the key terms, 
‘abundance’, ‘species distribution modelling’, ‘habitat suitability model’, ‘niche model’ and ‘density estimate’. 
The search was set to coincide with the rise of species distribution modelling methods (i.e. 2000 onwards, 
Figure 2.1, chapter 2). 
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2.1.1 Methods used to investigate occurrence – abundance relationships 

Two broad types of comparison have been performed: 1) Relative probability of 

occurrence from species distribution models, built from independent occurrence 

points and environmental layers, was compared to abundance estimates at sites 

(17 studies); and 2) both abundance and probability of occurrence were modelled 

over the same set of sites with the same set of predictors, and model outputs 

compared (4 studies). 

 

Most studies were based on small numbers of species (median = 3), but ranged 

from 1–243, with four including species from more than one taxonomic class or 

order (birds, reptiles, amphibians, mammals, arthropods and plants). Just over half 

the studies were based on data collected in Europe (11), five were from North 

America/Mexico, and two each from Australia and Asia. The Neotropics were only 

represented by a single species (Jaguar Panthera onca) from Central and South 

America (Tôrres et al., 2012). Only four studies specifically included data from the 

entire range of the species, implying that neither the full range of density values, 

nor the full range of the environmental conditions within its niche were taken into 

account. Yañez-Arenas et al., (2014), in a study of simulated species data, found 

that the sampling protocol, and whether the data came from the species’ whole 

range, was a crucial factor in whether a relationship was found or not. Study 

extents ranged from 400 to 20,000,000 km2, with pixel size ranging from 50 to 

50,000 m. In one case, pixel size was set to coincide with a species’ home range 

(Yañez-Arenas et al., 2012). 

 

Most studies used just one method for building the occurrence model, with 

Maxent (9 studies) and Generalised Linear Models (GLM; 7) the most frequently 

used methods. Only three studies used more than one method (Oliver et al., 2012; 

Tôrres et al., 2012; Carrascal et al., 2015). A novel method, proposed specifically to 

investigate the occurrence-abundance relationship, uses the distance to the 

environmental niche centroid (Yañez-Arenas et al., 2012), similar to distance-

based distribution modelling methods. The most frequent predictor types in 

models were climate (17 of 21 studies), topography (14), habitat (12) and soil (5). 

Other predictors included distances to landscape features such as rivers. Just over 

half the studies (11) included predictors that could potentially separate the 
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realised and fundamental (potential) niche (Hutchinson, 1978), but only in one case 

was it part of the study design (Jiménez-Valverde et al., 2009). These latter 

predictors included vegetation indices (e.g. NDVI, coinciding temporarily with 

abundance data as oppose to long term averages), distance to urban areas, land 

use categories, such as agricultural areas, anthropogenic disturbance, such as 

logging (Pearce & Ferrier, 2001), and biotic interactions in two studies (Nielsen et 

al., 2005; Gutiérrez et al., 2013). 

 

Abundance data came mainly from methods measuring encounter rates, for 

example, counts along transects or nest surveys (14 studies), percentage cover for 

plants (4), or density as simple counts per area, uncorrected for detectability. Only 

four studies took detectability into account in abundance estimations in some 

form, either using distance sampling (Legault et al., 2013); camera trap capture-

recapture data (Tôrres et al., 2012); survey metrics (e.g. number of observers; 

Johnston et al., 2015); or two band transects (Carrascal et al., 2015). Indirect or 

qualitative measures of abundance were used in two cases (Real et al., 2009; 

Bradley, 2016). Abundance data was nearly always compiled from multiple 

surveys, often from different projects and over multiple periods of time, with a 

maximum span of 17 years (VanDerWal et al., 2009). 

 

Studies compared occurrence and abundance estimates using either one or both 

of regression (17) and correlation (11 cases) analyses. Several studies performed 

comparisons with and without zeros in data sets as a way of evaluating whether 

relationships were overly influenced by differences in model predictions at 

occupied and unoccupied sites (Pearce & Ferrier, 2001). Regression analysis 

included logistic and generalised additive regression (GAM); quantile regression 

was used in four studies given that a triangular relationship was hypothesised. 

 

2.1.2 Results of previous studies 

Of the 21 studies listed, 14 concluded that a relationship existed between 

occurrence and abundance estimates. Further, five studies used the relationship to 

infer population sizes or establish priority habitats. However, the remaining seven 

studies found mixed results or non-significant relationships and concluded that 

factors controlling distribution are different to those controlling abundance. Both 
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linear and non-linear relationships were found in those studies reporting positive 

relationships between occurrence and abundance. A triangular relationship, a 

result of at least four studies, suggests that occurrence models can predict 

maximum densities (VanDerWal et al., 2009; Tôrres et al., 2012; Carrascal et al., 

2015; Muñoz et al., 2015) but that at some sites, densities are limited by factors not 

included in the model. Jiménez-Valverde (2009) specifically tested whether 

separate occurrence models for potential and realised niches showed different 

relationships with abundance but found poor evidence for either. Real et al., 

(2009) found that the strength of the relationship between occurrence predictions 

and abundance for Iberian Lynx Lynx pardinus over a 35-year period of range 

contraction decreased in strength in recent years, suggesting that proximate 

factors limiting lynx abundance were not included. 

 

Nine studies investigated species traits or environmental factors affecting the 

strength or residuals of the relationship between occurrence and abundance. 

Abundance was underestimated in species with narrow habitat breadths and large 

variabilities in abundance (Carrascal et al., 2015), and overestimated with 

increasing agricultural intensity over the range of the Corncrake Crex crex 

(Fourcade et al., 2013). Marine birds’ vulnerability to food availability, as 

measured by foraging ecology, increased with the strength of the relationship 

between climate-based occurrence model and abundance (Russell et al., 2015). 

Nielsen et al., (2005) obtained mixed results, with a positive relationship in one of 

two species tested, and suggested that differing life histories and scales of 

measurement of predictor data are important in determining relationships. 

However, the resolution of the model, that is, the scale of the environmental 

variables, did not appear to affect the reported outcome overall, although the 

extreme heterogeneity of the data set (e.g. in extent and numbers of presence 

points) and small sample size make formal analysis difficult. A large range in pixel 

size was reported for studies reporting both successful and unsuccessful 

relationships (50-50,000 m, 200-50,000 m respectively).  

 

2.2 Objectives 

Although the above literature shows some promising results and evidence for a 

positive relationship exists between occurrence and abundance, further research is 
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needed to unravel critical aspects enabling confident use of this relationship in 

conservation, particularly in the Neotropics. These include effects of changes in 

abundance over time (where abundance is from multiple surveys), detectability 

between sites, the effect of using subsets of range-wide data, the effect of including 

predictors of the realised niche of species, and exploration of correlates of the 

strength of the relationship, among others. This study attempts to address some of 

these challenges by using data collected across the entire ranges of 14 dry forest 

birds in a poorly studied Neotropical habitat over a single period of time, with 

abundance estimated taking into account detectability. 

 

This chapter explores the relationship between relative probability of 

occurrence, derived from presence/background niche modelling and bird 

abundance, derived from field studies using distance sampling. Specifically, it will 

attempt to:  

 

 test for a relationship between density and model predictions 

 build a suitable regression model where relationships are established  

 explain where model predictions differ from field data using species- and 

site-level factors 

 estimate species’ global population sizes for key species using the 

regression models 
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Table 2.1. Outcome of studies investigating the relationship between occurrence model predictions and abundance 

Abundance data2 
abundance metric – species – no. sites (country) 

Occurrence model3 
method (predictors) – extent – pixel 

Relationship found - 
comparison method4 

Correlates of relationship 

transect-ER - arboreal marsupials – 792 
quadrat – reptiles – 752 
cover – plants -  667 (Australia)5 

GLM* (climate, topography, soil, habitat, disturbance, 
spatial) - no extent - 200 m 

89% of species: all sites 
18%: occupied sites - COR 

 

quadrat - Bracken Pteridium aquilinum – 296 (USA) 
quadrat-ER - Moose Alces 191 (Canada)6 

GLM (soil, topography, habitat, snow depth, 
disturbance) – 35 km2 / 13 000-km2 

1 of 2 species: occupied sites - 
COR 

 

pitfall trap-ER - 48 arthropods -67 (Azores)7 
ANN (climate, topography, land-use, spatial) – c.400 km2 
- 500m 

17% of species: climate only 
4%: land-use model - COR 

+ve: habitat distribution, 
movement capacity 
-ve: dependence on limiting 
resources 

indirect/ER -  Iberian Lynx Lynx pardinus – 323 
transects (ER) - Rabbit Oryctolagus cuniculus – 397 
(Spain)8 

GLM (climate, topography, lithology, disturbance, 
spatial)- 516,700 km2 - 10 km 

Yes - COR -ve: range contraction 

transects-ER/quadrat - 59 birds, 4 amphibian, 6 
reptiles – no. sites not given (Australia)9 

MAX (climate, habitat) – c. 9,000 km2 - 80 m 84% of species - LM, QR  

transect-ER -10 birds, 10 butterflies – 1941 (UK)10 
ANN, GAM, MAX, RF (climate, habitat) - c.200,000 km2  - 
2000/1000 m (birds /butterflies) 

80% butterflies 
100% birds - COR, LME  

capture-recapture - Jaguar Panthera onca  - 37 
(Central, South America)11 

BCL, MD, DOM, MAX, CTA, RF, GBM, MARS, MDA, ANN, 
GARP (climate, topography) - c.20,000,000 km2 – 
4000 m 

Yes, in 2 models - LM, QR No effect: model AUC 

transects-ER White-tailed deer Odocoileus 
virginianus – 28 (Mexico) 12 

DC (MAX) (climate, topography, habitat, land use) - 
10,000 km2 – 1000 m 

Yes, 1 site only - LM, SAR  

transect-ER - 61 butterflies – 14 (Germany)13 MAX (climate) - 31,250 km2 - c.1000 m 8% of species – COR  

                                                             
2 Abundance metrics: ER-encounter 
rate; D- density 
3*Abundance and occurrence modelled 
over same sites. Occurrence models: 
ANN- artificial neural networks; BCL- 
bioclim; BRT- boosted regression trees; 
CRS- climate response surface; CTA- 
classification tree analysis ;  DC- 
distance to niche centroid; DOM- 

domain; GAM- generalised additive 
model; GARP- genetic algorithm for rule 
set production ; GBM- generalised 
boosting models; GLM- generalised 
linear model; MARS- multivariate 
additive regression spline; MAX- 
maxent; MD- mahalanobis distance ; 
MDA- mixture discriminant analysis;  
RF- random forests. 

4 Comparison methods: COR: 
correlation, GAM: generalised additive 
model, GLM: generalised linear model, 
LM: linear model, LME: linear mixed 
effects model, QR: quantile regression, 
SAR: spatial autoregression 
5 (Pearce & Ferrier, 2001) 
6 (Nielsen et al., 2005) 
7 (Jiménez-Valverde et al., 2009) 

8 (Real et al., 2009) 
9 (VanDerWal et al., 2009) 
10 (Oliver et al., 2012) 
11 (Tôrres et al., 2012) 
12 (Yañez-Arenas et al., 2012) 
13 (Filz et al., 2013) 
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Abundance data2 
abundance metric – species – no. sites (country) 

Occurrence model3 
method (predictors) – extent – pixel 

Relationship found - 
comparison method4 

Correlates of relationship 

population size - Corncrake Crex crex – 38 countries 
(EU)14 

MAX (climate, habitat, topography, distance to wintering 
area, NDVI) - 3,980,000 km2  - c. 3500 m 

Yes,  R2: 40% - LM -ve: agricultural intensity 

transects-ER - Butterfly Parnassius apollo  - 90 sites 
(Spain)15 

GLM* (climate, topography, habitat, host species) - 
17,050 km2 

Yes - COR  

transect-ER/D, 3 parakeets Cyanoramphus saisseti, 
Eunymphicus cornutus, Eunymphicus uvaeensis - 39 
(New Caledonia)16 

MAX (climate, topography, habitat, soil, distance to 
forest) - 18,500 km2 – 50 m 

Yes - LM  

cover - 243 vascular species – 10,996 (France)17 GLM* (climate, soil) - 550,000 km2 Yes - COR  

sett count - Badger Meles meles  (Republic of 
Ireland)18 

GLM (topography, soil, habitat, distance to river, land 
use, spatial) - 49,000 km2 - 100 m 

Yes - LM  

density - hypothetical species (different sampling 
strategies)19 

DC (climate) c.2,000,000 km2 - c.1400 m No (mixed results) - GAM 
+ve: random sampling, sample 
size 

transect-D - 21 terrestrial birds - 437 (La Palma)20 
MAX, BRT (topography, habitat, disturbance, spatial) - 
706 km2 - 500 m 

90-100% of species – COR, QR 

+ve: habitat breadth;  
-ve: variability in abundance. 
prevalence, regional maximum 
density 

eBird-ER - 6 waterbird spp – (USA)21 
BRR* (topography, habitat, survey effort, land cover) - 
420,000 km2 

No (non linear) - COR, GAM  

no. pairs - Bonelli’s Eagle Aquila fasciata - 
961(Spain)22 

GLM (climate, habitat, topography, disturbance, spatial) 
- 87,600 km2 – 10,000 m 

Yes (occupied/unoccupied) – 
COR, QR 

 

no. pairs - 18 seabirds – 960 (Europe)23 RSM (climate) - 107,300 km2 - 50,000 m 50% of species – LME, GLM 
+ve: vulnerability to food 
availability 

burrow count - Bolson tortoise Gopherus 
flavomarginatus – 22 (Mexico)24 

DC (climate, topographic) - c.6000 km2 – 1000 m 
Yes – LM (10 regression 
methods) 

 

cover/indirect - 15 invasive plants (USA)25 MAX (climate)  -50,000 m 
No (compared occurrence 
models with high/low 
abundance presence points) 

 

                                                             
14 (Fourcade et al., 2013) 
15 (Gutiérrez et al., 2013) 
16 (Legault et al., 2013) 

17 (Van Couwenberghe et al., 2013) 
18 (Byrne et al., 2014) 
19 (Yañez-Arenas et al., 2014) 

20 (Carrascal et al., 2015) 
21 (Johnston et al., 2015) 
22 (Muñoz et al., 2015) 

23 (Russell et al., 2015) 
24 (Ureña-Aranda et al., 2015) 
25 (Bradley, 2016) 
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3 Methods 

 

3.1 Relationship between field-based density estimates and model-based 

predictions 

Density (measured as individuals km-2) was estimated from field surveys at 26 

sites using distance sampling (see Chapter 3). A measure of relative probability of 

occurrence was estimated at a 1 km resolution using four different presence only 

or presence/background modelling methods, as well as a consensus model 

consisting of a weighted average of all four (see Chapter 2). Each model output 

(four modelling methods and a ‘consensus’ model) was averaged over a 3 x 3 km 

grid at each field site (see Figure 3.2 in Chapter 3), representing the area where the 

transects were implemented in the field. To identify significant relationships 

between density estimates and model predictions, Spearman's rank correlation 

analyses were implemented for each species and each modelling method. 

 

To investigate further the form of the relationship between model output and 

density with a view to predicting abundance, regression models were built for 

those species showing significant correlation coefficients between the consensus 

model and density estimates. The type of regression analysis employed depends on 

the kind of data being analysed. Although both density and the species distribution 

model can be considered as random variables, a Model II regression (e.g. ranged 

axis regression) is not necessary when the purpose is prediction rather than 

estimating parameters (Legendre & Legendre, 1998). In previous studies (Table 

2.1), 10 of 21 studies used regression techniques to investigate this relationship. In 

this study, the response variable, species abundance, is bounded at the lower limit 

by zero and at the higher limit by a carrying capacity set by environmental 

variables which may be further limited by biotic interactions (e.g. competition) or 

a disturbance process. A relationship between abundance and model output is 

hypothesised to be monotonically increasing, imposing a further requirement on 

the type of regression to be used. Finally, since the species distribution model 

outputs do not represent absolute probability of occurrence, rather a relative 

probability (given the lack of true absences in the modelling methods), the line of 

fit may not necessarily pass through the origin, justifying the inclusion of 

intercepts in the models. Linear regression, including polynomial terms, is not 
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suitable as lower limits are not imposed, and functions are not necessarily 

monotonic.  

 

Figure 3.1. a) Type II and b) type III models, with generating equations, proposed by Huisman et 
al., (1993). Simulated data were produced using a) linear and b) half normal functions. In each case, 
model type was chosen by AICc. In equations, a, b and c are the parameters to be estimated by 
optimisation, M is the upper bound of the response value. 

 

Huisman et al., (1993) proposed a set of five hierarchical logistic regression 

models, later extended to seven by Jansen & Oksanen (2013), to model species 

abundance patterns along environmental gradients. Of these, two types meet the 

above criteria: type II (following the original nomenclature of the model set) where 

a trend is allowed to reach an upper bound, and; type III, were a trend may be 

limited before the upper bound (Figure 3.1). Both models were constrained to be 

increasing only. A null model (type I), consisting solely of an intercept was also 

included. The best model for each species was chosen by AIC corrected for small 

samples (AICc; Anderson et al., 2000), and confidence intervals were implemented 

as the 0.05 and 0.95 percentiles of a bootstrapped sampling distribution (with 999 

repetitions). A modified function from the eHOF package (Jansen & Oksanen, 2013) 

was used to produce the models in R (R Core Team, 2016). An R2 value (model sum 

of squares/total sum of squares) approximates the amount of variation explained 

by the predictor, as proposed for continuous response data (i.e. density estimates; 

Huisman et al., 1993). 
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3.2 Factors influencing relationships between density estimates and model 

predictions 

A series of species- and site-level covariates were used to evaluate where model 

predictions and density estimates differ. Spearman’s correlation was used to 

assess existence of a relationship between a) species-level factors and the 

correlation coefficients obtained from the occurrence-abundance relationship, and 

b) site-level factors and the residuals of the model describing abundance as a 

function of the occurrence model prediction for each species. 

 

3.2.1 Species-level factors 

Two covariates were used to assess different aspects of the performance of the 

species distribution models. First, AUC, or the area under the receiver operator 

curve, provides an indication of the predictive accuracy of the model. Second, 

variation among models making up the consensus model was calculated as the 

median range (maximum – minimum value) of the model predictions per site. Two 

covariates related to the species density estimates were used: the coefficient of 

variation of the density estimate and the variation in detectability of each species 

among sites. Detectability is measured as the proportion of individuals or groups 

of the target species that are detected in the survey area (Buckland et al., 2001). 

Both measures were calculated using DISTANCE sampling software (Thomas et al., 

2010). Two covariates were used as general indicators of the rarity or 

commonness of the species: the average density of the species across its range, and 

the size of its range (calculated from the species distribution model in chapter 2).  

 

3.2.2 Site-level factors 

Anthropogenic pressures were measured at sites during fieldwork (see Chapter 3). 

These included prevalence of logging (proportion of vegetation plots with stumps 

present) and prevalence of grazing (proportion of vegetation plots with cattle and 

goat dung present). A site protection index was calculated using the number of 

people living in the 2nd degree administrative region where the site was located, 

the distance to the nearest large city (> 10,000 inhabitants), and lack of formal site 

protection status as penalty factors (see Chapter 4 for details). 
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3.3 Population estimates based on abundance-occurrence models 

A global population size estimate was calculated for species with models showing a 

working relationship, i.e. where a model other than the null model was chosen. In 

the case of the Sulphur-throated Finch Sicalis taczanowskii, a population estimate 

was not calculated, given the higher uncertainty of the density estimate (see 

Chapter 3).The estimated model parameters were used to predict abundance for 

each pixel from the consensus distribution model, within the presence threshold, 

as established by 5% omission rate. Additionally, unsuitable areas (agriculture, 

urban areas, desert) were combined from land use and cover maps from Peru and 

Ecuador, based on Landsat images (MINAM, 2012; MINAM-EC, 2014) and masked 

from the consensus model after applying the threshold. Abundance estimates were 

summed across this masked range to estimate global population. The standard 

error of this total was estimated as the square root of the sum of the squared 

individual standard errors for each pixel from the bootstrap sample. 
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4 Results 

4.1 Relationships between model predictions and density estimates 

Eleven of fourteen species showed significant positive correlations between 

density estimates and occurrence predictions from at least one modelling method 

(Table 4.1, Appendix 1). The three species without any relationships were Rufous 

Flycatcher Myiarchus semirufus, Necklaced Spinetail Synallaxis stictothorax, and 

Mouse-coloured Tyrannulet Phaeomyias murina. The consensus model had the 

highest number of significant relationships, at 10 species, followed by Maxent at 

nine; GLM and Domain had the lowest with six (Table 4.1, Appendix 1). The highest 

correlation coefficients were found in Tumbes Sparrow Rhynchospiza stolzmanni, 

and all but one species with significant relationships had coefficients over 0.5. 

 

Table 4.1. Spearman correlation coefficients for field based density estimates against model 
predictions. Number of significant (bold) relationships per species and models shown for p < 0.05.  

Species GLM GAM Maxent Domain Consensus 
Number of 
significant 

relationships 

Myrmia micrura 
0.64 

(p<0.001) 
0.58 

(p<0.001) 
0.65 

(p<0.001) 
0.64 

(p<0.001) 
0.62 

(p<0.001) 
5 

Forpus coelestis 
0.52 

(p=0.01) 
0.05 

(p=0.82) 
0.16 

(p=0.46) 
0.45 

(p=0.02) 
0.47 

(p=0.02) 
3 

Synallaxis 
stictothorax 

0.28 
(p=0.17) 

0.29 
(p=0.15) 

0.16 
(p=0.44) 

0.30 
(p=0.13) 

0.33 
(p=0.10) 

0 

Phaeomyias 
murina 

0.22 
(p=0.27) 

0.11 
(p=0.58) 

0.30 
(p=0.14) 

0.31 
(p=0.12) 

0.19 
(p=0.35) 

0 

Pseudelaenia 
leucospodia 

0.34 
(p=0.09) 

0.23 
(p=0.27) 

0.55 
(p<0.001) 

0.37 
(p=0.06) 

0.48 
(p=0.01) 

2 

Tumbezia salvini 
0.56 

(p<0.001) 
0.67 

(p<0.001) 
0.65 

(p<0.001) 
0.53 

(p=0.01) 
0.70 

(p<0.001) 
5 

Myiarchus 
semirufus 

-0.04 
(p=0.85) 

-0.27 
(p=0.19) 

-0.03 
(p=0.88) 

0.02 
(p=0.93) 

0.02 
(p=0.93) 

0 

Phytotoma 
raimondii 

-0.01 
(p=0.97) 

0.51 
(p=0.01) 

0.34 
(p=0.09) 

-0.05 
(p=0.81) 

0.30 
(p=0.13) 

1 

Campylorhynchus 
fasciatus 

0.20 
(p=0.32) 

0.39 
(p=0.05) 

0.46 
(p=0.02) 

0.16 
(p=0.42) 

0.45 
(p=0.02) 

2 

Cantorchilus 
superciliaris 

0.38 
(p=0.06) 

0.64 
(p<0.001) 

0.52 
(p=0.01) 

0.23 
(p=0.26) 

0.57 
(p<0.01) 

3 

Mimus 
longicaudatus 

0.29 
(p=0.14) 

0.50 
(p=0.01) 

0.51 
(p=0.01) 

0.14 
(p=0.48) 

0.45 
(p=0.02) 

3 

Piezorina cinerea 
0.62 

(p<0.001) 
0.20 

(p=0.33) 
0.41 

(p=0.04) 
0.61 

(p<0.001) 
0.56 

(p<0.01) 
4 

Sicalis 
taczanowskii 

0.63 
(p<0.001) 

0.62 
(p<0.001) 

0.63 
(p<0.001) 

0.56 
(p<0.01) 

0.67 
(p<0.001) 

5 

Rhynchospiza 
stolzmanni 

0.84 
(p<0.001) 

0.79 
(p<0.001) 

0.87 
(p<0.001) 

0.89 
(p<0.001) 

0.91 
(p<0.001) 

5 

Number of 
significant 

relationships 
6 7 9 6 10  
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Of the ten species showing significant correlation coefficients between the 

consensus model and density estimates, nine were modelled best by curvilinear 

relationships, with the more complex, type III model, superior in four species 

(Figure 4.1a, h, i, j) and the less complex, type II model, in five (Figure 4.1b, c, d, f, 

g). R2 values ranged from zero (in the null model) to 0.78. The three best 

supported models, in terms of explained variance, were Tumbes Sparrow 

Rhynchospiza stolzmanni (78%), followed by Cinereous Finch Piezorina cinerea 

(51%) and Superciliated Wren Cantorchilus superciliaris (34%). Bootstrapped 

 

Figure 4.1. Relationships between population density (y-axis) and model predictions (x-axis) for ten 
species as modelled by a type of logistic regressions. Grey shading represents 95% percentile 
bootstrapped confidence intervals for the fitted values. Vertical red dashed lines represent the 
extremes of model predictions at all presence points used in the species distribution models; blue 
dashed line represents the presence threshold, using 5% omission. 
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confidence intervals on these species did not generally expand at the extremes, as 

in other species with more unstable models (e.g. Figure 4.1b, d, i). Models were not 

built for both threatened species due to a lack of relationship, and the Near 

Threatened Tumbes Tyrant T. salvini had an R2 value of 0.04, showing instability at 

higher occurrence predictions (Figure 4.1d). 

 

4.2 Factors influencing relationships 

 None of the species-level factors with regard to occurrence models (consensus 

model AUC, variability in individual models; Appendix 2) density estimate 

(coefficient of variation of density estimate, detectability) or species traits (average 

density and range size) were significantly related to the correlation coefficients 

between abundance estimates and model predictions (all p values > 0.2). However, 

significant relationships were found for site-level factors that could limit species’ 

abundance and model residuals. Prevalence of grazing (measured by dung counts) 

at sites was positively correlated with residual values in Cinereous Finch Piezorina 

cinerea (rs = 0.43, p = 0.028) and Fasciated Wren Campylorhynchus fasciatus 

(rs = 0.44, p = 0.025). Four other species had p values < 0.06, hinting at further 

relationships between residuals and pressure factors (Appendix 3). 

 

4.3 Estimating population size using density-model relationships 

Preliminary population estimates were obtained from predicted values over the 

masked consensus models (i.e. between the blue and right-hand red dashed lines; 

Figure 4.1) with coefficients of variation ranging from 17% to 63% (Table 4.2). 

Population estimates refer to the entire global range of the species, with the 

exception of Mimus longicaudatus, for which geographically isolated subspecies 

(e.g. in the Marañón valley) were excluded (see 3.1, Chapter 2). 
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Table 4.2. Preliminary global populations (numbers of individuals) estimated from relationship 
between species distribution models and field-based density. Standard error and coefficient of 
variation are from bootstrapped samples. 

Species English name 
Population 

estimate 
Standard 

error 
Coefficient of 

variation 

Myrmia micrura 
Short-tailed 

Woodstar 
627,908 282,382 45% 

Forpus coelestis Pacific Parrotlet 2,872,442 1,390,939 48% 

Pseudelaenia 
leucospodia 

Grey-and-white 
Tyrannulet 

1,408,909 260,983 19% 

Cantorchilus 
superciliaris 

Superciliated 
Wren 

1,355,930 234,280 17% 

Mimus longicaudatus 
Long-tailed 

Mockingbird 
5,404,490 1,183,043 22% 

Piezorina cinerea Cinereous Finch 1,390,227 254,267 18% 

Rhynchospiza stolzmanni Tumbes Sparrow 2,840,519 598,303 21% 

 

 

 

  



Chapter 5   Occurrence and abundance relationships 

193 

5 Discussion 

 

Significant benefits could result from a working link between distribution models 

and abundance. More efficient and cost-effective population estimates, and related 

metrics such as population trends, would constitute major advances in 

conservation science. This study found working relationships in the majority of 

bird species tested from the Tumbesian region in Peru. The sampling strategy used 

to select sites to obtain density estimates favoured areas of higher probability of 

finding the species (see Chapter 3). This may tend to reduce the correlation 

between density and occurrence if this implies that the relationship is not 

evaluated over the full breadth of a species’ abundance values. Conversely, the 

species distribution models themselves may tend to increase the correlation due to 

bias in the models from unsystematic location of occurrence records (where 

density is higher, detectability is higher, leading to more occurrence records; 

Jiménez‐Valverde, 2011). However, I believe that the wide variation in density 

estimates obtained and the steps taken to reduce bias in models (although not 

completely, as is the nature of presence only models) are sufficient to avoid the 

relationships presented from being unrepresentative. 

 

Evidence from a review of previous work, presented above, supports the 

generality of these results (Table 2.1). Further evidence for common factors 

driving both abundance and distribution come from related studies. Howard et al., 

(2014) found improvements to distribution model performance when trained with 

abundance data rather than presence/absence data. Additionally, Serra-Diaz et al., 

(2013) found a positive relationship when comparing tree growth to distribution 

model predictions, given that growth rate is a metric related to abundance. 

Crucially, both landscape- and local-scale abiotic factors have been found to 

explain presence/absence distribution (Stewart-Koster et al., 2013). I conclude 

that significant overlap exists between factors controlling both abundance and 

distribution, as oppose to some authors who claim they are separate processes 

(e.g. Nielsen et al., 2005; Johnston et al., 2015). A commonly held theory of the 

hierarchical nature of factors controlling distribution and abundance (Wiens, 

1989; Guisan & Thuiller, 2005) is not necessarily invalidated by this overlap. 

Rather, factors controlling distribution and abundance are not mutually exclusive, 
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but are present at all levels of the hierarchy. This may be further clarified by 

considering that abundance and distribution result from individualistic species-

specific responses to environmental factors (Wiens, 1989). 

 

Notwithstanding, relationships were not found for all species in this study, and 

even in positive results, much unexplained variability remains. This, again, mirrors 

results from the review. Many studies found that models could predict upper limits 

of abundance or carrying capacity (VanDerWal et al., 2009; Muñoz et al., 2015). 

One explanation for this pattern is that predictors explaining local limiting factors, 

rather than broad environmental gradients (Feldman & McGill, 2014), were absent 

from models. Further, this pattern is also seen where the interaction of multiple 

limiting factors increases the unpredictability of an ecological response as 

environmental conditions become more favourable (Cade et al., 1999; Huston, 

2002). I suggest that appropriate predictors at sensible scales of analysis are 

crucial to making these relationships work. First, predictors should define the 

realised niche of a species (Hutchinson, 1978), that is, they should describe one or 

more of current habitat effects, disturbance, dispersal and biotic interactions 

(Guisan & Thuiller, 2005; Peterson et al., 2011). In this study, NDVI, as measured at 

the same time as the field study, was used as such a predictor, incorporating 

information on current habitat conditions. Second, scales of predictors should 

match the scale of variation in abundance across a species’ range. Variation in 

predictor resolution can lead to prediction resolutions that range from continuous, 

through ordered rank, to presence or absence (Huston, 2002). The second 

recommendation is especially important when data are not available to describe 

the realised niche (in most cases in the Neotropics) given that local-scale abiotic or 

habitat variables may act as proxies (Stewart-Koster et al., 2013).  

 

This study addressed several challenges related to predicting abundance with 

distribution models; factors, which could affect the strength of relationships were 

explored. Detectability, which Jiménez-Valverde (2011) suggested could be the 

cause of circular reasoning in a positive relationship between model prediction 

and abundance, was taken into account within the density estimates. Furthermore, 

species’ detectability was not found to be related to the correlation coefficients 

between model predictions and abundance estimates, suggesting that detectability 
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was not affecting relationships in this study. Other species-levels traits were not 

found to affect the relationship in this study, however, niche width is known to 

effect how well occurrence models are supported (Tsoar et al., 2007; Attorre et al., 

2013), and may influence a relationship between the model and population 

density. The general lack of relationships between pressure factors at sites (e.g. 

selective logging) and model residuals may be partly explained by NDVI already 

containing some of this information. A further complication relates to the time 

scale of this disturbance factor, which represents an accumulation of logging 

activity at least as far back as the last significant El Niño event (1998). 

 

Based on the relationship between distribution and abundance, population 

estimates were made for eight species using model parameters. Given the difficulty 

in obtaining population size estimates, especially in the Neotropics (see Chapter 2), 

conservation assessments need to be pragmatic. No published population size 

estimates exist for these species, but they are described as ‘common’ in the most 

recent comprehensive conservation assessment of Neotropical birds (Stotz et al., 

1996). I suggest that this method represents a practical way of improving 

estimates using relatively small numbers of abundance estimates by taking into 

account variation in abundance over the range of a species (see Chapter 4; Brown 

et al., 1995; Sagarin et al., 2006). Furthermore, these estimates are unlikely to 

underpredict if negative relationships are not used. Where relationships are not 

found, then an intercept only model will be equivalent of scaling up a mean 

abundance estimate over a suitable area. However, density surfaces from spatial 

interpolation, given that abundance is spatially autocorrelated at small distances 

(see Chapter 4), may represent an improvement over intercept only models (Bahn 

& McGill, 2007) and spatial terms could be included within models. For intercept 

only models, the choice of sampling strategy for the abundance estimates must 

also be taken into account. For example, a sampling design stratified by relative 

probability of occurrence (i.e. this study) would not be suitable for scaling up mean 

estimates without a modelled relationship. Population estimates at local level may 

not always be reliable from this method, given the wide variation in observed 

abundance at higher levels of model prediction. Similarly, Oliver et al., (2012) 

concluded that population densities can be predicted over wider landscapes rather 

than by pixel. However, some species, e.g. Tumbes Sparrow R. stolzmanni did not 
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show this amplification of variance, and local estimates should therefore be 

evaluated on an individual species basis. Williams (2012) commented that 

Sulphur-throated Finch Sicalis taczanowski had declined severely in recent years 

and is no longer ‘common’. This study (Chapter 3) observed the species in flocks 

numbering in the 100s at 6 of 24 sites within its range, and using methods 

described in this chapter, placed a population estimate in excess of 7 million 

individuals (Table 4.2). However, further work is needed to qualify a threshold to 

approximate better an area of occupancy, or to further refine predictors of 

presence for this species. 

 

Similar applications of an occurrence-abundance relationship have already been 

applied to conservation problems. Three studies reviewed above also predict 

population size, but as oppose to methods here, encounter rates or similar are 

predicted and then converted to density taking into account detectability from 

field studies (Legault et al., 2013; Carrascal et al., 2015). Priority sites for 

conservation were established based on ranked habitat quality in two studies26 

(Escalante & Martínez-Meyer, 2013; Ureña-Aranda et al., 2015). Future 

applications of this relationship could include multi-temporal studies to 

investigate population trends and their relationship to environmental variables, 

especially habitat change. Existing models using future scenarios to predict 

distributions could be extended to abundance and measure population size effects 

of deforestation (Bird et al., 2011) or climate change (Ramirez-Villegas et al., 

2014). Such applications could be especially important in cases where a lack of 

change in range size masks population declines (Wilcove & Terborgh, 1984; 

Chamberlain & Fuller, 2001; Rodriguez, 2002). They could also improve extinction 

risk assessments where linear relationships are often assumed between habitat 

loss and population decline (IUCN, 2016). Correlates of seasonal differences in 

populations (e.g. local and large-scale migration) could also be assessed for 

importance in distribution-based models where abundance data are not widely 

available. Further applications could include aggregating data from different 

survey protocols where bird counts are standardised by modelled habitat 

suitability indices (Massimino et al., 2008). In this case, models were built with 

                                                             
26 Escalante & Martínez-Meyer (2013) did not report details of the occurrence-abundance relationship and is 
therefore not included in Table 2.1 
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count data, but using the relationships outlined here, occurrence data could also be 

used. Finally, other regression-based methods exist for exploring the relationships 

between distribution and abundance, most notably, as a two stage process (first 

for occupancy, and then for abundance-where-present), for example, hurdle or 

zero inflated models (Michaud et al., 2014), or where both are incorporated into a 

single modelling framework (Stewart-Koster et al., 2013). Ordinal regression has 

also been used (Guisan, 2002), building on the fact that relative probability of 

occurrence can be considered ordinal data, and may be worth further exploration 

in the context of this study. 

 

In conclusion, abundance-occurrence relationships are a promising tool to add 

to conservation science and are already being applied to improve knowledge of 

species’ population sizes and habitat quality. Further application of these 

relationships have potential to improve our understanding of how abundance 

within a species’ geographic range, and how a species’ occurrence itself, changes 

over time and space. 
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7 Appendices 

Appendix 1. Comparison of model-based probability of occurrence and field-based density 
estimates for 14 species at 26 sites in northwest Peru. Blue points indicate that Spearman’s 
correlation coefficients are significant at p < 0.05. 
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Appendix 2. Variation in the predictions of the four species distribution modelling methods at each 
field site. The range of predicted values at each site (maximum – minimum prediction) is shown as 
a proportion of the mean range of model values at all sites. The red dashed line represents no 
difference between range of predictions at a particular site and the mean value. 

 

 

 

Appendix 3. Correlation coefficients for model residuals and site level factors, significance (< 0.05 
and < 0.1 are shaded). 

Species Site-level factor 
Spearman 
correlation 
coefficient 

P-value 

Myrmia micrura 
 

Distance to road 0.10 0.617 

Grazing prevalence -0.19 0.354 

Logging prevalence -0.11 0.595 

Population pressure index -0.12 0.556 

Forpus coelestis 
 

Distance to road -0.17 0.411 

Grazing prevalence -0.34 0.099 

Logging prevalence -0.07 0.741 

Population pressure index -0.12 0.556 

Synallaxis stictothorax 
 

Distance to road -0.03 0.878 

Grazing prevalence 0.38 0.056 

Logging prevalence 0.18 0.389 

Population pressure index 0.03 0.899 

Phaeomyias murina 
 

Distance to road -0.31 0.122 

Grazing prevalence -0.03 0.895 

Logging prevalence 0.15 0.478 

Population pressure index 0.04 0.846 

Pseudelaenia leucospodia 

Distance to road 0.00 0.987 

Grazing prevalence 0.39 0.051 

Logging prevalence 0.35 0.079 

Population pressure index 0.00 0.984 

Tumbezia salvini 
 

Distance to road -0.10 0.646 

Grazing prevalence 0.29 0.162 

Logging prevalence 0.00 0.997 

Population pressure index -0.24 0.244 
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Species Site-level factor 
Spearman 
correlation 
coefficient 

P-value 

Myiarchus semirufus 
 

Distance to road 0.03 0.881 

Grazing prevalence 0.38 0.052 

Logging prevalence 0.23 0.249 

Population pressure index -0.01 0.969 

Phytotoma raimondii 
 

Distance to road -0.28 0.169 

Grazing prevalence -0.30 0.141 

Logging prevalence 0.07 0.720 

Population pressure index 0.09 0.678 

Campylorhynchus fasciatus 

Distance to road -0.18 0.391 

Grazing prevalence 0.44 0.025 

Logging prevalence 0.30 0.132 

Population pressure index 0.04 0.862 

Cantorchilus superciliaris 
 

Distance to road -0.34 0.093 

Grazing prevalence 0.07 0.739 

Logging prevalence 0.17 0.407 

Population pressure index 0.31 0.123 

Mimus longicaudatus 
 

Distance to road -0.28 0.163 

Grazing prevalence -0.28 0.167 

Logging prevalence 0.18 0.383 

Population pressure index 0.22 0.279 

Piezorina cinerea 
 

Distance to road 0.38 0.057 

Grazing prevalence 0.43 0.028 

Logging prevalence -0.05 0.803 

Population pressure index -0.33 0.105 

Sicalis taczanowskii 
 

Distance to road 0.03 0.902 

Grazing prevalence -0.16 0.435 

Logging prevalence 0.25 0.229 

Population pressure index 0.14 0.515 

Rhynchospiza stolzmanni 
 

Distance to road 0.12 0.561 

Grazing prevalence 0.08 0.725 

Logging prevalence -0.04 0.862 

Population pressure index -0.08 0.697 
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Chapter 6 
 

General conclusions, recommendations and future work 
 

1 Main Findings and recommendations 

This thesis aimed to develop tools, combining different analytical techniques, field 

data and GIS, to provide improved estimates of species distribution and abundance 

in support of extinction risk assessments in threatened Neotropical bird species. 

Given the current extinction crisis (Barnosky et al., 2011), and the lack of critical 

information to inform conservation decisions on the ground (Hortal et al., 2015), 

new methods and analytical techniques are urgently needed to counter 

information shortfalls that prevent or hinder efficient conservation planning and 

management. Information shortfalls are especially severe in terms of the 

abundance of species over their geographical ranges. Most species lack abundance 

estimates, and for those that have them, these are often singles estimates over 

large ranges (see Chapter 1). Inextricably linked to information on abundance is 

information on the extent of species ranges, critical at range edges (i.e. where does 

abundance become zero –and how often?), or areas where abundance is variable. 

Several findings from this thesis support improvements to methods aimed at 

providing information on species’ ranges and abundances for conservation 

decisions. 

 

1.1 Making use of the relationship between occurrence and abundance 

Relationships between the environment and species’ distributions have been a 

core issue of ecology since its beginnings as a discipline (Andrewartha & Birch, 1954; 

Begon et al., 2006). Since the time of Humboldt’s graphical representation of plant 

distributions over altitudinal gradients and bioclimatic zones on Chimborazo in 

Ecuador (Humboldt & Bonpland, 1807), some 400 km north of the present study 

area, ecologists have attempted to explain species’ responses to environmental 

gradients. The idea that such relationships should be linked to abundance is also 

not new. Chapman (1931) had already hinted at climate-based distribution maps 

predicting areas of normal abundance and rare occurrence in an early textbook on 

ecology. Over the last decade, researchers have increasingly focused on the 

relationship between models of species occurrence and local abundance (e.g. 
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Nielsen et al., 2005; Muñoz et al., 2015; see Chapter 5). This is becoming a 

promising area of research aimed at obtaining better, more efficient, abundance 

information, by incorporating information about what drives species presence. 

This thesis has also found a relationship between abundance and occurrence in 

most of the study species. However, this does not represent a quick-fix short cut to 

obtaining range-wide information on abundance at present. Species ranges and 

abundances are dynamic, spatial patterns, controlled by abiotic and biotic factors, 

some of which are modified by the species’ life processes themselves (Gaston, 

2003; Peterson et al., 2011). Such complexity has led some authors to urge caution 

in overvaluing the contribution of species distribution models to ecology (Aguirre-

Gutiérrez et al., 2013; Jiménez-Valverde, 2014). However, given the importance of 

range and abundance metrics (and changes therein) to conservation decisions, the 

potential benefits of understanding such relationships requires further research 

for improving models as well as applying the relationship to conservation issues.  

 

Population decline and habitat loss 

A major application of this relationship would be to clarify the relationship 

between changes in population numbers and habitat area, especially 

population decline and range loss. This is a major factor in current extinction 

risk assessments, given that most threatened species are classified on the basis 

of changes in population inferred from habitat loss (see Chapter 1). Given the 

complex variation in abundance over the range of a species, as was the case in 

this study, the relationship between habitat loss and population decline is 

unlikely to be linear. IUCN guidelines urge a sensible application of this 

relationship (IUCN, 2016), and models using time series data (e.g. over three 

generation lengths of the species in question) from vegetation indices, such as 

NDVI used in this study, with occurrence calibrated to abundance, could 

provide important insights into the true relationship over specific areas. 

Different patterns proposed for range loss (e.g. Wilcove & Terborgh, 1984; 

Donald & Greenwood, 2001; Rodriguez, 2002) could also be tested and 

simulated through this approach. 
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Global change studies 

Other global change studies, such as those involving climate change, could also 

benefit from using abundance information in predicted impacts, instead of 

changes in species richness or range size. Understanding how climate change 

might affect the internal population structure of a species’ range would 

represent an important step forward in quantifying the risks. 

 

Improving models 

In terms of improving models, both methods and predictors require further 

thought and action. This study found some evidence for certain factors limiting 

abundance within a framework where a relationship between abundance and 

occurrence models predicts a carrying capacity or maximum potential 

abundance (VanDerWal et al., 2009; Muñoz et al., 2015). Further research is 

needed on these factors that can tell us more about where the relationship 

between abundance and occurrence models breaks down. For example, local 

biotic interactions (e.g. competition –abundances of other species) and local 

pressure factors (e.g. habitat degradation, hunting) should be incorporated into 

models, especially when using them to estimate population size. Collection of 

such variables may entail significant fieldwork but recent advances in remotely 

assessing local pressures may also offer real opportunities to use satellite data 

for this purpose (e.g. logging; Buchanan et al., 2013). 

 

Two stage models 

Other methods with similar goals, such as abundance modelling, could also be 

compared to this method. Techniques, such as a two stage modelling processes 

–zero-inflated models or hurdle regression applied to abundance data (Zuur et 

al., 2009)– where presence/absence is modelled first, and then abundance 

within areas of presence, should be assessed with data from this study. This 

process is conceptually similar to predicting abundance within a thresholded 

and calibrated species distribution model. An advantage of using the present 

method is the availability of additional data, e.g. museum records, used in 

presence/background methods, whereas zero-inflated models typically use the 

same data set, converted to presence absence for the first modelling stage. 
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Occupancy modelling 

Occupancy modelling is another technique to explore, especially, where 

surveys to assess occupancy are replicated over space (e.g. Charbonnel et al., 

2014), rather than time, as is more typically the case. For example, using the 

data from this study, occupancy could be assessed using data from each of the 

four transects per site as a replicate. Occupancy could then be compared to 

abundance, using a series of similar covariates, as in this study. 

 

Abundance surface modelling 

Abundance surface modelling incorporated into Distance sampling (Miller et 

al., 2013) represents a more sophisticated method to propagate errors from 

density estimates through to the population size estimates but is data intense. 

This method, as proposed currently, relies on Generalised Additive Models to 

predict abundance using spatial predictors, such as those typically used in 

species distribution models (Hedley & Buckland, 2004). Combining such 

techniques with an occurrence-abundance relationship might be a compromise 

to include more meaningful uncertainty measures while maintaining a 

pragmatic and relatively straightforward approach to improving population 

size estimates. 

 

1.2 Modelling species ranges 

Modelling species distributions, from its origins in relating species responses to 

resources and habitat relationships (Scott et al., 2002), has increased exponentially 

in recent years with the advent of dedicated software, expanding online data 

sources, and increasing ease of sharing analysis methods through statistical 

programming (see Chapter 2). Although species distribution models are currently 

an accessible and common tool for conservation planning (often at large scales), 

they may be underexploited for practical conservation decisions on the ground 

(Guisan et al., 2013) or not always the right tool for the job (Guillera-Arroita et al., 

2015). This is evidenced by some reluctance for SMDs to be fully embraced within 

certain conservation planning mechanisms (e.g. Red List, Important Bird Areas), 

with issues of scale and accuracy, themselves major drivers of research in SDMs, 

often sticking points. Obtaining a fuller picture of a species’ distribution will need 

models to become more dynamic, and more process-based. Incorporating process 



Chapter 6   Conclusions and future work 

211 

(e.g. population dynamics, interspecific interactions) into conservation planning, in 

addition to biodiversity patterns (based ecosystem types and species 

distributions), has been a recent goal (Pressey, 2004). New methods in modelling 

are beginning to reflect this, with several methods being developed to incorporate 

mechanistic modelling with correlative distribution models. 

 

Estimating Extent of Occurrence 

Modelling techniques represent a useful tool to complement existing methods 

of estimating Extent of Occurrence (EOO) for extinction risk assessments. 

Although several examples exist in the literature (e.g. Marcer et al., 2013; Syfert 

et al., 2014), and suggestions for their use are included in the IUCN guidelines 

on extinction risk assessment (IUCN, 2016), several issues still prevent their 

use as standard practice, of which three are highlighted. Firstly, although many 

stages of the process may be automated, to ensure the quality of occurrence 

records, manual checking is required, which for many species is time-

consuming and requires expert knowledge. Secondly, thresholds are difficult to 

standardise across species, can be affected by the quality of the occurrence 

records, and are not subject to a general consensus on which method to use. 

Thirdly, the increasing number of modelling methods, and whether ensemble 

methods are an adequate solution to variability among methods, makes 

standardisation difficult. Notwithstanding such challenges, automated models 

incorporating online sources of both species occurrence records and 

environmental layers could highlight discrepancies with expert-based Extent of 

Occurrence estimates. EOO, as in this study, could be based on a percentage 

omission threshold. Although a 0% omission threshold conceptually conforms 

to a convex hull approach to EOO, excluding a small proportion of presence 

records equal to a low quantile (e.g. 5% as in this study) of model values allows 

for vagrancy (i.e. genuine, but very rare, records of species in atypical 

locations) and location error (likely to be present in most presence-only data 

sets such as those from museum records). 

 

Area of Occupancy 

Thresholds specific to modelling purpose require further research. A threshold 

for AOO is a more challenging proposition than EOO, where a balance must be 
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sought between overestimating a species occupancy, albeit in suitable habitat, 

and excluding areas of true presence - in other words, between errors of 

commission and errors of omission. The difficulty with setting thresholds with 

relative probability of occurrence, such as that produced by 

presence/background SDMs, is that ‘traditional’ probability-based methods 

(e.g. 0.5 in logistic regression) cannot be used. Freeman & Moisen (2008) 

suggest using thresholds based on specificity to avoid overestimating 

population. However, thresholds related to commission errors are difficult to 

implement when ‘background’ absences, rather than true absences are used 

(Peterson et al., 2011). A compromise between choosing a higher threshold than 

0% omission and using post-processing to exclude unoccupied areas was used 

in this study. Using predictors that are better able to differentiate occupied and 

unoccupied areas would be an advantage for modelling and standardising 

approaches. Also, other ways to estimate commission errors should be trialled, 

such as using pilot studies to approximate true prevalence, or using sites of 

‘absence’ for a particular species from specimen or observation data (where 

sufficient records exist) as true absences in threshold or accuracy metrics. 

 

Species occurrence records 

Quality and suitability of species occurrence data in distribution models 

remains a key issue (Graham et al., 2004). Further work is required to process 

and make available species occurrence records from past collections despite 

the hugely significant efforts of initiatives such as VertNet and GBIF. Ultimately, 

greater willingness to share will bring improvements. Distributed systems can 

aid data sharing by avoiding issues of ownership and storage. Major collections 

of Neotropical birds are yet to be made fully available online, no doubt due to 

lack of funds for preparing data. Creative crowd-sourced help is already being 

used to digitise natural history collections (Beaman & Cellinese, 2012), 

although, of course, some funds are required to manage them (and manage 

data quality) but such initiatives would be worth exploring in the Neotropics. 

Additionally, better mechanisms are needed to be able to share corrections and 

comments on the quality of existing data sets. Many records of species 

occurrence were processed for this study, and being able to organise and share 

processing details, given its manual nature (in part), is still difficult. 
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Notwithstanding the availability of existing data, and constant sources of new 

data (e.g. eBird), bias in occurrence records remains an issue for models 

(Guillera-Arroita et al., 2015). 

 

Improving predictors 

Better predictors are key to obtaining better estimates of occurrence and 

abundance. This study used remote sensed data to produce annual summaries 

(in the style of bioclimatic indices) of a vegetation index with promising results 

as a proxy for habitat. This kind of fine scale data on habitat requires further 

exploration (e.g. based on 30 m Landsat images), especially in the Neotropics, 

where other high resolution data on habitat (e.g. ground mapped soils, 

ecosystem composition, etc.) is not available. Habitat data, if good enough, 

should preclude the need for using climate data in distribution models. Recent 

habitat change (approximately up to 30 years ago) can also be incorporated 

within such predictors and represents an important research area in relation to 

predicting species abundance (as detailed above). Other remotely sensed 

variables, such as cloud free radar data (e.g. ALOS – PALSAR) should also be 

trialled for such data poor regions. 

 

Integrating process into models  

Biotic interactions, as predictors of abundance, also require further 

exploration. At their simplest, other species’ presence can been used in models 

(e.g. Leach et al., 2016), but aspects such as competition (Alexander et al., 

2016) could also be included if evidence is found, for example, from pairwise 

correlations of abundance data, as used in this study. Research is also active in 

joint species modelling, for example, describing abundances across many taxa 

and using multiple species to fill data gaps (e.g. Warton et al., 2015; Evans et al., 

2016;  but see Beissinger et al., 2016). Demographic parameters are a further 

key data source to combine with occurrence or abundance models, already an 

active research topic (Schurr et al., 2012; Aben et al., 2016), but are probably 

the least feasible addition among Neotropical species (or in biodiverse 

countries in general) due to lack of data. 
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1.3 Obtaining local abundance estimates from the field 

Obtaining local abundance estimates from the field is costly, logistically difficult 

and time-consuming, especially for rare species, or in regions with patchy habitats, 

such as the present study area. In this study, abundance estimates, using methods 

that incorporate detectability, were obtained for rare species over very patchy 

habitats with relatively low survey effort following a sampling protocol designed 

to maximise the number of bird records. However, further research in such 

methods is needed, as well as in trialling and calibrating alternative methods for 

density estimation. 

 

Sampling design 

Although using relative probability of occurrence in a stratified sampling 

design is successful in obtaining records, more research is needed in the 

processing of subsequent density estimates, especially in terms of converting 

these to range-wide population estimates. Techniques were trialled in this 

study using the relationship between the obtained local abundance and 

modelled occurrence, but other methods to statistically account for the fraction 

of the study area sampled, taking into account the relative probability of finding 

the species, also need to be developed. This proportion could be estimated 

using the relationship between abundance and modelled occurrence, and the 

distribution of modelled values across the whole study area. 

 

Core population size estimate 

This kind of sampling protocol stratified by relative probability of occurrence 

could also be used to obtain an estimate of core, or minimum, population size 

(more cost efficient than complete population) by focusing fieldwork on just 

the sites of highest habitat suitability (≃ highest abundance). If the spatial 

structure of a species’ abundance across its range is typically made up of few 

sites of high abundance (as in this study), then by focusing on these sites for 

monitoring programmes or censuses could provide estimates of significant 

proportions of the species’ population. 

 

Validating other methods to assess abundance 

Genetic methods for monitoring abundance also need further research 

(Schwartz et al., 2007), and need to be compared with density estimates 



Chapter 6   Conclusions and future work 

215 

obtained using traditional methods, such as in this study. Recent advances have 

been made using environmental DNA fragments in water for measuring fish 

abundance (Lacoursière-Roussel et al., 2016). Other creative methods to 

quantify numbers of terrestrial animals could entail testing material potentially 

containing DNA, such as feathers, excrement, scales, etc. found at roosting, 

nesting or feeding sites, or using blood from lice (e.g. similar to monitoring 

vertebrate species from leech gut contents; Schnell et al., 2015).  

 

Other methods, such as acoustic monitoring using semi-permanent arrays of 

microphones(Blumstein et al., 2011), or tracking devices from which data is 

downloaded remotely to base stations (López-López, 2016), are also candidates 

for field trials in the Neotropics, but would need to be calibrated with 

‘traditional’ field data, such as that collected for this thesis. 

 

1.4 Variation of abundance over the range 

The extreme variation in species abundances and the complexity in their 

relationships with environmental variables have implications for conservation 

planning. A single estimate of abundance is unlikely to provide a reasonable 

estimate of abundance over the range of a species, emphasising the need for 

methods to quantify abundance across a range (see above). However, further 

research is required with regards the variation in abundance itself. 

 

Spatial distribution of abundance within the niche 

Whether the distribution of abundance across a range is multimodal or 

unimodal, and the spatial arrangement of those peaks, has implications for 

issues, such as selecting reserves and important areas for conservation. Further 

research is required in describing the modality of the spatial variation in 

abundance, and how this relates to underlying patterns of environmental 

variables. For example, is there a relationship between the distance to the 

optima of a species’ environmental niche and a species’ vulnerability? This 

could have special relevance to studies on the impact of climate change 

involving species pushed to the limits of their environmental niche, or 

classifying the relative threat status of geographical subpopulations of a 

species. 
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Index of variation in abundance 

Extreme variation in abundance, leading to patchy distributions, could also be a 

sign of vulnerability in a species, indicative of past disturbance to population 

processes (Wilson et al., 2004). Further research into an index of variation in 

abundance is required, especially, how this relates to a species’ vulnerability, or 

how this could be incorporated into a species’ extinction risk assessment. 

 

Congruence of species abundance hotspots 

Reserve selection algorithms often use presence/absence data for species, but 

given the variation in abundance, and the fact that species’ highest abundances 

do not coincide at sites, as shown in this study, further research is needed into 

the benefits and costs of using abundance data in site selection methods. The 

relationship between a species’ permanence at a site and abundance is also a 

relevant topic of further research here (Rodrigues et al., 2000), especially if the 

former could act as a proxy of the latter, in other words, the relationship 

between occupancy and abundance. 

 

Monitoring 

Monitoring could be made more efficient if patterns of variation of abundance 

over a range were better understood. Monitoring effort, in general, is most 

important where most heterogeneity exists (in either time or space). If such 

areas of heterogeneity could be identified, then monitoring efforts should be 

concentrated there. For example, if abundance can be linked to spatial variables 

(e.g. linking occurrence modelled on environmental layers to abundance, or 

directly modelling abundance on environmental layers), then areas of most 

heterogeneity in these layers could be targeted for increased monitoring effort. 

The complexity and species-specificity of such relationships (see Chapter 4) 

represents a challenge for such research, but a balance could be sought 

between appropriate scales of environmental variables, the scale of variation in 

abundance, and the scale of monitoring efforts. Fieldwork to obtain estimates 

of local abundance could certainly be made more efficient by ensuring that 

areas of most variation in abundance are covered by sample sites. Improving 
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monitoring can further improve the economic benefit of surveys to 

conservation (Balmford & Gaston, 1999). 

 

1.5 New technologies, methods and data sources 

Data sources and methods in conservation biology are evolving rapidly. With 

technology theoretically able to connect almost real-time species occurrence data 

to remote sensed data, exciting possibilities exist for the future of monitoring the 

status of species and ecosystems. The analysis of almost real-time automated 

surveillance data (e.g. real time acoustic monitoring), live citizen science fed 

species occurrence data (e.g. eBird) with real-time remote sensed information on 

habitat quality has potential to highlight risk quicker than ever before. Of course, 

such systems are not functioning yet, but the time is right to begin incorporating 

and trialling these new data sources and technologies into extinction risk 

assessments and conservation planning and management. 

 

2 Conservation recommendations 

The study area is of international conservation importance, with high numbers of 

endemic species (Stattersfield et al., 1998) and high degree of threat (Mittermeier, 

2004). Dry forest ecosystems around the globe, and in the Neotropics, are 

especially threatened habitat types (Miles et al., 2006; Pizano & García, 2014; 

Sánchez-Azofeifa, 2014). The dry forests of the study area have been subject to 

differing degrees of use during prehispanic and colonial times (Rostworowski, 

2005), the effect of which is still poorly understood for this biome. However, a slow 

recovery of species composition in dry forests after disturbance (Derroire et al., 

2016) could potentially affect species with greatest habitat specificity. 

Conservation measures within the study area include the designation of protected 

areas, at international, national and local level, as well as recent large-scale 

projects using ecosystem approaches in an attempt to balance resource use with 

biodiversity conservation (e.g. Proyecto Algarrobo; Darwin Initiative for the dry 

forests of Peru and Ecuador). Academic research on biodiversity in the study area 

is lacking, as is capacity for implementing evidence-based conservation. 

Cooperation, in terms of capacity-building with regional state universities, in 

collaboration with national and regional environmental authorities (e.g. local 

government, National Parks Authority – attached to Ministry of Environment, 
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Forestry and Wildlife Service – attached to Ministry of Agriculture & Irrigation) 

will surely play an important role in furthering sustainable development in one of 

Peru’s most populous and economically important regions (see Chapter 1 and 3). 

 

2.1 Species related conservation findings: case studies on IUCN threat 

categories 

 

Rufous flycatcher Myiarchus semirufus 

The Rufous flycatcher (Figure 2.1) is currently listed as Endangered under criteria 

B1ab(i,ii,iii,iv,v), corresponding to a severely fragmented Extent of Occurrence of 

2,800 km2 (< 5,000 km2 to meet EN criterion) with inferred continuing decline in 

range, habitat and subpopulations. Its population is estimated at 1,500-7,000 

mature individuals. The IUCN text account accompanying the threat classification 

describes a population decline, range contraction and a genuinely patchy 

distribution, but clarifies that the species may be more widespread and common 

than currently believed (BirdLife International, 2016a). This study has shown that 

the species is certainly more widespread than currently believed, not just from 

fieldwork, but also from a careful compilation of existing occurrence records. This 

study suggests that the species is rare throughout its range, but widespread, with 

an Extent of Occurrence (without exclusions) approximately 10 times larger than 

currently listed. This estimated range size, with a population density at just 

1 individual km-2 (the average density from this study was 5.9 individual km-2; 

95% CI 3.5 - 8.2) would place the species beneath the threshold for Vulnerable 

under criterion B1a and C (i.e. in terms of range and population size). Although 

habitat has declined in area in the last 15 years (three generations), there is no 

evidence that reductions have amounted to more than 30-50% to trigger criterion 

A (this criterion is currently not applied in the species’ assessment). However, this 

could be assessed using remote sensing. The only evidence for temporal trends 

shows similar encounter rates over the last 10 years approximately (Chapter 3). 
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Figure 2.1. Consensus species distribution model for Rufous Flycatcher Myiarchus semirufus, 
showing field sites, sized proportionally to field-based density estimates (see Chapter 3), with 
overlays of thresholded model (estimated Extent of Occurrence; see Chapters 2) and current 
BirdLife range polygon. The elevation-adjusted convex hull around occurrence points was used as 
the species specific accessible area for the model (see Chapter 2). 
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Peruvian Plantcutter Phytotoma raimondii 

The Peruvian Plantcutter (Figure 2.2) is also listed as Endangered under criteria 

B1ab(i,ii,iii,v), corresponding to a severely fragmented extent of occurrence of 

4,900 km2 (< 5,000 km2 to meet EN criterion) with inferred continuing decline in 

range, habitat and subpopulations. Its population is estimated at 670-1,600 mature 

individuals in just two subpopulations. The text account describes a severely 

fragmented range, with recent records from just four locations (BirdLife 

International, 2016b). This study found the Peruvian Plantcutter to have a severely 

fragmented range, but with very high population densities at several sites –more 

than seven sites have densities exceeding 15 individuals km-2, and four sites over 

30 individuals km-2 (Appendix 6, Chapter 3). Population estimates at just the eight 

sites where the Plantcutter was present during this survey total more than 3,000 

mature individuals, already more than the global population estimate currently 

held for this species. With these extra populations, the EOO would exceed 5,000 

km2, but not 20,000 km2, corresponding to threat category VU. Other criteria for 

VU would include C2ai, but not D1, as currently listed. 

 

2.2 Site related conservation findings and recommendations 

The threats to Peruvian Plantcutter are more severe than for Rufous Flycatcher 

given the fragmented nature of its population and the concentration of at least 

50% of its population at less than ten sites. While one key site, Enace (Talara), is 

currently being designated as a regional protected area, the small site at Paiján 

(Mocan and Arenita), with the highest recorded Plantcutter density from this 

study, is under threat from expanding agriculture. The site is owned by a large food 

company, and although they have shown willing to conserve the Arenita area, 

Mocan is still under threat. An urgent need is to work with the food company 

towards creating a private protected area. Legislation is provided for these types of 

areas in Peru and they become part of the National System of Protected Areas. 

Furthermore, the local village, already subject to several educational campaigns 

concerning the Plantcutter, especially among schools (Figure 2.3), is well placed to 

facilitate such a process. A similar situation is faced by the southernmost site for 

the Plantcutter in this study, Monte Zarumo, but here the threat from agriculture is 

from the local peasant farmer community. Other examples exist of communities   
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Figure 2.2. Consensus species distribution model for Peruvian Plantcutter Phytotoma raimondii, 
showing field sites, sized proportionally to field-based density estimates (see Chapter 3), with 
overlays of thresholded model (estimated Extent of Occurrence; see Chapters 2) and current 
BirdLife range polygon. The elevation-adjusted convex hull around occurrence points was used as 
the species specific accessible area for the model (see Chapter 2).  
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creating private reserves (e.g. project funded by Kew Gardens at the study site La 

Peña) and this remains a possibility here, but urgent work is also required. 

 

 

Figure 2.3. The author participating in educational programmes on the Plantcutter at local schools 
in Paiján during fieldwork for this study. a, b) Talks and field trips with local schools, c, d) Mayor of 
Paiján (third from right; c) and representatives of food company (first and second from right; c) at a 
ceremony to donate bird guides and educational material to local ‘wildlife’ clubs. 

 

The current provision of protected areas for the two threatened species above, the 

Near Threatened Tumbes Tyrant (), and biodiversity in general over the northwest 

of Peru is poor (Figure 2.4). A simple visual representation of modelled occurrence 

hotspots for the three bird species of conservation interest in this study was 

created by summing standardised consensus models, excluding areas outside the 

threshold values for each species. This shows that protected areas and proposed 

priority sites (More Cahuapaza et al., 2014) do not generally coincide with these 

hotspots, except at Pomac, in the mid study area, and around the lower slopes of 

Amotapes/Angolo National Park in the north (Figure 2.4). Two kinds of areas are 

urgently needed, first, specific sites for the Peruvian Plantcutter, as mentioned 

above (dispersal studies are also required for this species), and secondly, larger 

areas for the suite of the lowland Tumbes endemic species, including the Rufous 

Flycatcher, especially in the vast area of scrub forest between Piura and Chiclayo at 

a. 

c. 

b. 

d. 
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the foot of the Andes. This area is currently threatened by large-scale irrigation 

projects (see Chapter 4), but is large enough to also afford some protection, and 

important connectivity, to the dryland biodiversity of north Peru. 

 

 

Figure 2.4. Summed species distribution models for Threatened and Near Threatened species 
showing protected areas and priority sites for conservation in Piura region. Model values were 
standardised prior to summing. 

 

The north coast of Peru is home to a substantial part of the Peruvian population, 

and responsible for a significant part of the country’s GDP, which will increase with 

new industrial agricultural development. Yet, at distances of no more than 30 km 

from the principal cities, rural communities farm the land as they have done for 

centuries, in some places, without electricity, and where water is still collected by 

mule cart. Of course, such communities welcome development, in terms of better 

accessibility, better educational infrastructure, running water, electricity, and the 
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possibility of stable income. However, the choice between working 10 hours shifts 

on plantations without shade, earning a small but steady income, compared to 

growing what is needed for the family on small holdings, is not always a welcome 

choice to make. Today, while some look to progress in the form of conquering the 

desert, others lament the loss of traditional ways of life. For biodiversity, keeping 

development in check has been a longer fought battle. Despite millennia of changes 

in land use over the course of human history at civilisation’s birthplace in the 

Americas, the extension of forests on the north coast may be at its lowest. Not only 

do these fragile habitats and their biodiversity depend on the balance between 

development and conservation, but ultimately, continued development may 

depend on the persistence of these natural ecosystems. 
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4 Appendices 

 

Appendix 1. Consensus species distribution model for Near Threatened Tumbes Tyrant Tumbezia 
salvini, showing field sites, sized proportionally to field-based density estimates (see Chapter 3), 
with overlays of thresholded model (estimated Extent of Occurrence; see Chapters 2) and current 
BirdLife range polygon. The elevation-adjusted convex hull around occurrence points was used as 
the species specific accessible area for the model (see Chapter 2). 
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