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Brought to Life, in Proceedings of JVA 2006. 

Abstract 
 

The Blue Gene/L system at the Department of Energy 

Lawrence Livermore National Laboratory in Livermore, 

California is the world’s most powerful supercomputer. It 

has achieved groundbreaking performance in both 

standard benchmarks as well as real scientific 

applications. In that process, it has enabled new science 

that simply could not be done before. Blue Gene/L was 

developed by a relatively small team of dedicated scientists 

and engineers. This article is both a description of the Blue 

Gene/L supercomputer as well as an account of how that 

system was designed, developed, and delivered. It reports 

on the technical characteristics of the system that made it 

possible to build such a powerful supercomputer. It also 

reports on how teams across the world worked around the 

clock to accomplish this milestone of high-performance 

computing.  

 

1. Introduction 
 

The Blue Gene/L system [15] at the Department of 

Energy Lawrence Livermore National Laboratory in 

Livermore, CA (LLNL) [26] is the world’s most powerful 

supercomputer [30]. Its 65,536 dual-processor compute 

nodes deliver over 360 Tflops of peak processing power. 

Sustained performance of over 280 Tflops has been 

demonstrated on the LINPACK benchmark used for the 

TOP500 ranking [29], and performance of over 200 Tflops 

has been achieved in QBox [12],[13], a real scientific 

application from LLNL.  

Blue Gene/L derives its computing power from 

scalability [1],[6],[18]. Each computing node is optimized 

to deliver great computational rate per Watt and to operate 

with other nodes in parallel. The result is a machine that can 

scale to very large sizes and deliver unmatched aggregate 

performance. 

The LINPACK score for the LLNL Blue Gene is 4 times 

higher than the first non-Blue Gene/L system in the TOP500 

list. (The second highest score in that list is a smaller 

instance of Blue Gene/L, at the IBM Thomas J. Watson 

Research Center.) The figure for QBox is over half of the 

machine’s peak performance and more than twice the peak 

performance of the fastest non-Blue Gene systems in the 

world. These figures are even more impressive when we 

take into the account that the Blue Gene/L machine at LLNL 

occupies about a quarter of the area and consumes only a 

quarter of the power of those competing systems. Also, the 

entire Blue Gene/L system at LLNL can be administered by 

a single person. 

The Blue Gene/L at LLNL was delivered on time and on 

budget, under fluid requirements, by a team that is 

approximately 10-20% of the size that normal practices 

would dictate. This paper is an account of how this was 

accomplished. Blue Gene’s success was made possible by a 

combination of design decisions that led to a simple yet 

powerful computer system and by strong team work across 

sub-teams around the world. Close cooperation between 

IBM and LLNL led to a system that was powerful, stable, 

and useful for real science. 

This paper is organized as follows. Section 2 describes 

the design principles that were followed in the development 

of the Blue Gene/L supercomputer. Section 3 summarizes 
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the Blue Gene/L system architecture and Section 4 describes 

its main software components. Section 5 talks about team 

organization and how the work was distributed. Section 6 

reports on the experience of building and testing Blue 

Gene/L and how it grew over time to its final size at LLNL. 

Section 7 reports on the impact that Blue Gene/L is having 

on real science and Section 8 presents our conclusions and 

discusses what the future may hold for Blue Gene. 

 

2. Design Principles 
 

Three main design principles were essential to the 

successful development of the Blue Gene/L supercomputer: 

simplicity, efficiency, and familiarity. In this section, we 

discuss how each of these principles was applied to the 

hardware and software of Blue Gene/L.  

Of the three principles, simplicity was the most important 

and pervasive. That is a more subtle concept than it seems. 

What it really means is that the Blue Gene/L team chose a 

design that let them focus their resources into those areas 

that had a high performance payoff. The simplicity of Blue 

Gene/L shows in various dimensions: chip design, physical 

packaging, and software structure.  

One part of the simplicity story is to know what to reuse 

from existing systems and what to redesign/reimplement 

specifically for Blue Gene/L. On the hardware side, for 

example, the PowerPC processors in the compute nodes 

were reused as is from a standard Application Specific 

Integrated Circuit (ASIC) library that IBM provides. The 

floating-point unit was modified from an existing 

implementation to double its computation rate. The 

networks were designed from scratch to enable high 

performance communication and support scaling. On the 

software side, Linux was used to provide file system and 

socket I/O functionality, whereas a lightweight kernel and 

certain MPI collective operations were specifically 

implemented for Blue Gene/L, again in support of 

scalability. 

The other, and probably more important, part of 

simplicity is maintaining the overall system concept simple. 

For example, Blue Gene/L only supports spatial partitioning. 

A large Blue Gene/L machine can be subdivided into 

multiple independent partitions and each partition can only 

run one application program at a time. Eliminating the 

possibility of time-sharing resources greatly simplified the 

software design and allowed for better performance. 

When we discuss the technical characteristics of the 

system in Section 3, we will point out more specific 

examples of how the simplicity principle was applied. 

Efficiency was the next most important design principle 

for Blue Gene/L. This was a system intended to deliver 

unprecedented levels of performance, which could only be 

accomplished by paying focused attention on efficiency of 

each component and of the overall system. There are two 

main dimensions to the efficiency of Blue Gene/L: single-

node efficiency and scalability.  

Blue Gene/L compute nodes operate at a relatively low 

frequency of 700 MHz. Yet, they achieve per node 

performance on real applications that is on-par with much 

more expensive (and power hungry) server-grade 

processors. This is made possible by a variety of factors. 

First, the low frequency processors in Blue Gene/L consume 

very little area and power, so it was possible to package two 

of those processors in a single chip. Second, the chip offers 

a very wide memory bus. Combined with the tight 

integration between processors and memory controller 

within the compute ASIC, this delivers a high-performance 

memory system that can keep the processors properly fed 

with data. Third, there are several architectural innovations 

within the chip, like a level-2 cache with prefetching engine 

[24], that are effective in speeding up the execution of 

scientific applications. Finally, a shallow and optimized 

software stack removes much of the overhead in memory 

management found in other system. 

From a scalability perspective, Blue Gene/L performed 

well primarily for two reasons. First, the tight integration 

between networks and processors within the compute ASIC 

delivered a feature-rich interconnect system with low 

latency and high bandwidth. We call the interconnect 

feature-rich because it has several architectural features 

(e.g., broadcast, multicast, combining operations) that are 

useful for scientific computing. Second, again a shallow and 

optimized software stack reduces overhead and exploits the 

architectural features, leading to high application scalability 

and performance. 

System support for scaling to large configurations allows 

real world applications to deliver a large fraction of peak 

performance. It also ensures we can achieve high 

power/performance efficiency through software that can 

efficiently take advantage of the system. After all, 

inefficient software on efficient hardware is no better than 

inefficient hardware [22],[23]. 

We note that the simplicity of Blue Gene/L design 

actually enabled its efficiency. For example, the strict spatial 

partitioning mentioned above eliminates the need of 

protection between jobs. This, in turn, allows user 

applications to get direct access to the communication 

hardware, greatly reducing software stack overhead. 

Familiarity was the third and last main design principle 

applied to Blue Gene/L. By familiarity we mean that we 

wanted to build a system that did not look too different or 

too difficult to program when compared to other systems 

already in use. Familiarity in Blue Gene/L was accomplished 

both through hardware and software. 

Blue Gene/L uses PowerPC 32-bit processors. This 

instruction set architecture has been around for 

approximately 20 years and there is a large body of software 

and expertise available for it. The processors were paired 

with a reasonable amount of memory (on the order of 256 

or 512 MB per processor), thus creating an environment 

that could run conventional software. This allowed us to 
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leverage compilers, libraries, and operating systems that 

already existed for the PowerPC processors. 

Familiarity at the user application level was also ensured 

by using standard compilers (in particular the XL family of 

compilers for C, C++, and FORTRAN) and libraries (in 

particular MPI), so that existing parallel codes could be 

easily ported to Blue Gene/L. There was significant work in 

optimizing the compilers and libraries for Blue Gene/L, but 

the interface presented to the programmer is something they 

are familiar with. We note that familiarity in Blue Gene/L 

was accomplished without sacrificing simplicity and/or 

efficiency.  

 

3. System Architecture 
 

We briefly discuss the overall system architecture of 

Blue Gene/L in this section. For a more thorough 

description, the reader is referred to [9]. A Blue Gene/L 

system consists of a compute section, a file server section, 

and a host section. See Figure 1 for a high-level view of a 

Blue Gene/L system. The compute and I/O nodes form the 

computational core of Blue Gene/L, what we call the 

compute section. The host section consists of the service 

node and one or more front-end nodes. The service node 

controls the compute section through an Ethernet control 

network. The control traffic is converted to lower level 

protocols (e.g., JTAG) before actually making to the 

compute and I/O nodes. The front-end nodes provide the 

user interface to the system, supporting job compilation, job 

launch and job debugging. The file server section consists 

of a set of file servers. The I/O nodes in the compute section 

connect the core to file servers and front-end nodes through 

a separate Ethernet functional network. 

EthernetEthernet

EthernetEthernet

compute nodes I/O nodes file servers

control network service node front-end nodes

EthernetEthernet

EthernetEthernet

compute nodes I/O nodes file servers

control network service node front-end nodes

EthernetEthernet

EthernetEthernet

compute nodes I/O nodes file servers

control network service node front-end nodes  

Figure 1: High-Level View of a Blue Gene/L System. 

 

3.1. Compute Section 
 

The compute section of a Blue Gene/L system is what is 

usually called a Blue Gene/L machine. It is where the 

application programs run. The Blue Gene/L compute section 

consists of a three-dimensional rectangular array of compute 

nodes, interconnected in a toroidal topology along the x, y, 

and z axes. Each compute node can execute one or two user 

application processes, as described below. I/O nodes, 

distinct from the compute nodes and not in the toroidal 

interconnect, are also part of the compute section. I/O and 

compute nodes are interconnected by a collective network, 

and each I/O node can communicate with the outside world 

through a 1-Gbit Ethernet link. 

The entire system is built around a system-on-a-chip 

(SOC) concept [3]. The basic building block of Blue 

Gene/L is the Blue Gene/L Compute ASIC (BLC). The 

internals of that ASIC are shown in Figure 2. The BLC 

contains two non-coherent PowerPC 440 cores, each with 

its own private L1 cache (split for instructions and data, 

with 32 KB each). Associated with each core is a small (2 

KB) L2 cache that acts as a prefetch buffer and matches the 

32-byte cache line size of the L1 to the 128-byte cache line 

size of the L3. Completing the on-chip memory hierarchy is 

4 MB of embedded DRAM (eDRAM) that is configured to 

operate as a shared L3 cache. Also on the BLC is a memory 

controller (for external DRAM) and interfaces to the five 

networks used to interconnect Blue Gene/L compute and 

I/O nodes: torus, collective, global barrier, Ethernet, and 

control network. 
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Figure 2: Blue Gene/L Compute ASIC (BLC). 

 

The interconnection networks are primarily used for 

communication primitives used in parallel high-performance 

computing applications. These primitives include message 

passing for data sharing and exchange, barrier 

synchronization, and global operations such as reduction 

operations. The main interconnection network is the torus 

network, which provides high performance data 

communication with low latency and high throughput.  

A collective network supports efficient collective 

operations, such as reduction. Arithmetic and logical 

operations are implemented as part of the communication 

primitives to facilitate low-latency collective operation, 

since it is recognized that current applications spend 

increasing percentage of time performing global operations. 
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The compute ASIC, designed specifically for Blue 

Gene/L, contains the processors, interconnection networks, 

and memory controllers that are used to build the system. 

One of these compute ASICs, combined with conventional 

memory chips constitutes a compute node of Blue Gene/L. 

The Blue Gene/L I/O nodes are assembled exactly the same 

way. Blue Gene/L compute and I/O nodes both use this 

ASIC with 512 MB of external memory (a 1 GB option is 

also available for the compute nodes), but their roles are 

quite different, as described in Section 4. Only compute 

nodes are interconnected through the torus network. 

Conversely, only I/O nodes have their Ethernet port 

connected to the functional network. The I/O nodes plug 

into an Ethernet fabric together with the file servers and 

front-end nodes. The collective and global barrier networks 

interconnect all (compute and I/O) nodes. The control 

network is used to control the hardware from the service 

node. 

Blue Gene/L, large as it is, is built of essentially two 

kinds of chips: the compute ASICs described above, 

designed and built by IBM specifically for Blue Gene/L, and 

memory chips that are commercially available. There are 

also link ASICs that are used to redrive the network signals 

across racks and to partition the machine. There are 9 

memory chips for every compute ASIC and approximate 20 

compute ASICs for every link ASIC. The link ASIC is 

much simpler than the compute ASIC, and also it does not 

run any software. 
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Figure 3: Build Blue Gene/L, from chip to system. 

Having only one chip to design means just one design 

team. It also means just one test, validation and bring up 

team. It means just one chip to simulate and, obviously, one 

chip to get right. It also greatly simplifies the rest of the 

system design, since boards have to be designed for just a 

few different kinds of components. Blue Gene/L is built of 

seven kinds of cards: (1) compute card, (2) I/O card, (3) 

node card, (4) link card, (5) service card, (6) midplane card, 

and (7) clock card. An exploded view of Blue Gene/L, 

showing how we assemble the parts from the compute ASIC 

up is show in Figure 3. 

The compute card holds two compute ASICs and 18 or 

36 memory chips (9 or 18 for each compute ASIC). They 

implement the compute nodes. The I/O cards are very 

similar (two compute ASICs and 18 memory chips), but 

they expose the Ethernet network in the ASICs, so that they 

can be used as I/O nodes. The node card is where 16 

compute and (up to) two I/O cards can be plugged. It 

implements the interconnection network among those 

nodes. Each link card contains six link chips. There are 16 

node cards and four link cards per midplane. Together with 

a service card they plug into a midplane card, forming a 

midplane. The service card allows external control of the 

midplane from the host section. There is one clock card per 

rack. Its function is to distribute the master Blue Gene/L 

clock signal to the midplanes in the rack and to other racks. 

Midplanes are units of 512 compute nodes, in an 8 x 8 x 8 

arrangement. Each midplane can have a variable number of 

I/O nodes, from 8 to 64. (Compute nodes are associated to 

I/O nodes in an 8:1 to 64:1 ratio.) Each midplane also has 

24 link chips used for inter-midplane connection to build 

larger systems. Midplanes are arranged two to a rack, and 

racks are arranged in a two-dimensional layout of rows and 

columns. Because the midplane is the basic replication unit, 

the dimensions the array of compute nodes must be a 

multiple of 8. The Blue Gene/L machine at LLNL in 

particular, is of size 64 x 32 x 32, along the x, y, and z axes 

respectively. Because of cabling and other packaging 

restrictions, not every size with dimensions multiple of 8 is 

legal, but we have delivered Blue Gene/L systems with 1, 2, 

4, 8, 10, 20, and 64 racks, and many other sizes are possible 

(including bigger than 64).  

Blue Gene/L can be partitioned along midplane 

boundaries. A partition is formed by a rectangular 

arrangement of midplanes. Each partition can run one and 

only one job at any given time. During each job, the 

compute nodes of a partition are in one of two modes of 

execution: coprocessor mode or virtual node mode. All 

compute nodes stay in the same mode for the duration of the 

job. These modes of execution are described in more detail 

below. 

 

3.2. File Server Section 
 

The file server section of a Blue Gene/L system provides 

the storage for the file system that runs on the Blue Gene/L 

I/O nodes. Several parallel file systems have been ported to 

Blue Gene/L, including GPFS, PVFS2, and Lustre [21]. To 

feed data to Blue Gene/L, multiple servers are required. The 

Blue Gene/L system at LLNL, for example, uses 224 servers 

operating in parallel. Data is striped across those servers, 

and a multi-level switching Ethernet network is used to 

connect the I/O nodes to the servers. The servers themselves 

are standard rack-mounted machines, typically Intel, AMD 

or POWER processor based. 
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3.3. Host Section 
 

The host section for a Blue Gene/L system consists of 

one service node and one or more front-end nodes. These 

nodes are standard POWER processor machines. At LLNL, 

the service node is a 16-processor POWER4 machine, and 

each of the 14 front-end nodes is a PowerPC 970 blade. 

The service node is responsible for controlling and 

monitoring the operation of the compute section. The 

services it implements include: machine partitioning, 

partition boot, application launch, standard I/O routing, 

application signaling and termination, event monitoring (for 

events generated by the compute and I/O nodes), and 

environmental monitoring (for things like power supply 

voltages, fan speeds, and temperatures). 

The front-end nodes are where users work. They provide 

access to compilers, debuggers and job submission services. 

Standard I/O from user applications is routed to the 

submitting front-end node. 

 

4. Blue Gene System Software 
 

To support execution of application processes, compute 

nodes run a lightweight operating system called the 

Compute Node Kernel (CNK). This simple kernel 

implements only a limited set of services.  

Scientific middleware for Blue Gene/L includes a user-

level library implementation of the MPI standard, optimized 

to take advantage of Blue Gene/L networks, and various 

math libraries, also in user level. Implementing all the 

message passing functions in user mode had the effect of 

simplifying the supervisor (kernel) code of Blue Gene/L, 

thus facilitating development, testing, and debugging. 

The Blue Gene/L I/O nodes run a port of the Linux 

operating system. The I/O nodes act as gateways between 

the outside world and the compute nodes, complementing 

the services provided by CNK with file and socket 

operations, debugging, and signaling.  

This split of functions between I/O and compute nodes, 

with the I/O nodes dedicated to system services and the 

compute nodes dedicated to application execution, resulted 

in a simplified design for both components. It has also been 

fundamental in enabling Blue Gene/L scalability and 

robustness, and in achieving a deterministic execution 

environment [17],[20],[27]. 

We now describe in more detail the operating system 

solution for Blue Gene/L. We start with the overall 

architecture and proceed to describe the role of the separate 

components. As previously mentioned, the software 

architecture reflects to a great degree the hardware 

architecture of Blue Gene/L. 

 

4.1. Overall operating system architecture 
 

A key concept in the Blue Gene/L operating system 

solution is the organization of compute and I/O nodes into 

logical entities called processing sets or psets. A pset 

consists of one I/O node and a collection of compute nodes. 

Every system partition, in turn, is organized as a collection 

of psets. All psets in a partition must have the same number 

of compute nodes, and the psets of a partition must cover all 

the I/O and compute nodes of the partition. The psets of a 

partition never overlap. The supported pset sizes are 8, 16, 

32, 64 and 128 compute nodes, plus the I/O node.  

The psets are a purely logical concept implemented by 

the Blue Gene/L system software stack. They are built to 

reflect the topological proximity between I/O and compute 

nodes, thus improving communication performance within a 

pset. The regular assignment of compute to I/O nodes 

enforced by the pset concept allows us to simplify the 

system software stack while delivering good performance 

and scalability. With a static assignment of I/O to compute 

nodes, it becomes easier to separate operating system 

responsibilities. To understand those responsibilities, it is 

useful to have a picture of the job model for Blue Gene/L. 

A Blue Gene/L job consists of a collection of N compute 

processes. Each process has its own private address space 

and two processes of the same job communicate only 

through message passing. The primary communication 

model for Blue Gene/L is MPI. The N compute processes of 

a Blue Gene/L job correspond to tasks with ranks 0 to N-1 

in the MPI_COMM_WORLD communicator. 

Compute processes run only on compute nodes; 

conversely, compute nodes run only compute processes. 

The compute nodes of a partition can all execute either one 

process (in coprocessor mode) or two processes (in virtual 

node mode) each. In coprocessor mode, the single process 

in the node has access to the entire node memory. One 

processor executes user code while the other performs 

communication functions. In virtual node mode, the node 

memory is split in half between the two processes running 

on the two processors. Each process performs both 

computation and communication functions. The compute 

node kernel implements these models in the compute nodes. 

See [9] and [32] for related work in other systems. 

I/O nodes behave more like conventional computers. In 

fact, each I/O node runs one image of the Linux operating 

system. It can offer the entire spectrum of services expected 

in a Linux box, such as multiprocessing, file systems, and a 

TCP/IP communication stack. These services are used to 

extend the capabilities of the compute node kernel, 

providing a richer functionality to the compute processes. 

Due to the lack of cache coherency between the processors 

of a Blue Gene/L node, we only use one of the processors of 

each I/O node. The other processor remains idle. 

 

4.2. The compute node kernel 
 

The compute node kernel (CNK) accomplishes a role 

similar to that of PUMA [32],[33] in ASCI Red by 

controlling the Blue Gene/L compute nodes. It is a lean 

operating system that performs a simple sequence of 
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operations at job start time. This sequence of operations 

happens in every compute node of a partition, at the start of 

each job: 

1. It creates the address space(s) for execution of 

compute process(es) in a compute node. 

2. It loads code and initialized data for the executable 

of that (those) process(es). 

3. It transfers processor control to the loaded 

executable, changing from supervisor to user 

mode. 

The CNK consumes only 1 MB of memory. It can create 

either one address space of 511 MB for one process (in 

coprocessor mode) or two address spaces of 255 MB each 

for two processes (in virtual node mode). (1023 and 511 

MB respectively, with the 1 GB memory option.) The 

address spaces are flat and fixed, with no paging. The entire 

mapping is designed to fit statically in the TLBs of the 

PowerPC 440 processors. 

The loading of code and data occurs in push mode. The 

I/O node of a pset reads the executable from the file system 

and forwards it to all compute nodes in the pset. The CNK 

in a compute node receives that executable and stores the 

appropriate memory values in the address space(s) of the 

compute process(es). 

Once the CNK transfers control to the user application, 

its primary mission is to “stay out of the way”. Since there is 

only one thread of execution per processor, there is no 

scheduling for the kernel to perform.  Also, the memory 

space of a process is completely covered by the TLB in the 

processor running that process, so there is no memory 

management to perform. In normal execution, processor 

control stays with the compute process until it requests an 

operating system service through a system call. Exceptions 

to this normal execution are caused by hardware interrupts: 

either timer alarms requested by the user code or an 

abnormal hardware event that requires attention by the 

compute node kernel. 

When a compute process makes a system call, three 

things may happen: 

1. “Simple” system calls that require little operating 

system functionality, such as getting the time or 

setting an alarm, are handled locally by the 

compute node kernel. Control is transferred back 

to the compute process at completion of the call. 

2. “I/O” system calls that require infrastructure for 

file systems and IP stack are shipped for execution 

in the I/O node associated with that compute node. 

(That is, the I/O node in the pset of the compute 

node.) The compute node kernel waits for a reply 

from the I/O node, and then returns control back to 

the compute process. 

3. “Unsupported” system calls that require 

infrastructure not present in Blue Gene/L, such as 

fork and mmap, are returned right away with an 

error condition. 

In Blue Gene/L we have implemented 68 system calls 

from Linux and an additional 18 CNK-specific calls [15]. 

The other Linux system calls are unsupported. In our 

experience, very seldom does a scientific application need 

one of the unsupported system calls. When it does, we adopt 

a combination of two solutions: either (1) change the 

application or (2) add the required system call. 

There are two main benefits from the simple approach 

for a compute node operating system: robustness and 

scalability. Robustness comes from the fact that the 

compute node kernel performs few services, which greatly 

simplifies its design, implementation, and test. Scalability 

comes from lack of interference with running compute 

processes. Previous work by other teams [20] has identified 

system interference as a major source of performance 

degradation in large parallel systems. The effectiveness of 

our approach in delivering a system essentially free of 

interference has been verified directly through 

measurements of system noise [6],[17],[27] and indirectly 

through measurements of scalability all the way to 131,072 

tasks in real applications [13],[28],[34]. 

 

4.3. The role of the I/O node 
 

The I/O node plays a dual role in Blue Gene/L. On one 

hand, it acts as an effective master of its corresponding pset. 

On the other hand, it services requests from compute nodes 

in that pset. Jobs are launched in a partition by contacting 

corresponding I/O nodes. Each I/O node is then responsible 

for loading and starting the execution of the processes in 

each of the compute nodes of its pset. Once the compute 

processes start running, the I/O nodes wait for requests from 

those processes. Those requests are mainly I/O operations to 

be performed against the file systems mounted in the I/O 

node. 

Blue Gene/L I/O nodes execute an embedded version of 

the Linux operating system. We call it embedded because it 

does not use any swap space, it has an in-memory root file 

system, it uses little memory, and it lacks the majority of 

daemons and services found in a server-grade configuration 

of Linux. It is, however, a complete port of the Linux kernel 

and those services can be, and in various cases have been, 

turned on for specific purposes. The Linux in Blue Gene/L 

I/O nodes includes a full TCP/IP stack, supporting 

communications to the outside world through Ethernet. It 

also includes file system support. Various network file 

systems have been ported to the Blue Gene/L I/O node, 

including GPFS, Lustre, NFS, and PVFS2 [21]. 

Blue Gene/L I/O nodes never run application processes. 

That duty is reserved to the compute nodes. The main user-

level process running on the Blue Gene/L I/O node is the 

control and I/O daemon (CIOD). CIOD is the process that 

links the compute processes of an application running on 

compute nodes to the outside world. To launch a user job in 

a partition, the service node contacts the CIOD of each I/O 

node of the partition and passes the parameters of the job 
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(user ID, group ID, supplementary groups, executable name, 

starting working directory, command line arguments, and 

environment variables). CIOD swaps itself to the user's 

identity, which includes the user ID, group ID, and 

supplementary groups. It then retrieves the executable from 

the file system and sends the code and initialized data 

through the collective network to each of the compute nodes 

in the pset. It also sends the command-line arguments and 

environment variables, together with a start signal. 

Figure 4 illustrates how I/O system calls are handled in 

Blue Gene/L. When a compute process performs a system 

call requiring I/O (e.g., open, close, read, write), that call is 

trapped by the compute node kernel, which packages the 

parameters of the system call and sends that message to the 

CIOD in its corresponding I/O node. CIOD unpacks the 

message and then reissues the system call, this time under 

the Linux operating system of the I/O node. Once te system 

call completes, CIOD packages the result and sends it back 

to the originating compute node kernel, which, in turn, 

returns the result to the compute process. This simple model 

works well for transactional operations, such as read and 

write, which have a clear scope of operation and represent 

the bulk of I/O in scientific computing. It does not support 

operations such as memory mapped files, but those are 

uncommon in scientific computing. 
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libc read read data
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Figure 4: Function Shipping from CNK to CIOD. 

 

There is a synergistic effect between simplification and 

separation of responsibilities. By offloading complex system 

operations to the I/O node we keep the compute node 

operating system simple. Correspondingly, by keeping 

application processes separate from I/O node activity we 

avoid many security and safety issues regarding execution in 

the I/O nodes. In particular, there is never a need for the 

common scrubbing daemons typically used in Linux clusters 

to clean up after misbehaving jobs. Just as keeping system 

services in the I/O nodes prevents interference with compute 

processes, keeping those processes in compute nodes 

prevents interference with system services in the I/O node. 

This isolation is particularly helpful during performance 

debugging work. The overall simplification of the operating 

system has enabled the scalability, reproducibility 

(performance results for Blue Gene/L applications are very 

close across runs [17]), and high-performance of important 

Blue Gene/L applications. 

 

4.4. The role of the service node 
 

The Blue Gene/L service node runs its control software, 

typically referred to as the Blue Gene/L control system. The 

control system is responsible for operation and monitoring 

of all compute and I/O nodes. It is also responsible for other 

hardware components such as link chips, power supplies, 

and fans. But this functionality is outside the scope of this 

paper. Tight integration between the Blue Gene/L control 

system and the I/O and compute nodes operating systems is 

central to the Blue Gene/L software stack. It represents one 

more step in the specialization of services that characterize 

that stack.  

In Blue Gene/L, the control system is responsible for 

setting up system partitions and loading initial code and 

state in the nodes of a partition. The Blue Gene/L compute 

and I/O nodes are completely stateless: no hard drives and 

no persistent memory. When a partition is created, the 

control system programs the hardware to isolate that 

partition from others in the system. It computes the network 

routing for the torus, collective and global interrupt 

networks, thus simplifying the compute node kernel. It loads 

operating system code for all compute and I/O nodes of a 

partition through the dedicated control network. It also 

loads an initial state in each node (called the personality of 

the node). The personality of a node contains information 

specific to the node. Key components of the personality of 

I/O and compute nodes are shown in Table 1. 

 

Table 1: Personalities of Compute and I/O Nodes. 

Compute node personality I/O node personality 

• Memory size 

• Bit-steering for memory 

configuration 

• Physical location 

• x, y, z torus coordinates 

• Pset number and size 

• Routes for the collectives 

network 

• Memory size 

• Bit-steering for memory 

configuration 

• Physical location 

• Pset number and size 

• Routes for the collectives 

network 

• MAC and IP address 

• Broadcast and gateway IP 

addresses 

• Service node IP address 

• NFS server address and 

export directory 

• Security key 

 

5. Team Organization 
 

The Sun never sets on the Blue Gene team. Cliché, but 

true. The project was started by a handful of people at the 

IBM T.J. Watson Research Center in Yorktown, with 

support from Lawrence Livermore National Laboratory. 
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Over the years, it grew to a team of over 100 people during 

its peak. The major development places were Yorktown, 

NY and Rochester, MN. But there were people working on 

Blue Gene/L in Raleigh (NC), Haifa (Israel), Delhi and 

Bangalore (India).  

The approximately 12-hour difference between the 

western (Livermore) and eastern (Delhi) extremes of the 

Blue Gene/L development world offered both opportunities 

and challenges.  

From an opportunity perspective, work never stopped. 

When it was middle of the night in the US, the teams in 

Israel and Delhi could continue working, sharing the 

available development prototypes. They would 

communicate their findings to the US teams early in the 

morning and those teams could pick up from there.  

From a challenge perspective, coordination was certainly 

not trivial. The distance between the sites meant that face-

to-face meetings were unusual (particularly with the non-US 

sites). It also created difficulties when people in two 

different sites, many hours apart (e.g., Livermore and 

Haifa), had to work side-by-side to solve a particular 

problem or address a crisis. 

As we mentioned, coordination with the non-US sites, 

because of the distance and time difference, required 

particular care. During the initial development phase, we 

assigned specific, fairly independent pieces of the project to 

those sites. For example, Haifa assumed responsibility for 

developing a job control (including scheduling) solution for 

Blue Gene/L, while Delhi took responsibility of application 

checkpoint services. That allowed those sites to operate 

autonomously, typically with a weekly coordination 

meeting. As the project evolved and we moved into system 

integration and testing, and deployment to actual customers, 

the level of interaction had to increase. In the end, Blue 

Gene/L was a successful model of inter-site collaboration, 

and all the teams involved share the pride of participating in 

this project. 

 

6. Building and Testing Blue Gene/L 
 

Building a 65,536-node compute system does not happen 

overnight. Getting to a working 64-rack system at LLNL 

was an exercise in doubling.  

The first midplane (half-rack) of Blue Gene/L became 

operational in September of 2003 in Yorktown, NY. That 

system was ranked in the 73
rd

 position in the TOP500 list of 

November 2003. This was a 500 MHz prototype system. 

The first multi-rack Blue Gene/L was a two-rack system 

assembled in Rochester, MN in March 2003. That system 

was later expanded to four racks in May 2004. The four-

rack system was ranked in the 4
th

 position in the June 2004 

TOP500 list. This system also used the first iteration 500 

MHz compute ASIC. 

We then started an effort to build a 16-rack system in 

Rochester, MN using the second and final iteration of the 

compute ASIC, running at 700 MHz. This system was built 

to serve as a testbed for the integrated system. With four 

rows of four racks each, it was big enough for testing most 

of the software scaling issues, as well as network 

connections and file system operations. The first 8 racks 

became operational in August of 2004 and it was the first 

system to surpass the Earth Simulator in the Linpack 

benchmark. The complete 16 racks were assembled in 

September of 2004, and this system was ranked 1
st
 in the 

November 2004 TOP500 list. From that point on and to this 

day, Blue Gene/L has had the top spot in that list. 

A 16-rack system, organized as two rows of eight racks 

each, was installed in LLNL and passed acceptance test in 

December 2004, just in time to celebrate the Holidays. The 

particular configuration was chosen so that it could be 

expanded later, towards its final configuration. 

In the beginning of 2005, we started parallel efforts to 

build two 32-rack systems, one at LLNL (expanding from 

the 16 already there) and one at the IBM facility in 

Rochester, MN. Both of these systems were configured as 

four rows of eight racks each. They were configured 

identically so that problems identified in one system (LLNL) 

could be debugged in the other (Rochester). Also, 

scalability testing of software continued in the Rochester 

system while application work proceeded in the LLNL 

system. The LLNL system became operational in March of 

2005, while the Rochester system was completed one month 

later, in April of 2005. The expanded LLNL system was 

ranked 1
st
 in the June 2005 TOP500 list. 

In August of 2005, the 32 racks in Rochester were 

shipped to LLNL and integrated with the racks already there 

into a single 64-rack system, in its final configuration of 

eight rows of eight racks each. The system was operational 

after only two weeks. Some problems surfaced when the 

system reached its final size, which required software fixes 

and workarounds. Nevertheless, the system completed all its 

acceptance tests at LLNL by the end of September 2005. By 

this time it was already being used by many scientists and 

engineers at LLNL to accomplish breakthrough results. The 

final system again reached the 1
st
 spot in the TOP500 list of 

November 2005. The 64 rack Blue Gene/L system installed 

at the Department of LLNL is shown in Figure 5. 

 

Figure 5. The Blue Gene/L system at LLNL. 
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7. The Impact of Blue Gene/L 
 

Blue Gene/L was designed to be a breakthrough science 

machine. That is, to deliver a level of performance for 

scientific computing that enables entire new studies and new 

applications. 

There are approximately 20 Blue Gene/L installations 

around the world. Even though most of them are small 

compared with the LLNL system (1 or 2 racks), they are 

mostly being used in support of new science. In this section 

we discuss just some of the important applications of Blue 

Gene/L in scientific research. 

One of the main areas of applications of the LLNL 

system is in materials science. Scientists at LLNL use a 

variety of models, including quantum molecular dynamics 

[13], classical molecular dynamics [28], and dislocation 

dynamics [4], to study materials at different levels of 

resolution. Typically, each model is applicable to a range of 

system sizes being studied. First principle models can be 

used for small systems, while more phenomenological 

models have to be used for large systems. Blue Gene/L is 

the first system that is allowing scientist at LLNL to cross 

those boundaries. They can actually use first principle 

models in systems large enough to validate the 

phenomenological models, which in turn can be used in 

even larger systems. 

Applications of notable significance at LLNL include 

ddcMD [28], a classical molecular dynamics code that has 

been used to simulate systems with approximately half a 

billion atoms (and in the process win the 2005 Gordon Bell 

award), and QBox [12],[13], a quantum molecular 

dynamics code that is, at the time of this writing, the highest 

performing application on Blue Gene/L. 

Other success stories for Blue Gene/L include: (1) 

Astrophysical simulations in Argonne National Laboratory  

(ANL) using the FLASH code [2],[8]; (2) Global climate 

simulations in the National Center for Atmospheric 

Research (NCAR) using the HOMME code; (3) 

Biomolecular simulations at the T.J. Watson Research 

Center using the Blue Matter code [7],[10]; (4) Quantum 

chromo dynamics (QCD) at IBM T.J. Watson Research 

Center and LLNL, San Diego Supercomputing Center, 

Juelich Research Center, Massachusetts Institute of 

Technology, Boston University, University of Edinburgh, 

and KEK (Japan) using a variety of codes. The lattice QCD 

code by the Watson and LLNL team shows perfect scaling 

up to 65,536 nodes with 131,072 processors delivering 70.9 

Teraflops. This is a previously unattained performance level 

and arguably poises lattice QCD and Blue Gene to produce 

the next generation of strong interaction physics theoretical 

results.  This result [31] won the 2006 Gordon Bell special 

achievement award and is an indicator of simulation-based 

science applications enabled by the Blue Gene system. One 

of the most innovative uses of Blue Gene/L is as the central 

processor for the new large scale LOFAR radio telescope in 

the Netherlands [25]. 

Several results about Blue Gene/L performance are 

published in the literature [1],[5],[13],[14],[18],[28], 

[31],[34]. We here focus on just a few examples to illustrate 

the system performance in benchmarks and applications. 

First, we compare the performance of a single Blue Gene/L 

node executing the serial version of the NAS parallel 

benchmarks (class A) on top of two different operating 

systems: the CNK normally used on the Blue Gene/L 

compute nodes, and Linux normally used on the Blue 

Gene/L I/O nodes. Those results are shown in Table 2. It is 

clear that the performance benefit of CNK can be 

substantial, with the execution time increasing up to 300% 

for the IS benchmark. The reason for performance 

difference is that Linux has to handle TLB misses during 

execution, while CNK does not, as it maps the entire node 

memory in the TLB of the processor. The impact is worse 

for code that touches memory randomly, like IS. 

 

Table 2: Single-node Performance for NAS 

Benchmarks on CNK and Linux.  
 CNK Linux 

 Time(s) Speed 

(Mops) 

Time(s) Speed 

(Mops) 

% 

Time 

% 

Speed 

is.A 5.7 14.7 23.0 3.6 303.0 -75.5 

ep.A 172.6 3.1 177.2 3.0 2.7 -3.2 

lu.A 380.3 313.7 504.0 237.0 32.5 -24.5 

sp.A 375.0 227.0 517.4 164.3 38.0 -27.6 

cg.A 27.1 55.0 32.3 46.3 19.2 -15.8 

bt.A 522.6 322.0 613.0 274.4 17.3 -14.8 

 

Illustrating the issue of scalability, Figure 6 shows the 

performance behavior of Flash (an astrophysics code from 

the University of Chicago) [8] on various systems. This is a 

weak scaling experiment, so ideal behavior would be for the 

execution time to stay constant as the number of processors 

increase. We observe that that is true only for the Blue 

Gene/L machines. All other machines eventually reach a 

point where the execution time grows significantly worse 

with the system size. Figure  is a speedup curve for Miranda 

(a hydrodynamics code from LLNL) on Blue Gene/L [5]. 

This is a strong scaling experiment, and we observe an 

almost linear improvement in performance from 8192 to 

65536 processors. Contributing to the scalability of Flash 

and Miranda on Blue Gene/L are the low-overhead user-

mode MPI (enabled by the kernel) and the non-interference 

of system services on applications. 
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Figure 6: Performance of Flash in Different Parallel 

Systems (Weak Scaling). 

 

 
Figure 7: Strong Scaling of Miranda on Blue Gene/L 

(used with permission from the authors of [5]). 

 

Finally, Figure 8 shows the performance of Linpack, the 

benchmark for the TOP500 list, on Blue Gene/L for 

different numbers of nodes. We observe an essentially linear 

scaling of performance (Tflops) with the number of nodes, 

all the way to the full machine size (65,536 compute nodes). 

Furthermore, the 280 Tflops mark represents better than 

75% of the peak machine performance.  
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Figure 8: Performance of Linpack, the benchmark for 

TOP500, on Blue Gene/L. 

 

8. Conclusions and a Look into the Future 
 

Blue Gene/L was the first system in the Blue Gene 

family. We certainly do not want it to be the last. The major 

contribution of Blue Gene/L was to prove that it can be 

done! It is possible to build a machine with 100,000+ 

processors, and this machine can be reliable and operate 

within reasonable requirements of power, cooling and floor 

space. Furthermore, it is possible to run real applications 

that extract the power of a machine of this size. By doing 

that, Blue Gene/L changed much of the perception on the 

limits of scalability for parallel processing. 

We can imagine two independent, and complementary 

paths for the evolution of Blue Gene/L into the future. First, 

as VLSI technology improves, we can implement essentially 

the same system with increasingly powerful nodes. With 

time, those nodes can have more and faster processors, and 

more memory. Also, the interconnection networks can get 

faster. Note that it is important to keep node reliability, 

which can be a challenge with more complex and larger 

nodes. Second, we can expand the system in size. From an 

architectural and packaging perspective, we could build a 

Blue Gene/L system with over 2 million nodes! That is 32 

times larger than the LLNL system. Of course, such a 

system would have a failure rate that is 32 times larger, use 

32 times more floor space, be 32 times more expensive to 

buy and operate, and require 32 times more power and 

cooling. Therefore, its usefulness is questionable. But 

systems a couple of times larger than LLNL’s might make 

sense. 

More interesting is the question of what is the next 

breakthrough in large scale parallel processing? I guess if 

we knew, it would not be the next breakthrough anymore. 

Many frontiers are open, such as specialized and 

reconfigurable hardware, which can offer orders of 

magnitude improvement in performance. Also, there is a 

productivity frontier. Can we drastically simplify the job of 

using the massive computing power offered by Blue Gene/L 

and its successors, maybe at the expense of some loss of 

efficiency? 
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One of the most rewarding aspects of the Blue Gene 

project is to see scientists and engineers getting work done 

that they could not do before this machine existed. We can 

only hope that projects like Blue Gene will continue to 

improve the tools those scientists and engineers have at their 

disposal and open new horizons for humankind. 
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