
RC24146 (W0701-007) January 2, 2007
Computer Science

IBM Research Report

The Blue Gene/L Supercomputer:
A Hardware and Software Story

José E. Moreira, Valentina Salapura
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

The Blue Gene/L Supercomputer: A Hardware and Software Story
1

José E. Moreira, Valentina Salapura

IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598-0218

{jmoreira,salapura}@us.ibm.com

1
 This paper is an expanded version of two other papers: (1) Designing a Highly-Scalable Operating System: The Blue

Gene/L Story, to be published in Proceedings of SC’06, and (2) Delivering Teraflops: An Account of how Blue Gene was

Brought to Life, in Proceedings of JVA 2006.

Abstract

The Blue Gene/L system at the Department of Energy

Lawrence Livermore National Laboratory in Livermore,

California is the world’s most powerful supercomputer. It

has achieved groundbreaking performance in both

standard benchmarks as well as real scientific

applications. In that process, it has enabled new science

that simply could not be done before. Blue Gene/L was

developed by a relatively small team of dedicated scientists

and engineers. This article is both a description of the Blue

Gene/L supercomputer as well as an account of how that

system was designed, developed, and delivered. It reports

on the technical characteristics of the system that made it

possible to build such a powerful supercomputer. It also

reports on how teams across the world worked around the

clock to accomplish this milestone of high-performance

computing.

1. Introduction

The Blue Gene/L system [15] at the Department of

Energy Lawrence Livermore National Laboratory in

Livermore, CA (LLNL) [26] is the world’s most powerful

supercomputer [30]. Its 65,536 dual-processor compute

nodes deliver over 360 Tflops of peak processing power.

Sustained performance of over 280 Tflops has been

demonstrated on the LINPACK benchmark used for the

TOP500 ranking [29], and performance of over 200 Tflops

has been achieved in QBox [12],[13], a real scientific

application from LLNL.

Blue Gene/L derives its computing power from

scalability [1],[6],[18]. Each computing node is optimized

to deliver great computational rate per Watt and to operate

with other nodes in parallel. The result is a machine that can

scale to very large sizes and deliver unmatched aggregate

performance.

The LINPACK score for the LLNL Blue Gene is 4 times

higher than the first non-Blue Gene/L system in the TOP500

list. (The second highest score in that list is a smaller

instance of Blue Gene/L, at the IBM Thomas J. Watson

Research Center.) The figure for QBox is over half of the

machine’s peak performance and more than twice the peak

performance of the fastest non-Blue Gene systems in the

world. These figures are even more impressive when we

take into the account that the Blue Gene/L machine at LLNL

occupies about a quarter of the area and consumes only a

quarter of the power of those competing systems. Also, the

entire Blue Gene/L system at LLNL can be administered by

a single person.

The Blue Gene/L at LLNL was delivered on time and on

budget, under fluid requirements, by a team that is

approximately 10-20% of the size that normal practices

would dictate. This paper is an account of how this was

accomplished. Blue Gene’s success was made possible by a

combination of design decisions that led to a simple yet

powerful computer system and by strong team work across

sub-teams around the world. Close cooperation between

IBM and LLNL led to a system that was powerful, stable,

and useful for real science.

This paper is organized as follows. Section 2 describes

the design principles that were followed in the development

of the Blue Gene/L supercomputer. Section 3 summarizes

 2

the Blue Gene/L system architecture and Section 4 describes

its main software components. Section 5 talks about team

organization and how the work was distributed. Section 6

reports on the experience of building and testing Blue

Gene/L and how it grew over time to its final size at LLNL.

Section 7 reports on the impact that Blue Gene/L is having

on real science and Section 8 presents our conclusions and

discusses what the future may hold for Blue Gene.

2. Design Principles

Three main design principles were essential to the

successful development of the Blue Gene/L supercomputer:

simplicity, efficiency, and familiarity. In this section, we

discuss how each of these principles was applied to the

hardware and software of Blue Gene/L.

Of the three principles, simplicity was the most important

and pervasive. That is a more subtle concept than it seems.

What it really means is that the Blue Gene/L team chose a

design that let them focus their resources into those areas

that had a high performance payoff. The simplicity of Blue

Gene/L shows in various dimensions: chip design, physical

packaging, and software structure.

One part of the simplicity story is to know what to reuse

from existing systems and what to redesign/reimplement

specifically for Blue Gene/L. On the hardware side, for

example, the PowerPC processors in the compute nodes

were reused as is from a standard Application Specific

Integrated Circuit (ASIC) library that IBM provides. The

floating-point unit was modified from an existing

implementation to double its computation rate. The

networks were designed from scratch to enable high

performance communication and support scaling. On the

software side, Linux was used to provide file system and

socket I/O functionality, whereas a lightweight kernel and

certain MPI collective operations were specifically

implemented for Blue Gene/L, again in support of

scalability.

The other, and probably more important, part of

simplicity is maintaining the overall system concept simple.

For example, Blue Gene/L only supports spatial partitioning.

A large Blue Gene/L machine can be subdivided into

multiple independent partitions and each partition can only

run one application program at a time. Eliminating the

possibility of time-sharing resources greatly simplified the

software design and allowed for better performance.

When we discuss the technical characteristics of the

system in Section 3, we will point out more specific

examples of how the simplicity principle was applied.

Efficiency was the next most important design principle

for Blue Gene/L. This was a system intended to deliver

unprecedented levels of performance, which could only be

accomplished by paying focused attention on efficiency of

each component and of the overall system. There are two

main dimensions to the efficiency of Blue Gene/L: single-

node efficiency and scalability.

Blue Gene/L compute nodes operate at a relatively low

frequency of 700 MHz. Yet, they achieve per node

performance on real applications that is on-par with much

more expensive (and power hungry) server-grade

processors. This is made possible by a variety of factors.

First, the low frequency processors in Blue Gene/L consume

very little area and power, so it was possible to package two

of those processors in a single chip. Second, the chip offers

a very wide memory bus. Combined with the tight

integration between processors and memory controller

within the compute ASIC, this delivers a high-performance

memory system that can keep the processors properly fed

with data. Third, there are several architectural innovations

within the chip, like a level-2 cache with prefetching engine

[24], that are effective in speeding up the execution of

scientific applications. Finally, a shallow and optimized

software stack removes much of the overhead in memory

management found in other system.

From a scalability perspective, Blue Gene/L performed

well primarily for two reasons. First, the tight integration

between networks and processors within the compute ASIC

delivered a feature-rich interconnect system with low

latency and high bandwidth. We call the interconnect

feature-rich because it has several architectural features

(e.g., broadcast, multicast, combining operations) that are

useful for scientific computing. Second, again a shallow and

optimized software stack reduces overhead and exploits the

architectural features, leading to high application scalability

and performance.

System support for scaling to large configurations allows

real world applications to deliver a large fraction of peak

performance. It also ensures we can achieve high

power/performance efficiency through software that can

efficiently take advantage of the system. After all,

inefficient software on efficient hardware is no better than

inefficient hardware [22],[23].

We note that the simplicity of Blue Gene/L design

actually enabled its efficiency. For example, the strict spatial

partitioning mentioned above eliminates the need of

protection between jobs. This, in turn, allows user

applications to get direct access to the communication

hardware, greatly reducing software stack overhead.

Familiarity was the third and last main design principle

applied to Blue Gene/L. By familiarity we mean that we

wanted to build a system that did not look too different or

too difficult to program when compared to other systems

already in use. Familiarity in Blue Gene/L was accomplished

both through hardware and software.

Blue Gene/L uses PowerPC 32-bit processors. This

instruction set architecture has been around for

approximately 20 years and there is a large body of software

and expertise available for it. The processors were paired

with a reasonable amount of memory (on the order of 256

or 512 MB per processor), thus creating an environment

that could run conventional software. This allowed us to

 3

leverage compilers, libraries, and operating systems that

already existed for the PowerPC processors.

Familiarity at the user application level was also ensured

by using standard compilers (in particular the XL family of

compilers for C, C++, and FORTRAN) and libraries (in

particular MPI), so that existing parallel codes could be

easily ported to Blue Gene/L. There was significant work in

optimizing the compilers and libraries for Blue Gene/L, but

the interface presented to the programmer is something they

are familiar with. We note that familiarity in Blue Gene/L

was accomplished without sacrificing simplicity and/or

efficiency.

3. System Architecture

We briefly discuss the overall system architecture of

Blue Gene/L in this section. For a more thorough

description, the reader is referred to [9]. A Blue Gene/L

system consists of a compute section, a file server section,

and a host section. See Figure 1 for a high-level view of a

Blue Gene/L system. The compute and I/O nodes form the

computational core of Blue Gene/L, what we call the

compute section. The host section consists of the service

node and one or more front-end nodes. The service node

controls the compute section through an Ethernet control

network. The control traffic is converted to lower level

protocols (e.g., JTAG) before actually making to the

compute and I/O nodes. The front-end nodes provide the

user interface to the system, supporting job compilation, job

launch and job debugging. The file server section consists

of a set of file servers. The I/O nodes in the compute section

connect the core to file servers and front-end nodes through

a separate Ethernet functional network.

EthernetEthernet

EthernetEthernet

compute nodes I/O nodes file servers

control network service node front-end nodes

EthernetEthernet

EthernetEthernet

compute nodes I/O nodes file servers

control network service node front-end nodes

EthernetEthernet

EthernetEthernet

compute nodes I/O nodes file servers

control network service node front-end nodes

Figure 1: High-Level View of a Blue Gene/L System.

3.1. Compute Section

The compute section of a Blue Gene/L system is what is

usually called a Blue Gene/L machine. It is where the

application programs run. The Blue Gene/L compute section

consists of a three-dimensional rectangular array of compute

nodes, interconnected in a toroidal topology along the x, y,

and z axes. Each compute node can execute one or two user

application processes, as described below. I/O nodes,

distinct from the compute nodes and not in the toroidal

interconnect, are also part of the compute section. I/O and

compute nodes are interconnected by a collective network,

and each I/O node can communicate with the outside world

through a 1-Gbit Ethernet link.

The entire system is built around a system-on-a-chip

(SOC) concept [3]. The basic building block of Blue

Gene/L is the Blue Gene/L Compute ASIC (BLC). The

internals of that ASIC are shown in Figure 2. The BLC

contains two non-coherent PowerPC 440 cores, each with

its own private L1 cache (split for instructions and data,

with 32 KB each). Associated with each core is a small (2

KB) L2 cache that acts as a prefetch buffer and matches the

32-byte cache line size of the L1 to the 128-byte cache line

size of the L3. Completing the on-chip memory hierarchy is

4 MB of embedded DRAM (eDRAM) that is configured to

operate as a shared L3 cache. Also on the BLC is a memory

controller (for external DRAM) and interfaces to the five

networks used to interconnect Blue Gene/L compute and

I/O nodes: torus, collective, global barrier, Ethernet, and

control network.

PLB (4:1)

L2L2

Shared
SRAM

Shared

SRAM

JTAGGbit
Ethernet

144b DDR

interface

256

256

128

256

snoop

128

32k I1/32k D1
32k I1/32k D1

PPC440PPC440

Double FPU
Double FPU

Ethernet
Gbit

Ethernet
Gbit

JTAG
Access

JTAG
Access Collective

Collective
Torus

Torus Global
Barrier

Global
Barrier

DDR
Controller

w/ ECC

DDR
Controller
w/ ECC

32k I1/32k D1
32k I1/32k D1

PPC440PPC440

Double FPU
Double FPU

4MB
eDRAM

L3 Cache
or

On-Chip

Memory

4MB

eDRAM

L3 Cache
or

On-Chip

Memory

Shared L3

Directory

for

eDRAM

w/ECC

Shared L3

Directory
for

eDRAM

w/ECC

1024b data
144b ECC

L2L2

128

256

6b out, 6b in

1.4Gb/s

per link

3b out, 3b in

2.8Gb/s

per link

4 global

barriers or

interrupts

PLB (4:1)

L2L2

Shared
SRAM

Shared

SRAM

JTAGGbit
Ethernet

144b DDR

interface

256

256

128

256

snoop

128

32k I1/32k D1
32k I1/32k D1

PPC440PPC440

Double FPU
Double FPU

Ethernet
Gbit

Ethernet
Gbit

JTAG
Access

JTAG
Access Collective

Collective
Torus

Torus Global
Barrier

Global
Barrier

DDR
Controller

w/ ECC

DDR
Controller
w/ ECC

32k I1/32k D1
32k I1/32k D1

PPC440PPC440

Double FPU
Double FPU

4MB
eDRAM

L3 Cache
or

On-Chip

Memory

4MB

eDRAM

L3 Cache
or

On-Chip

Memory

Shared L3

Directory

for

eDRAM

w/ECC

Shared L3

Directory
for

eDRAM

w/ECC

1024b data
144b ECC

L2L2

128

256

6b out, 6b in

1.4Gb/s

per link

3b out, 3b in

2.8Gb/s

per link

4 global

barriers or

interrupts

Figure 2: Blue Gene/L Compute ASIC (BLC).

The interconnection networks are primarily used for

communication primitives used in parallel high-performance

computing applications. These primitives include message

passing for data sharing and exchange, barrier

synchronization, and global operations such as reduction

operations. The main interconnection network is the torus

network, which provides high performance data

communication with low latency and high throughput.

A collective network supports efficient collective

operations, such as reduction. Arithmetic and logical

operations are implemented as part of the communication

primitives to facilitate low-latency collective operation,

since it is recognized that current applications spend

increasing percentage of time performing global operations.

 4

The compute ASIC, designed specifically for Blue

Gene/L, contains the processors, interconnection networks,

and memory controllers that are used to build the system.

One of these compute ASICs, combined with conventional

memory chips constitutes a compute node of Blue Gene/L.

The Blue Gene/L I/O nodes are assembled exactly the same

way. Blue Gene/L compute and I/O nodes both use this

ASIC with 512 MB of external memory (a 1 GB option is

also available for the compute nodes), but their roles are

quite different, as described in Section 4. Only compute

nodes are interconnected through the torus network.

Conversely, only I/O nodes have their Ethernet port

connected to the functional network. The I/O nodes plug

into an Ethernet fabric together with the file servers and

front-end nodes. The collective and global barrier networks

interconnect all (compute and I/O) nodes. The control

network is used to control the hardware from the service

node.

Blue Gene/L, large as it is, is built of essentially two

kinds of chips: the compute ASICs described above,

designed and built by IBM specifically for Blue Gene/L, and

memory chips that are commercially available. There are

also link ASICs that are used to redrive the network signals

across racks and to partition the machine. There are 9

memory chips for every compute ASIC and approximate 20

compute ASICs for every link ASIC. The link ASIC is

much simpler than the compute ASIC, and also it does not

run any software.

2.8/5.6 GF/s
4 MB

2 processors

2 chips, 1x2x1

5.6/11.2 GF/s

1.0 GB

(32 chips 4x4x2)
16 compute, 0-2 IO cards

90/180 GF/s
16 GB

32 node cards

2.8/5.6 TF/s

512 GB

64 Racks, 64x32x32

180/360 TF/s
32 TB

Rack

System

Node card

Compute card

Chip

2.8/5.6 GF/s
4 MB

2 processors

2 chips, 1x2x1

5.6/11.2 GF/s

1.0 GB

(32 chips 4x4x2)
16 compute, 0-2 IO cards

90/180 GF/s
16 GB

32 node cards

2.8/5.6 TF/s

512 GB

64 Racks, 64x32x32

180/360 TF/s
32 TB

Rack

System

Node card

Compute card

Chip

Figure 3: Build Blue Gene/L, from chip to system.

Having only one chip to design means just one design

team. It also means just one test, validation and bring up

team. It means just one chip to simulate and, obviously, one

chip to get right. It also greatly simplifies the rest of the

system design, since boards have to be designed for just a

few different kinds of components. Blue Gene/L is built of

seven kinds of cards: (1) compute card, (2) I/O card, (3)

node card, (4) link card, (5) service card, (6) midplane card,

and (7) clock card. An exploded view of Blue Gene/L,

showing how we assemble the parts from the compute ASIC

up is show in Figure 3.

The compute card holds two compute ASICs and 18 or

36 memory chips (9 or 18 for each compute ASIC). They

implement the compute nodes. The I/O cards are very

similar (two compute ASICs and 18 memory chips), but

they expose the Ethernet network in the ASICs, so that they

can be used as I/O nodes. The node card is where 16

compute and (up to) two I/O cards can be plugged. It

implements the interconnection network among those

nodes. Each link card contains six link chips. There are 16

node cards and four link cards per midplane. Together with

a service card they plug into a midplane card, forming a

midplane. The service card allows external control of the

midplane from the host section. There is one clock card per

rack. Its function is to distribute the master Blue Gene/L

clock signal to the midplanes in the rack and to other racks.

Midplanes are units of 512 compute nodes, in an 8 x 8 x 8

arrangement. Each midplane can have a variable number of

I/O nodes, from 8 to 64. (Compute nodes are associated to

I/O nodes in an 8:1 to 64:1 ratio.) Each midplane also has

24 link chips used for inter-midplane connection to build

larger systems. Midplanes are arranged two to a rack, and

racks are arranged in a two-dimensional layout of rows and

columns. Because the midplane is the basic replication unit,

the dimensions the array of compute nodes must be a

multiple of 8. The Blue Gene/L machine at LLNL in

particular, is of size 64 x 32 x 32, along the x, y, and z axes

respectively. Because of cabling and other packaging

restrictions, not every size with dimensions multiple of 8 is

legal, but we have delivered Blue Gene/L systems with 1, 2,

4, 8, 10, 20, and 64 racks, and many other sizes are possible

(including bigger than 64).

Blue Gene/L can be partitioned along midplane

boundaries. A partition is formed by a rectangular

arrangement of midplanes. Each partition can run one and

only one job at any given time. During each job, the

compute nodes of a partition are in one of two modes of

execution: coprocessor mode or virtual node mode. All

compute nodes stay in the same mode for the duration of the

job. These modes of execution are described in more detail

below.

3.2. File Server Section

The file server section of a Blue Gene/L system provides

the storage for the file system that runs on the Blue Gene/L

I/O nodes. Several parallel file systems have been ported to

Blue Gene/L, including GPFS, PVFS2, and Lustre [21]. To

feed data to Blue Gene/L, multiple servers are required. The

Blue Gene/L system at LLNL, for example, uses 224 servers

operating in parallel. Data is striped across those servers,

and a multi-level switching Ethernet network is used to

connect the I/O nodes to the servers. The servers themselves

are standard rack-mounted machines, typically Intel, AMD

or POWER processor based.

 5

3.3. Host Section

The host section for a Blue Gene/L system consists of

one service node and one or more front-end nodes. These

nodes are standard POWER processor machines. At LLNL,

the service node is a 16-processor POWER4 machine, and

each of the 14 front-end nodes is a PowerPC 970 blade.

The service node is responsible for controlling and

monitoring the operation of the compute section. The

services it implements include: machine partitioning,

partition boot, application launch, standard I/O routing,

application signaling and termination, event monitoring (for

events generated by the compute and I/O nodes), and

environmental monitoring (for things like power supply

voltages, fan speeds, and temperatures).

The front-end nodes are where users work. They provide

access to compilers, debuggers and job submission services.

Standard I/O from user applications is routed to the

submitting front-end node.

4. Blue Gene System Software

To support execution of application processes, compute

nodes run a lightweight operating system called the

Compute Node Kernel (CNK). This simple kernel

implements only a limited set of services.

Scientific middleware for Blue Gene/L includes a user-

level library implementation of the MPI standard, optimized

to take advantage of Blue Gene/L networks, and various

math libraries, also in user level. Implementing all the

message passing functions in user mode had the effect of

simplifying the supervisor (kernel) code of Blue Gene/L,

thus facilitating development, testing, and debugging.

The Blue Gene/L I/O nodes run a port of the Linux

operating system. The I/O nodes act as gateways between

the outside world and the compute nodes, complementing

the services provided by CNK with file and socket

operations, debugging, and signaling.

This split of functions between I/O and compute nodes,

with the I/O nodes dedicated to system services and the

compute nodes dedicated to application execution, resulted

in a simplified design for both components. It has also been

fundamental in enabling Blue Gene/L scalability and

robustness, and in achieving a deterministic execution

environment [17],[20],[27].

We now describe in more detail the operating system

solution for Blue Gene/L. We start with the overall

architecture and proceed to describe the role of the separate

components. As previously mentioned, the software

architecture reflects to a great degree the hardware

architecture of Blue Gene/L.

4.1. Overall operating system architecture

A key concept in the Blue Gene/L operating system

solution is the organization of compute and I/O nodes into

logical entities called processing sets or psets. A pset

consists of one I/O node and a collection of compute nodes.

Every system partition, in turn, is organized as a collection

of psets. All psets in a partition must have the same number

of compute nodes, and the psets of a partition must cover all

the I/O and compute nodes of the partition. The psets of a

partition never overlap. The supported pset sizes are 8, 16,

32, 64 and 128 compute nodes, plus the I/O node.

The psets are a purely logical concept implemented by

the Blue Gene/L system software stack. They are built to

reflect the topological proximity between I/O and compute

nodes, thus improving communication performance within a

pset. The regular assignment of compute to I/O nodes

enforced by the pset concept allows us to simplify the

system software stack while delivering good performance

and scalability. With a static assignment of I/O to compute

nodes, it becomes easier to separate operating system

responsibilities. To understand those responsibilities, it is

useful to have a picture of the job model for Blue Gene/L.

A Blue Gene/L job consists of a collection of N compute

processes. Each process has its own private address space

and two processes of the same job communicate only

through message passing. The primary communication

model for Blue Gene/L is MPI. The N compute processes of

a Blue Gene/L job correspond to tasks with ranks 0 to N-1

in the MPI_COMM_WORLD communicator.

Compute processes run only on compute nodes;

conversely, compute nodes run only compute processes.

The compute nodes of a partition can all execute either one

process (in coprocessor mode) or two processes (in virtual

node mode) each. In coprocessor mode, the single process

in the node has access to the entire node memory. One

processor executes user code while the other performs

communication functions. In virtual node mode, the node

memory is split in half between the two processes running

on the two processors. Each process performs both

computation and communication functions. The compute

node kernel implements these models in the compute nodes.

See [9] and [32] for related work in other systems.

I/O nodes behave more like conventional computers. In

fact, each I/O node runs one image of the Linux operating

system. It can offer the entire spectrum of services expected

in a Linux box, such as multiprocessing, file systems, and a

TCP/IP communication stack. These services are used to

extend the capabilities of the compute node kernel,

providing a richer functionality to the compute processes.

Due to the lack of cache coherency between the processors

of a Blue Gene/L node, we only use one of the processors of

each I/O node. The other processor remains idle.

4.2. The compute node kernel

The compute node kernel (CNK) accomplishes a role

similar to that of PUMA [32],[33] in ASCI Red by

controlling the Blue Gene/L compute nodes. It is a lean

operating system that performs a simple sequence of

 6

operations at job start time. This sequence of operations

happens in every compute node of a partition, at the start of

each job:

1. It creates the address space(s) for execution of

compute process(es) in a compute node.

2. It loads code and initialized data for the executable

of that (those) process(es).

3. It transfers processor control to the loaded

executable, changing from supervisor to user

mode.

The CNK consumes only 1 MB of memory. It can create

either one address space of 511 MB for one process (in

coprocessor mode) or two address spaces of 255 MB each

for two processes (in virtual node mode). (1023 and 511

MB respectively, with the 1 GB memory option.) The

address spaces are flat and fixed, with no paging. The entire

mapping is designed to fit statically in the TLBs of the

PowerPC 440 processors.

The loading of code and data occurs in push mode. The

I/O node of a pset reads the executable from the file system

and forwards it to all compute nodes in the pset. The CNK

in a compute node receives that executable and stores the

appropriate memory values in the address space(s) of the

compute process(es).

Once the CNK transfers control to the user application,

its primary mission is to “stay out of the way”. Since there is

only one thread of execution per processor, there is no

scheduling for the kernel to perform. Also, the memory

space of a process is completely covered by the TLB in the

processor running that process, so there is no memory

management to perform. In normal execution, processor

control stays with the compute process until it requests an

operating system service through a system call. Exceptions

to this normal execution are caused by hardware interrupts:

either timer alarms requested by the user code or an

abnormal hardware event that requires attention by the

compute node kernel.

When a compute process makes a system call, three

things may happen:

1. “Simple” system calls that require little operating

system functionality, such as getting the time or

setting an alarm, are handled locally by the

compute node kernel. Control is transferred back

to the compute process at completion of the call.

2. “I/O” system calls that require infrastructure for

file systems and IP stack are shipped for execution

in the I/O node associated with that compute node.

(That is, the I/O node in the pset of the compute

node.) The compute node kernel waits for a reply

from the I/O node, and then returns control back to

the compute process.

3. “Unsupported” system calls that require

infrastructure not present in Blue Gene/L, such as

fork and mmap, are returned right away with an

error condition.

In Blue Gene/L we have implemented 68 system calls

from Linux and an additional 18 CNK-specific calls [15].

The other Linux system calls are unsupported. In our

experience, very seldom does a scientific application need

one of the unsupported system calls. When it does, we adopt

a combination of two solutions: either (1) change the

application or (2) add the required system call.

There are two main benefits from the simple approach

for a compute node operating system: robustness and

scalability. Robustness comes from the fact that the

compute node kernel performs few services, which greatly

simplifies its design, implementation, and test. Scalability

comes from lack of interference with running compute

processes. Previous work by other teams [20] has identified

system interference as a major source of performance

degradation in large parallel systems. The effectiveness of

our approach in delivering a system essentially free of

interference has been verified directly through

measurements of system noise [6],[17],[27] and indirectly

through measurements of scalability all the way to 131,072

tasks in real applications [13],[28],[34].

4.3. The role of the I/O node

The I/O node plays a dual role in Blue Gene/L. On one

hand, it acts as an effective master of its corresponding pset.

On the other hand, it services requests from compute nodes

in that pset. Jobs are launched in a partition by contacting

corresponding I/O nodes. Each I/O node is then responsible

for loading and starting the execution of the processes in

each of the compute nodes of its pset. Once the compute

processes start running, the I/O nodes wait for requests from

those processes. Those requests are mainly I/O operations to

be performed against the file systems mounted in the I/O

node.

Blue Gene/L I/O nodes execute an embedded version of

the Linux operating system. We call it embedded because it

does not use any swap space, it has an in-memory root file

system, it uses little memory, and it lacks the majority of

daemons and services found in a server-grade configuration

of Linux. It is, however, a complete port of the Linux kernel

and those services can be, and in various cases have been,

turned on for specific purposes. The Linux in Blue Gene/L

I/O nodes includes a full TCP/IP stack, supporting

communications to the outside world through Ethernet. It

also includes file system support. Various network file

systems have been ported to the Blue Gene/L I/O node,

including GPFS, Lustre, NFS, and PVFS2 [21].

Blue Gene/L I/O nodes never run application processes.

That duty is reserved to the compute nodes. The main user-

level process running on the Blue Gene/L I/O node is the

control and I/O daemon (CIOD). CIOD is the process that

links the compute processes of an application running on

compute nodes to the outside world. To launch a user job in

a partition, the service node contacts the CIOD of each I/O

node of the partition and passes the parameters of the job

 7

(user ID, group ID, supplementary groups, executable name,

starting working directory, command line arguments, and

environment variables). CIOD swaps itself to the user's

identity, which includes the user ID, group ID, and

supplementary groups. It then retrieves the executable from

the file system and sends the code and initialized data

through the collective network to each of the compute nodes

in the pset. It also sends the command-line arguments and

environment variables, together with a start signal.

Figure 4 illustrates how I/O system calls are handled in

Blue Gene/L. When a compute process performs a system

call requiring I/O (e.g., open, close, read, write), that call is

trapped by the compute node kernel, which packages the

parameters of the system call and sends that message to the

CIOD in its corresponding I/O node. CIOD unpacks the

message and then reissues the system call, this time under

the Linux operating system of the I/O node. Once te system

call completes, CIOD packages the result and sends it back

to the originating compute node kernel, which, in turn,

returns the result to the compute process. This simple model

works well for transactional operations, such as read and

write, which have a clear scope of operation and represent

the bulk of I/O in scientific computing. It does not support

operations such as memory mapped files, but those are

uncommon in scientific computing.

Collectives network

CNK

BG/L ASIC

Application

Linux

BG/L ASIC

ciod

Ethernet

File server

NFS

IP

fscanf

read

libc read read data

Collectives network

CNK

BG/L ASIC

Application

Linux

BG/L ASIC

ciod

Ethernet

File server

NFS

IP

fscanf

read

libc read read data

Figure 4: Function Shipping from CNK to CIOD.

There is a synergistic effect between simplification and

separation of responsibilities. By offloading complex system

operations to the I/O node we keep the compute node

operating system simple. Correspondingly, by keeping

application processes separate from I/O node activity we

avoid many security and safety issues regarding execution in

the I/O nodes. In particular, there is never a need for the

common scrubbing daemons typically used in Linux clusters

to clean up after misbehaving jobs. Just as keeping system

services in the I/O nodes prevents interference with compute

processes, keeping those processes in compute nodes

prevents interference with system services in the I/O node.

This isolation is particularly helpful during performance

debugging work. The overall simplification of the operating

system has enabled the scalability, reproducibility

(performance results for Blue Gene/L applications are very

close across runs [17]), and high-performance of important

Blue Gene/L applications.

4.4. The role of the service node

The Blue Gene/L service node runs its control software,

typically referred to as the Blue Gene/L control system. The

control system is responsible for operation and monitoring

of all compute and I/O nodes. It is also responsible for other

hardware components such as link chips, power supplies,

and fans. But this functionality is outside the scope of this

paper. Tight integration between the Blue Gene/L control

system and the I/O and compute nodes operating systems is

central to the Blue Gene/L software stack. It represents one

more step in the specialization of services that characterize

that stack.

In Blue Gene/L, the control system is responsible for

setting up system partitions and loading initial code and

state in the nodes of a partition. The Blue Gene/L compute

and I/O nodes are completely stateless: no hard drives and

no persistent memory. When a partition is created, the

control system programs the hardware to isolate that

partition from others in the system. It computes the network

routing for the torus, collective and global interrupt

networks, thus simplifying the compute node kernel. It loads

operating system code for all compute and I/O nodes of a

partition through the dedicated control network. It also

loads an initial state in each node (called the personality of

the node). The personality of a node contains information

specific to the node. Key components of the personality of

I/O and compute nodes are shown in Table 1.

Table 1: Personalities of Compute and I/O Nodes.

Compute node personality I/O node personality

• Memory size

• Bit-steering for memory

configuration

• Physical location

• x, y, z torus coordinates

• Pset number and size

• Routes for the collectives

network

• Memory size

• Bit-steering for memory

configuration

• Physical location

• Pset number and size

• Routes for the collectives

network

• MAC and IP address

• Broadcast and gateway IP

addresses

• Service node IP address

• NFS server address and

export directory

• Security key

5. Team Organization

The Sun never sets on the Blue Gene team. Cliché, but

true. The project was started by a handful of people at the

IBM T.J. Watson Research Center in Yorktown, with

support from Lawrence Livermore National Laboratory.

 8

Over the years, it grew to a team of over 100 people during

its peak. The major development places were Yorktown,

NY and Rochester, MN. But there were people working on

Blue Gene/L in Raleigh (NC), Haifa (Israel), Delhi and

Bangalore (India).

The approximately 12-hour difference between the

western (Livermore) and eastern (Delhi) extremes of the

Blue Gene/L development world offered both opportunities

and challenges.

From an opportunity perspective, work never stopped.

When it was middle of the night in the US, the teams in

Israel and Delhi could continue working, sharing the

available development prototypes. They would

communicate their findings to the US teams early in the

morning and those teams could pick up from there.

From a challenge perspective, coordination was certainly

not trivial. The distance between the sites meant that face-

to-face meetings were unusual (particularly with the non-US

sites). It also created difficulties when people in two

different sites, many hours apart (e.g., Livermore and

Haifa), had to work side-by-side to solve a particular

problem or address a crisis.

As we mentioned, coordination with the non-US sites,

because of the distance and time difference, required

particular care. During the initial development phase, we

assigned specific, fairly independent pieces of the project to

those sites. For example, Haifa assumed responsibility for

developing a job control (including scheduling) solution for

Blue Gene/L, while Delhi took responsibility of application

checkpoint services. That allowed those sites to operate

autonomously, typically with a weekly coordination

meeting. As the project evolved and we moved into system

integration and testing, and deployment to actual customers,

the level of interaction had to increase. In the end, Blue

Gene/L was a successful model of inter-site collaboration,

and all the teams involved share the pride of participating in

this project.

6. Building and Testing Blue Gene/L

Building a 65,536-node compute system does not happen

overnight. Getting to a working 64-rack system at LLNL

was an exercise in doubling.

The first midplane (half-rack) of Blue Gene/L became

operational in September of 2003 in Yorktown, NY. That

system was ranked in the 73
rd

 position in the TOP500 list of

November 2003. This was a 500 MHz prototype system.

The first multi-rack Blue Gene/L was a two-rack system

assembled in Rochester, MN in March 2003. That system

was later expanded to four racks in May 2004. The four-

rack system was ranked in the 4
th

 position in the June 2004

TOP500 list. This system also used the first iteration 500

MHz compute ASIC.

We then started an effort to build a 16-rack system in

Rochester, MN using the second and final iteration of the

compute ASIC, running at 700 MHz. This system was built

to serve as a testbed for the integrated system. With four

rows of four racks each, it was big enough for testing most

of the software scaling issues, as well as network

connections and file system operations. The first 8 racks

became operational in August of 2004 and it was the first

system to surpass the Earth Simulator in the Linpack

benchmark. The complete 16 racks were assembled in

September of 2004, and this system was ranked 1
st
 in the

November 2004 TOP500 list. From that point on and to this

day, Blue Gene/L has had the top spot in that list.

A 16-rack system, organized as two rows of eight racks

each, was installed in LLNL and passed acceptance test in

December 2004, just in time to celebrate the Holidays. The

particular configuration was chosen so that it could be

expanded later, towards its final configuration.

In the beginning of 2005, we started parallel efforts to

build two 32-rack systems, one at LLNL (expanding from

the 16 already there) and one at the IBM facility in

Rochester, MN. Both of these systems were configured as

four rows of eight racks each. They were configured

identically so that problems identified in one system (LLNL)

could be debugged in the other (Rochester). Also,

scalability testing of software continued in the Rochester

system while application work proceeded in the LLNL

system. The LLNL system became operational in March of

2005, while the Rochester system was completed one month

later, in April of 2005. The expanded LLNL system was

ranked 1
st
 in the June 2005 TOP500 list.

In August of 2005, the 32 racks in Rochester were

shipped to LLNL and integrated with the racks already there

into a single 64-rack system, in its final configuration of

eight rows of eight racks each. The system was operational

after only two weeks. Some problems surfaced when the

system reached its final size, which required software fixes

and workarounds. Nevertheless, the system completed all its

acceptance tests at LLNL by the end of September 2005. By

this time it was already being used by many scientists and

engineers at LLNL to accomplish breakthrough results. The

final system again reached the 1
st
 spot in the TOP500 list of

November 2005. The 64 rack Blue Gene/L system installed

at the Department of LLNL is shown in Figure 5.

Figure 5. The Blue Gene/L system at LLNL.

 9

7. The Impact of Blue Gene/L

Blue Gene/L was designed to be a breakthrough science

machine. That is, to deliver a level of performance for

scientific computing that enables entire new studies and new

applications.

There are approximately 20 Blue Gene/L installations

around the world. Even though most of them are small

compared with the LLNL system (1 or 2 racks), they are

mostly being used in support of new science. In this section

we discuss just some of the important applications of Blue

Gene/L in scientific research.

One of the main areas of applications of the LLNL

system is in materials science. Scientists at LLNL use a

variety of models, including quantum molecular dynamics

[13], classical molecular dynamics [28], and dislocation

dynamics [4], to study materials at different levels of

resolution. Typically, each model is applicable to a range of

system sizes being studied. First principle models can be

used for small systems, while more phenomenological

models have to be used for large systems. Blue Gene/L is

the first system that is allowing scientist at LLNL to cross

those boundaries. They can actually use first principle

models in systems large enough to validate the

phenomenological models, which in turn can be used in

even larger systems.

Applications of notable significance at LLNL include

ddcMD [28], a classical molecular dynamics code that has

been used to simulate systems with approximately half a

billion atoms (and in the process win the 2005 Gordon Bell

award), and QBox [12],[13], a quantum molecular

dynamics code that is, at the time of this writing, the highest

performing application on Blue Gene/L.

Other success stories for Blue Gene/L include: (1)

Astrophysical simulations in Argonne National Laboratory

(ANL) using the FLASH code [2],[8]; (2) Global climate

simulations in the National Center for Atmospheric

Research (NCAR) using the HOMME code; (3)

Biomolecular simulations at the T.J. Watson Research

Center using the Blue Matter code [7],[10]; (4) Quantum

chromo dynamics (QCD) at IBM T.J. Watson Research

Center and LLNL, San Diego Supercomputing Center,

Juelich Research Center, Massachusetts Institute of

Technology, Boston University, University of Edinburgh,

and KEK (Japan) using a variety of codes. The lattice QCD

code by the Watson and LLNL team shows perfect scaling

up to 65,536 nodes with 131,072 processors delivering 70.9

Teraflops. This is a previously unattained performance level

and arguably poises lattice QCD and Blue Gene to produce

the next generation of strong interaction physics theoretical

results. This result [31] won the 2006 Gordon Bell special

achievement award and is an indicator of simulation-based

science applications enabled by the Blue Gene system. One

of the most innovative uses of Blue Gene/L is as the central

processor for the new large scale LOFAR radio telescope in

the Netherlands [25].

Several results about Blue Gene/L performance are

published in the literature [1],[5],[13],[14],[18],[28],

[31],[34]. We here focus on just a few examples to illustrate

the system performance in benchmarks and applications.

First, we compare the performance of a single Blue Gene/L

node executing the serial version of the NAS parallel

benchmarks (class A) on top of two different operating

systems: the CNK normally used on the Blue Gene/L

compute nodes, and Linux normally used on the Blue

Gene/L I/O nodes. Those results are shown in Table 2. It is

clear that the performance benefit of CNK can be

substantial, with the execution time increasing up to 300%

for the IS benchmark. The reason for performance

difference is that Linux has to handle TLB misses during

execution, while CNK does not, as it maps the entire node

memory in the TLB of the processor. The impact is worse

for code that touches memory randomly, like IS.

Table 2: Single-node Performance for NAS

Benchmarks on CNK and Linux.
 CNK Linux

 Time(s) Speed

(Mops)

Time(s) Speed

(Mops)

%

Time

%

Speed

is.A 5.7 14.7 23.0 3.6 303.0 -75.5

ep.A 172.6 3.1 177.2 3.0 2.7 -3.2

lu.A 380.3 313.7 504.0 237.0 32.5 -24.5

sp.A 375.0 227.0 517.4 164.3 38.0 -27.6

cg.A 27.1 55.0 32.3 46.3 19.2 -15.8

bt.A 522.6 322.0 613.0 274.4 17.3 -14.8

Illustrating the issue of scalability, Figure 6 shows the

performance behavior of Flash (an astrophysics code from

the University of Chicago) [8] on various systems. This is a

weak scaling experiment, so ideal behavior would be for the

execution time to stay constant as the number of processors

increase. We observe that that is true only for the Blue

Gene/L machines. All other machines eventually reach a

point where the execution time grows significantly worse

with the system size. Figure is a speedup curve for Miranda

(a hydrodynamics code from LLNL) on Blue Gene/L [5].

This is a strong scaling experiment, and we observe an

almost linear improvement in performance from 8192 to

65536 processors. Contributing to the scalability of Flash

and Miranda on Blue Gene/L are the low-overhead user-

mode MPI (enabled by the kernel) and the non-interference

of system services on applications.

 10

Sod Discontinuity Scaling Test - Total Time

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000

Number of Processors

T
o
ta
l
T
im
e
 (
s
)

QSC

Seaborg

Jazz/Myrinet2000

MCR/1proc/Quadrics

Watson BG/L

Big BG/L

Figure 6: Performance of Flash in Different Parallel

Systems (Weak Scaling).

Figure 7: Strong Scaling of Miranda on Blue Gene/L

(used with permission from the authors of [5]).

Finally, Figure 8 shows the performance of Linpack, the

benchmark for the TOP500 list, on Blue Gene/L for

different numbers of nodes. We observe an essentially linear

scaling of performance (Tflops) with the number of nodes,

all the way to the full machine size (65,536 compute nodes).

Furthermore, the 280 Tflops mark represents better than

75% of the peak machine performance.

0

50

100

150

200

250

300

T
fl

o
p

s

1024 2048 4096 8192 16384 32768 65536

Number of nodes

Figure 8: Performance of Linpack, the benchmark for

TOP500, on Blue Gene/L.

8. Conclusions and a Look into the Future

Blue Gene/L was the first system in the Blue Gene

family. We certainly do not want it to be the last. The major

contribution of Blue Gene/L was to prove that it can be

done! It is possible to build a machine with 100,000+

processors, and this machine can be reliable and operate

within reasonable requirements of power, cooling and floor

space. Furthermore, it is possible to run real applications

that extract the power of a machine of this size. By doing

that, Blue Gene/L changed much of the perception on the

limits of scalability for parallel processing.

We can imagine two independent, and complementary

paths for the evolution of Blue Gene/L into the future. First,

as VLSI technology improves, we can implement essentially

the same system with increasingly powerful nodes. With

time, those nodes can have more and faster processors, and

more memory. Also, the interconnection networks can get

faster. Note that it is important to keep node reliability,

which can be a challenge with more complex and larger

nodes. Second, we can expand the system in size. From an

architectural and packaging perspective, we could build a

Blue Gene/L system with over 2 million nodes! That is 32

times larger than the LLNL system. Of course, such a

system would have a failure rate that is 32 times larger, use

32 times more floor space, be 32 times more expensive to

buy and operate, and require 32 times more power and

cooling. Therefore, its usefulness is questionable. But

systems a couple of times larger than LLNL’s might make

sense.

More interesting is the question of what is the next

breakthrough in large scale parallel processing? I guess if

we knew, it would not be the next breakthrough anymore.

Many frontiers are open, such as specialized and

reconfigurable hardware, which can offer orders of

magnitude improvement in performance. Also, there is a

productivity frontier. Can we drastically simplify the job of

using the massive computing power offered by Blue Gene/L

and its successors, maybe at the expense of some loss of

efficiency?

 11

One of the most rewarding aspects of the Blue Gene

project is to see scientists and engineers getting work done

that they could not do before this machine existed. We can

only hope that projects like Blue Gene will continue to

improve the tools those scientists and engineers have at their

disposal and open new horizons for humankind.

Acknowledgments
The BlueGene/L project has been supported and partially

funded by the Lawrence Livermore National Laboratories

on behalf of the United States Department of Energy, under

Lawrence Livermore National Laboratories Subcontract No.

B517552.

This work has benefited from the cooperation of many

individuals in IBM Research (Yorktown Heights, NY), IBM

Engineering & Technology Services (Rochester, MN), IBM

Systems and Technology Group (Rochester, MN) and IBM

Microelectronics (Burlington, VT and Raleigh, NC).

References

[1] G. Almasi, S. Chatterjee, A. Gara, J. Gunnels, M. Gupta, A.

Henning, J.E. Moreira, B. Walkup. Unlocking the

performance of the BlueGene/L supercomputer. IEEE/ACM

SC04, Pittsburgh, PA, November 2004.

[2] ASC/Alliances Center for Astrophysical Thermonuclear

Flashes, University of Chicago; see

http://flash.uchicago.edu/website/home/.

[3] A. Bright, M. Ellavsky, A. Gara, R. Haring, G. Kopcsay, R.

Lembach, J. Marcella, M. Ohmacht, V. Salapura. Creating

the BlueGene/L supercomputer from low power SoC ASICs.

ISSCC 2005 – IEEE International Solid-State Circuits

Conference, February 2005.

[4] V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes, T.

Pierce, M. Tang, M. Rhee, R.K. Yates, and T. Arsenlis.

Scalable line dynamics in ParaDiS. IEEE/ACM SC04,

Pittsburgh, PA, November 2004.

[5] A.W. Cook, W.H. Cabot, M.L. Welcome, P.L. Williams, B.J.

Miller, B.R. de Supinski, R.K. Yates. Tera-scalable

algorithms for variable-density elliptic hydrodynamics with

spectral accuracy. IEEE/ACM SC05, Seattle, WA,

November 2005.

[6] K. Davis, A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang,

S. Pakin and F. Petrini. A performance and scalability

analysis of the BlueGene/L architecture. IEEE/ACM SC04,

Pittsburgh, PA, November 2004.

[7] Blake G. Fitch, Aleksandr Rayshubskiy, Maria Eleftheriou,

T.J. Christopher Ward, Mark E. Giampapa, Michael C.

Pitman, Robert S. Germain. Blue Matter: Approaching the

Limits of Concurrency for Classical Molecular Dynamics.

Supercomputing 2006, November 2006.

[8] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,

D. Q. Lamb, P. MacNeice, R. Rosner, and H. Tufo. FLASH:

An adaptive mesh hydrodynamics code for modeling

astrophysical thermonuclear flashes. Astrophysical Journal

Supplement, 131:273, 2000.

[9] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus,

M. E. Giampapa, R. A. Haring, P. Heidelberger, D.

Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D.

Steinmacher-Burow, T. Takken, and P. Vranas. Overview of

the Blue Gene/L system architecture. IBM Journal of

Research and Development. Vol. 49, no. 2/3, March/May

2005, pp. 195–212.

[10] R. S. Germain, Y. Zhestkov, M. Eleftheriou, A. Rayshubskiy,

F. Suits, T. J. C. Ward, and B. G. Fitch. Early performance

data on the Blue Matter molecular simulation framework.

IBM Journal of Research and Development. Vol. 49, no.

2/3, March/May 2005, pp. 447–456.

[11] D.S. Greenberg, R. Brightwell, L.A. Fisk, A.B. Maccabe,

and R.E. Riesen. A system software architecture for high-end

computing. IEEE/ACM SC97, San Jose, CA, November

1997, pp. 1–15;

[12] Francois Gygi, Erik W. Draeger, Martin Schulz, Bronis R.

De Supinski, John A. Gunnels, Vernon Austel, James C.

Sexton, Franz Franchetti, Stefan Kral, Christoph Ueberhuber,

Juergen Lorenz. Large-Scale Electronic Structure

Calculations of High-Z Metals on the BlueGene/L Platform.

2006 Gordon Bell Prize. Supercomputing 2006, November

2006.

[13] F. Gygi, E.W. Draeger, B.R. de Supinski, R.K. Yates, F.

Franchetti, S. Kral, J. Lorenz, C.W. Ueberhuber, J.A.

Gunnels, J.C. Sexton. Large-scale first-principles molecular

dynamics simulations on the BlueGene/L platform using the

Qbox code. IEEE/ACM SC05, Seattle, WA, November

2005.

[14] A. Henning. BlueGene/L: Improving application memory

performance on a massively parallel machine. M.E. Thesis.

Cornell University. 2005.

[15] IBM Blue Gene Team. Blue Gene: A vision for protein

science using a petaflop supercomputer. IBM Systems

Journal, 40(2), 2001.

[16] IBM Corporation. Blue Gene/L: Application development.

2006. http://www.redbooks.ibm.com/abstracts/

sg247179.html?Open

[17] E. Ipek, B.R. de Supinski, M. Schulz, and S.A. McKee. An

approach to performance prediction for parallel

applications. 2005 Euro-Par, Lisbon, Portugal, August 2005.

[18] S. Louis, B.R. de Supinski. BlueGene/L: Early application

scaling results. BlueGene System Software Workshop

February 23-24, 2005, Salt Lake City, Utah. http://www-

unix.

mcs.anl.gov/~beckman/bluegene/SSW-Utah-2005/BGL-

SSW22-LLNL-Apps.pdf

[19] J. E. Moreira, G. Almási, C. Archer, R. Bellofatto, P.

Bergner, J. R. Brunheroto, M. Brutman, J. G. Castaños, P. G.

Crumley, M. Gupta, T. Inglett, D. Lieber, D. Limpert, P.

McCarthy, M. Megerian, M. Mendell, M. Mundy, D. Reed,

R. K. Sahoo, A. Sanomiya, R. Shok, B. Smith, and G. G.

 12

Stewart. Blue Gene/L programming and operating

environment. IBM Journal of Research and Development.

Vol. 49, no. 2/3, March/May 2005.

[20] F. Petrini, D. Kerbyson and S. Pakin. The case of the missing

supercomputer performance: achieving optimal

performance on the 8,192 processors of ASCI Q. IEEE/ACM

SC03, Phoenix, AZ, November 2003.

[21] R. Ross, J.E. Moreira, K. Cupps, W. Pfeiffer. Parallel I/O on

the IBM Blue Gene/L system. Blue Gene/L Consortium

Quarterly Newsletter. Argonne National Laboratory. 1st

quarter 2006. http://www-fp.mcs.anl.gov/bgconsortium/

file%20system%20newsletter2.pdf.

[22] V. Salapura, R. Bickford, M. Blumrich, A. Bright, D. Chen,

P. Coteus, A. Gara, M. Giampapa, M. Gschwind, M. Gupta,

S. Hall, R.A. Haring, P. Heidelberger, D. Hoenicke, G.V.

Kopcsay, M. Ohmacht, R.A. Rand, T.Takken, and P.Vranas.

Power and Performance Optimization at the System Level.

ACM Computing Frontiers 2005, Ischia, Italy, May 2005.

[23] V. Salapura, R. Walkup, A. Gara. Exploiting Workload

Parallelism for Performance and Power Optimization in Blue

Gene. IEEE Micro, September/October 2006.

[24] V. Salapura, J. R. Brunheroto, F. Redìgolo, D. Hoenicke, A.

Gara. Exploiting eDRAM bandwidth with data prefetching:

simulation and measurements. HPCA-13 – IEEE

International Symposium on High-Performance Computer

Architecture, February 2007.

[25] K. van der Schaaf. Blue Gene in the heart of a wide area

sensor network. QCDOC and Blue Gene: Next Generation of

HPC Architecture Workshop. Edinburgh, UK, October 2005.

[26] M. Seager. The BlueGene/L computing environment.

Lawrence Livermore National Laboratory. October 2003.

http://www.llnl.gov/asci/platforms/bluegene/

papers/16seager.pdf.

[27] K. Singh, E. Ipek, S.A. McKee, B.R. de Supinski, M. Schulz,

and R. Caruana. Predicting parallel application performance

via machine learning approaches. Concurrency and

Computation: Practice and Experience. 2006. To appear.

[28] F.H. Streitz, J.N. Glosli, M.V. Patel, B. Chan, R.K. Yates,

B.R. de Supinski, J. Sexton, J.A. Gunnels. 100+ TFlop

solidification simulations on BlueGene/L. Gordon Bell Prize

at IEEE/ACM SC05, Seattle, WA, November 2005.

[29] University of Mannheim, University of Tennessee, and

NERSC/LBNL. TOP500 Supercomputer sites.

http://www.top500.org/.

[30] University of Tennessee. HPC Challenge Benchmark.

http://icl.cs.utk.edu/hpcc/.

[31] P. Vranas, G. Bhanot, M. Blumrich, D. Chen, A. Gara, P.

Heidelberger, V. Salapura, J. Sexton. The BlueGene/L

Supercomputer and Quantum ChromoDynamics. 2006

Gordon Bell Prize. Supercomputing 2006, November 2006.

[32] S.R. Wheat, A.B. Maccabe, R. Riesen, D.W. van Dresser,

and T.M. Stallcup. PUMA: An operating system for

massively parallel systems. Proceedings of the 27th Hawaii

International Conference on System Sciences, 1994, pp. 56–

65.

[33] S.R. Wheat, A.B. Maccabe, R. Riesen, D.W. van Dresser,

and T.M. Stallcup. PUMA: An Operating System for

Massively Parallel Systems. Scientific Programming, vol 3,

1994, pp. 275-288.

[34] A. Yoo, E. Chow, K. Henderson, W. McLendon, B.

Hendrickson, U. Catalyurek. A scalable distributed

parallel breadth-first search algorithm on

BlueGene/L. IEEE/ACM SC05, Seattle, WA, November

2005.

