
Utilizing static and dynamic software analysis

to aid cost estimation, software visualization,

and test quality management

Gergő Balogh

University of Szeged

Department of Software Engineering

Supervisor: Dr. Árpád Beszédes

Szeged, 2020.

A thesis submitted for the degree of doctor of philosophy of the University of Szeged

University of Szeged

PhD School in Computer Science

To whom it may concern:

to mentors, colleagues, fellow researchers and customers

who made me an experienced professional and helped me finish those projects,

if there had not been any of them then this thesis would have already been published years ago.

Preface

The goal of software development was rephrased several times during the history of the

profession. Most people widely agree on what this term means, while the exact meaning of

software engineering is still being debated. They usually emphasize the creative processes

that yield a new or improved version of the software systems. However, we should not

forget that eventually these products will be created and used by humans.

The development process is initiated by the customers, who would like to solve their

problems or accomplish their tasks efficiently. These problems and tasks are translated into

high-level requirements by project managers. The senior developers further specify these

by adding details about technical requirements. The developers use these specifications

to implement the appropriate features, while testers ensure that they meet the expected

quality and functionality.

However, all of these stakeholders strive for the common goal of creating or improving

the software. Their objectives may differ from each other. For example, one of the

primary motivations of managers is to deliver new features as soon as possible, while

developers would like to enforce certain technical (de facto) standards, which usually

increase development time, but later decrease maintenance costs.

My responsibility as a researcher is to aid them in achieving their common goals

without hindering their objectives: by improving their processes and tools, and by helping

juniors achieve their full potential.

v

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Impact on Stakeholders’ Daily Work 2

1.1.2 Challenges . 3

1.2 Structure of the Dissertation . 3

2 Preliminaries 7

2.1 Productivity Measurement and Prediction 7

2.1.1 Measuring Productivity . 8

2.1.2 Impact Analysis . 8

2.1.3 Genetic and Evolutionary Algorithms 9

2.2 Game-based Software Visualization . 10

2.2.1 Underlying Metaphors . 11

2.2.2 Phases of Visualization . 11

2.2.3 Extending Third-party Application 12

2.2.4 Video Game Genre . 12

2.3 Clustering Test and Code Elements . 13

2.3.1 Best practices of unit test writing . 13

2.3.2 Code Coverage . 14

2.3.3 Traceability recovery in unit tests . 16

2.3.4 Clustering and Classification . 17

3 Measuring Productivity 19

3.1 Defining Weighted Modification-based Productivity Measure 21

3.1.1 Modification Effort Prediction . 23

3.1.2 Measuring Developer Productivity with Modification Effort 24

3.1.3 Determining the Weights . 26

3.1.4 Evaluation . 27

3.2 Estimation and Reduction of Superfluous Effort 27

3.2.1 Subject System . 28

3.2.2 Measured Development Phases . 28

vii

viii Contents

3.2.3 Productivity Measurement Process 29

3.2.4 Applying Micro-Productivity Profile 30

3.2.5 Evaluation . 32

3.3 Comparison of Software Quality in the Work of Children and Professional

Developers . 35

3.3.1 Original and reduced quality model 35

3.3.2 Development environment . 37

3.3.3 Implemented classroom exercises . 38

3.3.4 Evaluation . 39

3.4 Contributions . 41

3.4.1 Defining Weighted Modification-based Productivity Measure 41

3.4.2 Estimation and Reduction of Superfluous Effort 41

3.4.3 Comparison of Software Quality in the Work of Children and Pro-

fessional Developers . 41

3.5 Advantages and Disadvantages of These Methods 42

3.5.1 Internal Validity . 42

3.5.2 External Validity . 43

4 Software Visualization 45

4.1 Enhancing the City Metaphor with Game-based Visualization 46

4.1.1 The Embodiment of Visualization’s Phases in CodeMetropolis . . . 47

4.1.2 Integration of Eclipse IDE and CodeMetropolis 49

4.2 Assessing Degree of Realism for the City Metaphor in Software Visualization 52

4.2.1 Low-Level Metrics of Virtual Cities 52

4.2.2 Construction of a High-Level Metric 53

4.3 Test Visualization with CodeMetropolis . 54

4.3.1 Measuring test-related metrics . 55

4.3.2 Test Visualization in CodeMetropolis 55

4.3.3 Side by side visualization of code and tests 56

4.4 Application . 58

4.4.1 Scenarios of Practical Usage . 58

4.4.2 Demo Scenarios . 60

4.5 Contributions . 62

4.6 Advantages and Disadvantages of These Methods 63

4.6.1 Internal Validity . 63

4.6.2 External Validity . 64

5 Analyzing Test and Package Hierarchy 65

5.1 Simultaneous Clustering of Test Cases and Methods 67

5.1.1 Package Hierarchy Based Clustering 67

5.1.2 Test-Code Coverage Based Clustering 67

Contents ix

5.2 Similarity Pattern Detection . 68

5.3 Comparison of Static and Dynamic Clusterings 77

5.3.1 Classification of Structural Test Smells 80

5.3.2 Clustering of Test-Code Traceability Discrepancies 81

5.3.3 Interpretation of cNDD Curves for Clusters Comparison 84

5.4 Contributions . 85

5.5 Advantages and Disadvantages of These Methods 87

5.5.1 Internal Validity . 87

5.5.2 External Validity . 88

6 Conclusion 91

6.1 Further Works . 93

7 Publications 95

7.1 Measuring Productivity . 96

7.2 Providing immersive methods for software and unit test visualization 98

7.3 Spotting the structures in the package hierarchy that required attention

using test coverage data . 101

A Measuring Productivity 105

A.1 General Notions and Definitions . 105

A.2 Formal Definition of Modification Effort and Typed Modification 105

A.3 Determining the Weights of Modification Groups 106

A.4 Formal Definitions of Division based Micro-Productivity Profile 107

A.5 mppds of Analyzed Project . 108

B Software Visualization 111

B.1 CodeMetropolis Technical Details . 111

B.2 Metrics for Generated Cities . 112

B.2.1 Low-level Metrics . 112

C Analyzing Test and Package Hierarchy 115

C.1 Formal definitions of methodology for unified graph’s discrepancy analysis . 115

C.1.1 Domain Independent Similarity Functions 115

C.2 Node Similarity Graph . 117

C.3 Neighbor Degree Distribution . 118

C.3.1 Discrete Neighbor Degree Distribution 118

C.3.2 Continuous Neighbor Degree Distribution 118

D Summary in English 121

D.1 Summary of the Topics . 121

x Contents

D.1.1 Measuring, Predicting, and Comparing Productivity of Developer

Teams . 121

D.1.2 Providing Immersive Methods for Software and (Unit) Test Visual-

ization . 123

D.1.3 Using Test Coverage to Analyze Structures in the Package Hierarchy 124

D.2 Future Work . 125

E Magyar nyelvű összefoglaló 127

E.1 Témák összefoglalása . 127

E.1.1 A szoftverfejlesztői csapatok produktivitásának mérése és előrejelzése 127

E.1.2 Izgalmas és magával ragadó szoftver és (egység) teszt vizualizációs

technikák biztośıtása . 129

E.1.3 Teszt lefedettség használata a csomaghierarchia szerkezetének vizs-

gálata során . 130

E.2 Jövőbeli tervek . 131

Bibliography 132

List of Figures

1.1 Structure of thesis points . 4

2.1 An example of functional units . 15

3.1 Structure of thesis points . 19

3.2 Phases of our productivity related researches 20

3.3 Overview of the experiment . 22

3.4 Fitness values of prediction per project . 27

3.5 Overview of the history of the measured project 29

3.6 Measurement architecture . 30

3.7 Equal division of revisions . 31

3.8 The underlying concepts of mppd . 32

3.9 Overview of mppd over the whole history and its statistics 33

3.10 Original quality model . 36

3.11 Greenfoot integrated development environment for students 37

3.12 High level code quality metrics . 39

3.13 Low level code quality metrics . 40

4.1 Structure of thesis points . 45

4.2 JUnit project visualized by CodeMetropolis 47

4.3 Overview of integration . 50

4.4 Low-level metrics . 53

4.5 Parts of outpost of test-related metrics . 57

4.6 Inspection of the constructor of the Rectangle class and its visualization . . 61

4.7 Comparison of two methods and their corresponding floors in the virtual city 61

5.1 Structure of thesis points . 65

5.2 Overview of the UniGDA Process . 69

5.3 Domain Independent Similarity Functions 71

5.4 Node Similarity Graph construction . 72

5.5 Sample graph for ndd definition . 73

5.6 Example graph for dNDD calculation . 74

xi

xii List of Figures

5.7 Characteristic function . 75

5.8 Similarity Patterns . 76

5.9 Various domain specific implementations of UniGDA 77

5.10 Relation among similarity pattern . 79

A.1 Aggregated weights of groups . 107

A.2 mppd over development phases . 108

A.3 mppd over application layers (all) . 109

A.4 mppd over application layers (exluding utility) 109

B.1 Items of the metaphor level . 111

List of Tables

3.1 Inspected modification per code element . 23

3.2 Fitness values of prediction per project . 27

3.3 Comparison of models . 27

5.1 Subject programs and their basic properties 78

5.2 The number of cluster comparison patterns in the subject systems 81

5.3 Pattern counts – Ideal, Busy Packageand Dirty Packages; columns ‘count’

indicate the number of corresponding patterns, columns ‘C count’ and ‘P

count’ indicate the number of C and P clusters involved in each identified

pattern . 83

5.4 Pattern counts – Other; columns P Other and C Other indicate the number

of clusters involved in these specific patterns, columns ‘all’ indicate the

number of all involved clusters (including the specific ones) 84

7.1 Thesis contributions and supporting publications 95

A.1 ga parameters . 106

B.1 Graphical attributes of items . 112

xiii

List of Emphesized Statements

1 Challenge (Software comprehension) . 3

2 Challenge (Fault localization) . 3

3 Challenge (Cost estimation) . 3

4 Challenge (Program structure analysis) . 3

1 Thesis point (Measuring, predicting, and comparing the productivity of

developer teams) . 4

1.1 Sub-thesis point (Productivity metrics that incorporate types of modifica-

tions possess more expressive power) . 4

1.2 Sub-thesis point (The effectiveness of productivity prediction can be in-

creased by taking account of different types of modifications) 4

1.3 Sub-thesis point (Measurement of wasted effort via developer interaction

data helps managers to improve the development process) 4

1.4 Sub-thesis point (The average of software quality (a factor of productiv-

ity) of the students and the professional developers’ work does not show

significant differences in classroom exercise) 5

2 Thesis point (Providing immersive methods for software and unit test visu-

alization) . 5

2.1 Sub-thesis point (Sandbox game-based techniques can enhance the visual-

ization of software as a virtual city) . 5

2.2 Sub-thesis point (The degree of realism for the city metaphor in software

visualization can be measured automatically) 5

2.3 Sub-thesis point (Integration of integrated development environment and

software visualization can aid developers to understand software systems) . 5

2.4 Sub-thesis point (The city metaphor is able to visualize test-related metrics

and test-code connection) . 5

3 Thesis point (Spotting the structures in the package hierarchy that required

attention using test coverage data) . 5

3.1 Sub-thesis point (Community detection is able to cluster test cases and code

elements simultaneously) . 6

xv

xvi List of Emphesized Statements

3.2 Sub-thesis point (Classification of structural discrepancies of tests and code

elements helps developers to improve test and code quality by providing

contextual data to restore test-code traceability links) 6

3.3 Sub-thesis point (Providing a methodology for unified graph’s discrepancy

analysis) . 6

A.1.1Definition . 105

A.1.2Definition . 105

A.1.3Definition . 105

A.1.4Definition . 105

A.2.1Definition . 106

A.2.2Definition . 106

A.4.1Definition . 107

A.4.2Definition . 107

A.4.3Definition . 107

C.1.1Definition . 115

C.2.1Definition . 117

C.3.1Definition . 118

C.3.2Definition . 118

C.3.3Definition . 118

Chapter 1

Introduction

1.1 Motivation

Software development utilizes several abstract concepts. The intricate mesh and finely

tuned properties of these entities embody the software systems. There are several proper-

ties of these which are well-known for general audiences. They are usually strongly related

to their end-user features. Some of these describe the product itself, while others capture

the implementation process. For example, users able to asses the number of available fea-

tures and the amount of time (and eventually money) required to implement them. The

layout of the GUI (and other similar attributes) is usually just the publicly visible surface

of the enormous set of software system properties. The interconnected entities could reach

virtually infinite number and complexity.

The overall goal of customers is to decrease the price, while maintaining (or even in-

creasing) the quality and the number of available features. The duration of development

and the produced gain of the process are just two of the main factors of the cost esti-

mation. Managers have to choose various measurement methods and metrics to capture

these attributes of the development process. Furthermore, naive approaches like purely

quantitative metrics are not able to express properties of intellectual work – for exam-

ple, we can not measure the value of a book by counting its pages. These issues present

enormous pressure for the managers to decrease the net development time, hence lower

the cost of the software systems. This eventually leads to the emergence of rapid and

agile development models that offer accelerated shipping of new versions for these highly

complex systems.

The responsibility of researchers is more pronounced because stakeholders should rely

on methodologies devised by these scientists to address the above-detailed issues. The

new and improved methods (and the tools based on them) should take into account the

complexity of the software systems and their rapid changes. In practice, it means we

have to find an efficient way to navigate in the system and locate those parts that could

yield some (unexpected) failures. Automatic or semi-automatic corrective and preventive

1

2 Introduction

techniques (like refactoring) can presumably improve the development time by reducing

the amount of manual labor required to inspect and fix these error-prone structures. Fi-

nally, the efficiency of resource management and task assignment should be improved by

examining adequate measurements of the development process.

1.1.1 Impact on Stakeholders’ Daily Work

These considerations have a widespread effect on almost all the different stakeholders.

Any participant has to understand and interact with the abstract construct, called the

software system, to some degree.

Students have to get familiar with not just the strictly functional concepts, but the

underlying principles used during their construction. For example, it is not enough to

know the definition of classes, they also have to understand how to design a set of them

that respect the guidelines of the object-oriented paradigm. The importance of learning

from practical examples cannot be called into question. Students have to inspect and

analyze several real-life systems during their study.

The comprehension of software systems is not only essential for the students but also

for developers. Juniors have to understand complex solutions and advanced technologies,

which are considered common practice for senior colleges. The necessity of inspecting

previously written code base also concerns non-junior developers. For example, newcomers

have to build their own mental image, which represents the structure of the system.

These mental representations tend to capture a larger and larger portion of the software

over time, but even the most experienced developers cannot grasp the whole structure,

since the software system could achieve virtually infinite complexity. The navigation in

this extensive multidimensional data is a challenging task both for the developers and

testers. They have to find relevant entities (e.g. classes, namespaces) and inspect their

functional and non-functional properties to achieve their goal more efficiently.

Finally, some stakeholders do not understand technical details because their work is

only related to source code transitively. Managers do not have to execute implementation

related tasks, but they have to assess the impact of these actions. They are usually

interested in high-level non-functional metrics, like various cost estimations.

On the other hand, customers do not want to analyze development related concepts.

Their goal is to get the required features as soon as possible and for a reasonable price.

But there are several phases of the development process that yield no new features. Hence

the accomplished work of these phases is invisible to the client. To maintain customer

confidence leaders have to present non-functional changes to the client.

Understanding the abstract structures and properties of the software is not sufficient

to achieve the common goals of stakeholders, namely, to create or improve the system.

Improvements can be accomplished either by adding new features or by fixing errors

present in already implemented ones. The comprehension of the system is imperative in

both cases, but developers and testers have to execute additional tasks to eliminate errors.

1.2 Structure of the Dissertation 3

They have to find those parts of the software that will presumably yield some unin-

tended effects. These error-prone chunks could be located in either the software or in any

of the related artifacts, like tests. The connection among these entities is rarely marked ex-

plicitly, which could yield confusion among testers and developers during the development

process.

Managers do not deal with technical details, but they have other objectives to help

achieve their common goal. They strive to perfect the development process itself. This

task often involves social skills, like tasks assignment, cost estimation, and scheduling

various activities of developer teams.

These scenarios only represent some of those challenges that arise from my daily ex-

periences as a software developer. But I hope that my research, presented in this thesis,

will help others to understand some of the underlying connections and concepts of soft-

ware development, which will eventually result in more elaborate methods to aid various

stakeholders.

These challenges could be grouped by their beneficiary, i.e. those stakeholders who get

most of the gain for their own agenda.

1.1.2 Challenges

Challenge 1: Software comprehension. Students and newcomers have to get familiar

with the large, previously created code base and understand abstract concepts of software

development, while senior developers and testers have to navigate efficiently in a usually

highly complex software structure.

Challenge 2: Fault localization. Developers and testers have to locate those parts of

the software and test suite, which could cause failures, i.e. those parts that violate well-

established principles.

Challenge 3: Cost estimation. The manager has to monitor the properties of the

development process to improve it, while quantitative measurements are not able to capture

intellectual and creative work, like software developments.

Challenge 4: Program structure analysis. Software development research often uti-

lizes a comparison of various interconnected entities. For example, software analysis fre-

quently relies on test-code connections, which are not always noted explicitly.

1.2 Structure of the Dissertation

The main results presented in the thesis are related to semi- or fully-automated analysis

of the software and its development processes. My overall research goal is to provide

meaningful insights, methods, and practical tools to help the work of stakeholders during

various phases of software development. Some of the methods and tools presented in the

4 Introduction

thesis have been utilized in Hungarian and international R&D projects as well as by the

industrial partners of the Software Engineering Department of the University of Szeged.

The thesis statements have been grouped into three major thesis points. The structure

of these and their connection to various stakeholders and their main topic are shown in

fig. 1.1. Thesis and sub-thesis points are marked with a yellow hue, while the central is

theme noted with cyan colors. The relevant chapters are depicted as gray rectangles, and

various groups of stakeholders are represented with different icons.

Figure 1.1: Structure of thesis points

T1: Measuring, predicting, and comparing the productivity of developer teams.

The contributions of this thesis point are related to the measurement and prediction of

the developer team’s productivity and will be discussed in Chapter 3.

T1.1: Productivity metrics that incorporate types of modifications possess

more expressive power. I present two new metrics [19] for productivity measurement,

namely Typed Modification (TMod) and Modification Effort (MEff). These highly cus-

tomizable source code metrics are more expressive than the count of changed source code

lines, which is commonly used to measure the productivity of developer teams or individual

developers.

T1.2: The effectiveness of productivity prediction can be increased by taking

account of different types of modifications. I was able to increase the efficiency of

the previous modification cost prediction method based on product and process metrics

using the previously mentioned novel approach to productivity measurement. I found that

my productivity estimation model [19] can achieve a significant improvement in the overall

efficiency of the prediction, from around 50% to 70% (F-measure).

T1.3: Measurement of wasted effort via developer interaction data helps man-

agers to improve the development process. In a field study [22], I analyzed the

aspect of productivity dynamics in a medium-sized J2EE project with 17 developers for

1.2 Structure of the Dissertation 5

seven months. Based on the experiments, project stakeholders identified several points to

improve the development process.

T1.4: The average of software quality (a factor of productivity) of the students

and the professional developers’ work does not show significant differences in

classroom exercise. I conducted a case study [13] where several student’s work were

compared to works created by professional developers by using non-functional properties

like software quality. The results suggest that there are not any significant differences

between the average performance of the two groups. Although, the quality of source code

produced by experts had less fluctuation.

T2: Providing immersive methods for software and unit test visualization.

This thesis point is related to the visualization of software system architectures and their

connected entities. A detailed description could be found in Chapter 4.

T2.1: Sandbox game-based techniques can enhance the visualization of soft-

ware as a virtual city. My main contribution is to connect data visualization with end-

user graphics capabilities of games. My enhanced visualization method (and its supporting

toolset) aided the developers and students to comprehend complex software systems, by

constructing a virtual city, which represents abstract, software development related con-

cepts like source code metrics.

T2.2: The degree of realism for the city metaphor in software visualization

can be measured automatically. I presented three low- and one high-level metric that

expresses various features of a virtual city used to visualize software systems to capture the

differences between a realistic and an unrealistic city. Both high- and low-level metrics

were validated by a user survey [15]. The results show that it is possible to construct

methods that can estimate the degree of realism of a generated city.

T2.3: Integration of integrated development environment and software visual-

ization can aid developers to understand software systems. I present an approach

to integrate our visualization tool, CodeMetropolis, into the Eclipse IDE. A set of plug-ins

were implemented that were able to connect these two pieces of software. Hence we be-

came capable of integrating an elaborated visualization technique without disturbing the

daily routine of developers.

T2.4: The city metaphor is able to visualize test-related metrics and test-code

connection. I extended the metaphor to include properties of the tests related to the

program code using a novel concept [20]. This allowed the combining two previous ap-

proaches: a method to express test quality in terms of metrics, and visualization of code

related metrics in the CodeMetropolis framework.

T3: Spotting the structures in the package hierarchy that required attention

using test coverage data. In this thesis point, I summarize my results considering test

6 Introduction

coverage analysis and its usage to improve the quality of (unit) tests and their subjects.

For further details see Chapter 5.

T3.1: Community detection is able to cluster test cases and code elements

simultaneously. To automate various test and code analysis tasks, I employ a clustering

algorithm that can group test and code items. This method allowed the simultaneous

inspection of tests and their subjects and aided researchers to conduct further analyses.

T3.2: Classification of structural discrepancies of tests and code elements

helps developers to improve test and code quality by providing contextual data

to restore test-code traceability links. This work addressed the quality of unit test

suites from a novel angle. My approach was to compare the physical organization of

tests and tested code in the package hierarchy to what can be observed from the dynamic

behavior of the tests. Guidelines through examples for refactoring the problematic tests

were provided based on measurements of large open-source systems with notable test

suites.

This data was interpreted as contextual information for a semi-automatic method for

recovering test-to-code traceability links. It is based on computing connections using static

and dynamic approaches, comparing their results and presenting the discrepancies to the

user, who will determine the final traceability links based on the given information.

T3.3: Providing a methodology for unified graph’s discrepancy analysis. I pre-

sented a methodology for a unified graph’s discrepancy analysis, named UniGDA. It is

based on the previously defined domain-specific discrepancy detection techniques, which

were extended to arbitrary graphs by providing several domain-independent similarity

functions and patterns.

The structure of the rest of my thesis is as follows. Basic concepts and terms are

elaborated on along with the related works in chapter 2. I present my detailed results in

chapters 3 to 5. Finally, I conclude my thesis with the list of publications in chapter 7,

summarize my results, and briefly introduce my plans for further work in chapter 6.

Chapter 2

Preliminaries

This chapter contains a brief introduction to the main topics detailed in subsequent chap-

ters. My goal is not to give an in-depth evaluation of the state of the art techniques and

research, but to provide (informal) definitions of core concepts and general notions. The

knowledge presented in this section aims to help the reader to understand the technical

details discussed in chapters 3 to 5.

In the first section, I introduce the core concepts required to understand the elabora-

tions in chapter 3, which will support my results for thesis point 1. I listed all the general

notions related to chapter 4 in the next section. These will help the reader to understand

the research connected to thesis point 2. Finally, the definitions in the last part of this

chapter aim to cover concepts related to chapter 5 and thesis point 3.

2.1 Productivity Measurement and Prediction

As stated earlier, the first main topic of this thesis is related to cost estimation, more

precisely, productivity measurement. Productivity describes various measures of the effi-

ciency of production. To understand the compound concept of productivity, we have to

inspect its constituents and their relations. Often (yet not always), a productivity measure

is expressed as the ratio of an aggregated output to a single input or an aggregate input

used in a production process, i.e., output per unit of input [81]. If they are interpreted

correctly, these components are indicative of productivity development and approximate

the efficiency with which inputs are used in an economy to produce goods and services.

The Organisation for Economic Co-operation and Development (oecd)1 defined [68]

so-called workforce productivity as “the ratio of a volume measure of output to a volume

measure of input”.

1oecd is an intergovernmental economic organization with 36 member countries, founded in 1961 to
stimulate economic progress and world trade.

7

8 Preliminaries

2.1.1 Measuring Productivity

The simple and straightforward definition masks the underlying complexity of productiv-

ity measurements: that these metrics rely on the assessment of resources used and on

the amount of gain achieved during the process. Finding the exact definition for these

underlying metrics is hard for those professions, which mostly yield non-physical results

(like software systems). Hence, the area of cost and productivity estimation is a recur-

ring topic in the software engineering literature. Productivity research is mainly centered

around productivity influence factors. Traditional factor-based models for measurement

and prediction include Putnam’s slim, Albrecht’s fp method of estimation, the COnstruc-

tive COst MOdel (cocomo and cocomo II) [32]. One may distinguish technical and soft

factors that influence productivity [103]. We refer the interested reader to the survey of

Trendowicz and Münch [95]. Different researchers and stakeholders use various definitions

of input (required effort) and output (achieved gain) in practice. For example, Tóth,

G. et al. [93, 94] used a quantitative approach. They defined input as the net development

time required to change source code lines, while the output was the number of changed

lines. This definition can be interpreted as a domain-specific version of the general one

defined by oecd.

We will use a similar definition during our research. For the rest of this thesis, produc-

tivity means workforce productivity, i.e. the ratio of input and output for the process (the

software development itself), where the input is measured as the time spent to accomplish

the result. These considerations are depicted with the following informal equation.

productivity =
output

input
=

gain

effort
=

gain

time spent
(2.1)

2.1.2 Impact Analysis

Productivity is highly connected to changes made on the software. For example several

factors identified by Finnie, Wittig, and Petkov [40] are directly affected by source code

modifications.

Impact analysis aims to capture the underlying principles and properties of these modi-

fications. It is defined by Bohner and Arnold [27] as identifying the potential consequences

of a change, or estimating what needs to be modified in order to accomplish a change. In

contrast, Pfleeger and Atlee [71] focus on the risks associated with changes and state that

impact analysis is the evaluation of the many risks associated with the change, including

estimates of the effects on resources, effort, and schedule.

Both of these are associated with change management processes. Each change to the

software is expensive and risky, but it also has the potential for generating revenue because

of desired new functionality or cost savings in future maintenance. Hence the goal of much

research is to develop more reliable impact analysis methods and tools [77, 28, 33].

2.1 Productivity Measurement and Prediction 9

The work presented in this thesis is marginally connected to impact analysis. We

were using the modifications in the source code to asses one of the underlying metrics of

productivity called the output or gain. More precisely, we applied the same categorization

of changes according to the component they affect [3].

2.1.3 Genetic and Evolutionary Algorithms

During our experiment, we used various machine learning algorithms to improve the per-

formance of the productivity prediction model. Machine learning is the scientific study of

algorithms and statistical models that computer systems use in order to perform a spe-

cific task effectively without using explicit instructions, relying on patterns and inference

instead [58]2.

We applied two types of supervised and reinforcement learning, namely a decision

tree [93] and an evolutionary algorithm (backed with a genetic representation) [93, 19].

Supervised learning was used to predict future productivity for a development team, be-

cause it builds a mathematical model of a set of data that contains both the inputs (various

process and product metrics) and the desired outputs (the value of productivity). At the

same time, reinforcement learning aims to fine-tune this prediction model since the algo-

rithm ought to take actions in an environment to maximize some notion of cumulative

reward (performance of prediction model).

Decision tree learning is a method commonly used in data mining [73]. The goal is to

create a model that predicts the value of a target variable based on several input variables,

in our case, to predict future productivity based on various metrics. A tree is built by

splitting the set of observations, constituting the root node of the tree, into subsets -

which constitute the successor children. This process is repeated on each derived subset

recursively. The recursion is completed when the subset at a node has all the same values

of the target variable (i.e.the future productivity), or when splitting no longer adds value

to the predictions [80, 72].

In artificial intelligence, an evolutionary algorithm (ea) is a subset of evolutionary

computation, a generic population-based metaheuristic optimization algorithm [101]. It is

a candidate solution to the optimization problem. The algorithm uses mechanisms inspired

by biological evolution, such as reproduction, mutation, recombination, and selection.

The evolution of the population then takes place after the repeated application of the

above operators [64]. The genetic algorithm is the most popular type of ea. It is also

inspired by nature, namely genetics. It represents each individual with a set of genes,

its genotype, which could be indicating something about the problem being solved, and

it applies operators such as recombination and mutation to modify the genotype of the

individuals [83].

2The definition “without being explicitly programmed” is often attributed to Arthur Samuel, who coined
the term “machine learning” in 1959, but the phrase is not found verbatim in this publication, and may
be a paraphrase that appeared later.

10 Preliminaries

2.2 Game-based Software Visualization

People use different mental processes to comprehend the world. Some of them need num-

bers, others use abstract formulas, but most of us like to see the information visualized as

colors, shapes, and figures. Visualization is any technique for creating images, diagrams,

animations, or any other visual content to communicate a message or information. The

use of visualization to present information is not a new phenomenon. It has been used in

maps, scientific drawings, and data plots for over a thousand years [97, 96].

A lot of data visualization techniques and tools were designed and implemented in

software engineering research and practice, as well. There are traditional visualization

tools like Rigi [107], sv3D [63] and SHriMP Views [86], which are built on innovative

ideas, but often it is difficult to interact with them by current standards, and they usually

fall behind in terms of graphics compared to today’s computer games, for instance.

Besides that, there already exist a number of sophisticated software tools that are able

to visualize the huge amount of data collected by collaborative tools (like SourceForge[]

and Github[]), for instance, Gource [46], Logstalgia [60] and StarGate [62]. However, most

of these tools use abstract shapes and simple graphical primitives like charts and vertex

graphs.

Finally, several methods use artificially generated copies of real-life entities to encode

their message. The most closely related approaches to our method and its supporting tool

discussed in this thesis are CodeCity [106] and EvoSpace [59], which use the analogy of

skyscrapers in a city. Despite their appealing appearance and great potential in general,

these tools still use relatively low fidelity graphics compared to today’s most advanced

computer games. CodeCity simplifies the design of the buildings to a box with height,

width, and color. The quantitative properties of the source code – called metrics – are

represented with these attributes. In particular, each building represents a class where

height shows the number of methods, width indicates the number of attributes, and color

shows the type of the class. The buildings are grouped into districts as classes are tied

together into namespaces. The diagram itself resembles a 3D bar chart with grouping.

EvoSpace uses this analogy in a more sophisticated way. The buildings have two states:

closed – when the user can see the large scale properties like width and height, and open

– when we can examine the low, small scale structure of the classes, see the developers

and their connections. It also provides visual entity tagging and quick navigation via the

connections and on a small overview map.

There are several types of classifications and grouping of the various visualization

techniques. The research presented in this thesis describes methods that yield interac-

tive, non-static representations of the software. It means that the user can change the

visual appearance of the moving images in real-time to inspect various parts of it. Our

technique has several applications starting with scientific, through educational, to product

visualization. Either of these could aid further visual analysis of the data.

2.2 Game-based Software Visualization 11

2.2.1 Underlying Metaphors

The central role of metaphors in human languages, which are emphasized by several au-

thors like Deutscher [36], reveals deeper insights about how we process information. Sim-

ilarly to phrase and word formation, all of these visualization methods use some kind of

underlying representation to encode their information. We call these the metaphors on

which the visualization builds.

Simple metaphors are sometimes more difficult to notice since they are more entwined

with our thought processes. For example, consider a simple bar chart that represents the

temperature for each day in a week. We could say that “today the temperature is higher

(or lower) than yesterday”. However, there is not any fundamental connection between

cold-low and warm-high. These relations are made by our abstract representation and

eventually get encoded into the underlying metaphor of the chart itself.

More complex metaphors like location and the interconnectivity of various shapes are

present in several graph-based visualizations, like flow-charts and uml diagrams. Realistic

metaphors are commonly used to present the results of different engineering simulations,

for example, thermograms, which represents temperature with false coloring. Real-object

based visualization is often used to capture abstract concepts and properties frequently

used in software development [57, 106, 59].

2.2.2 Phases of Visualization

We used the 4-step division of visualization introduced by Upson et al. [98]. These steps,

which are common for each visualization process, are filtering the data, mapping it to the

appropriate graphical items, rendering the image and finally displaying it to the user.

Filtering step Software analysis usually produces large quantities of information, which

is hard to understand and display even with multi-dimensional visualization techniques.

During this step, we select the data that should be inspected during the visualization.

Our goal was to provide a general yet practical input data structure.

Mapping step There are several stakeholders in software development interested in

different aspects of the process. For example, developers tend to care about the low-level

connection between source code items, while leaders are usually interested in higher-level

metrics like maintainability. During the mapping step, the user can specify relationships

between data and metaphor level items and their properties, based on their own agenda.

We will use the term geometry first in a broader sense, then in the commonly accepted

one. We will refer to the collection of the object description, which can determine the

visual appearance of the graphical items as a geometry. For example, in the case of a

simple bar chart, we will store the index, the color, and the height of the bars. For more

complex metaphors (like the city-metaphor), the geometry could contain the object graphs

of the whole city.

12 Preliminaries

Rendering step In the rendering step, we use the description of graphical items pro-

duced by the mapping step to generate the visualization, which is ready to display for the

user.

Displaying step The final step of visualization is to display the result to the user, who

can inspect and understand its meaning. This step usually produces more data and open

questions, which could trigger a new cycle of the visualization process.

2.2.3 Extending Third-party Application

It is not cost-efficient (and probably impossible) to meet all the needs of the users with

a single software system. There will always be special requirements and unorthodox use

cases. Fortunately, several techniques allow the end-users to extend the set of the available

functionality of the system. There are not any legal obstacles to do so. For example, a

popular game, called Minecraft [2], explicitly allows and encourages the users to extend

the game in its license agreement [1].

There are various methods to provide end user-level extensions. During this, we will

discuss two of them. The first is the so-called modification (or mod for short). It means

that the user needs to disassemble the internal structure of the software, modify it, and

re-assemble the extended version. A good example is the previously mentioned game,

Minecraft, but several other games offer this kind of extendibility. Note that in this case,

the vendor does not provides very little to no additional support, besides declaring its

legal status in the license agreement.

The other technique is more common among non-game software. In this case, the ven-

dor provides a full-blown plug-in architecture, which allows users to add and modify fea-

tures without disassembling the system. For example, Eclipse [38], which is a well-known

integrated development environment, has a thin core, and almost every other feature is

provided by external plug-ins.

2.2.4 Video Game Genre

The video game genre is a classification assigned to a video game based on its gameplay

interaction rather than visual or narrative differences.[9] The video game genre is defined

by a set of gameplay challenges and is classified independently of their setting or game-

world content, unlike other works of fiction such as films or books. For example, a shooter

game is still a shooter game, regardless of where or when it takes place.[5, 52]

From the myriad of genres, we will concentrate on two of them: role-playing and open

word or sandbox games. In role-playing video games (rpg), the player controls the actions

of a character (and/or several party members) immersed in some well-defined world. For

example, in the case of Minecraft, the player impersonates an explorer, who has to sur-

vive in the virtual world by crafting new tools and defeating monsters. Other significant

2.3 Clustering Test and Code Elements 13

similarities with pen-and-paper games include developed story-telling and narrative ele-

ments, player character development, complexity, as well as replayability and immersion.

In Minecraft, there are various achievements that the player can reach by obtaining certain

items or executing specific actions.

However, these achievements do not have a strict order, and all of them are optional,

which highlights another essential property of Minecraft from our point of view, namely

its open-world features. In video games, an open world is a virtual world in which the

player can explore and approach objectives freely, as opposed to a world with more linear

gameplay. An open world is a level or game designed as nonlinear, with open areas many

ways to reach an objective. In Minecraft could be anything from building a tree-house or

to constructing an automated monster butchery.

These qualities of Minecraft make it ideal for extension with new features, like com-

patibility with other software [11], which is a similar approach to our visualization related

research.

2.3 Clustering Test and Code Elements

There is a large body of work in the area of code smells, and researchers only recently

started to apply similar concepts to check software tests and test code for quality issues.

For tests that are implemented as executable code, Van Deursen et al. introduced the

concept of test smells, which indicates poorly designed test code [35], and listed 11 test code

smells with suggested refactorings. Our work best relates to their Indirect Testing smell.

Some follow-up researches use these ideas in practice. For example, Breugelmans and Van

Rompaey present TestQ, which allows developers to explore test suites and quantify test

smelliness visually. They also demonstrate its use on test suites for both C++ and Java

systems [29].

Our work significantly differs from these approaches because we are not concerned

about code-oriented issues in the tests but about their dynamic behavior and relationship

to their physical placement. We achieved this by comparing different groupings (clustering)

of test cases and code elements.

2.3.1 Best practices of unit test writing

Unit testing is a low-level testing activity that has a close relation to the source code of

the system under test. During this test, we search for defects in and verify the correct

functioning of software components (modules, programs, objects, classes, etc.), which are

separately testable [25]. There are many guidelines for how to write and organize unit tests

(e.g.[50, 29, 99]), but most of them start by emphasizing two basic test design concepts:

“unit tests should be isolated” and “test only one code unit at a time” [50]. Besides,

unit testing frameworks – such as JUnit[55], which is part of the de facto unit test family

of frameworks – have naming and packaging conventions on how unit tests should be

14 Preliminaries

organized with respect to their intended goal (unit to test). Also, since different build

systems and development environments suggested similar conventions, these eventually

became best practices.

One of these conventions is about how tests are placed into logical or physical modules

(such as packages in the case of Java and folders on the file system). Most environments

logically group test and program code together, while physically separating them from

each other. This can mean, for instance, that program code and the associated tests are

put in the same logical package or namespace, while they are in separate folders on the

file system.

For the purposes of the research presented in this thesis, we thus assume that a well-

designed unit test has the following two essential properties.

1. A unit test should exercise the unit and only the unit it was designed for. Execution

of code in other units on which the tested one is dependent should be eliminated

using stubs and mocks.

2. Unit tests should follow a clear naming and packaging convention, which reflects

both the purpose of the test and the structure of the tested system, providing clear

traceability between the test cases and the tested units.

2.3.2 Code Coverage

The term code coverage in software testing denotes the amount of program code which is

exercised during the execution of a set of test cases on the system under test. This indicator

may simply be used as an overall coverage percentage, a proxy for test completeness, but

typically more detailed data is also available about individual program elements or test

cases. Code coverage measurement is the basis of several software testing and quality

assurance practices including white-box testing [69], test suite reduction [75], or fault

localization [75].

It includes various granularity levels of the analysis (such as component, method, or

statement) and different types of “exercised parts of program code” (for instance, individ-

ual instructions, blocks, control paths, data paths, etc.). The term code coverage without

further specification usually refers to statement level analysis and denotes statement cov-

erage. Statement coverage shows which instructions of the program are executed during

the tests and which are not touched. Coarser granularity level coverage criteria (such as

methods, classes, or components) are also common, for instance, when the system size and

complexity do not allow for a fine-grained analysis. Also, often it is more useful to start

the coverage analysis in a top-down fashion by starting from the components that are not

executed at all, extend the tests to cover that component at least once, and then continue

the analysis with lower levels. In particular, method level coverage is a good compromise

between analysis precision and the ability to handle large systems.

2.3 Clustering Test and Code Elements 15

Figure 2.1: An example of functional units

In our research, we primarily deal with this granularity, that is, we treat procedures

(Java methods in particular) as atomic code elements that can be covered. At this level

“covered” means that the method has been executed at least once during the tests, but

we do not care about what instructions, paths, or data have been exercised in particular.

Code coverage has applications with high significance in academic researches. For

example, coverage-driven test case generation and code coverage-based fault localization.

In the second case, the program elements are ranked according to how suspicious they are

to contain the fault based on test case coverage and pass/fail status.

Functional Unit

Similarly to code metrics, test-related metrics can be defined for the different code and

test artifacts [49, 39]. For example, a popular test-related metric is the previously defined

code coverage, which expresses the percentage of how well the code elements are covered

by the test cases. Code coverage can be computed at different levels: a single global value

can express to what extent all the test cases are able to check the whole code base; a value

can be assigned to method-test case pairs to show detailed coverage; or it can be assigned

to functional units formed from pairs of code and test groups [89].

Functional units are organized around the functionalities (features) of the software.

For each feature there are test cases created to test the given functionality, we call these

the test groups. Similarly, the features were implemented in certain classes and methods,

which constitute the code group. A functional unit consist of the code group and the test

group of the same feature, while a cross-functional unit consists of a code group and a

test group of two different funcionalities [89].

As an example, consider a class called TextFile with only two methods, read()

and write() implementing input and output features, which are tested by the test cases

16 Preliminaries

testRead and testWrite, respectively (Figure 2.1). This enables us to define two func-

tional units: input-input with testRead and read(); output-output with testWrite and

write(); as well as two cross-functional units: input-output with testRead and write();

output-input with testWrite and read().

In a functional unit, a code group implements some functionality and the associated

test group is intended to verify it. Analyzing the system and the tests with this kind of

division can be an aid in test selection, prioritization, and test suite reduction activities [89,

54].

2.3.3 Traceability recovery in unit tests

Several methods have been proposed to recover traceability links between software artifacts

of different types, including requirements, design documentation, code, test artifacts, and

so on ([85, 33]). The approaches include static and dynamic code analysis, heuristic

methods, information retrieval, machine learning, and data mining based methods.

We used the previously introduced comparison of various tests and code clustering to

recover test-to-code traceability. The purpose of recovering this is to assign test cases to

code elements based on the relationship that shows which code parts are tested by which

tests. This information may be critical in development, testing, or maintenance, as already

discussed.

Our work concentrated on unit tests, in which case the traceability information is

mostly encoded in the source code of the unit test cases, and usually, no external doc-

umentation is available for this purpose. Traceability recovery for unit tests may seem

simple at first ([23, 34, 43]), however, in reality it is not ([42, 56]).

Bruntink and Van Deursen et al. [30] illustrated the need and complexity of the test-

to-code traceability. They investigated factors of the testability of Java systems. The

authors concluded that the classes dependent upon other classes required more test code,

and suggested the creation of composite test scenarios for the dependent classes. Their

solution heavily relies on test-to-code traceability relations.

Rompaey and Demeyer et al. [74] evaluated the potential of six traceability resolution

strategies (all are based on static information) for inferring relations between developer

test cases and units under test. The authors concluded that no single strategy had high

applicability, precision, and recall. However, combining these approaches with strategies

relying on developer conventions (e.g.naming convention) and utilizing program-specific

knowledge (e.g.coding conventions) during the configuration of the methods provided bet-

ter overall results.

In summary, most of the mentioned related works emphasize that strong test-to-code

traceability links are difficult to derive from a single source of information and combined

or semi-automatic methods are required. Our research follows this direction, as well.

2.3 Clustering Test and Code Elements 17

2.3.4 Clustering and Classification

Tengeri et al. proposed an approach to group related test and code elements together, but

this was based on manual classification done by the testers and developers [89]. In the

method, various metrics are computed and used as general indicators of test suite quality,

and later it has been applied in an in-depth analysis of the WebKit system [100].

There are various approaches and techniques for automatically grouping different items

of software systems together based on their structural or behavioral properties. Mitchell

and Mancoridis [65] examined the Bunch clustering system, which, unlike other software

clustering tools, uses search techniques to perform clustering. Schwanke’s ARCH tool [78]

determined clusters using coupling and cohesion measurements. The Rigi system [66], by

Müller et al., pioneered the concepts of isolating omnipresent modules, grouping modules

with common clients and suppliers, and grouping modules that had similar names. The

last idea was followed up by Anquetil and Lethbridge [6], who used common patterns in

file names as a clustering criterion.

The concept of community structure arises from the analysis of social networks in

sociology. Community structures can be identified in many other real-world graphs and

have applications in biology, economics, and engineering, among others. Recently, efficient

community detection algorithms have been developed, which can cope with extensive

graphs with millions of nodes and potentially billions of edges [26]. The application of

these algorithms to software engineering problems is emerging. Hamilton and Danicic [51]

introduced the concept of dependence communities on program code and discussed their

relationship to program slice graphs. They found that dependence communities reflect the

semantic concerns in the programs. Šubelj and Bajec [87] applied community detection

on classes and their static dependencies to infer communities among software classes.

We performed community detection on method level, using dynamic coverage infor-

mation as relations between production code and test case methods, which we believe is

a novel application of the technique.

18 Preliminaries

Chapter 3

Measuring, Predicting, and

Comparing Productivity of

Developer Teams

In this chapter, we present the researches related to the productivity of development teams.

The structure of the related thesis point and its connections to various stakeholders and

topics are shown in fig. 3.1.

Figure 3.1: Structure of thesis points

Productivity describes various measures of the efficiency of production. We used the

previously introduced definition of productivity, where it is expressed as the ratio of ag-

gregate output to a single input or an aggregate input used in a production process, i.e.,

output per unit of input.

Two major issues that need to be addressed during software development from the

manager’s point of view: cost prediction and wasted effort handling. During the plan-

ning, development, and maintenance of software projects, one of the main challenges is

19

20 Measuring Productivity

to accurately predict the modification cost of a particular piece of code. Furthermore,

several parts of the source code are usually re-written due to imperfect solutions before

the code is released. This wasted effort is of central interest to the project management

to assure on-time delivery. Both of these issues are related to challenge 3. An overview of

our research phases are shown on fig. 3.2.

Figure 3.2: Phases of our productivity related researches

Several methods are traditionally applied to address these issues, and many of them

are based on static code investigation. We experimented with the combined use of product

and process metrics to improve cost prediction. The method depends on several important

parameters that can significantly influence the success of the prediction model. We applied

machine learning to increase the accuracy of the prediction and fine-tune our model. In the

following sections, we describe the usage of search-based methods (one genetic algorithm

in particular) to calibrate these parameters.

To address the second issue, we propose a productivity analysis method where pro-

ductivity is expressed through dynamic profiles – the so-called Micro-Productivity Profile

(mpp). They can be used to characterize various constituents of software projects, such as

components, phases, and teams. We present and evaluate profiles of two important axes

of the development process: by milestone and by application layers. mpp can be an aid

to identify wasted effort, to take project control actions, and to help in planning future

projects.

For the first set of experiments, four industrial projects were analyzed, and the accuracy

of the predictions was compared to previous results. We found that by calibrating the

parameters using search-based methods, we could achieve significant improvement in the

overall efficiency of the prediction, from about 50% to 70% (F-measure). During the second

phase of the experiments, we measured the productivity of a medium-sized J2EE project.

We collected detailed traces of developers’ actions using an Eclipse IDE plug-in for seven

months of software development throughout two milestones. Based on the experimental

results, project stakeholders identified several points to improve the development process.

It is also acknowledged that profiles show additional information compared to a naive

3.1 Defining Weighted Modification-based Productivity Measure 21

diff-based approach.

Besides measuring the productivity of professional development teams, it is crucial to

understand various aspects of their roots, like educational background. There is a widely

accepted belief that education has a positive impact on the improvement of expertise in

software development. The studies in this topic mainly focus on the product, more closely

the functional requirements of the software. Besides these, they often pay attention to

the individual so-called basic skills like abstract and logical thinking. However, we cannot

find any references where the final products of classroom exercises were compared by

using non-functional properties like software quality. However, these attributes are often

used during real-life projects to asses their values. To address this issue, we introduced a

case study where several students’ works are compared to works created by professional

developers. The model that is used to measure the various aspects of software quality,

is also known in the industrial sector. Hence it provides a well-established base for our

research.

The notion of productivity is strongly related to cost estimation and resource man-

agement. One of the tasks in software cost estimation, especially in the evolution phase,

is to predict the cost (required effort) of modifying a piece of code. A possible approach

for such modification effort prediction is to use various software attributes from historical,

development data and from the current version of the software. The attributes can be

expressed in the form of software metrics, both product, and process. Product metrics are

calculated by performing the static analysis of the software (a simple example is the logical

lines of code), while process metrics can represent time-related quantities collected during

project implementation (for example, the net development time of the modifications).

Since these two kinds of metrics capture different aspects of the software development

(i.e., the product and the process), our assumption was they can encode more information

when utilized together. In the case of productivity analysis, our experiments showed that

by combining these two types of metrics into a single model, managers were able to increase

the accuracy of their modification cost predictions.

Our research combines several granularity levels: it is built upon fine-grained produc-

tivity data to model it as Micro-Productivity Profile, but enables to reason about varying

levels of software development productivity observation.

3.1 Defining Weighted Modification-based Productivity Mea-

sure

In this section, we elaborate on the experiments that let us define a more expressive pro-

ductivity measurement then the previously used ones, which are mostly based on counting

the lines of source code. We used these new metrics to investigate further productivity

dynamics, which will eventually aid the manager during cost analysis (challenge 3).

We used the following process (shown in Fig. 3.3) to define and fine-tune productivity

22 Measuring Productivity

measures. The process contains two steps: in the measurement phase, we collect all

necessary data to calculate productivity metrics; then, we applied a genetic algorithm to

fine-tune these metric definitions.

The experiment starts with a measurement phase where the data is collected from

various sources: the metrics about the evolution of the software, the source code from

the svn version controlling system, and the metrics estimations which were given by the

project manager. This phase has two main tasks; to collect and calculate the process and

product metrics and to detect and group the modifications of the source code between the

revisions. The metrics and the modification groups are sent to the genetic algorithm, which

prepares a population of individual entities. During the initial set-up of the population and

the evolution steps, two metrics are calculated: Typed Modification (TMod), which was

defined as the weighted count of modifications between two revisions; and Modification

Effort (MEff), the ratio of TMod and the net development time of these modifications.

This latter one is used to measure productivity.

productivity =
output

input
=

gain

effort
=

TMod

net development time
= MEff (3.1)

Afterward, the prediction model (targeting MEff) is evaluated, and its F-measure

value is used as fitness to rank the individuals in the population and select the best

entities for breeding. As the final step of the evolution cycle, the new weights of the

modification are calculated, and the model is updated. When the precision reaches an

appropriate value, the ga stops, and a new, enhanced model is built using the weights of

the best entity in the final population. This MEff prediction model is the output of the

execution of the framework.

Figure 3.3: Overview of the experiment

The initial data was collected during the experiment from about 800 revisions, in an

approximately 75 days long period.1 Both r&d and industrial projects were analyzed.

The majority of their codebases were written in Java language using the Java ee 6 virtual

machine and the Seam 2 framework.

1Altogether 2200 records were collected as a learning set.

3.1 Defining Weighted Modification-based Productivity Measure 23

3.1.1 Modification Effort Prediction

In this phase of research, our goal was to predict the level of productivity (high, medium,

low) based on various product and process metrics of the system.

Our research is based on the work of Tóth et al.[93]. Both prediction models [19] used

the same process and product metrics together per source file basis as separated entities.

Effectively Changed Lines Of Code (ecloc) defined as the delta calculated from the

SVN, the number of added, deleted, or modified lines by comparing the previous version of

the class with the current version. Tóth et al.[93] defined the metric Level of Modification

Complexity (lmc) as the ratio of dt and ecloc for the next change of the file or class,

which embodied the target of prediction in the previous model. We can rephrase their

definition by using the common notion of productivity.

productivity =
output

input
=

ecloc

dt
= lmc (3.2)

To extend the previous framework [93], a new metric called Modification Effort (MEff)

was defined and was calculated as follows. At first, the modifications were grouped,

based on the target entity (e.g.: method) and the preformed action (e.g.: creation) [3].

The weighted count of these modifications was called Typed Modification (TMod). This

expresses the different amounts of the developer’s effort used in the modifications. Finally,

the ratio of the net development time with the TMod is the MEff metric. The weight

was defined based on the groups of modifications. We inspected the modification groups

listed in table 3.1.

class method data member
creation • • •
deletion • • •
accessibility change Line 1 Line 5 Line 3
prototype change Line 5
return type change Line 10
size change Line 7
type change Line 2

Table 3.1: Inspected modification per code element

We also provided some examples in listing 3.1 and listing 3.2.

Listing 3.1: Original version

1 public class LogOnlyModeControl extends ViewlessContro l<LogOnlyModeModel> {
2 public stat ic St r ing NAME = ” log−only ” ;

3 private PartAccessor partAccessor ;

4

5 public LogOnlyModeControl (LogOnlyModeModel model , PartAccessor a c c e s s o r) {
6 super (model) ;

24 Measuring Productivity

7 this . par tAccessor = a c c e s s o r ;

8 }
9

10 public void logDenied () {
11 ac t i v i tyMon i to r . l og (new ModeEvent (NAME, ModeEvent .DENIED)) ;

12 }
13 }

Listing 3.2: Modified version

1 private� class LogOnlyModeControl extends ViewlessContro l<LogOnlyModeModel> {
2 public stat ic Double � NAME = 42 ;

3 public � PartAccessor partAccessor ;

4

5 protected � LogOnlyModeControl (LogOnlyModeModel model �) {
6 super (model) ;

7 this . load () �

8 this . i n i t () �

9 }
10

11 public Boolean � logDenied () {
12 return ac t i v i tyMon i to r . l og (new ModeEvent (NAME, ModeEvent .DENIED)) ; �

13 }
14 }

Instead of the lmc, Meff was used as the target function. In doing so, we could

distinguish details about the modifications, which was impossible in the previous model.

productivity =
output

input
=

TMod

dt
= MEff (3.3)

Similarly to the previous experiment, we used a machine-learning algorithm to con-

struct the prediction model. The Weka framework [53] machine learning and the 10-fold

cross-validation utility were used to implement and evaluate this model. We chose the

F-measure as the fitness value, which is the harmonic mean of precision and recall.

3.1.2 Measuring Developer Productivity with Modification Effort

A crucial component of measuring the overall developer productivity is to define a com-

parable measure of the effort spent on various modifications. We modeled Modification

Effort during software development as the ratio of profit (program code) and time spent

to produce it [19]. There are several ways to express the profit, possibly the most trivial

metric is the count of produced lines of code. However, it hides key differences between

modifications. To overcome this disadvantage, we chose to replace this metric. We cal-

culated profit using the number of higher-level modifications, like method creation or

deletion. This added an abstraction level that made a difference between code constructs,

3.1 Defining Weighted Modification-based Productivity Measure 25

which required a different effort but were written in the same number of lines. This metric

provides a more detailed view of the various modifications in the source code than other

traditional metrics based on the changed lines of code [93].

Listing 3.3: Previous version (1)

1 class In tSe t {
2 protected double FindGreater (double l i m i t) {
3 for (int i = 0 ; i < Items . Count () ; i ++) {
4 double c u r r e n t = Items [i] ;

5 i f (c u r r e n t > l i m i t) {
6 return c u r r e n t ;

7 }
8 }
9 }

10 }

Listing 3.4: Current version (2)

1 class In tSe t {
2 protected int � FindGreater (double l i m i t) {
3 for (int i = 0 ; i < Items . Count () ; i ++) {
4 int � c u r r e n t = Items [i] ;

5 i f (c u r r e n t > l i m i t) {
6 return i ; �

7 }
8 }
9 }

10 }

To better understand the meaning of these new metrics, let us consider the following

example. For the formal definition of MEff and TMod see appendix A.2. MEff is

a number that express the average amount of performed modification during a unit of

time. The code example in listing 3.3 will be used to illustrate the measures for expressing

programmer productivity.

The modified code in listing 3.4 includes two changes over the previous version, occur-

ring in three separate lines. The first change refers to a “return type change” in line 2,

while the second one is a “method implementation change” in line 4 and 6. For illustration

purposes, let us assume that it takes 8 minutes for the programmer to implement both

modifications together.

Based on these values, the modification effort can be calculated by taking the ratio of

the sum of the modification and the net development time:

1 return type ch. + 1 method imp. ch.

8 min
= 0.25

Notice that it is different from the naive method, which only counts the changed lines.

We chose to use the modification effort because, during the implementation, developers

26 Measuring Productivity

consider methods and classes as logical units and not individual lines of source code.

3.1.3 Determining the Weights

During the next phase of the research, we defined two variations of the original prediction

model. These only differ in the weights of the modification groups set to calculate the

MEff metric. In the case of the base (or initial) model, these parameters are preset and

do not change. However, in the case of the enhanced version, we use a genetic algorithm

to fine-tune the weights of the modification. The initial weight-vector was set by our

developer experience. We assumed that the genetic algorithm should converge to the

suitable weights, which should provide a more accurate estimation [31].

The individuals were identified by their chromosome, which is a vector over the real

numbers with the same dimension. In the model, each chromosome represents a weight-

vector, and every element determines the weight of a single modification group.

The fitness value is calculated for each individual by evaluating the prediction model

with the weights defined in that particular individual. The final goal of the ga is to

improve the precision of the model. The prediction model in previous experiments [93]

was not enhanced with the ga, but it was evaluated using the F-measure metric. Thus

the F-measure was chosen to be the fitness value of the ga.

We used the later described mutation operator to produce an initial population. This

operation was repeatedly applied to the weight vector of the base model to create the

appropriate amount of random elements.

Evolution starts with the breeding phase. The ga selects the two best entities with

its fitness value. The crossover operator will only apply to this pair. Every call of the

crossover operator produces exactly one offspring. The algorithm repeats the operation

to produce more than one child.

We used a uniform crossover logic. During the crossover, the algorithm iterates via the

elements of the chromosome (vector) and randomly chooses an element from one of the

two parents. Every element has the same chance to be copied into the child’s chromosome

[88].

The chromosomes of the children are subject to mutation. During the mutation, some

elements (weights) of the chromosome change. A lower limit and an upper limit were

preset for the weights of the groups. The algorithm gets half of the distance between the

limits and the currently selected weight and sets the current value either to the lower or

to the upper half point. This way, the two limits are never exceeded. Then, the mutated

child is inserted into the population.

The individuals with the worst fitness value are killed (removed from the population)

to maintain the size of the population. This way, the current evolution step is completed,

and the algorithm proceeds to the next generation [64, 64].

The above mentioned ga parameters and their values are shown in table A.1 located

in the appendix.

3.2 Estimation and Reduction of Superfluous Effort 27

Project1 Project2 Project3 Project4

base model 59,8000% 47,0000% 44,2000% 45,3000%
enhanced model 75,2630% 66,6425% 67,4835% 60,2791%

Table 3.2: Fitness values of prediction per project

3.1.4 Evaluation

As shown in fig. 3.4 and table 3.2, the fitness value (F-measure) of the prediction grows

in every case. The average grows about 18 percent (table 3.3). It is also relevant that in

the worst case, our model proves to be better by about 16 percent.

Figure 3.4: Fitness values of prediction per project

worst best average median

base experiment 44,2000% 59,8000% 49,0750% 46,1500%
enhanced model 60,2791% 75,2630% 67,4170% 67,0630%
difference 16,0791% 15,4630% 18,3420% 20,9130%

Table 3.3: Comparison of models

These data support the sub-thesis points 1.1 and 1.2, since our model gives a better

estimation from the beginning of the evolution and the population average fitness value is

higher in every generation, and ga can further improve its precision.

3.2 Estimation and Reduction of Superfluous Effort

During this phase, we utilized the previously introduced MEff metrics to measure pro-

ductivity and analyze its dynamics [22]. To characterize the relationship between the

small and large scale productivity changes, we defined a modified version of the Micro-

Productivity Profile(mpp) published by Tóth G. et al. [94].

28 Measuring Productivity

We investigated the development of a medium-sized web application. The development

of the application was carried out iteratively with some agile elements, so the project

managers wanted to see the effects of the changing requirements to the productivity of the

development in some measurable way to refine the further iterations of the project. The

technical leaders of the project were interested in the productivity of different application

layers to see the sensitivity of the layers related to changes in the application. The analyses

conducted during the experiment are related to challenge 3.

3.2.1 Subject System

Our subject system is based on the Java Enterprise Edition and the Seam 2.3 platforms,

and it contains approximately 2200 classes and around 119k logical lines of code. The

application is a part of a home security system developed by AENSys Informatics Ltd.,

which is responsible for the management of various security sensors installed at the end

user’s apartment, and handling security alerts sent by the sensors. The architecture of the

system is divided into the following five layers.

User interface layer it contains the implementation of composite user interface compo-

nents and general, complex operations related to the user interface.

Business logic layer is responsible for the management of complex business processes

and transactions. This layer establishes a connection between the persistence layer

and the user interface.

Integration layer is responsible for communication with external systems and sensors.

Utility classes this layer provides general, common functionality used by many other

components and layers.

Persistence layer it contains the entities to be managed in the system and the high-level

implementation of database operations related to the entities.

3.2.2 Measured Development Phases

We investigated seven months (from 3 April 2013 to 7 November 2013) in the early stage

of the development. This period consisted of three main development phases.

Phase 1 (customer UI) development of user interfaces for customer users. It ended

with Milestone 1 on 3 June 2013.

Phase 2 (provider UI) development of user interfaces for service provider users. It

ended with Milestone 2 on 1 September 2013.

Phase 3 (Release) development tasks related to the preparation for the first release of

the application.

During the investigated period, 17 developers worked on the project: 8 developers with

at least four years of development experience, five developers with 2-3 years of experience,

and four junior developers with less than two years of experience. All developers committed

their work to the SVN version control system at least once a day, therefore, approximately

3.2 Estimation and Reduction of Superfluous Effort 29

2200 revisions were created by the developers.

Figure 3.5 shows an overview of the measured properties of the project. Productivity

data were collected from all three phases. We identified the endpoints of each phase by an

SVN revision. Unfortunately, we had to ignore the last one (labeled as the first release).

Some developers did not use the productivity measurement tool properly, so too few events

were collected from their work. Most of the data loss occurred in the third phase, which

meant that we could not collect enough productivity data to analyze that phase properly.

Figure 3.5: Overview of the history of the measured project

3.2.3 Productivity Measurement Process

Our productivity measurement method relies on development data, including various de-

veloper actions in IDE, file modifications, and time logs. In order to accumulate important

project information, detailed traces are logged in the IDE. Figure 3.6 depicts our produc-

tivity measurement process. At the beginning of the development process, the project

manager defines the tasks of the project on the productivity data collector server. The

developers work with the Eclipse IDE with the productivity plug-in included, which mon-

itors the detected activities and uploads the collected events and data to the server. The

developers commit their source code modifications to the SVN version control server. An

internally developed productivity data analysis toolkit processes and analyzes the collected

events, and calculates the real development time for files in the project. A source code

analyzer toolkit analyzes the source code of revisions and compares them to each other to

find modifications between them. By using these two data sets, productivity information

can be calculated for the project.

During the experiment, developers used the productivity measurement plug-in [7],

which monitored the following types of events and characteristics of the development.

File events: opening, closing, creating, deleting, saving, switching.

Project events: creating, deleting, opening, closing.

Events related to the user interface: editors, views, perspectives, dialogs, windows,

etc. in the IDE.

Code execution events: starting, stopping, debugging, profiling.

Code editing events: cut, copy, paste.

Keystroke and shortcut events from the keyboard.

30 Measuring Productivity

Figure 3.6: Measurement architecture

Detecting idle time intervals and interruptions. After a predefined time limit is ex-

ceeded without any interactions with the IDE, an idle time interval is detected, and

a special file event is raised, indicating that the opened file is left unchanged by the

developer. After another interaction is performed with the IDE, the developer can

select whether he/she worked on that file or not.

The actual task of developer. The plug-in can download a predefined list of tasks for

the project, and the developer can select his/her actual task and switch between

tasks.

Save event. Every time a Java source file is saved, the structure of the source file and

some code quality metrics are logged.

The collected productivity data can be used to calculate the net development time of

files in the project, by iterating over the file events for each developer in the ascending

order of event timestamps.

During our experiments, we collected the modifications groups defined in section 3.1.

In this study, we did not add weights to modification types to reduce the bias of inaccu-

rate weight vector assigned as determining proper weights requires further project-specific

research.

3.2.4 Applying Micro-Productivity Profile

The central concept during this phase of the research is the Division based Micro-Productivity

Profile (mppd for short), which measures the frequency of changes in productivity at var-

ious granularity levels. To understand the basic concept, consider the following scenario.

Let us suppose we can measure the productivity of the developer, i.e. the ratio of pro-

duced output, and required effort. The measured productivity depends on the sample

size: productivity measured on the whole development considers only the final program

code, while measurements on weekly samples consider thrown away program code as well.

Thus, repeating productivity measurement with various sample sizes lets us estimate the

wasted effort, i.e., where developers modified the same code again. Informally, plotting

3.2 Estimation and Reduction of Superfluous Effort 31

these numbers as a curve is what we call productivity profile.

Figure 3.7 shows the history of the source code, with its revisions. We used a division

based approach instead of the approach with the gradually growing sampling window [94].

The figure illustrates both sampling methods: our division based method (at the bottom)

and the related window-based one (on the top). The window-based method uses windows

with various sizes to swipe along with history. This lets them capture the wasted effort

independently from the frequency of the commits, but there is always a part of the history

which can not be measured, due the window extending over the last revision.

To measure the neglected parts of history, we introduced another technique for sam-

pling the changes. To calculate the initial value of the mppd for the whole history (zero

division points), we compared the first and last revisions of the system, i.e., the range

is divided into one single part (P(0,0)) with no intermediate points. The modifications

were aggregated into the MEff metric. After that, the algorithm moves on to the next

step, when we take one division point in the middle of the range. It divides the history

into two parts, P(0,1) and P(1,1). In this iteration, we compare each division point with

the subsequent ones – i.e. rev0-rev3, rev3-rev6 – and compute the Modification Effort for

these pairs. The value of the mppd is the sum of these values. As we continue with two,

three, four, or more divisions, the range will be cut into three, four, five, or more parts,

and the productivity will be the sum of more and more parts. Notice that this method

depends on the frequency of the revisions; however, in this particular case, the distribution

of the commits allows us to use it without any serious side effects. A formal definition of

mppd can be found in appendix A.4.

Figure 3.7: Equal division of revisions

A resulting curve (fig. 3.8) shows the superfluous effort spent by developers during

the implementation. In an ideal case, these would be zero, and the mppd would be a flat

line. In real life, these values are affected by incomplete specifications and requirements,

which are changing over time. For example, if the customer changes the plans of the user

32 Measuring Productivity

interfaces, the developer has to modify the parts of the code that are already written. The

first version is irrelevant compared to the final release, hence the modifications in the first

set were unnecessary, and the mppd will increase. The steepness of the mppd curve can

be interpreted as the ratio at which the developers re-modify the same code again. Using

these profiles instead of the naive approach where only the most fine- and coarse-grained

divisions were compared, shows not just the amount but the distribution (the frequency)

of the wasted effort. This reveals some aspect of the developers’ practices.

Figure 3.8: The underlying concepts of mppd

While fig. 3.8 illustrates the underlying concept of mppd, fig. 3.9 shows a concrete

example of the curve itself. The measured productivity values are represented in the

right, vertical axis. As previously stated, these values increase for a higher number of

divisions. There are nine distinct points each for every sum of equal distance division

parts.

Figure 3.9 shows a concrete curve based on repository commits in the subject project.

Besides the mppd curve itself, the figure compares the time-based and revision-based

division of the project history. On the bar-chart, at the top, we displayed the average

number of svn additions, deletions, and modifications. At the bottom part, one can

inspect the median and the average elapsed time between the division points. Both the

number of svn changes and elapsed times approximate a hyperbolic function as it is

expected from a gradually increasing division. These facts confirm that our revision based

approach provides approximately equal divisions as dividing the development phase based

on elapsed time.

3.2.5 Evaluation

Using the measurement architecture presented above, we monitored the development ac-

tivities of the developers in the presented project, and examined the productivity data

of the developer team using the mppd profiles produced by our analysis tool-chain. We

calculated mppd profiles for the following examination aspects: comparison of profiles of

different development phases and different application layers, examining profiles of the

developer team during the whole 7-month period of the project. We present our findings

in the following sections. These results support sub-thesis point 1.3.

3.2 Estimation and Reduction of Superfluous Effort 33

Figure 3.9: Overview of mppd over the whole history and its statistics

The mppd curves provide details about subtle productivity changes over time. To

assign precise meaning to the shape of these curves requires further analysis, but some

practical suggestions can be concluded already. These hints concern mainly the develop-

ment process and provide help for the managers. For example, the shape of the mppd can

be used to plan the time of various activities during the project, like code reviews and

milestones.

Productivity over Development Phases

We investigated productivity over two phases of the development. During these phases,

two main components were implemented: the customer user interface in the first, and the

34 Measuring Productivity

provider user interface in the second. The mppd-s calculated for different development

phases are shown in Figure A.2. The collected productivity data and the calculated

mppd curves show different shapes. The developers create more modifications during the

implementation of provider ui hence it has higher mppd values. Furthermore, there is a

slight increase in its steepness which denotes that there are more unnecessary modifications

(i.e. possibly wasted effort) during this phase than the previous one.

These differences can be explained by the fact that there was a more rigid specification

for the customer ui than the provider ui, as reported by the project manager. This means

that the developers of provider ui had to discover the possibilities considering the technical

details of the implementation. By doing this, they produce more code and change more

components. They also need to adapt the existing solutions to the new requirements, which

results in more rewritten parts of the source code and more unnecessary modifications. In

this particular case, it means that managers should rearrange their resources and provide

a more detailed specification for the provider ui. The slightly higher steepness of this

curve shows a manageable amount of wasted effort, but we suggest that it should address

to prevent further growth.

Productivity over Application Layers

Figure A.3 shows the mppd-s for the development productivity of the developer team

related to the five layers of the application. The mppd of the utility layer has very high

steepness; therefore, differences between mppd-s of the other four layers are not clearly

visible. For this purpose, Figure A.4 shows their differences without the utility layer.

The higher productivity values near the right-hand side of the curve and steepness in

the mppd of the utility layer can be explained by the fact that this layer has to provide the

most reusable solutions for the most general problems. Its components should be easily

usable from any of the other layers; therefore, the requirements related to the interface

of this layer changes very often. This may result in frequent modifications in the source

code of the layer; in addition, many changes do not appear in the final revision of the

application. The developers also verified that most of the unnecessary modifications were

related to utility classes. However, we do not suggest that these modifications are strictly

wasted effort, and developers should stop writing utility classes. However, they have to be

aware of the nature of this layer and try to reduce the amount of rewritten code. It can

be achieved by careful planning of the common functionalities and inspecting the feature

specification of other layers.

The user interface layer in this context contains only the Java implementation of gen-

eral, composite components and operations used by the web pages of the application. This

layer also has to provide general solutions for different types of pages, and the developers

also stated that several components in this layer needed many modifications to follow the

changing requirements. This fact explains that the mppd of the user interface layer has

the second-highest steepness.

3.3 Comparison of Software Quality in the Work of Children and Professional
Developers 35

Some slight increase can be observed in the mppd of the business logic layer, which

can be originated from the changing requirements of the service provider related functions.

The mppd curves of the other two layers are quite flat, which can be verified by the fact

that the persistence layer has been well designed, and the integration layer depended only

on the fixed interfaces of the external systems and sensors to be integrated. Therefore

these layers did not need a significant number of modifications after the implementation.

3.3 Comparison of Software Quality in the Work of Children

and Professional Developers

As stated earlier, productivity can be influenced by several factors, one of them is the

developer’s level of expertise. Both the practical and theoretical knowledge are gathered

(among others) during the time spent in some educational institute, like schools and

universities.

Our opinion is that there is a growing need for a well-defined model that can evaluate

the performance of students in such a way that it is acceptable for the industrial sector

as well. In this phase of our research, we seek for similarities or contrasts between the

implementations of students and experts, which can be measured objectively. During the

research, a software quality model was used to evaluate the high-level properties of the

solutions.

We used data gathered on special classroom sessions to compare the software quality

of students and experts. The sessions took place in a single afternoon in three distinct

parts, each with the duration of one and a half hour. The high-school student used the

provided development environment in groups of two or three. After they had finished their

tasks, we collected all solutions and analyzed them with an automated software quality

model.

3.3.1 Original and reduced quality model

We use a modified version of the source code quality model implemented by FrontEndART

Ltd. It is an IT company located in the southern region of Hungary. It is a medium-sized

company that specializes in developing and implementing software quality measurement

models as well as using them to asses software quality for various customers, like monetary

bodies, for example.

The original model, which we used, is based on the research at the University of

Szeged, conforms to the iso/iec 25010 standard and is capable of qualifying the source

code of a software system. Figure 3.10 shows the original quality model. The computation

of the iso/iec 25010 high-level quality characteristics, together with the maintainability

of the system, is based on a directed acyclic graph whose nodes correspond to quality

properties that can be either internal (low-level) or external (high-level). Internal quality

36 Measuring Productivity

properties characterize the software product from an internal (developer) view and are

usually estimated by using source code metrics. External quality properties characterize

the software product from an external (end-user) view and are usually aggregated somehow

by using internal and other external quality properties. The nodes representing internal

quality properties are called sensor nodes as they measure internal quality directly. The

other nodes are called aggregate nodes as they acquire their measures through aggregation.

The edges of the graph represent dependencies between an internal and an external or two

external properties. [12]

CC NOA

WarningP1 WarningP2 WarningP3

TLOC

AD CLOC CD NA WMC NLE

RFC CBONII

TNLMReusability

ComplexityCode documentationFault proneness

Stability Changeability

Modifyability Testability Analyzability

Maintainability

Figure 3.10: Original quality model

We modified the previously described model and used this reduced model in our exper-

iment. During the modification we only deleted existing nodes. In particular, reusability,

documentation, and all of their child nodes were removed to create a reduced quality model,

which provides better measurement capabilities. In general, these nodes were deleted, be-

cause their value was irrelevant, in the context of the classroom exercises analysed in the

following sections. We applied the following changes.

Number of Incoming Invocations (NII) Reason of exclusion: The children do not

use inter-class calls and rarely use inter-method calls.

Response set For Class (RFC) Reason of exclusion: The students only need to im-

plement methods in the same class and do not modify other classes.

Coupling Between Object classes (CBO) Reason of exclusion: While solving the

tasks, only the provided api classes were used.

API Documentation (AD) Reason of exclusion: Students do not write any comments

or documentation.

Comment Lines of Code (CLOC) Reason of exclusion: Students do not write any

comments or documentation.

Comment Density (CD) Reason of exclusion: Students do not write any comments or

documentation.

3.3 Comparison of Software Quality in the Work of Children and Professional
Developers 37

3.3.2 Development environment

We use a special integrated development environment called Greenfoot. Greenfoot is a

project in the Programming Education Tools Group, part of the Computing Education

Research Group at the School of Computing, University of Kent in Canterbury, UK. [48]

Its main goal is to provide a simple and easy to use user interface for students to

acquire necessary programming skills. The users can interact with various elements of an

object-oriented program via an intuitive and straightforward user interface. The interface

is a full IDE that includes project management, auto-completion, syntax highlighting, and

other tools common to most IDEs. A couple of these features are shown in fig. 3.11a.

(a) Greenfoot integrated development en-
vironment features

(b) Greenfoot main window

(c) Greenfoot source code editor (d) A solution made by an expert

Figure 3.11: Greenfoot integrated development environment for students

The graphical elements do not hide the underlying source code, so the users have to

use the mouse, which is more natural for young children, and the keyboard together to

accomplish their tasks. Its main concepts are actors who live in worlds to build games,

simulations, and other graphical programs.

The main window is shown by fig. 3.11b. On the left side you can see the visual

representation of a world object that acts as a canvas or scene for the whole project. The

classes and their relations are shown on the right.

The creators also provide a basic class library for Greenfoot, which is highly customiz-

able by the teachers to their needs. The objects are programmed in standard textual

Java code, providing a combination of programming experience in a traditional text-based

language (fig. 3.11c.) and visual execution.

38 Measuring Productivity

3.3.3 Implemented classroom exercises

In Hungary, teachers tend to use the Logo programming language in primary and secondary

schools. Logo is an educational programming language designed in 1967 by Daniel G.

Bobrow, Wally Feurzeig, Seymour Papert and Cynthia Solomon. Today, the language

is mainly remembered for its use of turtle graphics, in which commands for movement

and drawing produced line graphics either on the screen or with a small robot called a

turtle. The language was originally conceived to teach concepts of programming related

to LISP and later to enable what Papert called body-syntonic reasoning where students

could understand (predict and reason about) the turtle’s motion by imagining what they

would do if they were the turtle. There are substantial differences between the many

dialects of Logo, and the situation is confused by the regular appearance of turtle graphics

programs that mistakenly call themselves Logo. From the many implementations and

ide-s our teachers use imagine.

To ease the transition from a toy language (Logo) to a programming language used in

the real-world (Java), we reimplemented the underlying logic of turtle graphics in Java.

We integrated it into the Greenfoot development environment. With this api, students

could create new Java classes to control the turtle and draw some simple graphics.

Two base classes were provided, namely Ladybug and Katica. The latter is a subclass

of the first, it wraps the original English instruction with their Hungarian equivalent.2

Ladybug implements the following methods and properties.

turn() Turns the ladybug.

moveTo() Moves the ladybug to the given position.

move() Moves the ladybug to the given distance.

penUp() Takes the pen up.

penDown() Puts the pen down.

setColor() Sets the color of the pen.

setLocation() Sets the location of the ladybug.

The students and the experts accomplished the same classroom exercises. Each task

implemented in a unique class inherited either the Ladybug or the Katica classes. The

following four exercises were solved and their results were analysed.

1. Create a ladybug that can draw a square with a specific size.

2. Create a ladybug that can draw a rectangle with a specific size.

3. Create a ladybug that can draw a triangle with a specific size.

4. Create a ladybug that can draw a polygon with the given number and length of

sides.

Figure 3.11d shows a solution made by an expert developer. In this example, each

ladybug was placed on the world, and the program was already executed.

2We renamed turtles to ladybugs, because the original word ’teknős’ contains a diacritics on the second-
to-last letter, while ’katica’ does not.

3.3 Comparison of Software Quality in the Work of Children and Professional
Developers 39

3.3.4 Evaluation

After each student and expert had solved the above mentioned tasks, we measured the

quality of their source code with the previously introduced modified model. We collected

altogether 37 solutions from the students and from 3 experts. During the initialization

of the measurement phase, all solutions which did not solve the task, i.e. they did not

contain any source code, were eliminated. We measure the quality of the code of each user

as if it was a separate system. These results were aggregated into the four well known

descriptive metrics: minimum, maximum, average, and the median of a given quality or

source code metric.

Comparison of high-level metrics

We measured the following high level software quality metrics.

Maintainability Maintenance cost of the software system due to its source code

Testability Resources needed to test and verify the modifications made in the software

Fault proneness The probability that a failure occurs during the operation of the system

Complexity The general complexity of the software source code

Modifiability Risk of altering the source code without causing side effects

Stability Probability of operational failures caused by modifications of the software

Comprehensibility How difficult it is to understand the source code

Changeability Resources needed to alter the behavior of the software

Analyzability Expected cost of detecting faults and their causes during operation

Minor rule violations Minor issues in the code that, e.g., decrease the code readability.

Major rule violations Major issues in the code that can cause, e.g., performance issues.

Critical rule violations Critical issues in the code that can cause bugs and unintended

behavior.

(a) Code quality metrics of students (b) Code quality metrics of experts

Figure 3.12: High level code quality metrics

Figure 3.12b and Figure 3.12a show the aggregations of the high level metrics. The

average value was represented on the bar-charts. The minimum, the maximum and the

40 Measuring Productivity

median were also displayed as points. The metric of top-level – called maintainability –

was highlighted to emphasize the fact that it aggregates all other metrics.

We cannot find any significant differences in the average performance of developers and

students. But the ranges of code quality are much more extensive in the case of students

than in the case of experts.3

Comparison of low-level metrics

(a) Code metrics of students (b) Code metrics of experts

Figure 3.13: Low level code quality metrics

The following low level metrics were measured and evaluated.

CC The real value between 0 and 1 expresses which amount of the item is covered by

code duplication.

LLOC The metric counts all non-empty, non-comment lines. Lines of nested classes or

packages are not counted.

McCC The number of decisions within the specified method plus 1, where each if, for,

while, do...while and ?: (conditional operator) counts once, each N-way (switch)

counts N+1, and each try block with N catch counts N+1.

NLE NLE for a method is the maximum of the control structure depth. Only if, switch,

for, foreach, while and do...while instructions are taken into account but if...else if

does not increase the value. NLE for a class is the maximum of the NLE values of

its methods.

NUMPAR The number of parameters of a method (the ellipsis is counted as one pa-

rameter).

Low-level metrics follow the same pattern, as seen with high-level metrics. There are

not any significant differences between the average and median values of students and

developers, but the performance of the first ones tends to fluctuate more wildly.

3To emphasize these differences; we connected the lower and upper limits with dashed lines. However,
these lines solely added to make the previously noted differences more easy to see. The order of these
high-level metrics is irrelevant, and these data points represent discrete values.

3.4 Contributions 41

3.4 Contributions

The research presented in this chapter is divided into three phases, according to the central

issues they addressed.

3.4.1 Defining Weighted Modification-based Productivity Measure

In this phase I strove to define a more expressive productivity metric for software de-

velopment, which could be used to increase the accuracy of cost prediction models. I

used a compound metric for expressing the modification effort, which was the aggregation

of different kinds of modifications like creation, deletion, and type change. To express

the effort across modification types, I used different parameters (weights) for the various

kinds of modifications. The choice of these parameters was crucial for the accuracy of

prediction. In this phase, we reported on my early experiences in applying search-based

methods to determine these parameters (a basic genetic and evolutionary algorithm (ga)

was used for this purpose). A typical improvement of 20 percentage points was achieved

in the combined prediction accuracy (F-measure) when comparing the model with initial

parameters to the one obtained after running the search-based method.

To achieve the mentioned goals I implemented a framework which is capable of col-

lecting and aggregating product and process metrics from various sources including the

source code and the integrated development environment. The framework detects the

modifications between revisions, and tries to predict the effort of further changes.

3.4.2 Estimation and Reduction of Superfluous Effort

During this phase, we utilize Micro-Productivity Profile to characterize low and high grain

productivity changes. We applied this method in an empirical experiment during the

development of a middle-sized J2EE project to aid the project management with detailed

productivity information. mpp was used to identify the amount of wasted effort related to

various entities of the project, like developer teams and application layers. I characterized

these entities to aid the project manager in decision making related to cost estimation.

Especially, I used the collected data to help the project managers and lead developers to

understand the rhythm of the project better and help them plan meeting sessions.

The framework that we used to measure the project was composed of several parts.

However, I aided the development, and the integration of these my main task was to

implement the productivity calculation and mppd constructing subsystems.

3.4.3 Comparison of Software Quality in the Work of Children and Pro-

fessional Developers

In this phase, I used a simplified version of the quality model based on the researches at

the University of Szeged that conforms to the iso/iec 25010 standard and is capable of

42 Measuring Productivity

qualifying the source code of a software system to measure and compare the quality of

source code created by students and experts. The subjects of my analysis were distinct

solutions for predefined classroom exercises. The results suggest that there are not any sig-

nificant differences between the average performance of the two groups. These similarities

can be explained by the fact that students were guided by an expert i.e. the teacher.

On the other hand, the quality of source code produced by experts has less fluctuation.

They tend to provide a more stable performance. Outliers can be found in either direction

from the average or median among the solutions of the students. I suggested that these

represent the children who have more or less affinity for abstract thinking and logical

problem-solving.

3.5 Advantages and Disadvantages of These Methods

In this section, we elaborate on the threats that could invalidate our results. We also

mention several potential use cases for our foundings.

3.5.1 Internal Validity

Based on the experiences of the developers participating in this research, we can conclude

that the causal relationships being tested during the experiments are reliable but may be

influenced by other factors or variables.

Construct Validity

The usage of a well known and accepted approach to measuring productivity ensures the

soundness of our high-level theoretical constructs. However, the usefulness and validity of

these measures are highly dependent on the underlying metrics used to capture input and

output.

The used method is highly sensitive to the predefined modification types and their

weights. The current measurement used the trivial unit weight function; however, this

may blur some aspect of the development process (e.g., addition is more complex than

deletion). The modification detection component of the model was designed for object-

oriented languages; hence it can not be applied in the case of systems with other paradigms.

However, we believe that with necessary modifications, the concept can be easily adapted

to other paradigms as well.

Despite the careful design, interaction-based measurements, in general, require addi-

tional effort compared to solutions solely based on version control systems. On the other

hand, the ease of information extraction may be a trap in this latter case. Rough ap-

proximations in the base data – like time estimation based on commit timestamps – may

provide uncertain results. Interaction data contains more accurate and detailed informa-

tion. The plug-in collects per user and per-task data as well, which enables a low-level

3.5 Advantages and Disadvantages of These Methods 43

evaluation of the work in progress. This is invaluable when the stakeholders aim to make

evidence-based decisions.

Another internal threat is the sensitivity of the mppd curves to the homogeneity of

measurement points in time. To eliminate this dependency, we plan to introduce a new

sampling algorithm over the history of the source code.

Criterion Validity

There are several approaches to measure the unnecessary work of developers. The most

simple and naive methods use some kind of historical data about the development to

calculate the differences between the number of changes. For example, one can measure

the number of changes of code in every single step of the implementation, then subtract

the number of changes between the first and last state of the system. The underlying

concepts of these types of algorithms are independent of the method of change detection.

However, in practice, the precision of these methods highly depends on the unit of the

measurement.

While these approaches can capture the total amount of unnecessary work, they fail

to give any insights about the processes that generate these superfluous changes. Those

methods that can give useful help for the participants to improve the processes are more

successful in practice. The mppd curves provide details about subtle productivity changes

over time. To assign precise meaning to the shape of these curves requires further analysis,

but some practical suggestions can be concluded already. These hints concern mainly the

development process and provide help for the managers. For example, the shape of the

mppd can be used to plan the time of various activities during the project, like code

reviews and milestones (see discussion below).

Another difference between the two approaches is that the naive diff-based concept

gives a very inaccurate approximation for the development time of the changes. The

time elapsed between two commits of the same developer is necessarily much higher than

the real development time of the changes by the developer. For example, the intervals

collected from logs of version control systems often contain parts that are not related

to working time (nights, weekends, holidays, etc.). These can be approximated by the

daily working time of developers. However, there are further problems caused by other

parts of the working time, which are not related to the implementation of the software:

meetings, activities related to documentation or time spent on other parallel projects, etc.

Our approach collects events related to interactions with the IDE to give a more accurate

approximation for the real development time of the changes in the software.

3.5.2 External Validity

The presented Micro-Productivity Profile related experiment is conducted on a single

project; thus, it is appropriate for introducing the advantages and usefulness of the pro-

44 Measuring Productivity

posed method, and not for modeling productivity or drawing general conclusions on pro-

ductivity factors for other systems. Likewise, the measurement strongly relied on the

fact that the investigated application was developed in Java programming language with

Eclipse IDE.

The success of the productivity measurement depends on the active and proper use of

our tools by the developers. The amount of extra effort due to measurements is critical.

Although the task information is only a small plus, we experienced that some programmers

did not use the plug-in properly, which caused a significant data loss in the third devel-

opment phase. Based on the analysis of the experiences of the team after the project, the

reason for improper use of the tool was not the high amount of extra effort, but insufficient

motivation by the management and also some technical issues.

Based on the analysis of factors affecting productivity, we conclude that the compar-

ison of students and professional developers’ non-functional source code metrics suggests

some exciting ideas. However, we are aware that this is just a stepping stone for further

research.

Chapter 4

Providing Immersive Methods for

Software and (Unit) Test

Visualization

The main topic of this chapter is the visualization of software systems and their connected

items. The structure of the related thesis point and its connections to various stakeholders

and topics are shown in fig. 4.1.

Figure 4.1: Structure of thesis points

The rapid developments in computer technology have made it possible to handle a

large amount of data. New algorithms have been invented to process data, and new ways

have emerged to store their results. However, the final recipients of these are still the users

themselves, so we have to present the information in such a way that human beings can

easily understand it. One of the many possibilities is to express that data in a graphical

form. This conversion is called visualization.

The importance of visualization techniques is undeniable. Diagrams, charts, and other

45

46 Software Visualization

graphical elements are often used to present quantitative and qualitative properties and

their relations. These tools use simple and abstract graphical primitives that could not

be found in the real world like straight lines, points, and circles. They can express some

attributes of the software successfully, but are less useful in presenting more complex

many-dimensional contexts. To address this issue, in this chapter, we introduce our novel

software visualization tool and its related research. It utilizes an enhanced version of the

city metaphor, which provides higher expressive power by allowing the user to display

several abstract concepts simultaneously.

Data visualization with high expressive power plays an important role in several soft-

ware development-related activities. Recent visualization tools try to fulfill the expecta-

tions of the users by using various analogies. For example, in a city metaphor, each class is

represented by a building. Buildings are grouped into districts according to the structure

of the namespaces. We think that these unique ways of code representation have great

potential. However, in our opinion, they use very simple graphical techniques (shapes,

figures, low resolution) to visualize the structure of the source code.

On the other hand, computer games use high-quality graphics and have a good expres-

sive power. A good example is Minecraft, a popular sand-box or role-playing game with

high extensibility and interactivity from another (third party) software. It supports both

the high definition, photo-realistic textures, and long-range 3D scene displaying.

Furthermore, software systems could reach virtually infinite complexity by their nature.

In theory, there is no limit of control flow embedding, or the number of methods, attributes,

and other source code elements. In practice, these are only bound to computational power,

time, and storage capacities. To comprehend these systems, developers have to construct

a detailed mental image. These images are gradually built during the implementation

of the system. Often, these mental images are realized as physical graphics with the

aid of data visualization software. For example, different kinds of charts are used to

emphasize the difference among various measurable quantities of the source code or UML

diagrams, which can visualize complex relations and connections among various entities in

the system. However, there are certain situations when developers do not have sufficient

time to construct this mental landscape, for example, when they are not present during

the early stages of the software’s life cycle. The issues and solutions discussed in this

chapter are related to challenge 1.

4.1 Enhancing the City Metaphor with Game-based Visu-

alization

To address these issues while taking into account the considerations as mentioned earlier,

we enhanced the already known city metaphor, by connecting data visualization with high

end-user graphics capabilities. To achieve this, a visualization tool was implemented. It

processes structured data related to the source code (for example, product metrics) as

4.1 Enhancing the City Metaphor with Game-based Visualization 47

input and generates a Minecraft [2] world with buildings, districts, and gardens to provide

a detailed representation of the mental landscape populated with abstract concepts and

their underlying connections. The tool is called CodeMetropolis. We used it to investigate

the possibilities of this kind of data visualization. Works, detailed in this section and

summarized in sub-thesis point 2.1, provide a solid base for further investigation.

CodeMetropolis is a set of the command line and GUI tools written in Java. It can

generate a playable Minecraft world, which represents the properties of the original data

set. The current version supports SourceMeter [61] or SonarQube server [76] directly as a

data source, but end-users are encouraged to integrate other output types. The generated

world uses the city metaphor, which means that the source code metrics are represented

with the various properties of the different kinds of buildings. For example, Figure 4.2

shows an example world, which represents a small Java program.

Figure 4.2: JUnit project visualized by CodeMetropolis

We used two main levels to represent data and entities of our visualization process.

On the data level, each item has its own property set – for example, metrics. These data

are displayed on the metaphor level. All buildings in the metropolis belong to this level.

The buildings and the world (city) itself has a couple of attributes which control its visual

appearance. The properties are mapped to the attributes in order to visualize the data

with a sophisticated mapping language.

As a visualization tool, CodeMetropolis executes the common steps of constructing

such a graphical representation.

4.1.1 The Embodiment of Visualization’s Phases in CodeMetropolis

We used the 4-step division of visualization introduced by Upson, Craig et al. [98]. These

steps, which are common for each visualization processes, are filtering the data, mapping

48 Software Visualization

it to the appropriate graphical items, rendering the image and finally displaying it to the

user.

Filtering Step - Converters

In the case of CodeMetropolis, we provide several converters that can produce a unified

XML-based input format. Currently, we are directly supporting SourceMeter and Sonar-

Qube as a data source, but users are encouraged to write their converter using the shared

libraries of CodeMetropolis. For a detailed definition of input format, please check the

official repository of the project, here we are only describing a common use case.

There are two mandatory properties for each data entry: their unique name and their

type. In the case of the SourceMeter based analysis, they are usually mapped to the

fully qualified name or signature of the source code items and their types, like “class” or

“method”. All other properties are not obligatory and express the values of various source

code metrics calculated by SourceMeter, for example, lLoC and CBO. In this case, child

nodes represent the containment relation between source code items.

Mapping step

In this step, we assign properties and entities from the data level to items and their

attributes on the metaphor level. The current version of CodeMetropolis uses the entities

and attributes to visualize the source code listed in appendix B.1.

To create a visualization with sufficient expressive power, the structure of the system

has to be displayed beside their properties. We encoded this information into the contain-

ment relation between different graphical items (e.g., buildings); for example, a garden

could contain other gardens and skyscrapers.

Rendering step

In this step, we convert the annotated tree of graphical items into a 3D matrix of blocks,

which is the underlying structure of every Minecraft world and will be detailed in the

displaying step. To do this, we utilized the open world format of Minecraft that encodes

our interactive virtual city. There are several binary formats used to describe the scene –

called world – which are either open standards or free formats.

Displaying step

In the case of CodeMetropolis, we use a well-known game to display our visualization,

called Minecraft [2]. It is written in the Java language and uses the OpenGL graphical

engine to display the scenes. Both of these technologies are widely supported on major

platforms. It is distributed as commercial software with support.

Due to its extensibility, its simple yet sophisticated functions, and its rich palette of

possibilities, Minecraft can display complex structures with low overhead.

4.1 Enhancing the City Metaphor with Game-based Visualization 49

The game itself does not have a strict game-flow. Its primary focus is creativity and

the joy of creation. Only the available computational power and the storage capacity can

limit the fantasy of the player. The central concept in the game is the block. It is a

cube with sides about one meter long, when compared to the player. Almost everything

is built out of it, so the whole world is a 3D matrix filled with blocks of various types.

The player can collect the blocks, create (craft) new ones, and interact with them. The

game is similar to a virtual Lego� with an infinite playground and an infinite number of

building blocks.

4.1.2 Integration of Eclipse IDE and CodeMetropolis

The graphical representation of the source code could provide new viewpoints that are

crucial for creative work and problem-solving. However, the world of source code is still

highly dominated by textual representation. Our goal was to build a bridge between

coding and visualization. We chose Eclipse among the ides because it is a standard tool

for Java developers. Software visualization is embodied by our previously introduced tool,

CodeMetropolis. We implemented a set of plug-ins which were able to connect these two

software, hence it became capable of integrating an elaborated visualization technique

without disturbing the daily routine of developers.

These tools enable developers to launch visualization and initialize the buildings of

the virtual city. To help find the most relevant parts of the visualization, a manual

and an automatic navigation were included. As a result, developers can get customized

visual information about their system fast and without leaving their familiar environment.

Besides that, we would like to provide an easy way of navigation in the city to avoid wasting

time searching for the place representing the inspected part of the source code.

The implementation has three interlinked components, shown in fig. 4.3. The first

is Eclipse, the ide itself, the second is Minecraft, which displays the generated city, and

SourceMeter [61], a static code analyzer, which provides the metrics and the structures

of the source code. These are connected via CodeMetropolis that converts the data into a

visual representation using the given mapping and city metaphor.

There are two small extensions, an Eclipse plug-in and a Minecraft modification (or

mod for short). These are integrated into Eclipse and Minecraft, respectively, and provide

communication with the parts of the CodeMetropolis toolchain. The developers interact

directly with the game and the ide.

Modification of Minecraft

In the year 2015, the Minecraft End User Licence Agreement [1] allowed users to change

the game once they have bought the license, with the condition that they will not sell those

changes as original features.1 This made the formation of global and local communities

1Since the 2013 release of CodeMetropolis toolkit, it has undergone significant changes, while the
publishing of Minecraft also changed. Currently, we are in the process of upgrading both the technical and

50 Software Visualization

Figure 4.3: Overview of integration

possible, whose members are continuously seeking new ways to extend the features of the

game with modifications, or mods for short.

One of the many ways to implement such a modification is to decompile the JAR files

of Minecraft, make the necessary changes in the source, and then rebuild the executable

file. The process results are several pre-compiled Java files, which have to be inserted into

the original Minecraft client in order to install the mod. It only supports a single version

of Minecraft, in our case version 1.8.

These mods can have a wide range of goals, from introducing new types of blocks

or capabilities to integrating with other third-party tools, like ours, the CodeMetropolis

mod. It is a collection of recompiled Java classes which provides the following features

and functions.

Synchronizing To prevent any concurrent modification with the game, it disables the

user interface while building the generated city. After the conversion, the target world is

reloaded. We also provide informative messages to notify the user about the state of the

process.

Positioning the Player It allows the external processes to set the position and ori-

entation of the player. It is used to redirect the attention of the developer to different

components by automatically moving him to a new part of the city.

CodeMetropolis Plug-In for Eclipse

As stated earlier, Eclipse is an Integrated Development Environment or ide for short. It is

one of the most commonly used tools by Java developers. Its main functions are grouped

the legal parts of CodeMetropolis. During this phase some of the features will not be available.

4.1 Enhancing the City Metaphor with Game-based Visualization 51

around source code editing, compiling, and running the binary code either in debug or

release mode and project management. Since it is beyond the scope of this paper, we do

not present an elaborate list of its features. We simply highlight the most important ones

for our purposes. Starting with project management, providing basic file, library, and

source code management, Eclipse utilizes the common tree view to display the structure

of the program. The developer can open the file for editing by double-clicking on it.

Afterward, the content of the file becomes visible in the main area. This pane supports

multiple opened files by displaying them in a tab control. Functionalities are also available

via toolbars and standard menubars.

All these components can be extended with third-party tools called plug-ins. The

plug-in infrastructure plays a crucial role in Eclipse; in fact, some of its basic features

are also implemented as plug-ins. The api lets the external code collect information

about the development process and change the layout of the graphical user interface.

Our CodeMetropolis plug-in utilizes these possibilities by detecting the name of the edited

source file and adding new buttons and menu items to the gui. To implement the following

features, which are available via the menu- and toolbar as well, we used the Eclipse PDE

framework 4.5 [pde]. It contains a specific version of the Eclipse development environment

equipped with several plug-ins, which aid the creation of new plug-ins.

Building This functionality initiates a complete rebuild of the virtual city representing

the source code. During this process, the code is analyzed with SourceMeter, and the

result is forwarded to the CodeMetropolis toolchain, which generates the city and renders

it with the help of Minecraft. The user is continuously notified about the state of the

conversion. In the current version, the developer has to initiate the building manually,

because the time it takes highly depends on the size of the codebase.

Jumping The size of the generated city could be too large to search for points of interest

manually. To overcome this, our plug-in lets the user quickly navigate to the building

representing the currently open and active file by using the jump feature. With this,

the developer can spend more time with the true exploration of the source code without

clueless wandering.

Following We also provide automation over the jumping function, called the following.

When users turn this feature on, the system will be continuously checking the open and

active file, and update the position of the player accordingly. This means that the player

will always be near the building representing the currently edited file.

Changing the Settings The integrated tools required some basic configuration. These

contain the location of SourceMeter and Minecraft, and also the path to the mapping file

of CodeMetropolis which specifies the meaning of the visual attributes in the city.

52 Software Visualization

Integration of Components

The previously presented components have to work in tandem to provide the following

high-level features.

Navigation in the visualization is achieved by setting the position of the player to

coordinates specified by the jump or follow functions.

Generation of virtual cities are initiated directly by the developer from the ide with

the preset settings.

The introduction of this connection between the ide and CodeMetropolis helps the

developer (or student) eliminate the wasted time of switching from one application to the

other. However, several other factors affect the overall usefulness of these visualization

techniques; for example, the graphical and topological properties of the generated cities.

4.2 Assessing Degree of Realism for the City Metaphor in

Software Visualization

Our brains are hard-wired to grasp the meaning of real objects. To make navigation easier

in a virtual environment and to help interpret the underlying connections and concepts for

the user, the generated world has to be quite similar to the real world. In our case, it means

we have to generate realistic cities to represent the abstract concepts and relations among

the properties of the source code. To create such a city without human intervention, we

need a way to connect the low-level properties of the city with its degree of realism.

4.2.1 Low-Level Metrics of Virtual Cities

In order to define low-level metrics, we have to specify the exact model of a generated city.

In our study, we mainly focused on cities that only contain buildings like skyscrapers.

These buildings could be represented by their bounding box, which is a box with the

same width, length, and height as the maximal width, length, and height of the building

itself. The current model does not represent the inner structure of the buildings. The

buildings are grouped into various types, which could be districts at the metaphor level

or namespaces and packages at the data level. Buildings also have a position on the plain.

Based on the above statements, the current model defines a building as a box with the

following properties.

Width the maximal size of the building along the x-axis.

Length the maximal size of the building along the y-axis.

Height the maximal size of the building along the z-axis.

Position an ordered pair of numbers that represents the location of the pivot point of a

building on the plain.

Type the unique identifier of the set that the building belongs to.

4.2 Assessing Degree of Realism for the City Metaphor in Software
Visualization 53

A city or metropolis is a set of buildings. The buildings cannot be rotated or have any

intersecting region. Three low-level metrics were constructed during the study. Our main

design the goal was that these metrics have to be independent of the following properties

since they show high variations depending on the visualized software system.

� the area of the city

� the height of the city, i.e., the height of the tallest building

� the number of buildings in the city

� the size of the buildings

(a) Compactness (b) Homogeneity (c) Connectivity

Figure 4.4: Low-level metrics

With these in mind, the following metrics were constructed. The formal definition of

these properties and metrics can be found in appendix B.2.1.

Compactness

This expresses the density of the buildings in the city (fig. 4.4a). It is the ratio of the total

area of the buildings over the convex hull of the city.

Homogeneity

This metric expresses the smoothness of the small scale scenery (fig. 4.4b). It is the

distance between any two buildings weighted by the difference in their height.

Connectivity

Connectivity describes the spatial coherence among buildings (fig. 4.4c). It is the distance

between any two buildings guarded by their type.

4.2.2 Construction of a High-Level Metric

To create a new high-level metric that could express the similarity between a generated city

and a real one, a user survey was used. The target audience contained mainly students

and coworkers from the IT field. Altogether, 51 complete and 20 partial surveys were

54 Software Visualization

processed. The survey contained several questions with a predefined list of choices. We

asked the users to rank the cities according to their degree of realism. Furthermore, they

had to decide which of the two given cities could be used as an example from a specific

point of view. For example, they had to choose the more compact one.

A high-level metric was defined, which can describe the similarity between a real and

a generated city. This metric is the weighted sum of the above-defined compactness,

connectivity, and homogeneity metrics. We used the answers for the ranking questions

of the survey mentioned above. Users had to rank several predefined cities, from the

most realistic to the least realistic. The rankings were compared and processed by various

methods and algorithms to determine the weights of the low-level metrics.

We utilized the Kendall tau correlation coefficient and community detection algorithm

to select a ranking, which reflects the opinions of most of the users. Then we solved a

relaxed version of the inequality-system representing this particular opinion to calculate

the weights to construct the high-level metric. For more details about the formal method

can be found in Balogh, G. [15]. Using this method, we can construct a sub-optimal,

high-level metric, which can express the degree of realism of a generated city. Using the

notion introduced in appendix B.2.1 the formula for this high-level metric is the following.

D ∈ B a city i.e. a subset of buildings (4.1)

Rlsm
ζ,γ1,γ2

D = −0.27 CompD − 0.73 Conn
γ1

D + 4.43 Hom
γ2,ζ

D (4.2)

As can be seen in eq. (4.2), users almost completely disregard the compactness of the

city and the spatial connectivity of the buildings compared to the homogeneity of their

heights. In the future, we plan to compare the low- and high-level metrics of various

real-life and generated cities. Nevertheless, we could make some preliminary assumptions.

We suppose that the regional distribution of people who submit their opinions may cause

this difference in magnitude. For example, cities of Europe are not as much crowded as,

for example, cities in China. Furthermore, we used the data captured in Szeged, a city

of Hungary. There is not a strict functionality-based district boundary in this city, which

could explain the negligent of the connectivity metric.

4.3 Test Visualization with CodeMetropolis

During this phase, we extended the metaphor by using additional metrics computed from

the test-related artifacts of the inspected software system. Our approach to combine code

and test metrics in CodeMetropolis is to build separate objects corresponding to the code

and the associated tests on physical proximity. Also, suitable mapping is used between the

metrics and the physical properties, such as building dimensions and building materials.

This way, code will become houses and tests will turn to outposts “defending the code.”

4.3 Test Visualization with CodeMetropolis 55

Physical attributes of the outposts such as height, density, and the material will indicate,

for example, how thoroughly the associated code is tested (covered) or how specialized the

tests are to this code or they test other objects as well.

4.3.1 Measuring test-related metrics

We defined several concrete metrics for the previously mentioned functional units (see,

section 2.3.2). For example, the specialization metric shows how specialized a test group

is to a code group in terms of the ratio of other test groups. A lower value shows that other

test groups intensively test the code group in question, while a high value reflects greater

specialization. A related metric is the uniqueness metric, which measures the portion of

the elements that are covered only (uniquely) by a particular test group.

These metrics apply to cross-functional code and test groups (where the tests do not

intend to check the methods), not only to functional units. For example, we can compute

how the test group of functional unit A covers the code group of functional unit B. These

additional measurements can reveal the properties of the test suite and its parts. Hence

they may contribute to e.g., the changeability, or maintainability of the test suite.

We used the SoDA library and toolset [91] to compute different test-related metrics.

SoDA uses detailed coverage information and other metadata (e.g., functionalities tested

or implemented by a group of items) to compute the above mentioned metric values as

well as others such as the tests to code element ratio.

4.3.2 Test Visualization in CodeMetropolis

As explained in previous sections, CodeMetropolis could assign gardens to classes, cellars

to attributes, rooms to methods, buildings to method sets, and uses elevated platforms to

denote namespaces (or packages) and express inclusion. Different metrics can be assigned

to properties of various components of the virtual city. For example, the physical dimen-

sions of cellars and rooms, the amount of flowers, trees, or mushrooms in a garden can

represent various metrics like complexity, size, coupling, code style issues, etc. The assign-

ment between the metrics and the visualization attributes is easily configurable during the

mapping step.

Our main goal during this phase was to extend this metaphor and include the visual-

ization of functional and cross-functional units, and test-related metrics, but also preserve

visibility of existing static code attributes.

The first step in our method is source code analysis and code metrics computation.

Next, functional units are formed by assigning code and test case groups to the different

feature sets of the program. This process can be performed in various manual, semi-

automatic, or automatic ways, but this is not a topic of the present research. After that,

tests are executed, which generates the detailed code coverage from which test-related

56 Software Visualization

metrics are calculated.2

During the visualization, we mapped code and test entities and their properties to

architectural or landscape objects, to their attributes, and other visually observable phe-

nomena. Then, these objects are constructed from the building blocks of the Minecraft

world and placed in it according to their relations. Finally, the game loads the created

world, and the developers can get around the city and examine different objects.

The existing visualization concepts in CodeMetropolis remained the same; thus, all

source code elements (namespaces, classes, methods, attributes) and their properties

(source code metrics) are visualized as before. The additions are functional and cross-

functional units and their metrics.

We could not directly visualize functional units as simple objects in the virtual space,

as this combination of code and test groups does not fit in the existing hierarchical ap-

proach based on the source code. So, we decided to represent a functional unit as some

visible properties of the corresponding objects. Similarly, test cases do not appear in the

visualization space as individual objects; instead, our metrics were computed for the code

item–test case relations. Since the granularity of the metrics is not individual pairs of

these items, but functional code and test groups, the base of visualization will be code

group–test group relations. More concretely, test-related metrics computed for a given

functional or cross-functional unit will appear as objects, and their visual properties will

reflect the corresponding metrics. We call these objects the outposts.

However, if we placed outposts directly in the visualization space, we would lose the

connection between them and the source code. Therefore, we placed an outpost for each

(test metric, code group, class) triple. This decision implied an additional property to be

visualized: the completeness of a feature regarding a class. This metric expresses the ratio

of the concerned code elements (methods in the same class that belong to the assigned

code group) compared to all code elements that are assigned to the feature implemented

by the given code group. For example, if the class TextFile has a read() method assigned

to the input feature, which has two other assigned methods in addition from other classes,

then TextFile provides 1
3 feature completeness for the input feature.

4.3.3 Side by side visualization of code and tests

Two objects whose source code elements are close to each other in the code structure (and

hence appear also close in the virtual city) may implement different features. Similarly,

the same feature may be assigned to distant objects, so mapping functionalities to object

placement would raise several problems. Therefore, instead of representing features as

objects, they will be mapped to object properties. Fortunately, in Minecraft, we can use

many kinds of building blocks, so we assigned different blocks to different features. Then,

the outlook (color and texture) of the objects represents the assigned feature.

2More details of the process can be found in our other work [89].

4.3 Test Visualization with CodeMetropolis 57

Figure 4.5: Parts of outpost of test-related metrics

To visualize the concept of (cross-) functional units and their test-related metrics, we

are using the aforementioned outpost objects. What we want to see is how well the code

elements are tested along with the features, so we had to find a way to visualize the metric

values of functional and cross-functional units. Outposts are placed inside the gardens

of classes. Each outpost has a central watchtower and a surrounding fence, as shown in

Figure 4.5. The height attribute is used to represent the metric value. Also, one of its two

building materials reflects the assigned feature. In addition, the outposts are equipped

with explanatory signs and a colored flag on the top.

The basic concept behind using outposts is that tests are “guarding” the code. Tests of

a certain functional unit are created to check the quality of the code of the same unit, but

they are not intended to test code from cross-functional units. Based on this consideration,

each outpost of the class is assigned to a metric–code group pair and represents a single

metric of multiple (cross-) functional units. The central tower of the outpost is assigned

to the test group of the same feature that the code group of the outpost was assigned to,

while segments of the surrounding fence of the outpost represent the other test groups.

Thus, the central tower represents the metric value of the functional unit. The tower also

has scaffolding up to the top, which represents the actual metric value. The name of the

functional unit is shown on a wall sign, but is also encoded into the building material of

the tower walls and outpost ground. This provides a strong visual connection between the

methods and the outposts of their test-related data.

The surrounding fence of the tower is divided into segments, and each segment is

assigned to a cross-functional unit (cross-functional test group of the given code group).

58 Software Visualization

The height of each fence segment represents the metric value of the same metric (which was

assigned to the outpost) for the cross-functional unit assigned to the segment. For example,

if the outpost stands for coverage and is assigned to the input code group, one segment of

the fence will represent the output test group, i.e. the output-input cross-functional unit.

This construction of the outpost lets us visualize some common shortcomings of the

tests. For example, consider the outposts in Figure 4.5. A high fence around a low tower

in the leftmost outpost assigned to the coverage metric (and some feature) shows that tests

intended to check the implementation of a feature are not performing well. While other

tests (not intentionally created to do so) will do the job instead. This scenario violates

the modularity of the system.

4.4 Application

In some cases, developers need to step away from the source code and inspect the system

from a different perspective. We believe that CodeMetropolis will be able to maintain

motivation without sacrificing productivity thanks to its intuitive and, for many people,

already known graphical user interface. The provided metropolis metaphor has enough

expressive power to represent the complex items of the source code. Combined with

high-quality graphical techniques provided by today’s computer games, it can offer a rich

graphical interface, easy to learn controls, and a productive user experience.

Currently, CodeMetropolis is probably easier to fit in classrooms than in a commercial

project. However, with Eclipse ide integration, we think it might be useful outside the

classrooms. For example, it could help developers during refactoring sessions – when

neither are new features implemented, nor bugs fixed – only the underlying structure of

the code is changed to improve the quality of the software. With the proper mapping of

metrics, it could guide the developers to detect the possible weak spots of the system.

The software system usually contains several types of artifacts beside source code,

for example, elaborated test suits and their source code. Understanding the structure of

large test suites and the relation of their constituent test cases to the code of a system is

hard, and there are not many tools to aid this activity. This work combines two previous

approaches: a method to express test quality in terms of metrics and visualization of

code related metrics in the CodeMetropolis framework. The city metaphor employed by

CodeMetropolis seems to be useful for test metrics as well, and we believe that the side

by side presentation of code and tests will enable the developer to obtain a more global

picture of their software.

4.4.1 Scenarios of Practical Usage

We have identified two major use cases for our tool. Exploration tasks of software compre-

hension consist of the actions that need to be performed to comprehend source code, which

was written by someone else. We assume that developers need to execute these tasks dur-

4.4 Application 59

ing their daily routine. The other potential use of the tool is in education. Visual analogies

can make learning a lot easier for most of the students.

Software Comprehension

Developers, either juniors or experts, often have to join ongoing projects. In these cases,

the codebase already contains the implementation of some features. The size, the impor-

tance, and the quality of these show a wide range of variation. The developers have to

find the location of the important parts of the code and need to gather general knowledge

about the properties of various code entities, like classes and methods. In other words,

confidently navigating trough the codebase can speed up the implementation of further

features.

The integration can help to explore the code by combining an intriguing and rich visual

representation with the familiar environment of the Eclipse ide. The use case begins with

the opening of Eclipse and then launching Minecraft right from the CodeMetropolis menu.

The next step is to generate a virtual city, which is going to represent the source code. To

do this, developers use the Build feature of the CodeMetropolis Eclipse plug-in. Afterward,

the users can open the generated world in Minecraft and begin the exploration task itself.

This usually contains a series of repeated steps, during which various code entities are

inspected. Activating the Follow feature in Eclipse ensures that the player is always in the

garden, which represents the edited class. This synchronous navigation lets the developers

compare the values of source code metrics which are challenging to see from the code, but

are displayed as various visual properties of the buildings in Minecraft. This might be

less tiring than manually comparing a bunch of raw metric values, especially in the case

of large systems.

Education

For students, it usually takes much time to fully understand the concepts and advantages

of object-oriented design. They need to learn a new perspective on programming tasks

to be able to design the structure of their systems properly. By visualizing the structural

parts of code, they can see programs in a new way. They can comprehend the structure of

the source code just by walking around in a virtual metropolis. The relationship between

packages, classes, methods, and attributes can easily be presented through the buildings

of the city. They can understand underlying properties (metrics) and their connections.

This kind of visualization is also a great way to present programming to younger children.

Real-life analogies can make them feel more comfortable while talking about abstract

things like classes or metrics.

During a learning session, students should perform the following actions. First, they

need to start both tools: the IDE and the game. After opening the selected project, they

can build the virtual city and enter into the visualization. Then, they should investigate

60 Software Visualization

and understand the connections between the objects of the city and the code entities.

The jump function can be beneficial during this phase. Implementing new features or

modifying existing ones affect the structure and quality of the code. It is recommended

to rebuild the visualization after the changes so students can examine the effects of their

actions. We assume that by repeating these steps multiple times during the life cycle of

the project, they can monitor their coding quality and recognize structural weaknesses in

the system.

4.4.2 Demo Scenarios

In this section, we present two demo scenarios. Both of these use the open-source project

tutorial-refactoring-rectangles [84], which is a small Java program. It serves as a classroom

exercise for students to practice various refactoring techniques. To help the reader under-

stand the scenarios, we only specify the relevant metrics and properties. The elements

of the source code are assigned to the same type of building in all cases, so classes are

represented as gardens, their methods are displayed as the floors of buildings, and the

stone plates stand for namespaces or packages. However, the properties of those which are

linked to various metrics are different and will be explained later. More demo scenarios

can be found in the supplement material.

Inspecting Various Visual Properties of a Single Building

In the first scenario, the logical lines of code are mapped to the height of the floors, and

the number of statements is visualized as the material the walls are made of. This means

that if a method has more lines that are neither empty nor comments, the related floor

will be higher. On the other hand, if a method contains fewer statements, the floor will

be built from lighter materials like sandstone or glass instead of the darker ones like stone

or obsidian. The minimal height of a floor is nine blocks, and the materials range from

glass to obsidian.

Figure 4.6 shows the constructor of the Rectangle class and its visualization. The

assigned elements are highlighted and connected. In this case, the code from line 41 to

line 46 is represented with the floor in the middle. This is made from sandstone, and it is

neither extremely tall nor short. Its visual appearance suggests that it cannot contain too

many logical lines of the code or statements. Furthermore, the lightness of the material

and the moderate height indicate that the value of these two metrics is relatively close

to each other. The implementation of the constructor contains four logical lines and four

statements. It means that the average ratio is 1 statement per line.

These values of metrics can be calculated or compared manually, but the time it

takes depends on the size and the complexity of the code. The use of CodeMetropolis as

visualization and its plug-in for Eclipse could speed up this process by providing a rich

and interactive visual representation. Inspections like this are the core step when the

4.4 Application 61

Figure 4.6: Inspection of the constructor of the Rectangle class and its visualization

developer needs to explore new source code.

Compare Two Different Buildings

In this case, two buildings are compared, namely two methods of the Rectangle class: the

contains and the equals methods. We use the same ranges for building material, as in the

previous case. The number of statements is represented by the material, but the height

is assigned to the cyclomatic complexity used to indicate the complexity of a program. It

is a quantitative measure of the number of linearly independent execution paths through

the source code of a program.

Figure 4.7: Comparison of two methods and their corresponding floors in the virtual city

Figure 4.7 shows the relevant parts of the source code and its graphical representation.

62 Software Visualization

The assigned elements are highlighted and connected. In this case, the code from line 55

to line 69 and from line 91 to line 99 is represented with the two stone floors. Both of

these are made of the same material, so they contain a similar amount of statements. The

one above is higher, so it is more complex than the other.

To decrease the overall complexity of the class and improve readability, developers

may refactor the most complex parts of the class, in this case, the contains method.

After finding the appropriate method, the modification can be applied in Eclipse. In this

case, the last two lines (lines 67 and 68) can be extracted into two new methods, which

will compare the vertical and the horizontal size of the rectangles. Then, the developers

rebuild the virtual city to see the effect of their changes. These steps can be repeated to

accomplish the required refactoring tasks.

4.5 Contributions

My software visualization related research consisted of three phases. At first, I improved

the expressive power of an already existing city metaphor. In the second phase, I con-

structed several metrics to asses the degree of realism. Finally, I contributed to the

development of a novel approach to visualize test-related properties.

Enhancing the City Metaphor with Game-based Visualization My main con-

tribution in this phase was to connect data visualization with high end-user graphics

capabilities. To achieve this, a conversion tool was implemented. During the research, I

utilized the city metaphor to visualize abstract concepts and properties related to software

systems. It processes the source code metrics as input and generates a Minecraft world

with buildings, districts, and gardens, which represent abstract properties of the software.

The tool is in the prototype state, but it can be used to investigate the possibilities of

this kind of data visualization. The research conducted in this phase forms the basis for

several sub-thesis points, but it has the strongest relation to sub-thesis points 2.1 and 2.3.

Assessing the Degree of Realism for the City Metaphor in Software Visualiza-

tion In the previous phase, I focused on enhancing the city metaphor, which represents

information as buildings, districts, and streets. To allow the users to navigate freely in

the artificial environment and to understand the meaning of the objects, we had to learn

the difference between a realistic and unrealistic city. To do this, we had to measure how

similar it is to reality. I designed and presented three metrics that express various features

of a city. These metrics are compactness for measuring space consumption, connectivity

for showing the low-level coherence among the buildings, and homogeneity for express-

ing the smoothness of the landscape. I analyzed the connections between the high-level

measure of realism and these low-level metrics. I wanted like to capture the subjective

opinions of users with an online survey. These data were used to construct and fine-tune

4.6 Advantages and Disadvantages of These Methods 63

the high-level metrics. These experiments support sub-thesis point 2.2.

Test Visualization with CodeMetropolis Before this phase, CodeMetropolis was

limited to represent only code related artifacts. I contributed to the extension of the

metaphor to include properties of tests related to the program code using a novel concept,

which covers sub-thesis point 2.4.

I participated in all parts of the project, but my main contribution was to design the

graphical elements (called outpost) used to display test-related information. It includes the

ecstatic and functional details of these. The test suite and the test cases are also associated

with a set of metrics that characterize their quality, but also reveal new properties of the

system itself. In a new version of CodeMetropolis, gardens representing code elements give

rise to outposts that characterize properties of the tests and show how they contribute to

the quality of the code. Former methods presented either code or test-related objects

individually, but not both in a common space.

4.6 Advantages and Disadvantages of These Methods

4.6.1 Internal Validity

The usefulness of a tool like CodeMetropolis depends on various factors including the expe-

rience and personal values of the users. For people who naturally use similar metaphors to

understand the world this could be a straightforward way of visualization, while for many

others the approach would merely be an interesting but generally experimental idea.

Construct Validity

The dominant benefit of the enhanced city metaphor, namely that it can represent many

different properties, could also be its biggest drawback. The resulted visualization could

be overwhelming. The increased amount of encoded information may reduce the chance

of locating the point of interest. Moreover, the multitude of configuration options make it

hard to set up a visualization which aids the completion of a specific task. These problems

could be addressed by evaluating the generated cities and automatically fine-tuning the

settings of CodeMetropolis.

The evaluation of visualization is, by nature, a subjective endeavor. This makes it hard

to automatically preset the optimal configuration based on a set of measurements, like the

previously described low- and high-level metrics of the city. One possible solution could

be to build a benchmark of real-life cities to approximate the optimal solution. However,

there are several legal concerns to take into account when acquiring the necessary layout

data.

64 Software Visualization

Content Validity

We do not doubt that there are several factors of software quality that cannot be displayed

using the city metaphor. The current version of CodeMetropolis is using augmented trees

as an underlying data structure. Any information which cannot be captured with this

datatype is currently out of reach of our visualization techniques. For example, we are

unable to display intricate web of interconnecting classes and methods. However, in this

case, the original data could be converted (maybe in lossless fashion) to the appropriate

representation.

Furthermore, the metrics for generated cities are designed to help the layout of the

metropolis. Hence these measures ignore the internal properties and shapes of the build-

ings. We could address this issue in two ways: by extending (changing) the low-level

metrics or by adding new ones to the set.

4.6.2 External Validity

The generalization of CodeMetropolis and the techniques it represents can be inspected

from two perspectives. We have high confidence that these can be used to teach abstract

concepts excitingly and intriguingly. Neither CodeMetropolis nor its underlying concept

is demanding any strict constraint to the data that need to be visualized. Hence it could

be useful during the education of other natural sciences.

In the case of industrial application, the city metaphor could be useful in communicat-

ing non-functional improvements towards non-professional stakeholders, like customers.

On the other hand, developers and testers are more reluctant to disturb their routine with

emerging techniques and presently unknown tools. In the future, we plan to ease the learn-

ing curve by providing ready-to-use settings and scenarios to complete several everyday

tasks for various stakeholders; for example, software comprehension (challenge 1).

In either case, the success of these techniques strongly depends on, the user being able

to perform their tasks, while staying motivated; in other words, “making software metrics

such fun that you want to do it”, as one of our users put it into words.

Chapter 5

Using Test Coverage to Analyze

Structures in the Package

Hierarchy

This chapter contains a detailed elaboration of the researches related to test and code

quality measurement and improvement. The structure of the related thesis point and its

connections to various stakeholders and topics are shown in fig. 5.1.

Figure 5.1: Structure of thesis points

During software analysis, researchers and it experts often rely on the comparison of

datasets. They also frequently draw conclusions based on differences between two rep-

resentations of the same item’s set. For example, developers may examine the densely

connected parts of method call graphs in the context of their location in the package hi-

erarchy tree to find error-prone parts of the system. These kinds of analyses could be

aided with a generalized methodology for graphs, which can be used to unify the un-

derlying process of discrepancy analysis. In this chapter, we present a methodology for

65

66 Analyzing Test and Package Hierarchy

unified graph’s discrepancy analysis, named UniGDA, which is a generalized technique

to compare the arbitrary graph-based representation of the inspected entities and ana-

lyze the differences (discrepancies) between them. It is based on our previously defined

domain-specific discrepancy detection technique for cluster comparison. Our generalized

methodology is using different types of characteristic functions to capture the similarity

structures between vertices of arbitrary graphs. We provide several domain-independent

options for the free parameters of UniGDA.

We also present two possible use cases of UniGDA: the classification of structural

test smells and the clustering of test-code traceability discrepancies to showcase the usage

of our methodology. We propose a semi-automatic method for these concrete tasks, which

are based on static and dynamic software analysis approaches, comparing their results

and presenting the discrepancies to the user, who will determine the final action to take

based on the differences and contextual information. We define a set of domain-specific

discrepancy patterns, which can help the user in this task. Additional outcomes of ana-

lyzing the discrepancies are structural unit testing issues (suspicious parts of the system

and test suite) and related refactoring suggestions.

For the static test-to-code analysis, we rely on the physical code structure, while for

the dynamic, we use code coverage information. In both cases, we compute combined test

and code clusters, which represent sets of tests and their subject items. We also present

an empirical study of the method involving eight non-trivial open-source Java systems.

This chapter mainly address the challenges 1 and 2.

Software systems consist of several interlinked items; the results of these analyses are

often presented in the form of graphs.

For example, the internal structure of the systems is usually captured with various

diagrams, like control flow graphs or several types of uml diagrams [70], which could be

interpreted as directed graphs with special labels. There are several ways to represent the

relationships between different kinds of development-related entities, like users, developers,

bugs and test cases [104, 79, 24, 4].

The wide variety of items and their associated meta-information lead to very distinct

graph-based representations. There are several ways to encode the same information, and

there are various tools that can provide the requested data. For example, both the static

and dynamic program analysis could yield information about the consecutive function or

method calls, and there are several tools (using either technique) that could retrieve these

data.

Researchers usually use some domain-specific heuristics to asses the similarity between

these representations to aid their analysis. During our research, we address two particular

issues, namely the classification of structural test smells and the clustering of test-code

traceability discrepancies. We conduct manual analyses of the discrepancies to evaluate

their findings. However these methods [44, 21, 8] contain several common steps and utilize

similar concepts. Based on these experiences, we provide a general methodology for the

5.1 Simultaneous Clustering of Test Cases and Methods 67

graph’s comparison, which can be used to aid the researchers during their work, by unifying

the underlying process of discrepancy analysis.

5.1 Simultaneous Clustering of Test Cases and Methods

In section 2.3.1, two important properties of well-designed unit tests have been put forth:

their executions are restricted to the tested unit, and they are appropriately named and

structured. To check whether this holds for a particular test suite, the manual option

would be to verify what pieces of code each test case exercises (directly or indirectly)

and compare this to the physical location of the test. This is, however, impractical for

real-word test suites.

To automate this task, we employ two clustering algorithms that can group together

test and code items. The first one is based on code coverage and captures dynamic

relations between the test suite and the system under test. This is then compared to the

other, trivial clustering, that works from static information and captures the structural

properties of the tests and program code.

5.1.1 Package Hierarchy Based Clustering

Through package based clustering, we aim to detect groups of tests and code that are

connected by the intention of the developer or tester. The placement of the unit tests

and code elements within a hierarchical package structure of the system is a natural

classification according to their intended role. When tests are placed within the package

that the tested code is located in, then it helps other developers and testers to understand

the connection between tests and their subjects. However, it might happen that the

developers did not follow unit testing guidelines, or the system evolved in such a way that

due to package reorganization, the package structure does not reflect the actual role of the

tests.

Our package based clustering simply means that we assign the fully qualified name of

the innermost containing package to each test and method, and treat tests and methods

belonging to the same package as members of the same cluster. Names of the test and

code elements are not considered; the naming of a particular piece of code (either a unit

test or regular code) is determined by the rules of JUnit (such as the special annotations),

our unit testing framework.

5.1.2 Test-Code Coverage Based Clustering

In order to determine the clustering of the tests and code based on the dynamic behaviour

of the test suite, we will apply community detection [26, 41] on the detailed code coverage

information. Detailed code coverage, in this case, is that, for each test case, we record

individually what code elements (methods, in our case) it executed. This forms a binary

68 Analyzing Test and Package Hierarchy

matrix (called coverage matrix), with test cases in its rows and methods in the columns.

A value of 1 in a matrix cell indicates that the method is executed at least once during the

execution of the corresponding test case (regardless of the actual statements and paths

took within the method body), and 0 indicates that that test case has not covered it.

The concept of clustering based on dynamic behavior used in this work can be il-

lustrated by investigating different regions in the coverage matrix. Groups of tests and

methods that form “dense regions” in the matrix may be grouped, indicating that there

is a close correspondence between them from a dynamic point of view. These regions

contain more “one” values in the cells, while outside of them in their rows and columns,

the 0 values are more common. The property of the members of such groups (or clusters)

is that their test cases more likely to cover their methods than other methods and that

their methods are more likely to covered by their test cases than by other test cases.

There might be different approaches to detect these clusters, but they are based on

some kind of heuristic that tries to maximize the coverage within a cluster and minimize

them outside. Our choice for cluster identification was to use community detection [41].

This set of algorithms is originally defined on (possibly directed and weighted) graphs that

represent complex networks (social, biological, technological, etc.), and recently have also

been suggested for software engineering problems [65, 51].

Community structures are detected based on statistical information about the number

of edges between sets of graph nodes. So, in the next step, we construct a graph from the

coverage matrix, whose nodes are the methods and tests of the analyzed system (hereafter

referred to as the coverage graph). A method and a test node in this graph are connected

with a single unweighted and undirected edge if and only if the method was covered

during the execution of that particular test, i.e.there is a 1 in the corresponding matrix

cell. This way, we define a bipartite graph over the method and test sets because no

edge will be present between two methods or two tests. The actual algorithm we used for

community detection is the Louvain Modularity method [26] (also used by Hamilton and

Danicic [51]), a greedy optimization method based on internal graph structure statistics

to maximize modularity [21].

5.2 Similarity Pattern Detection

The previously introduced package and test-code coverage based clusterings could be de-

picted as graphs where each node represents a single cluster without any connection be-

tween them. We propose a unified process (UniGDA) to compare two arbitrary graphs

and also present a domain-specific implementation for these two graphs of clusters [14]1.

In further sections, we will show that; however, UniGDA was deduced from this simple

representation, it can capture arbitrary edge-related properties.

UniGDA contains two main phases. During the preparation, we calculate the sim-

1This paper was submitted for publication, but it was not accepted yet

5.2 Similarity Pattern Detection 69

ilarity between each pair of the inspected graphs and construct a generic description of

the discrepancies among them. We use this information to classify or further analyze the

discrepancies during the evaluation phase. These phases are shown in Figure 5.2.

Figure 5.2: Overview of the UniGDA Process

The first phase consists of two steps: the comparison of subject nodes and the construc-

tion of discrepancy descriptions. These steps are responsible for extracting the relevant

properties of nodes and collecting information about their differences.

The evaluation phase could encapsulate several parallel steps, for example, the analysis

or the grouping of discrepancies. These steps could be executed manually or with various

degrees of automation. Their goal is to provide data that could be used to answer the

research questions or solve the concrete problems under investigation.

In the following subsections, we will elaborate on the theoretical (and some technical)

details about these steps.

Comparison of Nodes

In this step, we compare the nodes of the two subject graphs and capture the differences

(and similarities) between them. In other words, our methodology requires a node level

comparison to provide the relevant fine-grained information, which will allow us to inspect

the local discrepancies of graphs under inspection.

This comparison is made by computing the similarity between each pair of nodes and

denoting the similarities with a value from zero to one (for a formal definition of similarity

70 Analyzing Test and Package Hierarchy

function see definition C.1.1).

General (plain) graphs are rarely used to describe various aspects of software systems

or their related processes and artifacts. Researchers usually represent their data as graphs

that have several properties associated with their nodes and edges. These could be weights,

labels, ids, names, and several other attributes rooted in the domain of the original prob-

lem. During the comparison, we use the similarity function to capture domain-specific

details about the resemblance of these properties.

The details of this comparison highly depend on the concrete problem, so our method-

ology does not enforce any unnecessary constraints of the similarity calculation method.

To define the discrepancy descriptors (introduced in a subsequent section), we bound the

range of the similarity function (∼). The lowest value (g ∼ h = 0) means that there is no

similarity between the inspected nodes, while the highest value represents that they are

identical (they have maximum similarity, g ∼ h = 1).

Note that our process does not require any specific distribution or granularity of similar-

ity values. However, the properties of the selected similarity function should be considered

during the evaluation phase.

Domain Independent Similarity Functions

Based on our experience, we can suggest some domain-independent candidates, which

fulfill the previously mentioned requirements and could be used as a similarity function

between nodes. Each of these has some prerequisite conditions. See appendix C.1.1 for

formal definitions.

Vertex-property Based Similarity encodes the aggregated similarity of properties for

each vertex (fig. 5.3a). The prerequisite condition for this similarity function is that

there should be an equivalence operator over the set of property values of vertices.

Edge-property Based Similarity captures the aggregated similarity of the node’s edges

based on their properties (fig. 5.3b). The prerequisite condition for this similarity

function is that there should be an equivalence operator over the set of property’s

values of edges, and a meaningful aggregation over the edge similarities should be

specified, which could be easily interpreted by experts of that domain.

Adjacent Vertex’s Similarity-Based Similarity can express the aggregated similar-

ity of adjacent vertexes based on their properties or the properties of their edges

(figs. 5.3c and 5.3d). Both of these similarity functions inherit the prerequisite con-

dition of the previous similarity computation method. Furthermore, we have to

choose a meaningful aggregation for the similarities of the adjacent vertices.

Compound, Property-Based Similarity is constructed by taking the aggregation of

any number of previously listed similarity functions. This compound similarity func-

tion inherits all previously mentioned prerequisite conditions.

5.2 Similarity Pattern Detection 71

(a) Vertex-property Based Similarity (b) Edge-property Based Similarity

(c) Adjacent Vertex’s Similarity Based Similarity (vertex-property based)

(d) Adjacent Vertex’s Similarity Based Similarity (edge-property based)

Figure 5.3: Domain Independent Similarity Functions

For aggregation, we could use various statistical functions like the means, median,

and deviation. Normalized set comparison metrics [102], for example Jaccard similarity

index [92] are useful for encoding underlying similarities, like similarity of property sets.

Constructing the Node Similarity Graph

During the second step of our comparison methodology, we construct a graph-based rep-

resentation, which contains all the required information to locate and process the discrep-

ancies.

We call this compound graph the Node Similarity Graph (nsg, definition C.2.1). It

contains all nodes from both inspected graphs. These vertices are connected if their

similarity is greater then zero (i.e., they are at least a bit similar to each other). The

edges of nsg are directed since our methodology does not require that the similarity has

72 Analyzing Test and Package Hierarchy

the same magnitude in both directions. These edges are weighted with the magnitude of

similarity of their endpoints. The nsg encodes all information into the similarities. Hence

it does not denote the edges of the inspected (original) graphs.

In Figure 5.4, we show an example of the construction of nsg, marked with S. Edges

in the two subject graphs (G and H) are marked with a dashed, gray line, while solid,

black lines represent connections in the similarity graph.

Figure 5.4: Node Similarity Graph construction

Discrepancy Pattern Description To enable further analysis of the discrepancies, we

require a unified way to characterize them. Informally, we need to create tools, which could

be used to answer the questions: How similar entities relate to other entities? To address

this issue, we introduce a special feature vector and function to describe the inspected

vertex and its neighbors in the nsg, namely the Neighbor Degree Distribution (ndd) vector

and curve. As their name suggests, they encode the distribution of the inspected node’s

adjacent vertices according to their degree. These descriptors can capture information

about the adjacent vertexes and their neighbor (i.e., 2-edge wide context) of the inspected

vertex. When applied to the nsg, they provide an easy-to-use tool to describe the local

similarity relations.

During the following sections, we will use the notions presented in Figure 5.5.

The label a represents the vertex under inspection, while bi stands for its adjacent

vertices and their neighbors are marked with c
(i)
j . We use αi and β

(i)
j to denote weight for

edges
−−−→
(a; b) and

−−→
(b; c) respectively. Please note that some of the vertices may have more

than one label, for example, the inspected vertex could be referred to as a or c, since it is

a neighbor of its neighbors.

Discrete Case

In the discrete case, ndds are capable of encoding the presence of similar vertices, but

they do not store information about the magnitude of similarity between the inspected

vertex and its neighbors.

In this case, ndds are represented as vectors of natural numbers. We named these

5.2 Similarity Pattern Detection 73

Figure 5.5: Sample graph for ndd definition

Discrete Neighbor Degree Distribution vectors, or dNDD for short. They give an accurate

representation of the distribution of neighbors with a specific degree. The counting of

adjacent vertices is preceded by a filtering step, where all edges with zero weight are

eliminated.

Informally, we seek answers to the following questions: How many adjacent vertices

have a specific number of neighbors? The resulting vectors can be represented as a bar

chart, where the horizontal axis denotes the number of adjacent vertices, and the vertical

axis shows the number of neighbors with that particular degree. This vector bears a

resemblance to the commonly used histogram, which is an accurate representation of the

distribution of numerical data, in our case, the number of neighbors with a specific degree.

It is an estimation of the probability distribution of this quantitative variable. The general

and formal definition of dNDD vectors can be found in definition C.3.1.

For example, the dNDD vector of the middle vertex in Figure 5.6 is (0, 1, 1, 2, 0, 0, . . .).

We usually simplify this notion by removing the trailing 0-s, [0 1 1 2]. The red circle

represents the scope of the dNDD vector since it is only capable of encoding information

in a 2-edge wide context. This dNDD vector means that the inspected vertex in the

middle has the following neighbors.

d1 = 0 There is not any adjacent vertex with only one connection.

74 Analyzing Test and Package Hierarchy

d2 = 1 It has one neighbor with two adjacent vertices, i.e. the one on its left side.

d3 = 1 There is also a single adjacent vertex with three connections, i.e. the one on its

right side.

d4 = 2 Finally, there are two neighbors with the degree of 4, the top and bottom ones.

Figure 5.6: Example graph for dNDD calculation

Note that the above described dNDD vectors are unable to express the differences

between the weights of edges. Hence they are not encoding any information on the magni-

tude of similarity. The ndd vectors could still be sufficient to analyze similarity in various

cases (see, sections 5.3.1 and 5.3.2). However, a more in-depth inspection requires taking

the magnitude of similarity into account (see, section 5.3.3).

Continuous Case

In this step of the research, our goal was to construct a descriptor which can capture

information about the magnitude of similarity between vertices, instead of only being

able to express the existence of similar ones. To address this issue, we extended the

previously discussed dNDD vectors, and defined a new construct, namely cNDD curves

(cNDD(a) : R 7→ R). We assign a cNDD curve to each inspected vertex of the subject

graph (i.e., the nsg). These curves are an aggregation of several Gaussian functions meant

to describe the neighbors of the inspected nodes. The free parameters of the bell-curves are

based on the magnitude of similarity of the adjacent vertexes (and their neighbors). For

the formal definition of cNDD curves, including these free parameters, see appendix C.3.2.

We used the core concept of kernel density estimation [82] to define the characterizing

function of the neighboring vertexes. In statistics, kernel density estimation (kde) is a

non-parametric way to estimate the probability density function of a random variable, in

our case, the number neighbors with various degree. These estimates are closely related

to histograms, but can be endowed with properties such as smoothness or continuity by

using a suitable kernel. In the case of the histogram, first, the horizontal axis is divided

into sub-intervals or bins which cover the range of the data; this is analogous to the items

of dNDD vectors. For the kernel density estimate, we place a kernel function on each of

5.2 Similarity Pattern Detection 75

the data points, i.e., on the neighbor with a specific degree. The kernels are aggregated

to make the cNDD function, similarly to the kernel density estimate.

Figure 5.7: Characteristic function

By definition, cNDD curves can express more information about the inspected vertex

and its surroundings than dNDD vectors. These differences arose from their underlying

function used to characterize neighbors of an inspected vertex. As illustrated in Figure 5.7,

in the discrete case, the characterizing function has two independent properties to encode

information (informally, its offset and height); while in the continuous case, we can repre-

sent one more additional dimension of the data (informally, the width of the bell-curves).

For more details, see appendix C.3.2 and definition C.3.3.

Evaluation

During the evaluation, we used the previously described constructs (dNDD or cNDD)

to detect and analyze various discrepancies between the two subject graphs, namely the

graphs of interrelated unit tests and methods captured by static and dynamic analyzes

(section 5.1).

The usage of ndd vectors and curves made it possible to conduct an in-depth analysis

of node similarity. We could use these descriptors to define similarity patterns. These are

sub-graphs of the nsg, which describe the relation of the inspected node in respect of its

similarity to other entities.

Researchers could use either the continuous or the discrete version during the analyses

to construct these patterns, but they have to take into account the differences between

them.

For example consider the twins pattern shown in fig. 5.8a. The figure shows a sub-

graph of the nsg constructed from two subject graphs. The inspected vertex is always

marked with an a. There are two items, one from each graph, represented as green dots

and purple squares. The similarity between these two and any other items are zero (they

are only similar to eachother). If the magnitude of their similarities, i.e., the weights of

edges in the nsg, is equal to one, we call them identical twins.

Informally, the identical version of this pattern suggests that these two vertices repre-

sent the same item in the two graphs (based on the given similarity function). While in

the non-identical case, when the magnitude of similarity is less than one, these represent

the “best possible choice,” since there are not any other similar items to choose from. The

dNDD vectors are unable to distinguish identical and non-identical cases. So, the dNDD

76 Analyzing Test and Package Hierarchy

(a) Twins (b) Siblings (c) Fostering

Figure 5.8: Similarity Patterns

vector of these vertices in both case are dNDD(aid.) = dNDD(anon-id.) = (1, 0, 0, . . .).

While cNDD curves are cNDD(aid.) = g(x, 1, 1, 0)2 and cNDD(anon-id.) = g(x, α, 1, 0)2 :

0 < α < 1, x ∈ R for the identical and the non-identical case, respectively. In these exam-

ples x denotes the input value of the function. To better understand this aggregation of

a single function, let us inspect the parameters of the underlying characteristic function

(g(. . .)). For more details see appendix C.3.2.

Magnitude of similarity (second parameter) is the weight of the edge from the in-

spected node to its lonely neighbor.

Count of similar nodes (third parameter) is expressing the current number of sim-

ilar nodes of the single adjacent vertex.

Standard distribution of further similarities (fourth parameter) captures the mag-

nitudes of similarity between the single adjacent vertex and its neighbors.2

Please note that in this simple case, it could be sufficient to record only these param-

eters, but the number of properties to capture will grow with the number of neighbors,

which demands some kind of aggregation like what we did in the case of cNDD curves.

The definition of meaningful similarity patterns are highly dependent on the domain of

the actual problem; however, we can identify the following domain-independent patterns.

Siblings The previously introduced twins patterns are a special case of the siblings

similarity patterns. In these cases, the inspected vertex’s neighbors do not have any more

adjacent vertices. An example involving three siblings and one inspected vertex is shown

in Figure 5.8b. The dNDD vectors for these patterns are (3, 0, 0, . . .). We distinguish two

types of this pattern based on the magnitude of similarity between the inspected vertex

and its neighbors. It is called identical when all of its siblings are highly similar to the

inspected vertex, and non-identical types when only one of the siblings shows the higher

magnitude of similarity.

The interpretation of these patterns are also domain-specific, but identical siblings

could indicate that the methods, which produced the two subject graphs have a “different

resolution”. For a simple example, let us consider two representations of the same file

2This is zero because there is not any such vertex.

5.3 Comparison of Static and Dynamic Clusterings 77

system, where one uses the full path to identify the files, and the other relies on the

name of files. The non-identical type is a possible sign of noise in the subject graphs. For

example, if we would build the type hierarchy of the same object-oriented system, but with

different tools. One of the tools stores interfaces as properties on the vertex representing

the class, while the other uses individual vertices to encode them. There should be some

interfaces that are quite similar to the inspected classes.

Fostering There are three main components of the fostering similarity pattern. There

is the inspected vertex, which shows a low magnitude of similarity to its foster brother or

sister, and there are siblings by blood, which are highly similar to the inspected (foster)

vertex. This pattern is shown in Figure 5.8c. The dNDD vector for this instance of the

pattern is (2, 1, 0, 0, . . .).

The number and connection of adjacent vertices of these three are not defined for

fostering similarity patterns. For example, a foster vertex could have more than one

step-brother and also more than one blood-brother.

It is exceedingly difficult to give a domain-independent meaning to more complex pat-

terns, but fostering patterns could be an indicator of a poorly chosen similarity function.

For example, if we try two pair methods by using all of their attributes, including acces-

sibility (such as private, public, and protected), there should be many methods that are

slightly similar to others.

5.3 Comparison of Static and Dynamic Clusterings

In this section, we will elaborate on two practical use cases for the previously described

theoretical tool-set. The construction of the UniGDA methodology is based on our pre-

vious research of Balogh, G.et al. [21, 44, 45]. We successfully used a similar methodology

to analyze discrepancies between two kinds of test cases and their subject method clus-

terings. Since these experiments preceded the development of a methodology for unified

graph’s discrepancy analysis, we will show that our methods are the domain-specific ver-

sions of the more general UniGDA. The fig. 5.9 shows the informal connection between

the components of the theoretical tool-set and their domain-specific implementations.

Figure 5.9: Various domain specific implementations of UniGDA

78 Analyzing Test and Package Hierarchy

During our experiments [21, 45] we applied a community detection algorithm on a code

coverage matrix to detect sets of closely related unit tests and code elements (section 5.1.2).

We performed these measurements on real open source systems and compared the iden-

tified clusterings with the trivial clustering based on physical code structure (i.e. package

hierarchy, section 5.1.1). Finally, we categorized the discrepancies between the two into

typical cases, quantified their amount in the subject programs, and provided guidelines

to how these can be used as actual bad smells and associated refactorings to improve the

structures of existing tests.

We used the inclusion metric to asses the similarity of any two clusters. This similarity

function was used to construct a weighted, bi-partite graph, where vertices represent

clusters, and edges are weighted by their inclusion metric. This cluster similarity graph

(csg) is a domain-specific version of nsg in the UniGDA methodology. We updated

(rephrased and regrouped) some of our previously defined patterns to fit into our current

frame of mind. Several patterns are simple domain-specific cases of previously defined

similarity patterns, but there are others which only share some of their properties. Since

we can use dNDD vectors to detect these, the later ones could also be generalized to find

their similarity patterns. The relations among these domain-dependent implementations

and the general similarity patterns are shown in fig. 5.10.

Our subject systems were medium to large sized open-source Java programs which

have their unit tests implemented using the JUnit test automation framework. Table 5.1

shows some of their basic properties. We chose these systems because they had a reason-

able number of test cases compared to the system size. We modified the build processes

of the systems to produce method level coverage information using the Clover coverage

measurement tool [10]. This tool is based on source-code instrumentation and gives more

precise information about source code entities than tools based on bytecode instrumenta-

tion ([90]).

Program tag / hash LOC Methods Tests P C

checkstyle checkstyle-6.11.1 114K 2 655 1 487 24 47
commons-lang #00fafe77 69K 2 796 3 326 13 276
commons-math #2aa4681c 177K 7 167 5 081 71 39
joda-time v2.9 85K 3 898 4 174 9 22
mapdb mapdb-1.0.8 53K 1 608 1 774 4 7
netty netty-4.0.29.Final 140K 8 230 3 982 45 35
orientdb 2.0.10 229K 13 118 925 130 39
oryx oryx-1.1.0 31K 1 562 208 27 40

Table 5.1: Subject programs and their basic properties

5.3 Comparison of Static and Dynamic Clusterings 79

Figure 5.10: Relation among similarity pattern

80 Analyzing Test and Package Hierarchy

5.3.1 Classification of Structural Test Smells

The discrepancies found in the results of two clusterings can be seen as some sort of smell,

which indicates potential problems in the structural organization of tests and code. For

tests that are implemented as executable code, the paper [35] introduced the concept of

test smells, which indicates poorly designed test code, and listed 11 test code smells with

suggested refactorings. We can best relate our work to their Indirect Testing smell.

We used our experiences to define the following discrepancy patterns. Our research

utilized the previously detailed dNDD and csg (nsg), which are key concepts of the more

general UniGDA methodology to find and identify these patterns.

Ideal pattern In the ideal case, a single unit that is observable along the test suite

structure is also observable from the actual behavior of the tests. The methods and tests

are the same in both clusters. Hence they are alternative manifestations of the same entity.

The inclusion measures between the two clusters are 1 in either direction in these cases.

This pattern will be referred to as Ideal in the following. The ideal discrepancy pattern is

the domain-specific equivalent of the identical twins similarity pattern.

Clear-cut pattern In the case of this pattern there is one package based cluster that

consists of more community based clusters. In this case, the tests of the single unit are

partitioned, and different test cases are testing (covering) different parts of the unit, and

the partitions together correspond to the cluster as a whole. This pattern will be called in

the following the Clear-cut scenario. A clear-cut discrepancy pattern could be interpreted

as the domain-specific version of the siblings similarity pattern.

Anomaly pattern We treat anomaly to be present in the clustering comparison when

package based clusters do not correspond precisely to a set of associated community clus-

ters as in the case of the Clear-cut pattern. In other words, an anomaly is when a package

based cluster does not fully include a community-based cluster. In this case, the remaining

elements will be included in other package based clusters. This pattern will be referred to

as an Anomaly. This scenario does not represent any distinct similarity patterns. It is a

collection of unclassified cases.

We automatically searched for the presence of the patterns in our subject systems using

a custom script. It examines each package or community cluster and their surroundings

on the cluster similarity graph, and using the inclusion measure determines one of the

three cases. The corresponding statistics are shown in Table 5.2. The table is divided into

three regions, representing the three cases elaborated earlier. For the Ideal and Clear-

cut patterns we base our measurements on the number of package based clusters that

are involved in such scenarios, while in the case of the Anomaly pattern, the number

of affected community clusters will be used. The first column in each region shows the

actual number of the given pattern occurrence found in the corresponding subject. In

5.3 Comparison of Static and Dynamic Clusterings 81

contrast, possible occurrences denotes the total number of clusters of the corresponding

type. The last column in each region shows the ratio of these elements. We can observe

that, although there are ideal and clear cut scenarios for some programs, most of the

clusters – furthermore, in four systems (commons−lang, commons−math, joda−time, and netty)

all of them – are involved in anomalies.

smell Ideal Clear-cut Anomaly

o
cc

u
rr

en
ce

s

p
os

si
b

le
o
cc

.

o
cc

u
rr

en
ce

s
%

o
cc

u
rr

en
ce

s

p
os

si
b

le
o
cc

.

o
cc

u
rr

en
ce

s
%

o
cc

u
rr

en
ce

s

p
os

si
b

le
o
cc

.

o
cc

u
rr

en
ce

s
%

checkstyle 0 24 0% 1 24 4% 13 45 29%
commons-lang 0 13 0% 0 13 0% 15 275 6%
commons-math 0 71 0% 0 71 0% 15 41 37%
joda-time 0 9 0% 0 9 0% 8 21 38%
mapdb 0 4 0% 0 4 0% 4 7 57%
netty 4 45 9% 1 45 2% 12 34 35%
orientdb 2 130 2% 0 130 0% 13 42 31%
oryx 8 27 30% 4 27 15% 8 39 21%

Table 5.2: The number of cluster comparison patterns in the subject systems

Our goal was not to investigate each pattern occurrence in detail in this phase of the

research; instead, we manually checked the systems with the most detected anomalies.

This indicates a need for the reorganization of units or the re-implementation of the

unit tests, especially for programs like joda−time and mapdb. For example, this manual

inspection revealed that joda−time uses a very small number of packages to group the

tests and methods. The intention of the developers is encoded into pre- and postfixes

of the class names, for example TestDateMidnight Basics, TestDateMidnight Constructors and

TestDateMidnight Properties. This information could be expressed by moving the relevant

items into different packages. However, to analyze the causal relationship between these

properties and the high number of anomalies, further investigation is required.

5.3.2 Clustering of Test-Code Traceability Discrepancies

In our previous work [45], we propose a semi-automatic method, which is based on com-

puting traceability links using static and dynamic approaches, comparing their results

and presenting the discrepancies to the user, who will determine the final traceability

links based on the differences and contextual information. We define a set of discrepancy

patterns, which can help the user in this task. Each pattern describes a setting of related

coverage- (C) and package-based (P) clusters with a specific set of inclusion measures,

hence specific dNDD vectors as follows. In a sense, this is a more fine-grained classification

82 Analyzing Test and Package Hierarchy

of discrepancies between the static (package hierarchy) and dynamic (test-code coverage

based) clusterings than the previously described structural test-smells (section 5.3.1).

Ideal Here, the pair of C and P clusters contain the same elements, and there are no

other clusters that include any of these elements (the inclusion measures are 1 in both

directions). This case is the ideal situation, which shows that there is an agreement

between the two clusterings.

Ideal patterns has an dNDD vector of (1, 0, 0, . . .) for both P and C clusters. As noted

earlier, these are domain-specific cases of identical twins similarity patterns.

Busy Package This discrepancy describes a situation in which a P cluster splits up into

several C clusters, and each C cluster is entirely included in the P cluster.

Busy Package patterns are composed of a P cluster with (x, 0, 0, . . .) dNDD vector,

where x > 1. These patterns are analogous to the previously defined Clear-cut patterns.

Hence they are domain-specific cases of the siblings similarity patterns.

Dirty Packages This pattern is the opposite of the Busy Package: one C cluster corre-

sponds to a collection of P clusters, and there are no other clusters involved.

Dirty Packages can be identified in the same way as Busy Package, but with the roles

of P and C exchanged, hence their dNDD vectors are equal ((x, 0, 0, . . .) dNDD vector,

where x > 1). They also represent the general siblings patterns like Busy Package.

Extractable Feature This pattern refers to a case when there are C clusters that are

parts of a pattern that resembles Busy Package, but the related P package has some other

connections as well, not qualifying the pattern for Busy Package.

In the case of Extractable Feature, we are looking for P clusters with dNDD vec-

tors of the form (x, d1, d2, . . .), where x � di, i < 0, for example (12, 0, 0, 0, 1, 0, 0, . . .),

(21, 1, 2, 2, 0, 0, . . .) or (42, 3, 0, 0, . . .). This pattern is related to the general fostering

similarity pattern; however, they are not identical. Extractable Feature requests that the

inspected vertex has more neighbors with no other connection and some adjacent vertices

which have several neighbors. While fostering similarity patterns prescribe that the foster

brother has only two connections: a weaker and a stronger one. These requirements are

neither mutually exclusive, nor are they sub-cases of each-other.

Dirty Subfeature These patterns can be treated as special cases of the Dirty Packages

pattern. Besides the fully included P clusters, there are semi-included ones, connected to

a C cluster, which forms an imperfect Dirty Packages pattern.

Dirty Subfeature can be identified in the same way as Extractable Feature, but with the

roles of P and C exchanged, hence their dNDD vectors are equal ((x, d1, d2, . . .), where

x � di, i < 0). This pattern is also similar to the fostering similarity pattern, likewise

Extractable Feature.

5.3 Comparison of Static and Dynamic Clusterings 83

Program Idealpattern Busy Package Dirty Packages
count count C count count P count

checkstyle 0 1 {4} 0
commons-lang 0 0 0
commons-math 0 0 0
joda-time 0 0 0
mapdb 0 0 0
netty 4 1 {2} 0
orientdb 2 0 1 {2}
oryx 9 5 {4,4,4,2,2} 0

Table 5.3: Pattern counts – Ideal, Busy Packageand Dirty Packages; columns ‘count’
indicate the number of corresponding patterns, columns ‘C count’ and ‘P count’ indicate
the number of C and P clusters involved in each identified pattern

Other The last category is practically the general case when neither of the above more

specific patterns could be identified. This typically means a mixed situation and requires

further analysis to determine the possible cause and implications.

Finally, we performed a pattern search with the help of the vectors to locate the Ideal

pattern and the four specific discrepancy patterns, Busy Package, Dirty Packages, Dirty

Subfeature and Extractable Feature (for the Other pattern, we consider all other clusters

not present in any of the previous patterns). The second column of Table 5.3 shows the

number of Ideal patterns the algorithm found for each subject (every instance involves

one cluster of each type). As expected, generally, there were very few of these patterns

found. But purely based on this result, we might consider the last three programs better

in following unit testing guidelines than the other five programs. For instance, one third

of the packages in oryx include purely isolated and separated unit tests according to their

code coverage. These instances can be treated as reliable elements of the final traceability

recovery output.

Table 5.3 also shows the number of Busy Package and Dirty Packages patterns found

in the subjects. Columns 3 and 5 count the actual instances of the corresponding patterns,

i.e. the whole pattern is counted as one regardless of the number of participating clusters

in it. The numbers in columns 4 and 6 correspond to the number of connected clusters

in the respective instances. That is, for Busy Package, it shows the number of C clusters

connected to the P cluster, and in the case of Dirty Packages, it is the number of connected

P clusters. We list all such connected cluster numbers in the case of oryx, which has more

than one instance of this type.

The biggest hit was the set of five Busy Package instances for oryx, and this, together

with the nine Ideal patterns for this program, leaves only 13 and 15 clusters to be present

in the corresponding Other categories.

Table 5.4 shows the number of different forms of Other discrepancy patterns found.

Still, in this case, each participating cluster is counted individually (in other words, each

84 Analyzing Test and Package Hierarchy

Table 5.4: Pattern counts – Other; columns P Other and C Other indicate the number of
clusters involved in these specific patterns, columns ‘all’ indicate the number of all involved
clusters (including the specific ones)

Program P Other count C Other count
Dirty Extractable

all Subfeature all Feature

checkstyle 23 3 43 29
commons-lang 13 1 276 260
commons-math 71 22 39 26
joda-time 9 1 22 14
mapdb 4 0 7 3
netty 40 30 29 17
orientdb 126 48 36 25
oryx 13 6 15 7

cluster is individually treated as one pattern instance). Clusters participating in the

Other pattern instances are divided into two groups, P Other and C Other, consisting of

the package and coverage cluster elements, respectively. Dirty Subfeature and Extractable

Feature are the two specific subtypes of Other, and as explained, the former are subsets

of P Other clusters and the latter of C Other clusters.

5.3.3 Interpretation of cNDD Curves for Clusters Comparison

The dNDD vectors alone are sufficed to describe the above mention patterns. However,

we suggest that cNDD curves could be used to improve these results in two major aspects.

Anomalies, Dirty Packages and Dirty Subfeature scenarios are the most common pat-

terns present in the analyzed systems [21, 45]. Inspecting the magnitude of similarity

between clusters could help researchers to distinguish meaningful sub-cases of the Dirty

Packages and Dirty Subfeature scenarios. These could eliminate (or reduce the size of)

unclassified, hence not properly analyzed parts of software systems.

Manual analysis of method clusters by the developers could be time-consuming. Usage

of cNDD curves could help to reduce the number of these tasks by automatically providing

changes to address the already identified issues. For example, in the case of the non-

identical twins similarity pattern, we can select the most similar cluster to the inspected

one and merge any other vaguely similar ones into it. Similarly, in the case of fostering

similarity pattern, we could identify the foster cluster’s true brother, then rearrange items

to lower the similarity (inclusion) between the foster and fostering cluster.

Some of these high-level actions could be deduced to source code editing steps, for

example, moving test cases and methods into different packages, or removing method calls

from the test cases. However, several modifications of clusters cannot be interpreted so

easily. In these cases, we could suggest potential steps for the developers to address these

issues.

5.4 Contributions 85

The detailed evaluation and analysis of these automatic source code transformations

are out of the scope of this research since our goal is to extract a general methodology for

graph comparison.

5.4 Contributions

As stated earlier, our research in discrepancy analysis consists of two major phases: a

theoretical one, where we defined a new methodology for unified graph’s discrepancy

analysis (UniGDA); and a practical one, where we use several underlying concepts of

this methodology to present possible solutions for two real-life problems. I contributed to

both of these, but undoubtedly I played a more significant role in the construction of the

theoretical tool-set.

Introduction of UniGDA In the case of the theoretical phase (which was preceded

by our practical investigations), I define a methodology named UniGDA. It serves as

a foundation for domain-specific variants, which can aid further research to investigate

discrepancies between items, represented as vertices.

� The previous cluster-specific comparison technique was extended for arbitrary graphs.

� Several domain-independent similarity functions were defined based on the proper-

ties, the edges, and the neighbors of inspected vertices.

� The characteristic function of similarity patterns was extended to take into account

the magnitude of similarity, not just the presence of similar items.

� I suggested various domain-independent similarity patterns, which could be used as

prototypes to define other domain-specific ones.

I also rephrased a previously published technique for the mindset of UniGDA to serve

as a practical use case.

� We inspected the relation between the domain-specific static and dynamic clustering

discrepancy detection algorithm and the more general UniGDA methodology.

� All of the previously defined discrepancy patterns were assigned to one or more

general similarity patterns.

� Finally, I provided some ideas on how it could lower the number of unclassified cases

by taking account of the magnitude of cluster similarity.

Classification of Structural Test Smells In this work, we addressed a specific type of

issue related to unit tests. We seek to automatically uncover violations of two fundamental

rules. 1) unit tests should exercise only the unit they were designed for, and 2) they

should follow a clear packaging convention. However, I participated during the whole

phase; my main role was to define the basic structural patterns of the package hierarchy

to be detected. I rely on my developer experiences and the lessons learned from manually

inspecting several software systems.

86 Analyzing Test and Package Hierarchy

We used these patterns as a basis for further investigations. Our approach was to use

code coverage to investigate the dynamic behavior of the tests with respect to the code

elements of the program and use this information to identify highly correlated groups of

tests and code elements (using community detection algorithm). This grouping is then

compared to the trivial grouping determined by package structure, and any discrepancies

found are treated as bad smells.

Effectively, we want to compare two clusterings of the test cases and code elements:

one “as implemented” and the other “as behaving”. To address this issue, I defined a

data structure, named cluster similarity graph, to store containment relations between

clusters. The as implemented classification is simply the physical structure of the program

and test code, organized into language packages. The other classification is derived from

the coverage matrix by applying an algorithm to detect such tightly connected groups of

tests and code based on their dynamic relationship of code coverage. It will output sets

of nodes (mixed tests and code) that are tightly bound together.

In this work, we present our approach to automatically compare these two cluster-

ings by using suitable measures and pinpointing the discrepancies between them. These

discrepancies can be thought of as “bad smells”, so we also elaborate on the possible refac-

torings to bring the as intended and as behaving structures closer together. As it turned

out, it is not simple to determine specific parts of the tests that should be refactored and

work out how they should be modified.

The concepts above have been empirically investigated on a set of real size open-

source Java programs with significant test suites. To summarize, we provide the following

contributions.

� I applied a community detection algorithm on a code coverage matrix to detect sets

of closely related unit tests and code elements.

� I contributed to the measurements performed on real open source systems, and the

comparison of the identified clusterings with the trivial clustering based on physical

code structure.

� We categorized the discrepancies between the two into typical cases, quantified their

amount in the subject programs, and provided guidelines on how these can be used as

actual bad smells and in associated refactorings to improve the structures of existing

tests.

Clustering of Test-Code Traceability Discrepancies Recovering test-to-code trace-

ability links may be required in virtually every phase of development. This task might

seem simple for unit tests thanks to two fundamental unit testing guidelines: isolation

(unit tests should exercise only a single unit) and separation (they should be placed next

to this unit). However, practice shows that recovery may be challenging because the

guidelines typically cannot be fully followed.

In this work, we present a semi-automatic method for unit test traceability recovery.

5.5 Advantages and Disadvantages of These Methods 87

In the first phase, we compute the traceability links based on two fundamentally differ-

ent but very basic aspects: 1) the static relationships of the tests and the tested code

in the physical code structure and 2) the dynamic behavior of the tests based on code

coverage. In particular, we compute clusterings of tests and code for both static and dy-

namic relationships, which represent coherent sets of tests and tested code. These clusters

represent sets whose elements are mutually traceable to each other and maybe beneficial

over individual traceability between units and tests, which is often harder to precisely

express. For computing the static structural clusters we use the packaging structure of

the code (referred to as package based clusters), while for the dynamic clustering, we em-

ploy community detection [26] on the code coverage information (called the coverage based

clusters).

In the next phase, these two kinds of clusterings are compared to each other. If

both approaches produce the same clusterings, we conclude that the traceability links

are reliable. However, in many cases, there will be discrepancies in the produced results,

which we report as inconsistencies. There may be various reasons for these discrepancies,

but they are usually some combination of violating the isolation and separation principles

mentioned above.

The final phase of the approach is then to analyze these discrepancies and, based on the

context, produce the final recovered links. During this analysis, it may turn out that there

are structural issues in the implemented tests and code, hence refactoring suggestions for

the tests or code may be produced as well.

This work is an extension of my previous study, [21], which introduced our concept on

structural test smells, which are strongly related to test-code traceability. We extended

the previous study with a detailed manual analysis phase, additional discrepancy patterns,

and their enhanced detection method using Neighbor Degree Distribution.

5.5 Advantages and Disadvantages of These Methods

5.5.1 Internal Validity

As all theoretical toolsets and frameworks, UniGDA has its advantages and drawbacks.

These threats could be associated with the soundness of formalism and to the applicability

of the method for real-life problems. In this section, we discuss these issues and suggest a

possible solution for them.

Construct Validity

However, our main contribution is to define a unified graph comparison methodology;

there is a point where the benefits of a general solution are lower than the cost of creating

domain-specific variants. In the case of UniGDA, both the definition of meaningful sim-

ilarity function and the interpretation of similarity patterns are challenging tasks. These

88 Analyzing Test and Package Hierarchy

aspects require in-depth knowledge of the field, which could rarely be addressed by a uni-

fied methodology. Our experience suggests that these can be done by manually analyzing

several sample cases. It is a well-known fact, that the gathering of expert opinion is a

time consuming, hence costly phase. But these tasks have to be completed only once, and

subsequent analyses could use these data.

On the other hand, the sets of graph manipulation frameworks are extensive. These li-

braries and programming languages could be used to implement general frameworks based

on the previously introduced UniGDA methodology. For example graph databases like

Neo4J [67] and OrientDB [47] could store the analyzed data structures, while domain-

dependent knowledge is injected, by using Python callback functions (e.g., various simi-

larity functions).

By using the already defined and tested construct of dNDD vectors (see sections 5.3.1

and 5.3.2), we ensure that UniGDA captures at least some aspects of the relevant in-

formation about similarity. However, there could be more ways to extend this construct

by choosing different neighbor characteristics or aggregation functions. The evaluation of

other extensions will be one of the topics of our future research.

Content Validity

Our method, UniGDA, does not restrict the complexity of the similarity function or the

patterns. Still, there is a practical limit on how much information can be encoded into

these constructs. We assume that there will always be several aspects of the data sets that

similarity functions and patterns will not be able to capture. Hence the user of UniGDA

has to prioritize their goals because a poorly chosen similarity function could sabotage the

usage of UniGDA. Similarity patterns could lose their meaning if this function fails to

encode real life similarity. Moreover, these patterns could overlap, i.e., there are one or

more vertices that are part of more than one pattern, which may make further analyses

more complicated.

5.5.2 External Validity

There are several threats to validity, which may effect the usage of UniGDA. For example,

during the previously discussed use-cases (sections 5.3.1 and 5.3.2), we assume that the

developers intended to organize their unit tests in a certain way, which might not hold true

for some projects. Furthermore, it can be seen that there are relatively few discrepancy

pattern instances in several predefined categories and that the connected cluster numbers

are relatively small as well. This suggests that the definitions of some patterns might

be too strict because they require a complete inclusion of the connected clusters. For

example, currently, in cases where the corresponding pattern is present, but some outliers

will currently not be detected. This might be improved in the future by allowing a certain

level of tolerance in the inclusion values on the csg edges, i.e., the similarity values on the

5.5 Advantages and Disadvantages of These Methods 89

nsg. For instance, by introducing a small threshold value below which the edge would be

dropped, we would enable the detection of more patterns in these categories.

Finally, at the present moment, we only know of two interrelated researches [45, 21],

which used part of UniGDA directly. These rely on the discrete version of ndd. How-

ever, the number of uncategorized cases, like “anomalies” and “others” suggests that

there are some unknown, underlying factors in these datasets. We suggest that by taking

into account the magnitude of similarity between items (with cNDD curves) researchers

could identify these factors. Since we only used these practical examples to construct

our domain-independent UniGDA methodology, there could be some unknown aspects

that could hinder the practical usability of these techniques. We plan to fine-tune our

framework by incorporating lessons learned from future experiments.

90 Analyzing Test and Package Hierarchy

Chapter 6

Conclusion

The main results presented in the thesis are related to the semi- or fully-automated analy-

sis of the software and its development processes. My overall research goal was to provide

meaningful insights, methods, and practical tools to help the work of stakeholders during

various phases of software development. The thesis statements have been grouped into

three major thesis points, namely “Measuring, predicting, and comparing the productivity

of developer teams”; “Providing immersive methods for software and unit test visualiza-

tion”; and “Spotting the structures in the package hierarchy that required attention using

test coverage data”.

Two major issues that need to be addressed during software development from the

manager’s point of view are: cost prediction and wasted effort handling. During the

planning, development, and maintenance of software projects, one of the main challenges

is to accurately predict the modification cost of a particular piece of code. Furthermore,

several parts of the source code are usually re-written due to imperfect solutions before

the code is released. This wasted effort is of central interest to the project management

to assure on-time delivery. Both of these issues are related to challenge 3.

The managers could use the two novel metrics (Typed Modification, Modification Ef-

fort) and the related methodology (detailed in section 3.1) to get a more accurate measure

of the developer’s productivity, hence also get a more reliable cost prediction. Moreover,

the Division based Micro-Productivity Profile (section 3.2) could provide detailed insight

about the wasted resources (and productivity dynamics) for different components and de-

velopment phases. The managers could use this information to reallocate resources more

precisely.

The importance of visualization techniques is undeniable. Diagrams, charts, and other

graphical elements are often used to present quantitative and qualitative properties and

their relations. These tools use simple and abstract graphical primitives that could not

be found in the real world like straight lines, points, and circles. They can express some

attributes of the software successfully, but are less useful in presenting more complex many-

dimensional contexts. Data visualization with high expressive power plays an important

91

92 Conclusion

role in several software development-related activities too. Recent visualization tools try to

fulfill the expectations of the users by using various analogies. We think that these unique

ways of code representation have great potential. However, in our opinion, they use very

simple graphical techniques (shapes, figures, low resolution) to visualize the structure of

the source code.

We introduced our novel software visualization tool and its related research (chapter 4).

It utilizes an enhanced version of the city metaphor, which provides higher expressive

power by allowing the user to display several abstract concepts simultaneously. We have

identified two major use cases for our tool (introduced in section 4.1). Exploration tasks

of software comprehension consist of the actions that need to be performed to comprehend

source code that was written by someone else. We assume that developers need to execute

these tasks during their daily routine. See section 4.4.1 for more details. The other

potential use of the tool is in education (section 4.4.1). Visual analogies can make learning

a lot easier for most of the students.

Source level testing is an integral part of most software quality assurance approaches.

Unit tests are often implemented as parts of the source of the system under test, written

in the language of the system, and usually with the help of specialized frameworks. Con-

sequently, these tests might be the subject of source code analysis, just as the system code

itself. Source code analysis may then be used for various purposes, including test code

quality assessment, test comprehension, refactoring, re-documentation, and others. Dur-

ing software analysis, researchers and it experts often rely on the comparison of datasets.

They also frequently draw conclusions based on differences between two representations

of the same item’s set. Researchers usually use some domain-specific heuristics to asses

the similarity between these representations to aid their analysis.

During our research, we address two particular issues, namely the classification of struc-

tural test smells (section 5.3.1) and the clustering of test-code traceability discrepancies

(section 5.3.2). Developers and testers could use these techniques to check the structure

of unit tests and source code items. The information retrieved by these domain-specific

versions of methodology for unified graph’s discrepancy analysis (UniGDA) could be used

as contextual details to restore test-code traceability links. The general methodology was

detailed in section 5.2. Several aspects of UniGDA require in-depth knowledge of the

field. However, our experience suggests that these can be done by manually analyzing

several sample cases. It is a well-known fact, that the gathering of expert opinion is a

time consuming, hence costly phase. But these tasks only have to be completed once,

and subsequent analyses could use these data, thanks to Methodology for Unified Graph’s

Discrepancy Analysis.

6.1 Further Works 93

6.1 Further Works

I do not consider these research topics final and complete. There are several open questions

to address and problems to solve.

My productivity measurement methods and profile inspection techniques are based on

the fine-grained analyses of the developer activities. The required resolution is usually

much higher than the one captured by the various version control systems. One of my

future research will investigate the possibility of relying on a system which is already in

use and data which are collected by that system (for example, Git).

There are several properties of Micro-Productivity Profile that are not analyzed. For

example, the local steepness of these curves could indicate various phases of software

development, which may or may not coincide with the rhythm dictated by the project

management.

I already used the city metaphor to illustrate the various abstract concepts for stu-

dents and children. I would like to continue this research by introducing ready-to-use

settings and scenarios for various stakeholders. These results will aid the integration of

CodeMetropolis into the daily workflow of software development.

In the case of test quality analysis, we plan to investigate the situations in which the

violations of clustering indicate the need for refactoring, and whether we should suggest

moving test cases to different packages or modify the internal working of the test case

instead. This way, we would obtain a real bad smell and refactoring catalog for this

particular kind of test code quality issue. Our plans for the continuation also include a

more detailed analysis of the anomaly patterns, to define more specific cases.

Finally, I would like to analyze discrepancies between various types of graphs (like,

those generated with the Dorogovtsev-Mendes algorithm[37]) with the methodology for

unified graph’s discrepancy analysis. My assumption is that these investigations will lead

to a more comprehensive collection of domain-independent similarity patterns, detected

either with Discrete Neighbor Degree Distribution or Continuous Neighbor Degree Distri-

bution.

94 Conclusion

Chapter 7

Publications

The main results presented in the thesis are related to the semi- or fully-automated analysis

of the software and its development processes. My overall research goal was to provide

meaningful insights, methods, and practical tools to help the work of stakeholders during

various phases of software development. Some of the methods and tools presented in the

thesis have been utilized in Hungarian and international R&D projects as well as by the

industrial partners of the Software Engineering Department of the University of Szeged.

The thesis result statements have been grouped into three major thesis points, where

the author’s contributions are clearly shown. The relation between thesis points and

supporting publications are shown in table 7.1.

Thesis point 1 Thesis point 2 Thesis point 3
1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3

[19] 1.1 1.2

[22] 1.3

[13] 1.4

[17] 2.1

[16] 2.1 2.3

[15] 2.2

[18] 2.3

[20] 2.4

[21] 3.1 3.2

[44] 3.2 3.3

[45] 3.2 3.3

[14]1 3.3

Table 7.1: Thesis contributions and supporting publications

1This paper was submitted for publication, but it was not accepted yet

95

96 Publications

In the following sections I will briefly discuss my publications and their relevance to the

previously detailed researches. In addition, I remark that although the results presented

in this thesis are my major contribution, the term “we” is used instead of “I” for self

reference to acknowledge the contribution of the co-authors of the papers this thesis is

based on.

7.1 Measuring, predicting, and comparing the productivity

of developer teams

“Prediction of Software Development Modification Effort Enhanced by a

Genetic Algorithm”

[19] Gergő Balogh, Ádám Zoltán Végh, and Árpád Beszédes. “Prediction of Software

Development Modification Effort Enhanced by a Genetic Algorithm”. In: SSBSE

Fast Abstract track (2012), pp. 1–6

During the planning, development, and maintenance of software projects one of the

main challenges is to accurately predict the modification cost of a particular piece of code

(challenge 3). We experimented with a combined use of product and process metrics to

improve cost prediction, and we applied machine learning to this end.

In this paper, we present two new metrics (sub-thesis point 1.1) – to measure produc-

tivity more precisely – and a new procedure with which we can increase the effectiveness

of our productivity prediction method. Our previous results have been improved with the

introduction of new metrics, namely Typed Modification and Modification Effort. Fur-

thermore, we found that by calibrating the free parameters using genetic-algorithms we

could achieve an improvement in the F-measure of the prediction model, from about 50%

to 70% (sub-thesis point 1.2).

To conduct a preliminary validation, we manually investigated the final parameter

values. These parameters seem to be valid based on our own developer experience, but

further analysis will be needed to validate the results.

“Identifying wasted effort in the field via developer interaction data”

[22] Gergő Balogh et al. “Identifying wasted effort in the field via developer interaction

data”. In: Software Maintenance and Evolution (ICSME), 2015 IEEE International

Conference on. IEEE. 2015, pp. 391–400

During software projects, several parts of the source code are usually re-written due to

imperfect solutions before the code is released. This wasted effort is of central interest to

the project management to assure on-time delivery (challenge 3). Although the amount of

thrown-away code can be measured from version control systems, stakeholders are more

interested in productivity dynamics that reflect the constant change in a software project.

7.1 Measuring Productivity 97

In this paper we present a field study of measuring the productivity of a medium-sized

J2EE project. We propose a productivity analysis method where productivity is expressed

through dynamic profiles – the so-called Micro-Productivity Profiles (sub-thesis point 1.3).

They can be used to characterize various constituents of software projects such as com-

ponents, phases, and teams. We collected detailed traces of developers’ actions using an

Eclipse IDE plug-in for seven months of software development throughout two milestones.

We present and evaluate the profiles of two important axes of the development process:

by milestone and by application layers. Based on the experiments, project stakeholders

identified several points to improve the development process.

“Comparison of Software Quality in the Work of Children and Profes-

sional Developers Based on Their Classroom Exercises”

[13] Gergő Balogh. “Comparison of Software Quality in the Work of Children and Pro-

fessional Developers Based on Their Classroom Exercises”. In: International Con-

ference on Computational Science and Its Applications. Springer, Cham. 2015,

pp. 36–46

As stated earlier, productivity can be influenced by several factors, one of them is the

developer’s level of expertise. Both the practical and theoretical knowledge are gathered

(among others) during the time spent in some educational institute, like schools and

universities. There is also a widely accepted belief that education has a positive impact on

the improvement of expertise in software development, But the studies in this topic mainly

focus on the product, more precisely the functional requirements of the software. Besides

these, they often pay attention to the individual so-called “basic skills” like abstract and

logical thinking. We could not find any references where the final products of classroom

exercises were compared by using non-functional properties like software quality.

In this paper, we introduce a case study where several children’s works are compared

to works created by professional developers and not qualified adults. We used a simplified

version of the quality model based on the researches at the University of Szeged that

conforms to the iso/iec 25010 standard and is capable of qualifying the source code of a

software system to measure and compare the quality of source code created by students

and experts. The subjects of our analysis were distinct solutions of predefined classroom

exercises.

The results suggest that there are not any significant differences between the average

performance of the two groups based on non-functional properties. These similarities

can be explained with the fact that students were guided by an expert i.e. the teacher.

On the other hand, the quality of source code produced by experts has less fluctuation

(sub-thesis point 1.4). They tend to provide a more stable performance. Outliers can be

found in either direction, form the average or median among the solutions of the students.

We suggest that these represent the children who have more or less affinity for abstract

98 Publications

thinking and logical problem solving.

In general, we conclude that these data and the results of their analysis suggest some

interesting ideas. However, we are aware that this is just a stepping stone for further

research.

7.2 Providing immersive methods for software and unit test

visualization

“CodeMetropolis-code visualisation in MineCraft”

[17] Gergő Balogh and Arpad Beszedes. “CodeMetropolis-code visualisation in MineCraft”.

In: Source Code Analysis and Manipulation (SCAM), 2013 IEEE 13th International

Working Conference on. IEEE. 2013, pp. 136–141

In some cases, developers need to step away from the source code and inspect the

system from a different perspective. Our main contribution in this paper was to connect

data visualization with high end-user graphics capabilities. To achieve this, a conver-

sion tool was implemented. The tool and its background are connected to sub-thesis

point 2.1. It processes the basic source code metrics as input and generates a Minecraft

world with buildings, districts, and gardens. The tool was in the prototype state in the

year of publication, but it could be used to investigate the possibilities of this kind of data

visualization.

We believe that CodeMetropolis will be able to maintain motivation without sacrificing

productivity thanks to its intuitive and, for many people, already known graphical surface.

Our main goal was to aid the process of software comprehension (challenge 1). The

provided metropolis metaphor has enough expressive power to represent the complex items

of the source code. Combined with high quality graphical techniques provided by today’s

computer games, it is capable of offering a rich graphical interface, an easy way of learning

the controls, and a rich user experience. It is probably easier to fit in classrooms than

in a commercial project. However, we will continue its development to integrate the

functionalities which are useful for developers, for students, and for teachers.

“CodeMetrpolis—A minecraft based collaboration tool for developers”

[16] Gergo Balogh and Arpad Beszedes. “CodeMetrpolis—A minecraft based collabora-

tion tool for developers”. In: Software Visualization (VISSOFT), 2013 First IEEE

Working Conference on. IEEE. 2013, pp. 1–4

Classical visualization techniques have proven to be useful in many situations, but

they fail to maintain the motivation of developers in some circumstances. The provided

metropolis metaphor, combined with high quality graphical techniques and the advanced

7.2 Providing immersive methods for software and unit test visualization 99

collaborative features of today’s computer games, has enough expressive power to represent

the complex items of the source code and hopefully maintain motivation.

In this paper, we introduced our mission to create a virtual world of source code in

which developers and other stakeholders could explore and evaluate their project collabo-

ratively in a virtual Minecraft world (sub-thesis points 2.1 and 2.3). Code properties are

represented by graphical primitives offered by the game engine. Besides challenges of the

implementation, there are some fundamental research issues considering the selection of

a set of visual elements and mapping to source code properties. These elements have to

be compatible not only with the visualization and with the data model, but also with the

way of developers think (challenge 1).

As stated earlier, we created a proof of concept implementation for this metaphor.

The current prototype implements various basic functionalities, but the more advanced

collaborative features overviewed above will be implemented in the future. Eventually,

we want to offer a useful tool in the future, not only for enthusiastic developers who are

gamers in their spare time, but also for fulltime developers and managers in the software

industry.

In our opinion, software development could be made more interesting and motivating

if we united the solid engineering practices and technologies from the industrial segment

with the endless fantasy and joy of creation found in games. As one of our developers

said: “It makes software metrics such fun that you want to do it.”

“Validation of the city metaphor in software visualization”

[15] Gergő Balogh. “Validation of the city metaphor in software visualization”. In: In-

ternational Conference on Computational Science and Its Applications. Springer,

Cham. 2015, pp. 73–85

We live in an age of information explosion where grasping large amounts of data as

quickly as possible is a basic requirement. One of the many possibilities is to convert the

data into some clear graphical form, such as data that represents elements of a virtual

city. In this study, we presented three computable metrics which express various features

of such a city. These are compactness for measuring space consumption, connectivity for

showing the low-level coherence among the buildings, and homogeneity for expressing the

smoothness of the landscape (sub-thesis point 2.2). These metrics were defined in both a

formal and an informal way. We also constructed a high-level metric that is able to express

the similarity between a generated metropolis and a real one. Both high- and low-level

metrics were validated by a user survey. The opinions obtained in the survey were much

like as we had anticipated. The results show that it is possible to construct methods which

are able to estimate the degree of realism of a generated city. This method embodied as a

software-system could provide a full- or semi-automatic way of creating a life-like virtual

environment within a reasonable time. In such a world we could use our everyday senses

100 Publications

to perceive the data represented in a clear graphical way (challenge 1).

“CodeMetropolis: Eclipse over the city of source code”

[18] Gergő Balogh, Attila Szabolics, and Arpád Beszédes. “CodeMetropolis: Eclipse over

the city of source code”. In: Source Code Analysis and Manipulation (SCAM), 2015

IEEE 15th International Working Conference on. IEEE. 2015, pp. 271–276

The graphical representations of software (code visualization in particular) may provide

both professional programmers and students only learning the basics with support in

program comprehension (challenge 1). Among the numerous proposed approaches, our

research applies the city metaphor to the visualization of such code elements as classes,

functions, or attributes by the tool CodeMetropolis. It uses the game engine of Minecraft

for the graphics, and is able to visualize various properties of the code based on structural

metrics. In this work, we presented our approach to integrate our visualization tool into

the Eclipse IDE environment (sub-thesis point 2.3). Previously, only standalone usage was

possible, but with this new version the users can invoke the visualization directly from the

IDE, and all the analysis is performed in the background. The new version of the tool now

includes an Eclipse plug-in and a Minecraft modification in addition to the analysis and

visualization modules which have also been extended with some new features. Possible

use cases and a detailed scenario are presented.

“Using the City Metaphor for Visualizing Test-Related Metrics”

[20] Gergo Balogh et al. “Using the City Metaphor for Visualizing Test-Related Metrics”.

In: 1st International Workshop on Validating Software Tests. 2016

Understanding the structure of large test suites and the relation of its constituent test

cases to the code of a system is hard, and there are not many tools to aid this activity.

This work combined two previous approaches: a method to express test quality in terms

of metrics, and visualization of code related metrics in the CodeMetropolis framework

(sub-thesis point 2.4). The city metaphor employed by CodeMetropolis seems to be useful

for test metrics as well, and we believe that the side by side presentation of code and tests

will enable the developer to obtain a more global picture of their software (challenge 1).

Currently, the approach has been tried on systems that we developed, about which

we have in depth knowledge. In the future we plan to perform additional experiments,

possibly involving human evaluation, on other software. Our long term goal is to enhance

the metaphor to include additional information sources (such as defects or process data)

because we believe that a successful visualization needs to feed from multiple sources.

7.3 Spotting the structures in the package hierarchy that required attention
using test coverage data 101

7.3 Spotting the structures in the package hierarchy that

required attention using test coverage data

“Are My Unit Tests in the Right Package?”

[21] Gergő Balogh et al. “Are My Unit Tests in the Right Package?” In: Source Code

Analysis and Manipulation (SCAM), 2016 IEEE 16th International Working Con-

ference on. IEEE. 2016, pp. 137–146

The software development industry has adopted written and de facto standards for

creating effective and maintainable unit tests. Unfortunately, like any other source code

artifact, they are often written without conforming to these guidelines, or they may evolve

into such a state (challenge 2).

This work addressed the quality of unit test suites from a novel angle. Our approach

was to compare the physical organization of tests and tested code in the package hierarchy

to what could be observed from dynamic behaviour of the tests. The application of

community detection algorithms for the latter is a viable approach, and we believe that

this kind of analysis of unit tests may reveal knowledge about them not investigated earlier

(sub-thesis point 3.1). Our results indicate that for realistic systems, there are a quite lot

of discrepancies between the package based and community based structures. But it does

not necessarily mean that each of these need to be fixed in the first place by some kind

of refactoring of test code. Furthermore, it is not generally possible to decide if there is

a problem with the placement of test cases in the package structure or with the way test

cases invoke elements of the tested code. Hence any discrepancies found are treated as

“bad smells” (sub-thesis point 3.2).

“Analysis of Static and Dynamic Test-to-code Traceability Information”

[44] Tamás Gergely et al. “Analysis of Static and Dynamic Test-to-code Traceability In-

formation”. In: Acta Cybernetica 23.3 (2018), pp. 903–919

In this study, we carried out an analysis of test-to-code traceability information. Unit

test development has some widely accepted rules that support things like the maintenance

of these tests suites. Some of them concern the structural attributes of these tests. These

attributes can be described by traceability relations between the test and code. Previous

studies demonstrated that fully automatic test-to-code traceability recovery is difficult, if

not impossible in the general case. There are several fundamental approaches that have

been proposed for this task, based on, among other things, static code analysis, call-graphs,

dynamic dependency analysis, name analysis, change history, and even questionnaire based

approaches. However, there seems to be general agreement between researchers that no

single method can provide accurate information about test and code relations (challenge 4).

102 Publications

Following this line of thinking, we developed a method that is able to detect Struc-

tural Unit Test Smells, i.e.locations in the code where unit test development rules are

violated. This method foreshadows the definition of a unified comparison methodology

related to sub-thesis point 3.3. In particular, we compute test-to-code traceability us-

ing two relatively straightforward automatic approaches, one based on the static physical

code structure and the other on the dynamic behavior of test cases in terms of code cover-

age. Both can be viewed as objective descriptions of the relationship of the unit tests and

code units, but from different perspectives; hence, each location where they disagree about

traceability can be treated as a Structural Unit Test Smell. Our approach is to use cluster-

ing and hence form mutually traceable groups of elements (instead of atomic traceability

information), and this makes the method more robust because minor inconsistencies will

probably not influence the overall results.

Here, we investigated the results of this method applied on four subject programs. Our

goal was to manually check the reported Structural Unit Test Smells to see whether at

least a part of these are real problems that need to be examined. Experience indicates that

most of the reported Structural Unit Test Smells point to parts of the test and code that

could be reorganized to better follow unit test guidelines. However, in some situations it

might not be worth modifying the tests and the code (e.g. for technical reasons). Overall,

we found several typical reasons that could form the basis of future studies and this might

lead to an automatic classification of the Structural Unit Test Smells.

These findings have several implications. First, the method has a potential to find

Structural Unit Test Smells, but the results will probably contain a large number of false

positives (sub-thesis point 3.2). To filter them out, we need to carry out an investigation

of the given situation. Fortunately, it seems that there are similar situations that can

provide a basis for the automatic classification of the identified smells, and it may assist

the developers in their refactoring activities. However, it is also clear from our manual

analysis that automatic classification requires additional knowledge (i.e. simply relying on

the currently used static and dynamic data is not enough). Furthermore, we found several

intricate Structural Unit Test Smell patterns in the CSGs, for which we could not make

informed refactoring suggestions because of their complexity and size.

“Differences between a static and a dynamic test-to-code traceability

recovery method”

[45] Tamás Gergely et al. “Differences between a static and a dynamic test-to-code trace-

ability recovery method”. In: Software Quality Journal (2018), pp. 1–26

Recovering test-to-code traceability links may be required in virtually every phase of

development. This task might seem simple for unit tests thanks to two fundamental unit

testing guidelines: isolation (unit tests should exercise only a single unit) and separation

(they should be placed next to this unit). However, practice shows that recovery may

7.3 Spotting the structures in the package hierarchy that required attention
using test coverage data 103

be challenging because the guidelines typically cannot be fully followed. Furthermore,

previous works have already demonstrated that fully automatic test-to-code traceability

recovery for unit tests is virtually impossible in a general case (challenge 4).

In this work, we proposed a semi-automatic method for this task, which is based on

computing traceability links using static and dynamic approaches, comparing their results

and presenting the discrepancies to the user, who will determine the final traceability links

based on the differences and contextual information (sub-thesis point 3.3). We defined a

set of discrepancy patterns, which could help the user in this task (sub-thesis point 3.2).

Additional outcomes of analyzing the discrepancies were structural unit testing issues

and related refactoring suggestions. For the static test-to-code traceability, we relied on

the physical code structure, while for the dynamic, we used code coverage information. In

both cases, we computed combined test and code clusters which represent sets of mutually

traceable elements. We also presented an empirical study of the method involving 8 non-

trivial open source Java systems.

“First Steps towards a Methodology for Unified Graph’s Discrepancy

Analysis”

[14] Gergő Balogh. “First Steps towards a Methodology for Unified Graph’s Discrepancy

Analysis”. submittted for review to 13th International Conference of Graph Trans-

formation, (part of STAF 2020)

During software analysis, researchers and it experts often rely on the comparison of

datasets. They also frequently draw conclusions based on differences between two rep-

resentations of the same item’s set (challenge 4). For example, developers may examine

the densely connected parts of method call graphs in the context of their location in the

package hierarchy tree to find error-prone parts of the system. These kinds of analyses

could be aided with a generalized methodology for graphs, which could be used to unify

the underlying process of discrepancy analysis. In this paper, we present a methodology for

unified graph’s discrepancy analysis, named UniGDAsub-thesis point 3.3. It is based on

the previously defined domain-specific discrepancy detection technique for cluster compar-

ison. Our generalized methodology is using different types of characteristic functions to

capture the similarity structures between vertices of arbitrary graphs. We provided several

domain independent options for the free parameters of UniGDA. We also presented two

possible use cases of UniGDA: the classification of structural test smells and the clustering

of test-code traceability discrepancies to showcase the usage of our methodology.

104 Publications

Appendix A

Measuring, Predicting, and

Comparing Productivity of

Developer Teams

A.1 General Notions and Definitions

In this chapter, we use the following notions and definitions.

Definition A.1.1. For a given software system we define R = 〈r0, . . . , rn〉 to be the

ordered set of revisions of the source code.

During the experiment, the various modifications were collected to grasp the effort

spent by developers.

Definition A.1.2. A modification m is any difference between any two revisions, m ∈
diff(ri, rj) where i < j. We assign one from a predefined set of types to each modification,

based on the affected source-code element and its affected property if any, t(m) ∈ T .

Definition A.1.3. δt(ri, rj) ∈ N is the count of modifications of type t, between the

revisions ri, rj. In other words δt(ri, rj) = |M | where M ⊆ diff(ri, rj) and m ∈M, t(m) =

t. Furthermore, ∆(ri, rj) ∈ Nn is a vector over natural number contains the counts of all

predefined modification types between the revisions ri, rj.

Definition A.1.4. Furthermore we use devtimeri→rj to represent the net development

time between ri and rj revisions, where i < j.

A.2 Formal Definition of Modification Effort and Typed

Modification

In this section, we give a formal definition of the underlying metrics used to measure

productivity during our research.

105

106 Measuring Productivity

Definition A.2.1. We use the previously introduced notions to define the Typed Mod-

ification (TMod) metric. Let w = (w0, w1, . . . , w|T |) vector of weight for each possible

type of modification. For each revision pair ri, rj ∈ R we define as follows.

TMod(ri, rj) =

|T |∑
k=0

wk∆(ri, rj)k (A.1)

Definition A.2.2. The definition of Modification Effort (MEff) is the following for

each revision pair ri, rj ∈ R we define as follows.

MEff(ri, rj) =
TMod(ri, rj)

devtimeri→rj
(A.2)

We used MEff to express and measure productivity between two-state (revision) of

the analyzed system.

productivity =
output

input
=

gain

effort
=

TMod(ri, rj)

devtimeri→rj
= MEff(ri, rj) (A.3)

A.3 Determining the Weights of Modification Groups

The table A.1 shows the parameters used with the genetic algorithm to fine-tune the

weights of the TMod metric.

Table A.1: ga parameters

initial mutation rate 100%
mutation rate 50%
mutation lower limit 0.5
mutation upper limit 100
birth count 2 child per evolution step
crossover rate 2 crossover per evolution step
population size 200 individuals
generation count 50 generation

During the evaluation, the weight of groups was aggregated from all four inspected

projects and weighted with the size of the learning set. We used two aspects to examine

the validity of the weights calculated by the ga.

These aspects are shown in fig. A.1. The values can be interpreted as the “importance”

of modification, i.e., how much gain will be achieved by applying the modification. The

diagram on the left shows an aggregation by action. As can be seen, the creation and

deletion are “more important” than the type and visibility changes. On the right side, a

subject-based aggregation can be seen. The “most important” modification was applied

to the method elements, which included the method body modifications as well.

A.4 Formal Definitions of Division based Micro-Productivity Profile 107

Figure A.1: Aggregated weights of groups

A.4 Formal Definitions of Division based Micro-Productivity

Profile

In this section, we specify mppd and the kind of data used to compute it more formally.

An equal distance division was used to determine points of comparison.

Definition A.4.1. We define the equal distance divisions for an ordered set as a list

of indices:

j =

⌊
i · n

d+ 1

⌋
Where n ∈ N is the number of revisions, i = 0, . . . , d + 1 is the index of parts and d ∈ N
is a predefined number of divisions. R

(d)
i is also used to simplify further definitions, which

is the ith revision of the equal distance division with d dividing point.

Definition A.4.2. Productivity P
(d)
i for a given equal distance division is

P
(d)
i =

∆(R
(d)
i , R

(d)
i+1)

devtime
R

(d)
i →R

(d)
i+1

.

Definition A.4.3. The division based micro-productivity profile is defined as a

function over natural numbers, mppd : Z → Q. It assigns the sum of all productivity

values for a given equal distance division:

mppd(x) =

x+1∑
i=0

P
(x)
i

Notice that in a perfect world the mppd is a constant function, mppd(i) = mppd(0);

however in real-life software development it is always increasing (mppd(i) ≤ mppd(i+ 1))

because of re-written code. Productivity values may incorporate wasted effort, so a higher

P
(d)
i value does not necessarily mean better overall productivity.

108 Measuring Productivity

A.5 mppds of Analyzed Project

Figure A.2: mppd over development phases

A.5 mppds of Analyzed Project 109

Figure A.3: mppd over application layers (all)

Figure A.4: mppd over application layers (exluding utility)

110 Measuring Productivity

Appendix B

Providing Immersive Methods for

Software and (Unit) Test

Visualization

B.1 CodeMetropolis Technical Details

The current version of CodeMetropolis uses the following entities and attributes to visu-

alize the source code. These items are highlighted on Figure B.1 and their properties are

listed in appendix B.1. We do not force any predefined mapping between the metrics of

source code items and the visual properties of graphical items, which allows CodeMetropo-

lis to be useful for various stakeholders.

(a) Elevated grounds to group items (b) Gardens with various flower-ratio

(c) Buildings surrounded with gardens (d) Floors with various materials

Figure B.1: Items of the metaphor level

111

112 Software Visualization

Ground It can group various types of entities, including other grounds. It is usually used

to display the namespace hierarchy like a tree-map. In the generated world, it is

displayed as a solid rectangle of stone blocks. Its width and length were adjusted

automatically to fit its contents.

Garden They are similar to grounds. It is commonly used to represent individual classes.

It is displayed as a plate of grass blocks surrounded by fences.

House A house is another compound entity. It consists only of floors and cellars which

are placed on the top of each other ordered according to their width and length. The

converter uses this entity to group floors and cellars; however, it has no meaning on

the data level.

Floor Floor is a hollow box with lattice, which is located over the ground level It usually

represents a single method.

Cellar They are the underground equivalents of floors. They commonly stand for data

members of the classes.

attribute type targets description

width integer floor, cellar size along X-axis
height integer floor, cellar size along Y-axis
length integer floor, cellar size along Z-axis
character string floor, cellar primary material of the structure
external character string floor, cellar secondary material of the structure
torches integer (0 to 5) floor, cellar quantity of torches
flower-ratio float (0 to 1) garden quantity of flowers
tree-ratio float (0 to 1) garden quantity of trees
mushroom-ratio float (0 to 1) garden quantity of mushrooms

Table B.1: Graphical attributes of items

B.2 Metrics for Generated Cities

B.2.1 Low-level Metrics

We will use the following formalism in the rest of this chapter. Let us define the buildings

as a tuple with six items and the collection of these as an unordered set.

B = {buildings} (B.1)

b ∈ B (B.2)

b =

(
xb xb zb

|x|b |y|b |z|b

)
(B.3)

D ⊆ Bd ∈ B (B.4)

B.2 Metrics for Generated Cities 113

where

(xb, yb, zb) ∈ N3 is a predefined pivot point of the building (B.5)

|x|b, |y|b, |z|b ∈ N is the width, the length and the height of the building (B.6)

|ẑ|b =
|z|b

maxd∈B |z|d
is the normalized height of the building (B.7)

We will define the distance between any two buildings as the Euclidean distance be-

tween their pivot points, and we will also use the convex hull of a set of buildings, ConvD.

‖b; d‖ = ‖(xb; yb); (xd; yd)‖ ∈ R (B.8)

The following notation will be used to denote some basic properties of the buildings.

Ab = |x|b · |y|b is the area of the building (B.9)

AD ∈ R is the area of the convex hull of buildings in D (B.10)

PD ∈ R is the perimiter of the convex hull of buildings in D (B.11)

We define a classification over the set of buildings; this is the type of the building. The

type of building is given with the following relation. It is equal to 1 if and only if two

buildings are of the same type.

t(b), t(d) ∈ N is the type of the buildings (B.12)

δ(b; d) =

1 if t(b) = t(d)

0 otherwise
(B.13)

Compactness

CompD =
AD∑

d∈D
Td

(B.14)

Compactness could be defined as the ratio of the area of the convex hull of a set of

buildings (i.e. the convex hull of the set of points of the buildings) over the total area of

these buildings. Because our model does not allow any intersecting buildings, the lower

limit will be 0, and the upper limit will be 1.

114 Software Visualization

Homogeneity

Conn
γ

D =
1(|D|
2

) ∑
d,b∈D
d 6=b

 δ(d; b)︸ ︷︷ ︸
connection guard

 ∥∥d; b
∥∥

max
e,f∈D

∥∥e; f∥∥
γ

︸ ︷︷ ︸
distance part

 (B.15)

Homogeneity is specified as the arithmetic mean of buildings weighted with the differ-

ence of their normalized height. As in the case of connectivity, an overall normalization is

added to ensure that the values are bounded. A gamma correction is applied to the height

difference and the distance part as well, to be able to fine-tune its sensitivity.

Connectivity

Hom
γ,ζ

D =
1(|D|
2

) ∑
d,b∈D
d6=b

∣∣∣|ẑ|d − |ẑ|b∣∣∣ζ︸ ︷︷ ︸
height delta part

 ∥∥d; b
∥∥

max
e,f∈D

∥∥e; f∥∥
γ

︸ ︷︷ ︸
distance part

 (B.16)

Connectivity is defined as the sum of normalized distances between each pair of build-

ings. We introduced a connection guard and a final normalization part. With this formula,

we only charge a fee for the buildings with the same type. The size of the fee is greater

if the buildings are farther away from each other. Gamma correction was applied to the

distance part, to be able to fine-tune its sensitivity.

Appendix C

Using Test Coverage to Analyze

Structures in the Package

Hierarchy

C.1 Formal definitions of methodology for unified graph’s

discrepancy analysis

Definition C.1.1. Let G = (VG, EG) and H = (VH , EH) be the two subject graphs and

their vertices and edges sets respectively. In this case, we have to compare the pairs

(g, h) : g ∈ VG, h ∈ VH . We capture the node level similarity with the following similarity

function.

G = (VG, EG) H = (VH , EH) (C.1)

g ∈ VG h ∈ VH (C.2)

(C.3)

R = {real numbers} (C.4)

g ∼ h ∈ [0; 1] ⊂ R similarity function (C.5)

C.1.1 Domain Independent Similarity Functions

We adopt several notions from set theory to construct these functions. Let us define

the set of properties for each node and for each edge as P(x), where x ∈ V or x ∈ E.

Furthermore, let p ∈ P(x) and let p(x) denote the current value of p on x.

To simplify our notion, we define the union and the intersection of any two arbitrary

property sets (Px = P(x), Py = P(y)).

115

116 Analyzing Test and Package Hierarchy

Px ∩ Py = {p | p ∈ Px ∧ p ∈ Py ∧ p(x) = p(y)} (C.6)

Px ∪ Py = {p | p ∈ Px ∨ p ∈ Py} (C.7)

As a final step we could use (normalized) set comparison metrics [102], for example

the Jaccard similarity index [92].

J(A,B) =
|A ∩B|
|A ∪B|

(C.8)

Vertex-property Based Similarity We could use the previously explained notions

to construct the following domain independent vertex-property similarity function. Let vi

and vj be any two vertex.

vi
d.i.v∼ vj = J(P(vi),P(vj)) (C.9)

The prerequisite condition for this similarity function is that there should be an equiv-

alence operator over the set of property values of vertices.

Edge-property Based Similarity Using the aggregation (for example, arithmetic

mean) of edge similarity, we can define the following domain independent edge-property

similarity function. Let E(v) be the set of edges of the v vertex.

vi
d.i.e∼ vj = aggregation

ei ∈ E(vi)

ej ∈ E(vj)

J(P(ei),P(ej)) (C.10)

The prerequisite condition for this similarity function is that there should be an equiv-

alence operator over the set of property’s values of edges, and a meaningful aggregation

over the edge similarities should be specified, which could be easily interpreted by experts

of that domain.

Adjacent Vertex’s Similarity-Based Similarity Both of the previously described

similarity functions could be applied to all pairs of vertices adjacent to the inspected ones.

Using a proper aggregation function over the similarities of the adjacent vertices we can

construct two kinds of domain independent adjacent vertex’s similarity-based similarity

functions. Let V (v) be the set of adjacent vertices of v (if v′ ∈ V (v) then there is an edge
−−−→
(v; v′) in the graph).

C.2 Node Similarity Graph 117

vi
d.i.a.v∼ vj = aggregation

v′i ∈ V (vi)

v′j ∈ V (vj)

v′i
d.i.v∼ v′j (C.11)

vi
d.i.a.e∼ vj = aggregation

v′i ∈ V (vi)

v′j ∈ V (vj)

v′i
d.i.e∼ v′j (C.12)

Both of these similarity functions inherit the prerequisite condition of their underlining

similarity computation method. Furthermore, we have to choose a meaningful aggregation

for the similarities of the adjacent vertices.

Compound, Property-Based Similarity All of the previously described functions

could be used to construct a compound, property-based similarity function with a properly

chosen aggregation, for example, a normalized, weighted, arithmetic mean. Let wt be the

weight of the similarity of type t.

T = {d.i.v,d.i.e, d.i.a.v,d.i.a.e} (C.13)

vi
d.i.∼ vj =

∑
t∈T

wt · (vi
t∼ vj)∑

t∈T
αt

(C.14)

This compound similarity function inherits all previously mentioned prerequisite con-

ditions.

C.2 Node Similarity Graph

Definition C.2.1. Let G = (VG, EG) and H = (VH , EH) the graphs to be compared and

their set of vertices and edges, respectively. Using this notion, the Node Similarity

Graph is a directed,1 bipartite graph S = (VS , ES), where its set of vertices contain the

vertices of the two subject graphs (VS = VG∪VH). There is an edge connecting g ∈ VG and

h ∈ VH if and only if the similarity of these vertices is greater than zero (g ∼ h > 0). Edges

are weighted with the degree of similarity between their endpoints (w(
−−−→
(g, h)) = g ∼ h).

1Note that our methodology does not require that g ∼ h = h ∼ g.

118 Analyzing Test and Package Hierarchy

C.3 Neighbor Degree Distribution

C.3.1 Discrete Neighbor Degree Distribution

Definition C.3.1. The general definition of the dNDD vector is the following. Let

G = (VG, EG) be a graph and let deg(x) denote the degree of vertex x.

a ∈ VG the inspected vertex (C.15)
−−−→
(a; b) ∈ EG (C.16)

deg(b) =
∣∣∣{c : w(

−−→
(b; c)) > 0

}∣∣∣ (C.17)

dNDD(a) = (d1, d2, . . . , dn) (C.18)

di =
∣∣∣{a : w(

−−−→
(a; b)) > 0 ∧ deg(b) = i

}∣∣∣ (C.19)

C.3.2 Continuous Neighbor Degree Distribution

In this section, we summarize the formal notions related to cNDD curves and their defi-

nition. We are using σ(x) to denote the standard deviation of x.

Definition C.3.2. We define the g(x,h, o,w) function based on the well-known Gaus-

sian function.

g(x, h, o, w) =

he−
(x−o)2

2w2 if w 6= 0

g′(x, h, o) otherwise
(C.20)

g′(x, h, o) =

h if x = o

0 otherwise
(C.21)

The parameter h is the height of the curve’s peak, o is the position of the center of the

peak, and w controls the width of the bell. We modified the original definition of Gaussian

function in such a way that g′(x, h, o, 0) represents an infinitely narrow bell. We used this

modified version of the function to characterize each neighbor (bi) of the inspected node.

Definition C.3.3. We define Continuous Neighbor Degree Distribution (cNDD)

curves as an aggregation of the following neighbor characteristic functions.

cNDD(a, x) =

n∑
i=0

p (bi, x)2 (C.22)

p (bi, x) = g(x, αi, n
(i), σ(β(i))) (C.23)

Informally, the Gaussian function of various edge weights is used to characterize the

C.3 Neighbor Degree Distribution 119

current neighbor of the inspected vertex. Then these functions are aggregated using the

sum of squared values.

Formal construction and properties of cNDD curves

In this section, we will give a detailed description of this definition and its properties.

Note that the above described dNDD vectors are unable to express the differences

between the weights of edges. Hence, they are not encoding any information on the

magnitude of similarity. In other words, during the calculation we discard the weights of

nsg by using the w(
−−−→
(a; b)) > 0 constraint.

The loss of information could be expressed with the following formalism. Let sgn(G)

be a simplified version of the original G graph, where we discard the weight of edges using

the following method. (sgn is a function that extracts the sign of a real number.)

sgnx =

1 if x > 0

0 if x = 0

−1 if x < 0

(C.24)

e ∈ EG an edges of the orignal graph (C.25)

sgn(e) ∈ Esgn(G) an edge in the simplified graph (C.26)

w(sgn(e)) = sign(w(e)) (C.27)

The weight of edges in the simplified graph is either 0 or 1. In the discrete case, ndd

yields the same result for the original and the simplified graphs as well.

We use a similar method to kde to encode this lost information into a cNDD curve,

which can capture information about the degree of similarity between nodes. The defini-

tion of these curves is easier to understand if we follow our steps during the research to

construct these descriptors.

At first, we identified two main points where the definition of the dNDD vectors could

be extended.

(
Ξni=0 αi

∣∣ Ξn
(i)

j=0 β
(i)
j = k

)
k

= qni=0 (p (βi, k)) (C.28)

Ξni=0 xi =

n∑
i=0

sgn(xi) (C.29)

The rephrased definition of the dNDD vector is presented on the left side. If all weights

are greater or equal to zero, then
∑n

i=0 sgn(αi) is equal to the number of edges with a

non-zero weight of the inspected vertex. We used the same operator (Ξ) to calculate the

degree of these neighbors, excluding zero weighted edges. The constrains Ξn
(i)

j=0 β
(i)
j = k is

120 Analyzing Test and Package Hierarchy

used to “group the neighbors” by a specific degree.

Generally, the neighbors are characterized by a feature function (conditional count of

their adjacent vertices), and these characteristics are aggregated to compute the dNDD

vector (summation). These two sub-functions are denoted with p(. . .) and q(. . .), respec-

tively. If we extend the domain and the range of these functions to the real numbers, we

can rephrase the definition as shown on the right side of the formula.

Our primary (extension) requirement was that the cNDD curves have to yield the

same result in the same position for the simplified graph as the dNDD vectors for the

original one.

a ∈ VG (C.30)

sgn(a) ∈ Vsgn(G) (C.31)

cNDD(sgn(a), x) =
(
dNDD(a)

)
x

x ∈ N (C.32)

This requirement ensures that the cNDD curves are real extensions of dNDD vectors

since they only store more information. The implicit effect of ignoring the weight of

edges (which are encoded into the definition of dNDD vectors) are simulated by using the

simplified graph.

In the last step of the cNDD curve construction, we evaluated several aggregation

functions. We seek a function that does not violate the extension requirement like, for

example, arithmetical mean. Our choice fell on the previously mentioned sum of squared

values, since it preserves more information than, for example, the more common maximum

function.

To summarize, the previously identified extension points of ndd functions are the

following.

p (bi, x) = αie
−(x−n(i))

2

2σ(β(i))
2

neighbor characteristic (C.33)

qni=0xi =
n∑
i=0

x2i aggregation (C.34)

By choosing these extension points as previously described, we get the definition of

the cNDD curves (definition C.3.3) presented earlier in this section.

Appendix D

Summary in English

In this chapter, I aim to accomplish the most challenging task as a Ph.D. student: squeez-

ing many years of research and results into a few intriguing pages. The success of this

endeavor can only be measured by the willingness of the reader to inspect the details

presented in earlier parts of this thesis. I encourage everybody to do so since those are

the chapters where you could find answers for your “Why?”’s and “How?”’s.

D.1 Summary of the Topics

The main results presented in the thesis are related to the semi- or fully-automated anal-

ysis of the software and its development processes. My overall research goal is to provide

meaningful insights, methods, and practical tools to help the work of stakeholders during

various phases of software development. The thesis statements have been grouped into

three major thesis points, namely “Measuring, predicting, and comparing the productivity

of developer teams”; “Providing immersive methods for software and unit test visualiza-

tion”; and “Spotting the structures in the package hierarchy that required attention using

test coverage data”.

D.1.1 Measuring, Predicting, and Comparing Productivity of Developer

Teams

This part mainly dwelt with the concept of productivity and the challenges of cost pre-

diction related to it.

Using types of modifications to define more expressive productivity metric

(effort made by developers). During my research, I presented [19] two new metrics

to measure productivity. My goal was to eliminate common shortcomings of currently

used ones, namely, they were unable to capture fine-grained productivity changes and

distinguish the amount of effort taken by the developer in certain situations. These highly

customizable source code metrics provide more expressive power than the commonly used

121

122 Summary in English

number of logical line based versions. The productivity measurement methodology was

evaluated with middle size industrial systems, and the results were validated with the lead

developers of the projects.

Predicting and fine-tuning productivity metrics enhanced by a genetic algo-

rithm. I was able to increase the effectiveness of the previous modification cost prediction

method based on product and process metrics. The traditionally used changed lines of

code metric were replaced by the previously mentioned weighted count of modified source

code entities. With this, I was able to increase the success of the prediction model sig-

nificantly. I used machine learning algorithms, namely genetic and evolution algorithms,

to fine-tune the free parameters. During the empirical evaluation phase, four industrial

projects were analyzed, and the accuracy of the predictions was compared to previous re-

sults. I found that my productivity estimation model can achieve significant improvement

in the overall efficiency of the prediction, from around 50% to 70% (F-measure).

Identifying wasted effort via developer interaction data. Although the amount

of throw-away code can be measured from version control systems, stakeholders are more

interested in productivity dynamics that reflect the constant change in a software project.

In a field study, we analyzed this aspect of productivity in a medium-sized J2EE project

[22] with 17 developers for seven months. We proposed a productivity analysis method

where productivity is expressed through dynamic profile – the so-called Micro-Productivity

Profile (mpp). They can be used to characterize various constituents of software projects,

such as components, phases, and teams. These properties let the management fine-tune

the schedule of the project and aid the leaders in reassigning resources to the most sensitive

tasks. Based on the experiments, project stakeholders identified several points to improve

the development process.

Comparison of software quality in the work of children and professional devel-

opers. I conducted a case study where several children’s work was compared to works

created by professional developers by using non-functional properties like software quality.

The model used to measure the various aspects of software quality, also known in the

industrial sector; hence, it provides a well-established base for our research.

The subjects of my analysis were distinct solutions for predefined classroom exercises.

The results[13] suggest that there are not any significant differences between the average

performance of the two groups. These similarities can be explained by the fact that an

expert, i.e., the teacher guided students. On the other hand, the quality of source code

produced by experts had less fluctuation. They tend to provide more stable performance.

Outliers can be found in either direction from the average or median among the solutions

of the students. I suggest that these represent the children who have more or less affinity

for abstract thinking and logical problem-solving.

D.1 Summary of the Topics 123

D.1.2 Providing Immersive Methods for Software and (Unit) Test Vi-

sualization

The main topic of this part is the visualization of software systems and their connected

items. It addresses the challenges of software comprehension.

Using a sandbox game to visualize software as a virtual city My main contribu-

tion was to connect data visualization with high end-user graphics capabilities. To achieve

this, a visualization tool [17, 16] was implemented which utilized the high expressive power

of the well known sandbox game, Minecraft [2].

In CodeMetropolis, different physical properties of the city and the buildings are related

to various code or test metrics. I continued the legacy of CodeCity [105] and EvoSpace [59]

which use the analogy of skyscrapers in a city to represents the structure of the source

code. Despite their appealing appearance and great potential in general, these tools still

use relatively low fidelity graphics compared to today’s most advanced computer games.

I introduced our approach for visualizing source code using the same metaphor, but em-

ploying a sophisticated game called Minecraft. The set of visual properties was extended

to support higher dimensional data visualization since the software systems could reach

virtually infinite complexity by their nature.

Our tools were utilized during various educational sessions, ranging from primary to

secondary schools. We also use this method to help the university students to understand

abstract software development related concepts like source code metrics.

Assessing the degree of realism for the city metaphor in software visualization

To allow the users to navigate freely in the artificial environment and to understand its

meaning, the difference between a realistic and unrealistic city has to be expressed. I

presented three low- and one high-level metrics that express various features of a virtual

city used to visualize software systems to capture this difference. These are compactness

for measuring space consumption, connectivity for showing the low-level coherence among

the buildings, and homogeneity for expressing the smoothness of the landscape. The

constructed high-level metric can express the similarity between a generated metropolis

and a real one.

Both high- and low-level metrics were validated by a user survey. The results show that

it is possible to construct methods that can estimate the degree of realism of a generated

city.

Integration of Eclipse and CodeMetropolis We presented an approach to integrate

our visualization tool into the Eclipse IDE environment. Previously, only standalone

usage was possible, but with this integrated version, the users can invoke the visualization

directly from the IDE, and all the analysis is performed in the background. The new

version of the tool now includes an Eclipse plug-in and a Minecraft modification in addition

124 Summary in English

to the analysis and visualization modules, which have also been extended with some new

features.

These tools enable developers to launch visualization and initialize the buildings of the

virtual city. We also described two possible, high-level use cases and detailed scenarios,

for educational and professional usage.

Using the city metaphor for visualizing test-related metrics We extended the

metaphor to include properties of the tests related to the program code using a novel

concept [20]. The test suite and the test cases were associated with a set of metrics

that characterize their quality (such as coverage and specialization), which allowed us to

combine two previous approaches: a method to express test quality in terms of metrics,

and visualization of code related metrics in the CodeMetropolis framework.

In this version of CodeMetropolis [18], gardens representing code elements will give

rise to outposts that characterize properties of the tests and show how they contribute to

the quality of the code.

D.1.3 Using Test Coverage to Analyze Structures in the Package Hier-

archy

This part contains a detailed elaboration of the researches related to test and code quality

measurement and improvement, addressing the challenges of quality management and

software analysis.

Simultaneous Clustering of Test Cases and Code Elements To automate various

tests and code analyses tasks, I employ a clustering algorithm that can group test and code

items. In order to determine the clustering of the tests and code based on the dynamic

behavior of the test suite, I applied community detection [26, 41] on the detailed test-code

coverage information. Groups of tests and methods that form “dense regions” may be

grouped, indicating that there is a tight correspondence between them from a dynamic

point of view. This method allowed the simultaneous inspection of tests and their subjects

and aided us in conducting further analysis.

Classification of Structural Test Smells This work addressed the quality of unit

test suites from a novel angle. Our approach was to compare the physical organization of

tests and tested code in the package hierarchy to what can be observed from the dynamic

behavior of the tests.

Our results indicate that for realistic systems, there are quite a lot of discrepancies

between the package-based and community-based structures. However, it does not nec-

essarily mean that each of these needs to be fixed in the first place by some kind of

refactoring of test code. Furthermore, it is not generally possible to decide if there is a

D.2 Future Work 125

problem with the placement of test cases in the package structure or with the way test

cases invoke elements of the tested code.

Clustering of Test-Code Traceability Discrepancies We proposed a semi-automatic

method for recovering test-to-code traceability links, which is based on computing con-

nections using static and dynamic approaches, comparing their results and presenting the

discrepancies to the user, who will determine the final traceability links based on the

differences and contextual information.

We defined a set of discrepancy patterns, which can help the user in this task. Ad-

ditional outcomes of analyzing the discrepancies were structural unit testing issues and

related refactoring suggestions. For the static test-to-code traceability, we relied on the

physical code structure, while for the dynamic, we used code coverage information, as

mentioned in previous paragraphs. In both cases, we computed combined test and code

clusters, which represent sets of mutually traceable elements. We also presented an em-

pirical study of the method involving eight non-trivial open-source Java systems.

Providing a Methodology for Unified Graph’s Discrepancy Analysis During

software analysis, researchers and it experts frequently draw conclusions based on dif-

ferences between two representations of the same item’s set, like the above mentioned

dynamic and static clustering of the tests and their subjects. These kinds of analyses

could be aided by a generalized methodology for graphs, which could be used to unify

the underlying process of discrepancy analysis. I presented a methodology for a uni-

fied graph’s discrepancy analysis, named UniGDA. It is based on the previously defined

domain-specific discrepancy detection techniques.

My generalized methodology is using different types of characteristic functions to cap-

ture the similarity structures between vertices of arbitrary graphs. I extended the previous

detection technique to arbitrary graphs by providing several domain-independent similar-

ity functions and pattern. All of the previously defined discrepancies were assigned to one

or more general similarity patterns. These results ensure that the UniGDA methodology

does not reduce the number of identifiable cases. I also introduced a continuous version

of the characteristic and aggregation function, which takes account of the magnitude of

similarity between inspected items, instead of only being able to express the existence of

similar ones.

D.2 Future Work

I do not consider these research topics final and complete. There are several open questions

to address and problems to solve.

My productivity measurement methods and profile inspection techniques are based on

the fine-grain analyses of the developer activities. The required resolution is usually much

126 Summary in English

higher than the one captured by the various version control systems. One of my future

research will investigate the possibility of relying on a system which, is already in use and

data which are collected by that (for example, Git).

There are several properties of Micro-Productivity Profile that are not analyzed. For

example, the local steepness of these curves could indicate various phases of software

development, which may or may not coincide with the rhythm dictated by the project

management.

I already used the city metaphor to illustrate the various abstract concept for stu-

dents and children. I would like to continue this research by introducing ready-to-use

settings and scenarios for various stakeholders. These results will aid the integration of

CodeMetropolis into the daily workflow of software development.

In the case of test quality analysis, we plan to investigate the situations in which

violations of clustering indicate the need for refactoring, and whether we should suggest

moving test cases to different packages or modify the internal working of the test case

instead. This way, we would obtain a real bad smell and refactoring catalog for this

particular kind of test code quality issue. Our plans for the continuation also include a

more detailed analysis of the anomaly patterns, to define more specific cases.

Finally, I would like to analyze discrepancies between various types of graphs (like,

those generated with Dorogovtsev-Mendes algorithm[37]) with the methodology for uni-

fied graph’s discrepancy analysis. I plan that these investigations will lead to a more

comprehensive collection of domain-independent similarity patterns, detected either with

Discrete Neighbor Degree Distribution or Continuous Neighbor Degree Distribution.

Appendix E

Magyar nyelvű összefoglaló

Ebben a fejezetben a Ph.D. tanulmányaim egyik legnehezebb feladatát tűztem ki célul:

hogyan sűŕıtsük bele sok év kutató munkáját néhány figyelemfelkeltő oldalba. A siker-

ességemet csak azzal az egyetlen ténnyel lehet mérni, hogy a tisztelt olvasó hajlandó-e

továbblapozni és megismerni, az e tézisben korábban léırtakat. Személy szerint mindenkit

erre b́ıztatok, hiszen ezekben a korábbi fejezetekben fogják megtalálni a válaszokat a

,,Hogyan?”-okra és a ,,Miért?”-ekre.

E.1 Témák összefoglalása

E dolgozat fő eredményei kapcsolódnak a részben vagy egészben automatizált program

elemzéshez és a fejlesztési folyamatokhoz. A célom az volt, hogy hasznos eszközökkel,

módszerekkel és technológiákkal seǵıtsem a különböző szoftverfejlesztéssel foglalkozó sza-

kemberek munkáját. A téziseimet három nagy csoportra osztottam: ,,A szoftverfejlesztői

csapatok produktivitásának mérése és előrejelzése”; ,,Izgalmas és magával ragadó szoftver

és teszt vizualizációs technikák biztośıtása”; és ,,Figyelmet érdemlő helyek azonośıtása a

csomaghierarchiában lefedettségi adatok alapján”.

E.1.1 A szoftverfejlesztői csapatok produktivitásának mérése és előre-

jelzése

E rész a produktivitás fogalma és hozzá kapcsolódó költségbecslés köré csoportosuló ku-

tatásaimat ismerteti.

A módośıtások t́ıpusainak felhasználása egy kifejezőbb produktivitás metrika

definiálása során. A kutatásom során [19] két új metrikát definiáltam a produktivitás

mérésére. Ezek lehetővé tették, hogy kiküszöböljem a korábban használt változatok

hátrányait. Pontosabban, a korábbi megoldások nem voltak képesek különbséget tenni

az alacsony szintű produktivitás változások során, vagyis nem tudták kifejezni a fejlesztők

által tett erőfesźıtések kis léptékű változásait. Az általam bevezetett metrikák nagy-

127

128 Magyar nyelvű összefoglaló

obb kifejező erővel rendelkeznek mint a korábban használt sorok számosságán alapuló

változatok. Az új metrikákat közepes méretű, ipari projekteken értékeltük ki és az eredmé-

nyeket összevetettük a vezető fejlesztő által adott becslésekkel.

Produktivitás mértékének előrejelzése genetikus algoritmus seǵıtségével fi-

nomhangolt metrikák alapján. Sikeresen növeltem a korábbi folyamat és termék

metrikákon alapuló módośıtási költség előrejelző modell teljeśıtményét. A tradicionálisan

használt módośıtott sorok száma alapú metrikákat a korábban emĺıtett módośıtások súlyo-

zott összegére cseréltem. Ezzel a változtatással jelentősen megnövekedett a korábbi előre-

jelző modell sikeressége. A szabad paraméterek finomhangolásához gépi tanulási algorit-

must, név szerint evolúciós és genetikai algoritmust használtam. Az empirikus kiértékelés

során négy ipari projekten végeztünk méréseket és hasonĺıtottuk össze a kapott pon-

tosságot a korábbi modellek értékeivel. A kutatás során kimutattam, hogy az általam

kifejlesztett előrejelző modell teljeśıtménye jelentősen, mintegy 50%-ról 70%-ra (F-mérték)

nőtt átlagosan.

Az elvesztegetett erőforrások azonośıtása fejlesztők munkavégzési adatai a-

lapján. Bár a többszörösen (vagyis legalább egyszer feleslegesen) módośıtott forráskód

mennyisége megbecsülhető a verzió kezelő rendszerek seǵıtségével, mégis a vezetők számára

fontosabb a részletesebb és pontosabb erőforrásbecsélt lehetővé tevő a produktivitás időbeli

változását vizsgáló mérések. Ezt az aspektust vizsgáltuk egy tanulmány során [22], melyet

egy közepes méretű, J2EE projekten végeztünk 17 fejlesztő bevonásával hét hónapon

keresztül. A produktivitás változásának elemzésére dinamikus profilokat vezettünk be,

melyeket Mikro-Produktivitás Profiloknak (mpp) neveztünk. Ezek a görbék lehetővé teszik

a szoftver fejlesztési projekt különböző elemeinek jellemzését, úgy mint a komponensek,

fejlesztési fázisok, és csapatok. Ezáltal a projekt vezető megfelelőbb időrendet alaḱıthat ki

és lehetővé válik az erőforrások pontosabb kiosztása. A ḱısérlet alapján a vizsgált projekt

szakmai vezetője több jav́ıtásra érdemes pontot is azonośıtott.

Diákok és szakemberek kódminőségének összehasonĺıtása. Egy általam végzett

tanulmány keretében több, diákok által késźıtett programkód minőségét vetettem össze

tapasztalat fejlesztők megoldásaival. A vizsgálat során az ipari szektorban is elfogadott

modellt alkalmaztam, mely lehetővé teszi különböző nem-funkcionális tulajdonságok kiér-

tékelését és aggregálását.

Az elemzéseim tárgya különálló órai feladatok megoldásai voltak. Az eredményekből

arra következtettem, hogy nincs számottevő különbség a két csoport átlagos teljeśıtménye

között. Ezek a hasonlóságok részben magyarázhatóak azzal, hogy mı́g a gyerekek tanári

felügyelet mellett dolgoztak addig a fejlesztők önállóan oldották meg a feladatot. A fejlesz-

tők által végzett munka minősége sokkal kisebb szórást mutatott az átlag körül. A diákok

között talált kiŕıvó esetek, véleményem szerint a személyes affinitáshoz és képességekhez

E.1 Témák összefoglalása 129

kapcsolódó különbségekkel magyarázhatóak, úgy mint az absztrakt gondolkodás és a logi-

kus probléma megoldás.

E.1.2 Izgalmas és magával ragadó szoftver és (egység) teszt vizualizációs

technikák biztośıtása

E rész fő témája a szoftverek és hozzá kapcsolódó elemek vizualizációja köré csoportosul.

A kutatás célja, hogy válaszokat adjon a szoftverek megértésével kapcsolatos kih́ıvásokra.

Nýılt-terű játékok felhasználása a szoftverek virtuális városként történő meg-

jeleńıtése során. Ebben a fázisban nagy hangsúlyt kapott az adat vizualizáció össze-

kapcsolása valósághű és magával ragadó grafikus megjeleńıtéssel. Ennek elérése érdekében

egy új eszköz csomag [17, 16] került kifejlesztésre, mely lehetővé teszi, hogy a program

tulajdonságait Minecraft [2] világban generált városokkal reprezentáljuk.

A CodeMetropolis-nak nevezett rendszerben a generált város különböző elemei egy

vagy több forráskód vagy teszt elemet jelképeznek, mı́g ezek fizikai tulajdonságai a megjele-

ńıtett elem metrikáit fejezik ki. A program a korábban a CodeCity [105] és az EvoSpace [59]

során már felhasznált város metafora módszerét alkalmazza. E kapcsolódó programok, bár

képesek megjeleńıti a szoftverek elvont szerkezetét, vizuális ábrázolásuk és interaktivitásuk

messze elmarad a közismert számı́tógépes játékok szintjétől. A kutatásaim során e jól

ismert vizualizációs módszert ötvöztem a modern grafikai lehetőségekkel egy népszerű

játékon keresztül. A megjeleńıthető tulajdonságok kibőv́ıtett halmaza, lehetővé tette,

hogy több, magasabb dimenziójú adatot is reprezentáljunk, melyek gyakoriak a szoftver

rendszerek elemzése során.

A módszert és az eszközt sikeresen alkalmaztuk különböző oktatási platformok és

események keretében, kezdve az általános iskolai szakkörtől a rendhagyó informatika órán

át a középiskolákban tartott pályaválasztási napokig. A technológia integrálásra került az

egyetemi oktatás során is, ahol seǵıtette a hallgatókat az elvont fogalmak és köztük lévő

kapcsolatok megértésében.

A generált városok valósághűségének mérése a szoftver vizualizáció során. Ah-

hoz hogy a felhasználó akadálytalan navigációját biztośıtsuk egy virtuális térben, szüksé-

günk van a generált világ valósághűségének mértékére. Kutatásaim során három alacsony

és egy magas szintű metrikát definiáltam, melyek kifejezik a generált városok bizonyos

jellemzőit. Ezek a kompaktság, ami a város térbeli kiterjedését méri; az összekapcsoltság,

ami az épületek közötti kis-léptékű koherenciát fejezi ki; és a homogenitás, ami a látkép

folytonosságát jelzi. Ezen alacsony szintű mérőszámok aggregálásával kapjuk a valóság-

hűséget kifejező magas szintű metrikát.

Mind a négy metrika egy felhasználókkal végzett tanulmány keretében került ellenőr-

zésre. Az eredmények arra engednek következtetni, hogy lehetséges olyan metrika konst-

ruálása, mely becslést ad egy generált város valósághűségére.

130 Magyar nyelvű összefoglaló

Eclipse fejlesztő környezet és CodeMetropolis szoftvervizualizációs eszközök

integrációja. Ebben a fázisban egy új módszert mutattunk be, mely lehetővé tette a

közismert Java nyelvű fejlesztéseket támogató rendszer, az Eclipse, és a korábban részle-

tezett városmetaforát használó szoftvervizualizációs program csomag, a CodeMetropolis

együttes használatát. A korábbi független használati esetekkel ellentétben, jelen verzió

biztośıtja, hogy a felhasználó navigálhasson a forráskód és az azt jelképező város elemei

között. Ezeket a funkciókat egy Eclipse plug-in és egy Minecraft mod biztośıtja.

Az eszközök és a hozzá kötődő módszer kiértékelése során több különböző ipari és

oktatási fejlesztéshez kapcsolódó használati esetet is meghatároztunk.

Város metafora használata a teszt metrikák vizualizációja során. Ebben a

fázisban kiterjesztettük a korábban használt város metaforát, mely ezáltal képessé vált

különböző teszt metrikák megjeleńıtésére is [20]. A korábban a teszt esetekhez és a

hozzájuk kapcsolódó kód elemekhez rendelt minőséget kifejező metrikák (mint a lefedettség

és a specializáció) lehetővé tette számunkra, hogy a tesztek adatait megjeleńıtsük a koráb-

ban használt virtuális térben, mely a programok szerkezetét jelképezi.

A CodeMetropolis programcsomag ezen verziójában a forráskód elemeket jelképező

kerteket őrposztok népeśıtik be, melyek tulajdonságai kifejezik a hozzájuk kapcsolódó

teszt esetek minőségét több különböző nézőpontból.

E.1.3 Teszt lefedettség használata a csomaghierarchia szerkezetének vizs-

gálata során

Ebben a fejezetben részletezem a teszt és forráskód minőség jav́ıtása érdekében végzett

kutatásaim eredményét, különös hangsúlyt fektetve a minőségmérés és a szoftver elemzés

által támasztott kih́ıvásokra.

Teszt és forráskód együttes klaszterezése. A különböző teszt és forráskód elemzések

automatizálása érdekében, bevezettem egy új módszert mely képes a teszt és forráskód

elemek együttes csoportośıtására. A tesztek és a hozzájuk kapcsolódó kódrészletek futás

közbeni viselkedése alapján ún. dinamikus csoportośıtást hoztunk létre. Ehhez a végrehaj-

tás során gyűjtött részletes lefedettségi adatokat közösség detektáló algoritmus használa-

tával elemeztük. Az ilyen algoritmusok egy csoportba foglalják azokat az elemeket, melyek

között nagyságrendileg több kapcsolat található mint a csoporton ḱıvül. Az ı́gy kapott

heterogén elemhalmazok vizsgálata lehetővé teszi, hogy a tesztek minőségét a hozzájuk

kapcsolódó kódrészletekkel együtt elemezzük.

Gyanús struktúrájú teszt csomagok osztályozása. A kutatásunk során újszerű

nézőpontból vizsgáltuk az egység tesztek minőségét. A megközeĺıtésünk a fizikai csopor-

tośıtás és a futás közben tapasztalt viselkedés összehasonĺıtásán alapszik.

E.2 Jövőbeli tervek 131

Az eredményeink azt mutatták hogy a valós ipari projektek esetében jelentős eltérés fi-

gyelhető meg a csomag hierarchia és a lefedettség alapján detektált teszt és kód klaszterek

között. Fontos hangsúlyozni, hogy ezen eltérések nem feltétlenül eredményeznek hibás

viselkedést, vagy jelentenek nem megfelelő megvalóśıtást, azonban mindenképp kitüntetett

figyelemmel kell bánni velük. A kutatásaink során végzett fél-automatikus elemzések

rámutattak, hogy nem lehet általános jav́ıtási lépéseket megfogalmazni, vagyis az adott

t́ıpusú gyanús struktúrák egymástól függetlenül kezelendők.

Teszt és kód összerendelés során tapasztalt eltérések klaszterezése. A munkánk

során létrehoztunk egy fél-automatikus módszert, mely képes bizonyos mértékben helyre

álĺıtani az elveszett teszt-kód nyomon-követhetőségi kapcsolatokat. Ez a módszer a statikus

és dinamikus elemzések közötti különbségek alapján lokalizálja a figyelmet érdemlő pon-

tokat, azonban a helyreálĺıtást már a fejlesztő végzi.

A felhasználó munkáját különböző eltéréseket osztályozó minták definiálásával seǵıtjük.

A statikus elemzés során jelentős információt szerzünk a program csomaghierarchiájából,

mı́g a dinamikus adatokat a részletes lefedettség mérések szolgáltatják. A nyomon-követ-

hetőségi kapcsolatokat az ezen adatok alapján konstruált teszt és kód klaszterek jelképezik.

Az elméleti kutatást nyolc valós programon végzett mérés során értékeltük ki.

Egységeśıtett módszer a gráfok közötti eltérés vizsgálatára. A kutatók, munkájuk

során gyakran vonnak le következtetéseket egy adott elemhalmaz kétféleképpen végzett

csoportośıtásának elemzéséből. Erre egy példa a korábban bemutatott teszt és kód ele-

mek klaszterezése statikus és dinamikus anaĺızis alapján. Kutatásom célja, hogy seǵıtsük

ezeket az elemzéseket, egy olyan általános összehasonĺıtó módszertan definiálásával, mely

képes a gráfok közötti eltérések vizsgálatára. Ezt az új módszert UniGDA-nak neveztem

el, és a korábban bemutatott speciális eseteken alapszik.

Ez az általános módszertan különböző t́ıpusú függvények seǵıtségével detektálja az

egyes csomópontok közötti hasonlóságot. A korábban bevezetett szakterület specifikus

különbségeket vizsgáló módszertant kiterjesztettem több terület-független hasonlósági függ-

vénnyel és mintával. Az ı́gy kapott módszer lehetővé teszi tetszőleges gráfok közötti

különbségek elemzését. Minden korábban definiált mintát hozzárendeltem egy vagy több

általános mintához, mely biztośıtja, hogy az UniGDA nem csökkenti a korábbi módszerek-

kel vizsgált elemt́ıpusok számát. Sőt a folytonos karakterisztikus függvény bevezetésével

lehetővé vált az elemek közötti hasonlóság mértékének mélyebb tanulmányozása, a korábbi,

csak hasonló elemek létezésének vizsgálata helyett.

E.2 Jövőbeli tervek

Az eddig elért eredmények ellenére sem tekintem a kutatómunkámat lezártnak és teljesnek,

természetesen még számtalan nyitott kérdés maradat, melyek közül néhányat emĺıtek a

132 Magyar nyelvű összefoglaló

továbbiakban.

Az általam bevezetett produktivitás értékét mérő és profilját vizsgáló technika a fe-

jlesztői aktivitás nagy felbontású elemzésén alapszik. A szükséges felbontás általában jóval

nagyobb mint az ipari szektorban is használt verziókövető rendszerek esetében. Egyik

jövőbeli tervem, hogy a korábbi módszereket átültessem a gyakorlatban is széles körben

használt és ı́gy sokkal több valós adatot biztośıtó verzió követő rendszerekre, mint például

a Git.

A korábban részletezett produktivitást léıró profilok számos tulajdonságát figyelmen

ḱıvül hagytuk az elemzési folyamat egyszerűśıtése érdekében. Ilyen tulajdonságok például

a görbe meredeksége, mely seǵıtséget nyújthat a fejlesztési projektek ütemezésének ter-

vezése során.

Az oktatás során felhasznált város metafora alapú szoftver vizualizáció sikerei alapján,

szeretném kiterjeszteni ezt az absztrakt fogalmak megismerését támogató módszert a sza-

kemberek munkájára is. Ezt elsődlegesen a különböző területek számára előre elkésźıtett

és kiértékelt speciális beálĺıtás csomaggal tervezem támogatni.

A tesztek minőségelemzésének területén további vizsgálatokat tervezünk a lehetséges

jav́ıtások szükségességének megállaṕıtására. Ezek alapján támogatni tudjuk majd a fejlesz-

tőket annak a kérdésnek a megválaszolása során, hogy mely komponensek átszervezése és

átalaḱıtása szükséges. Ez lehetővé teszi teljes hibalokalizációs és jav́ıtási javaslatokat biz-

tośıtó katalógus létrehozását. Ezzel párhuzamosan tervezzük a nem osztályozott esetek

részletes vizsgálatát és további minták definiálását.

Végül, tervezem a különböző gráft́ıpusok közötti különbségeket és ezek eloszlását vizs-

gálni a korábban bemutatott UniGDA módszerrel. Véleményem szerint az ı́gy gyűjtött

adatok még részletesebb szakterület-független minta adatbázis éṕıtését teszik majd lehe-

tővé, mind a folytonos és a diszkrét léırók esetében is.

Bibliography

[1] Mojang Synergies AB. Minecraft End User Licence Agreement. url: https://

account.mojang.com/documents/minecraft_eula (visited on 10/07/2015).

[2] Mojang Synergies AB. Minecraft Official Website. url: http://minecraft.net/

(visited on 06/24/2013).

[3] MK K Abdi, Hakim Lounis, and Houari Sahraoui. “Using Coupling Metrics for

Change Impact Analysis in Object-Oriented Systems”. In: Proceedings of the 10th

ECOOP Workshop on Quantitative Approaches in ObjectOriented Software Engi-

neering QAOOSE 06. 2006, pp. 61–70. url: http://www-ctp.di.fct.unl.pt/

QUASAR/Resources/Papers/2006/QAOOSE2006%5C_Proceedings.pdf%5C#page=

65.

[4] Roberto Abreu and Rahul Premraj. “How developer communication frequency re-

lates to bug introducing changes”. In: Proceedings of the joint international and

annual ERCIM workshops on Principles of software evolution (IWPSE) and soft-

ware evolution (Evol) workshops. ACM. 2009, pp. 153–158.

[5] Ernest Adams and Andrew Rollings. Fundamentals of Game Design (Game Design

and Development Series). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

isbn: 0131687476.

[6] Nicolas Anquetil and Timothy Lethbridge. “Extracting concepts from file names:

a new file clustering criterion”. In: Software Engineering (ICSE 1998), Proceedings

of the 20th International Conference on. IEEE Computer Society. 1998, pp. 84–93.

[7] Gábor Antal, Ádám Zoltán Végh, and Vilmos Bilicki. “A methodology for measur-

ing software development productivity using Eclipse IDE”. In: Proceedings of the

9th International Conference on Applied Informatics (ICAI 2014). Accepted. Eger,

Hungary, 2015.

[8] Gábor Antal et al. “Static JavaScript Call Graphs: a Comparative Study”. In:

Proceedings of the 18th IEEE International Working Conference on Source Code

Analysis and Manipulation. IEEE, 2018, pp. 177–187.

133

https://account.mojang.com/documents/minecraft_eula
https://account.mojang.com/documents/minecraft_eula
http://minecraft.net/
http://www-ctp.di.fct.unl.pt/QUASAR/Resources/Papers/2006/QAOOSE2006%5C_Proceedings.pdf%5C#page=65
http://www-ctp.di.fct.unl.pt/QUASAR/Resources/Papers/2006/QAOOSE2006%5C_Proceedings.pdf%5C#page=65
http://www-ctp.di.fct.unl.pt/QUASAR/Resources/Papers/2006/QAOOSE2006%5C_Proceedings.pdf%5C#page=65

134 Bibliography

[9] Thomas H. Apperley. “Genre and Game Studies: Toward a Critical Approach to

Video Game Genres”. In: Simul. Gaming 37.1 (Mar. 2006), pp. 6–23. issn: 1046-

8781. doi: 10.1177/1046878105282278. url: http://dx.doi.org/10.1177/

1046878105282278.

[10] Atlassian. Clover Java and Groovy Code Coverage Tool Homepage. last visited:

2016-05-27. url: https://www.atlassian.com/software/clover.

[11] Steven P. Den Baars and Sander Meester. “CodeArena: Inspecting and Improving

Code Quality Metrics in Java using Minecraft”. In: 2019.

[12] Tibor Bakota et al. “A probabilistic software quality model”. In: 2011 27th IEEE

International Conference on Software Maintenance (ICSM). IEEE, Sept. 2011,

pp. 243–252. isbn: 978-1-4577-0664-6. doi: 10.1109/ICSM.2011.6080791. url:

http : / / ieeexplore . ieee . org / lpdocs / epic03 / wrapper . htm ? arnumber =

6080791.

[13] Gergő Balogh. “Comparison of Software Quality in the Work of Children and

Professional Developers Based on Their Classroom Exercises”. In: International

Conference on Computational Science and Its Applications. Springer, Cham. 2015,

pp. 36–46.

[14] Gergő Balogh. “First Steps towards a Methodology for Unified Graph’s Discrep-

ancy Analysis”. submittted for review to 13th International Conference of Graph

Transformation, (part of STAF 2020).

[15] Gergő Balogh. “Validation of the city metaphor in software visualization”. In: In-

ternational Conference on Computational Science and Its Applications. Springer,

Cham. 2015, pp. 73–85.

[16] Gergo Balogh and Arpad Beszedes. “CodeMetrpolis—A minecraft based collabora-

tion tool for developers”. In: Software Visualization (VISSOFT), 2013 First IEEE

Working Conference on. IEEE. 2013, pp. 1–4.

[17] Gergő Balogh and Arpad Beszedes. “CodeMetropolis-code visualisation in MineCraft”.

In: Source Code Analysis and Manipulation (SCAM), 2013 IEEE 13th International

Working Conference on. IEEE. 2013, pp. 136–141.

[18] Gergő Balogh, Attila Szabolics, and Arpád Beszédes. “CodeMetropolis: Eclipse over

the city of source code”. In: Source Code Analysis and Manipulation (SCAM), 2015

IEEE 15th International Working Conference on. IEEE. 2015, pp. 271–276.

[19] Gergő Balogh, Ádám Zoltán Végh, and Árpád Beszédes. “Prediction of Software

Development Modification Effort Enhanced by a Genetic Algorithm”. In: SSBSE

Fast Abstract track (2012), pp. 1–6.

[20] Gergo Balogh et al. “Using the City Metaphor for Visualizing Test-Related Met-

rics”. In: 1st International Workshop on Validating Software Tests. 2016.

https://doi.org/10.1177/1046878105282278
http://dx.doi.org/10.1177/1046878105282278
http://dx.doi.org/10.1177/1046878105282278
https://www.atlassian.com/software/clover
https://doi.org/10.1109/ICSM.2011.6080791
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6080791
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6080791

Bibliography 135

[21] Gergő Balogh et al. “Are My Unit Tests in the Right Package?” In: Source Code

Analysis and Manipulation (SCAM), 2016 IEEE 16th International Working Con-

ference on. IEEE. 2016, pp. 137–146.

[22] Gergő Balogh et al. “Identifying wasted effort in the field via developer interaction

data”. In: Software Maintenance and Evolution (ICSME), 2015 IEEE International

Conference on. IEEE. 2015, pp. 391–400.

[23] Kent Beck, ed. Test Driven Development: By Example. Addison-Wesley Profes-

sional, 2002. isbn: ISBN 0321146530.

[24] Pamela Bhattacharya. “Using software evolution history to facilitate development

and maintenance”. In: 2011 33rd International Conference on Software Engineering

(ICSE). IEEE. 2011, pp. 1122–1123.

[25] Rex Black, Erik van Veenendaal, and Dorothy Graham. Foundations of Software

Testing: ISTQB Certification. Cengage Learning, 2012. isbn: 9781408044056.

[26] Vincent D Blondel et al. “Fast unfolding of communities in large networks”. In:

Journal of statistical mechanics: theory and experiment 2008.10 (2008), P1000.

[27] Shawn A Bohner and Robert S Arnold. Software change impact analysis. English.

Includes bibliographical references (p. 361-374). Los Alamitos, Calif. : IEEE Com-

puter Society Press, 1996. isbn: 0818673842 (pbk.)

[28] Shawn A Bohner et al. “Extending Software Change Impact Analysis into COTS

Components”. In: (2003).

[29] Manuel Breugelmans and Bart Van Rompaey. “TestQ: Exploring structural and

maintenance characteristics of unit test suites”. In: WASDeTT-1: 1st International

Workshop on Advanced Software Development Tools and Techniques. 2008.

[30] Magiel Bruntink and Arie Van Deursen. “Predicting class testability using object-

oriented metrics”. In: Source Code Analysis and Manipulation, 2004. Fourth IEEE

International Workshop on. IEEE. 2004, pp. 136–145.

[31] D.J. Cavicchio. Adaptive search using simulated evolution. Tech. rep. Engineering,

College of - Technical Reports, 1970. url: http://deepblue.lib.umich.edu/

handle/2027.42/4042.

[32] Zhihao Chen et al. “Finding the Right Data for Software Cost Modeling”. In: IEEE

Softw. 22.6 (Nov. 2005), pp. 38–46. issn: 0740-7459. doi: 10.1109/MS.2005.151.

url: http://dl.acm.org/citation.cfm?id=1098520.1098575.

[33] Andrea De Lucia, Fausto Fasano, and Rocco Oliveto. “Traceability management for

impact analysis”. In: Frontiers of Software Maintenance, 2008. FoSM 2008. IEEE.

2008, pp. 21–30.

[34] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-oriented reengi-

neering patterns. Elsevier, 2002.

http://deepblue.lib.umich.edu/handle/2027.42/4042
http://deepblue.lib.umich.edu/handle/2027.42/4042
https://doi.org/10.1109/MS.2005.151
http://dl.acm.org/citation.cfm?id=1098520.1098575

136 Bibliography

[35] A. van Deursen et al. “Refactoring Test Code”. In: Extreme Programming Perspec-

tives. Ed. by G. Succi et al. Addison-Wesley, 2002, pp. 141–152.

[36] Guy Deutscher. The unfolding of language : an evolutionary tour of mankind’s

greatest invention. Henry Holt and Co, 2006. isbn: 0805080120.

[37] S. N. Dorogovtsev and J. F. F. Mendes. “Evolution of networks”. In: Advances in

Physics 51.4 (2002), pp. 1079–1187. doi: 10.1080/00018730110112519. eprint:

https://doi.org/10.1080/00018730110112519. url: https://doi.org/10.

1080/00018730110112519.

[38] Eclipse IDE Homepage. https://www.eclipse.org/. last visited: 2016-11-25.

[39] Rudolf Ferenc et al. “Columbus – Reverse Engineering Tool and Schema for C++”.

In: Proceedings of the IEEE International Conference on Software Maintenance

(ICSM 2002). IEEE Computer Society, Oct. 2002, pp. 172–181.

[40] Gavin R Finnie, Gerhard E Wittig, and Doncho I Petkov. “Prioritizing software

development productivity factors using the analytic hierarchy process”. In: Journal

of Systems and Software 22.2 (1993), pp. 129–139. issn: 0164-1212. doi: https:

//doi.org/10.1016/0164-1212(93)90091-B. url: http://www.sciencedirect.

com/science/article/pii/016412129390091B.

[41] Santo Fortunato. “Community detection in graphs”. In: Physics reports 486.3

(2010), pp. 75–174.

[42] Markus Gaelli, Michele Lanza, and Oscar Nierstrasz. “Towards a taxonomy of SUnit

tests”. In: Proceedings of 13th International Smalltalk Conference (ISC’05). 2005.

[43] Markus Gaelli, Rafael Wampfler, and Oscar Nierstrasz. “Composing Tests from

Examples.” In: Journal of Object Technology 6.9 (2007), pp. 71–86.

[44] Tamás Gergely et al. “Analysis of Static and Dynamic Test-to-code Traceability

Information”. In: Acta Cybernetica 23.3 (2018), pp. 903–919.

[45] Tamás Gergely et al. “Differences between a static and a dynamic test-to-code

traceability recovery method”. In: Software Quality Journal (2018), pp. 1–26.

[46] gource software version control visualization. url: https://code.google.com/p/

gource/.

[47] Graph Database — Multi-Model Database — OrientDB. https://orientdb.com/.

(Accessed on 02/09/2019).

[48] Greenfoot homepage. http://www.greenfoot.org/home. 2014. url: http://www.

greenfoot.org/home.

[49] Tibor Gyimóthy, Rudolf Ferenc, and István Siket. “Empirical Validation of Object-

Oriented Metrics on Open Source Software for Fault Prediction”. In: IEEE Transac-

tions on Software Engineering. Vol. 31. IEEE Computer Society, Oct. 2005, pp. 897–

910.

https://doi.org/10.1080/00018730110112519
https://doi.org/10.1080/00018730110112519
https://doi.org/10.1080/00018730110112519
https://doi.org/10.1080/00018730110112519
https://www.eclipse.org/
https://doi.org/https://doi.org/10.1016/0164-1212(93)90091-B
https://doi.org/https://doi.org/10.1016/0164-1212(93)90091-B
http://www.sciencedirect.com/science/article/pii/016412129390091B
http://www.sciencedirect.com/science/article/pii/016412129390091B
https://code.google.com/p/gource/
https://code.google.com/p/gource/
https://orientdb.com/
http://www.greenfoot.org/home
http://www.greenfoot.org/home
http://www.greenfoot.org/home

Bibliography 137

[50] Paul Hamill. Unit Test Frameworks: Tools for High-Quality Software Development.

O’Reilly Media, Inc., 2004.

[51] James Hamilton and Sebastian Danicic. “Dependence communities in source code”.

In: Software Maintenance (ICSM), 2012 28th IEEE International Conference on.

IEEE. 2012, pp. 579–582.

[52] Casper Harteveld. “Triadic Game Design - Balancing Reality, Meaning and Play”.

In: 2011.

[53] G. Holmes, A. Donkin, and I.H. Witten. “WEKA: a machine learning workbench”.

In: Proceedings of ANZIIS ’94 - Australian New Zealnd Intelligent Information

Systems Conference. IEEE, 1994, pp. 357–361. url: http://ieeexplore.ieee.

org/xpl/articleDetails.jsp?arnumber=396988.

[54] Ferenc Horváth et al. “Test Suite Evaluation using Code Coverage Based Metrics”.

In: Proceedings of the 14th Symposium on Programming Languages and Software

Tools (SPLST’15). Tampere, Finland, Oct. 2015, pp. 46–60.

[55] JUnit Java Unit Test Framework Homepage. http://junit.org/. last visited:

2016-05-27.

[56] Teemu Kanstrén. “Towards a deeper understanding of test coverage”. In: Journal

of Software: Evolution and Process 20.1 (2008), pp. 59–76.

[57] P. Khaloo et al. “Code Park: A New 3D Code Visualization Tool”. In: 2017 IEEE

Working Conference on Software Visualization (VISSOFT). Sept. 2017, pp. 43–53.

doi: 10.1109/VISSOFT.2017.10.

[58] John R. Koza et al. “Automated Design of Both the Topology and Sizing of Analog

Electrical Circuits Using Genetic Programming”. In: Artificial Intelligence in De-

sign ’96. Ed. by John S. Gero and Fay Sudweeks. Dordrecht: Springer Netherlands,

1996, pp. 151–170. isbn: 978-94-009-0279-4. doi: 10.1007/978-94-009-0279-4_9.

url: https://doi.org/10.1007/978-94-009-0279-4_9.

[59] D Lalanne and J Kohlas. Human Machine Interaction: Research Results of the MMI

Program. 2009.

[60] logstalgia website access log visualization. url: https://code.google.com/p/

logstalgia/.

[61] FrontEndART Ltd. SourceMeter Static Source Code Analyzer Homepage. https:

//www.sourcemeter.com/. Last visited: 2016-05-27.

[62] KL Ma. “StarGate: A unified, interactive visualization of software projects”. In:

Visualization Symposium, 2008. PacificVIS’08. IEEE VIDi (2008), pp. 191–198.

url: http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4475476.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=396988
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=396988
http://junit.org/
https://doi.org/10.1109/VISSOFT.2017.10
https://doi.org/10.1007/978-94-009-0279-4_9
https://doi.org/10.1007/978-94-009-0279-4_9
https://code.google.com/p/logstalgia/
https://code.google.com/p/logstalgia/
https://www.sourcemeter.com/
https://www.sourcemeter.com/
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4475476

138 Bibliography

[63] A. Marcus, D. Comorski, and A. Sergeyev. “Supporting the evolution of a soft-

ware visualization tool through usability studies”. In: Proceedings of the 13th In-

ternational Workshop on Program Comprehension (May 2005), pp. 307–316. doi:

10.1109/WPC.2005.34. url: http://ieeexplore.ieee.org/xpls/abs%5C_all.

jsp?arnumber=1421046%20http://dl.acm.org/citation.cfm?id=1058432.

1059368.

[64] Mitchell Melanie. “An introduction to genetic algorithms”. In: Cambridge, Mas-

sachusetts London, England, Fifth (1999). url: http://www.boente.eti.br/

fuzzy/ebook-fuzzy-mitchell.pdf.

[65] Brian S Mitchell and Spiros Mancoridis. “On the automatic modularization of

software systems using the bunch tool”. In: IEEE Transactions on Software Engi-

neering 32.3 (2006), pp. 193–208.

[66] Hausi A Müller et al. “A reverse-engineering approach to subsystem structure iden-

tification”. In: Journal of Software: Evolution and Process 5.4 (1993), pp. 181–204.

doi: 10.1002/smr.4360050402.

[67] Neo4j Graph Platform – The Leader in Graph Databases. https://neo4j.com/.

(Accessed on 02/09/2019).

[68] OECD. Measuring Productivity - OECD Manual. 2001, p. 156. doi: https://doi.

org/https://doi.org/10.1787/9789264194519-en. url: https://www.oecd-

ilibrary.org/content/publication/9789264194519-en.

[69] Thomas Ostrand. “White-Box Testing”. In: Encyclopedia of Software Engineering

(2002).

[70] Marian Petre. “UML in practice”. In: 2013 35th International Conference on Soft-

ware Engineering (ICSE). IEEE. 2013, pp. 722–731.

[71] Shari Lawrence. Pfleeger and Joanne M. Atlee. Software engineering : theory and

practice. Prentice Hall, 2010, p. 756. isbn: 0136061699.

[72] J. R. Quinlan. “Induction of decision trees”. In: Machine Learning 1.1 (Mar. 1986),

pp. 81–106. issn: 1573-0565. doi: 10.1007/BF00116251. url: https://doi.org/

10.1007/BF00116251.

[73] Lior Rokach and Oded Maimon. Data mining with decision trees. Theory and ap-

plications. Vol. 69. Jan. 2008. doi: 10.1142/9789812771728_0001.

[74] B. V. Rompaey and S. Demeyer. “Establishing Traceability Links between Unit

Test Cases and Units under Test”. In: Software Maintenance and Reengineering,

2009. CSMR ’09. 13th European Conference on. Mar. 2009, pp. 209–218. doi: 10.

1109/CSMR.2009.39.

https://doi.org/10.1109/WPC.2005.34
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1421046%20http://dl.acm.org/citation.cfm?id=1058432.1059368
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1421046%20http://dl.acm.org/citation.cfm?id=1058432.1059368
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1421046%20http://dl.acm.org/citation.cfm?id=1058432.1059368
http://www.boente.eti.br/fuzzy/ebook-fuzzy-mitchell.pdf
http://www.boente.eti.br/fuzzy/ebook-fuzzy-mitchell.pdf
https://doi.org/10.1002/smr.4360050402
https://neo4j.com/
https://doi.org/https://doi.org/https://doi.org/10.1787/9789264194519-en
https://doi.org/https://doi.org/https://doi.org/10.1787/9789264194519-en
https://www.oecd-ilibrary.org/content/publication/9789264194519-en
https://www.oecd-ilibrary.org/content/publication/9789264194519-en
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
https://doi.org/10.1142/9789812771728_0001
https://doi.org/10.1109/CSMR.2009.39
https://doi.org/10.1109/CSMR.2009.39

Bibliography 139

[75] Gregg Rothermel and Mary Jean Harrold. “Empirical studies of a safe regression

test selection technique”. In: IEEE Transactions on Software Engineering 24.6

(June 1998), pp. 401–419.

[76] SonarSource S.A. SonarQube homepage. https://www.sonarqube.org. (Accessed

on 07/23/2019).

[77] Lajos Schrettner et al. “Impact Analysis in the Presence of Dependence Clusters

Using Static Execute After in WebKit”. In: Proc. of IEEE International Working

Conference on Source Code Analysis and Manipulation (SCAM). Riva del Garda,

Trento, Italy, 2012, pp. 24–33.

[78] Robert W Schwanke. “An intelligent tool for re-engineering software modularity”.

In: Software Engineering, 1991. Proceedings., 13th International Conference on.

IEEE. 1991, pp. 83–92.

[79] Robert Schwanke, Lu Xiao, and Yuanfang Cai. “Measuring architecture quality by

structure plus history analysis”. In: 2013 35th International Conference on Software

Engineering (ICSE). IEEE. 2013, pp. 891–900.

[80] Shai Shalev-Shwartz and Shai Ben-David. “Decision Trees”. In: Understanding Ma-

chine Learning: From Theory to Algorithms. Cambridge University Press, 2014,

pp. 212–218. doi: 10.1017/CBO9781107298019.019.

[81] Robin C. Sickles and Valentin Zelenyuk. Measurement of Productivity and Effi-

ciency: Theory and Practice. Cambridge University Press, 2019. doi: 10.1017/

9781139565981.

[82] Bernard W Silverman. Density estimation for statistics and data analysis. Rout-

ledge, 2018.

[83] SN Sivanandam. “Introduction to genetic algorithms”. In: (2007). url: http://

dl.acm.org/citation.cfm?id=1557421.

[84] Software Engineering for Smart Data Analytics & Smart Data Analytics for Soft-

ware Engineering. Small Refactoring Classroom Exercise Website. url: https:

//sewiki.iai.uni-bonn.de/private/daniel/public/tutorials/small$%5C_

$refactoring (visited on 10/07/2015).

[85] George Spanoudakis and Andrea Zisman. “Software traceability: a roadmap”. In:

Handbook of Software Engineering and Knowledge Engineering 3 (2005), pp. 395–

428.

[86] Margaret-anne Storey, Casey Best, and Jeff Michaud. “SHriMP views: an inter-

active environment for information visualization and navigation”. In: CHI ’02 ex-

tended abstracts on Human factors in computing systems - CHI ’02 (Apr. 2002),

p. 520. doi: 10.1145/506443.506459.

https://www.sonarqube.org
https://doi.org/10.1017/CBO9781107298019.019
https://doi.org/10.1017/9781139565981
https://doi.org/10.1017/9781139565981
http://dl.acm.org/citation.cfm?id=1557421
http://dl.acm.org/citation.cfm?id=1557421
https://sewiki.iai.uni-bonn.de/private/daniel/public/tutorials/small$%5C_$refactoring
https://sewiki.iai.uni-bonn.de/private/daniel/public/tutorials/small$%5C_$refactoring
https://sewiki.iai.uni-bonn.de/private/daniel/public/tutorials/small$%5C_$refactoring
https://doi.org/10.1145/506443.506459

140 Bibliography

[87] Lovro Šubelj and Marko Bajec. “Community structure of complex software systems:

Analysis and applications”. In: Physica A: Statistical Mechanics and its Applica-

tions 390.16 (2011), pp. 2968–2975.

[88] Gilbert Syswerda. “Uniform Crossover in Genetic Algorithms”. In: Proceedings of

the 3rd International Conference on Genetic Algorithms. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1989, pp. 2–9. isbn: 1-55860-066-3. url: http:

//dl.acm.org/citation.cfm?id=645512.657265.

[89] Dávid Tengeri et al. “Beyond Code Coverage – an Approach for Test Suite As-

sessment and Improvement”. In: Proceedings of the Testing: Academic & Industrial

Conference – Practice and Research Techniques (TAIC PART 2015). Graz, Austria:

IEEE Computer Society, Apr. 2015, ??–??

[90] Dávid Tengeri et al. “Negative Effects of Bytecode Instrumentation on Java Source

Code Coverage”. In: Proceedings of the 23rd IEEE International Conference on

Software Analysis, Evolution, and Reengineering (SANER 2016). Osaka, Japan,

Mar. 2016, pp. 225–235.

[91] Dávid Tengeri et al. “Toolset and Program Repository for Code Coverage-Based

Test Suite Analysis and Manipulation”. In: Proceedings of the 14th IEEE Interna-

tional Working Conference on Source Code Analysis and Manipulation (SCAM’14).

Victoria, City of Gardens, British Columbia, Canada, Sept. 2014, pp. 47–52.

[92] Vikas Thada and Vivek Jaglan. “Comparison of jaccard, dice, cosine similarity

coefficient to find best fitness value for web retrieved documents using genetic

algorithm”. In: International Journal of Innovations in Engineering and Technology

2.4 (2013), pp. 202–205.

[93] Gabriella Tóth et al. “Adding Process Metrics to Enhance Modification Complex-

ity Prediction”. In: Proceedings of the IEEE International Conference on Program

Comprehension (ICPC 2011). 2011, pp. 201–204. url: http : / / www . inf . u -

szeged.hu/~gtoth/research/mpp%5C_ICPC2011.pdf.

[94] Gabriella Tóth et al. “Adjusting Effort Estimation Using Micro-Productivity Pro-

files”. In: Proceedings of the Estonian Academy of Sciences 62.1 (2013), pp. 71–

80.

[95] Adam Trendowicz and Jürgen Münch. “Chapter 6: Factors Influencing Software De-

velopment Productivity – State-of-the-Art and Industrial Experiences”. In: Social

networking and the web. Vol. 77. Advances in Computers. Elsevier, 2009, pp. 185–

241. doi: http://dx.doi.org/10.1016/S0065-2458(09)01206-6.

[96] Edward R. Tufte. The visual display of quantitative information. Graphics Press,

2001, p. 197. isbn: 1930824130.

[97] Edward R. Tufte and Graphics Press. Envisioning information, p. 126.

http://dl.acm.org/citation.cfm?id=645512.657265
http://dl.acm.org/citation.cfm?id=645512.657265
http://www.inf.u-szeged.hu/~gtoth/research/mpp%5C_ICPC2011.pdf
http://www.inf.u-szeged.hu/~gtoth/research/mpp%5C_ICPC2011.pdf
https://doi.org/http://dx.doi.org/10.1016/S0065-2458(09)01206-6

Bibliography 141

[98] Craig Upson et al. “The application visualization system: A computational environ-

ment for scientific visualization”. In: Computer Graphics and Applications, IEEE

9.4 (1989), pp. 30–42.

[99] Bart Van Rompaey and Serge Demeyer. “Exploring the composition of unit test

suites”. In: Automated Software Engineering-Workshops, 2008. ASE Workshops

2008. 23rd IEEE/ACM International Conference on. IEEE. 2008, pp. 11–20.

[100] László Vidács et al. “Assessing the Test Suite of a Large Scale System based on

Code Coverage and Derived Metrics”. In: 1st International Workshop on Validating

Software Tests (VST’16) – accepted paper. Osaka, Japan, Mar. 2016, pp. 1–4.

[101] P. A. Vikhar. “Evolutionary algorithms: A critical review and its future prospects”.

In: 2016 International Conference on Global Trends in Signal Processing, Informa-

tion Computing and Communication (ICGTSPICC). Dec. 2016, pp. 261–265. doi:

10.1109/ICGTSPICC.2016.7955308.

[102] Silke Wagner and Dorothea Wagner. Comparing clusterings: an overview. Univer-

sität Karlsruhe, Fakultät für Informatik Karlsruhe, 2007.

[103] Stefan Wagner and Melanie Ruhe. A Systematic Review of Productivity Factors in

Software Development. Tech. rep. Technische Universität München, 2008.

[104] Lu Wang et al. “Construct Bug Knowledge Graph for Bug Resolution”. In: 2017

IEEE/ACM 39th International Conference on Software Engineering Companion

(ICSE-C). IEEE. 2017, pp. 189–191.

[105] Richard Wettel and Michele Lanza. “CodeCity”. In: Proceedings of WAS-DeTT

(2008), pp. 1–13.

[106] Richard Wettel and Michele Lanza. “CodeCity: 3D Visualization of Large-scale

Software”. In: Companion of the 30th International Conference on Software Engi-

neering. ICSE Companion ’08. Leipzig, Germany: ACM, 2008, pp. 921–922. isbn:

978-1-60558-079-1. doi: 10.1145/1370175.1370188. url: http://doi.acm.org/

10.1145/1370175.1370188.

[107] Kenny Wong. “Rigi user’s manual”. In: Department of Computer Science, Univer-

sity of Victoria (1998). url: http://www.rigi.cs.uvic.ca/downloads/pdf/

rigi-5%5C_4%5C_4-manual.pdf.

https://doi.org/10.1109/ICGTSPICC.2016.7955308
https://doi.org/10.1145/1370175.1370188
http://doi.acm.org/10.1145/1370175.1370188
http://doi.acm.org/10.1145/1370175.1370188
http://www.rigi.cs.uvic.ca/downloads/pdf/rigi-5%5C_4%5C_4-manual.pdf
http://www.rigi.cs.uvic.ca/downloads/pdf/rigi-5%5C_4%5C_4-manual.pdf

	Introduction
	Motivation
	Impact on Stakeholders' Daily Work
	Challenges

	Structure of the Dissertation

	Preliminaries
	Productivity Measurement and Prediction
	Measuring Productivity
	Impact Analysis
	Genetic and Evolutionary Algorithms

	Game-based Software Visualization
	Underlying Metaphors
	Phases of Visualization
	Extending Third-party Application
	Video Game Genre

	Clustering Test and Code Elements
	Best practices of unit test writing
	Code Coverage
	Traceability recovery in unit tests
	Clustering and Classification

	Measuring Productivity
	Defining Weighted Modification-based Productivity Measure
	Modification Effort Prediction
	Measuring Developer Productivity with Modification Effort
	Determining the Weights
	Evaluation

	Estimation and Reduction of Superfluous Effort
	Subject System
	Measured Development Phases
	Productivity Measurement Process
	Applying Micro-Productivity Profile
	Evaluation

	Comparison of Software Quality in the Work of Children and Professional Developers
	Original and reduced quality model
	Development environment
	Implemented classroom exercises
	Evaluation

	Contributions
	Defining Weighted Modification-based Productivity Measure
	Estimation and Reduction of Superfluous Effort
	Comparison of Software Quality in the Work of Children and Professional Developers

	Advantages and Disadvantages of These Methods
	Internal Validity
	External Validity

	Software Visualization
	Enhancing the City Metaphor with Game-based Visualization
	The Embodiment of Visualization's Phases in CodeMetropolis
	Integration of Eclipse IDE and CodeMetropolis

	Assessing Degree of Realism for the City Metaphor in Software Visualization
	Low-Level Metrics of Virtual Cities
	Construction of a High-Level Metric

	Test Visualization with CodeMetropolis
	Measuring test-related metrics
	Test Visualization in CodeMetropolis
	Side by side visualization of code and tests

	Application
	Scenarios of Practical Usage
	Demo Scenarios

	Contributions
	Advantages and Disadvantages of These Methods
	Internal Validity
	External Validity

	Analyzing Test and Package Hierarchy
	Simultaneous Clustering of Test Cases and Methods
	Package Hierarchy Based Clustering
	Test-Code Coverage Based Clustering

	Similarity Pattern Detection
	Comparison of Static and Dynamic Clusterings
	Classification of Structural Test Smells
	Clustering of Test-Code Traceability Discrepancies
	Interpretation of cNDD Curves for Clusters Comparison

	Contributions
	Advantages and Disadvantages of These Methods
	Internal Validity
	External Validity

	Conclusion
	Further Works

	Publications
	Measuring Productivity
	Providing immersive methods for software and unit test visualization
	Spotting the structures in the package hierarchy that required attention using test coverage data

	Measuring Productivity
	General Notions and Definitions
	Formal Definition of Modification Effort and Typed Modification
	Determining the Weights of Modification Groups
	Formal Definitions of Division based Micro-Productivity Profile
	mppds of Analyzed Project

	Software Visualization
	CodeMetropolis Technical Details
	Metrics for Generated Cities
	Low-level Metrics

	Analyzing Test and Package Hierarchy
	Formal definitions of methodology for unified graph's discrepancy analysis
	Domain Independent Similarity Functions

	Node Similarity Graph
	Neighbor Degree Distribution
	Discrete Neighbor Degree Distribution
	Continuous Neighbor Degree Distribution

	Summary in English
	Summary of the Topics
	Measuring, Predicting, and Comparing Productivity of Developer Teams
	Providing Immersive Methods for Software and (Unit) Test Visualization
	Using Test Coverage to Analyze Structures in the Package Hierarchy

	Future Work

	Magyar nyelvu összefoglaló
	Témák összefoglalása
	A szoftverfejlesztoi csapatok produktivitásának mérése és elorejelzése
	Izgalmas és magával ragadó szoftver és (egység) teszt vizualizációs technikák biztosítása
	Teszt lefedettség használata a csomaghierarchia szerkezetének vizsgálata során

	Jövobeli tervek

	Bibliography

