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Abstract

Robot programming by demonstration (RPD) covers methods by which a
robot learns new skills through human guidance. We present an interactive,
multimodal RPD framework using active teaching methods that places the
human teacher in the robot’s learning loop. Two experiments are presented
in which observational learning is first used to demonstrate a manipulation
skill to a HOAP-3 humanoid robot by using motion sensors attached to the
teacher’s body. Then, putting the robot through the motion, the teacher in-
crementally refines the robot’s skill by moving its arms manually, providing
the appropriate scaffolds to reproduce the action. An incremental teaching
scenario is proposed based on insights from various fields addressing devel-
opmental, psychological, and social issues related to teaching mechanisms
in humans. Based on this analysis, different benchmarks are suggested to
evaluate the setup further.

In a robot programming by demonstration (RPD) framework, a robot learns new
skills through the help of a human instructor (Billard & Siegwart, 2004). Traditionally,
RPD tends to consider the human user as an expert model who performs a task while the
robot observes passively the demonstration (Ikeuchi & Suchiro, 1992; Kuniyoshi, Inaba, &
Inoue, 1994). However, in humans, teaching is a social and bidirectional process in which
teacher and learner are both active. Instead of considering the teacher solely as a model
of successful expert behavior, recent work has referred to the teacher-learner couple as a
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Figure 1. Different modalities are used to convey the demonstrations and scaffolds required by the
robot to learn a skill. The user first demonstrates the whole movement using motion sensors (left)
and then helps the robot refine its skill by kinesthetic teaching (right), that is, by embodying the
robot and putting it through the motion.

team that engages in joint problem solving (Breazeal et al., 2004) and uses active teaching
methods to put the human teacher “in the loop” of the robot’s learning (Dautenhahn, 1998).

In previous work, we developed a probabilistic framework for extracting the relevant
components of a task by observing multiple demonstrations of it (Calinon, Guenter, & Bil-
lard, 2007). The system is based on a probabilistic encoding of several demonstrations
provided to the robot to generalize the learned skills to different contexts using a Gaussian
mixture model (GMM). From these experiments, we noticed the importance of adding so-
cial components to the teaching paradigm, not only in the user interface but also in the
teaching process (Calinon & Billard, 2007). In contrast to the traditional RPD approach,
we thus adopted the perspective that the transfer of skills can draw advantages of several
psychological factors that the user might encounter during teaching. Thus, the teacher is
no longer considered solely a model of expert behavior but becomes an active participant in
the learning process (Yoshikawa, Shinozawa, Ishiguro, Hagita, & Miyamoto, 2006). First,
we suggest using different modalities to produce the demonstrations (Figure 1). We then
suggest following an incremental learning approach to allow the teacher to gradually see
the results of the demonstrations.

Related work

Extraction of constraints in robot programming by demonstration

A single demonstration is usually not enough to extract a task’s particulars and goals.
Compared to batch learning, the benefit of an incremental (Pardowitz, Zoellner, Knoop,
& Dillmann, 2006; Saunders, Nehaniv, & Dautenhahn, 2006; Breazeal et al., 2004) or a
dynamical learning approach (Ito, Noda, Hoshino, & Tani, 2006; Vijayakumar, D’souza, &
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Schaal, 2005) is that the interaction can be performed online, which allows us to observe
the results immediately. Different approaches based on multiple observations have been
proposed to extract the constraints of a task at a symbolic level (Breazeal et al., 2004;
Pardowitz et al., 2006; Steil, Röthling, Haschke, & Ritter, 2004; Nicolescu & Mataric,
2003). In Nicolescu and Mataric (2003), a graph-based approach is used to generalize a
high-level skill across multiple demonstrations, where generalization takes place at the level
of the topological representation of the graph. The advantage of this approach is that
high-level tasks consisting of sequences of symbolic cues can be learned efficiently through
an interactive process. However, because of its symbolic nature, the method relies on the
predetermination of the observed cues and on the efficiency of the segmentation process.
Our approach uses a similar paradigm and is complementary with the aim of generalizing
a skill represented at a trajectory level. The proposed system provides a generic model-
based approach in which the generalization and extraction of constraints is performed at a
trajectory level through regression.

Scaffolding issues in robot programming by demonstration

Kinesthetic teaching provides a way of supporting the robot in its reproduction of
the task (Figure 1). By using scaffolds, the user provides support to the robot by manually
articulating a decreasing subset of motors. The scaffolds progressively fade away and the
user finally lets the robot perform the task on its own, allowing the robot to experience
the skill independently. By taking inspiration from the human tutelage paradigm, Breazeal
et al. (2004) showed that a socially guided approach could improve both the human-robot
interaction and the machine learning process by taking into account human benevolence.
In their work, they highlight the role of the teacher in organizing the skill into manageable
steps and maintaining an accurate mental model of the learner’s understanding. However,
the tasks considered are mainly built on discrete events organized hierarchically. Our work
shares similarities with theirs in terms of the tutelage paradigm, but we focus on learn-
ing continuous motion trajectories and actions on objects at a trajectory level instead of
considering discrete events.

Saunders et al. (2006) provided experiments where a wheeled robot is teleoperated
through a screen interface to simulate a molding process, that is, by letting the robot expe-
rience sensory information when exploring its environment through the teacher’s support.
Their model uses a memory-based approach in which the user provides labels for the dif-
ferent components of the task to teach hierarchically high-level behaviors. Our work shares
similar ideas, but follows a model-based approach. The drawback of using teleoperation is
avoided by letting the user directly move the robot’s arms while the robot records sensory
information through its motors encoders.

Therefore, the teacher uses scaffolding to let the robot gradually generalize the skill
for an increasing range of contexts. Knowing that, it may be important to reproduce the
acquired skill after each demonstration to help the teacher prepare the following demon-
stration according to the outcome. This shares similarities with the human process of
refining the understanding of a task through practice and corrective feedback, by combin-
ing incrementally new information with previous understanding. It thus suggests the use of
incremental learning approaches when teaching humanoid robots, allowing them to extend,
refine and elaborate their understanding of the skill.
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Figure 2. Information flow across the complete system.

Regression issues in robot programming by demonstration

By considering a trajectory as a set of positions ξ observed at time t, the regression
problem consists of computing a smooth estimation of p(ξ|t). Among the various regression
techniques proposed in statistics, locally weighted regression (LWR) has proved appealing for
robot control (Atkeson, Moore, & Schaal, 1997) by combining the simplicity of linear least-
squares regression and the flexibility of nonlinear regression. As LWR is a memory-based
approach, computation also became limited to the memory capacity of the robot when faced
with large training sets. To prevent this limitation, further work mainly concentrated on
shifting the memory-based approach to a model-based approach and on shifting the batch
learning process to an incremental learning strategy (Schaal & Atkeson, 1998; Vijayakumar
et al., 2005). Our approach follows a similar trend by using a Gaussian mixture model to
represent the joint distribution of data {t, ξ}, and Gaussian mixture regression (GMR) to
estimate p(ξ|t). This allows the system to deal with encoding, recognition and reproduction
issues in a single framework and to use the expectation-maximization (EM) algorithm to
train the model.

Experimental setup

System overview

In Calinon et al. (2007), we presented an approach based on principal component
analysis (PCA) and a Gaussian mixture model (GMM) to build a probabilistic representa-
tion of the movement. As training was performed in batch mode, refinement of the model
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was not possible without using historical data. To remedy this we recently proposed the use
of an incremental learning algorithm to train our model (Calinon & Billard, 2007). Figure
2 presents the principles of the system. The robot builds a model of the task constraints
by observing the user demonstrating the manipulation skill using different initial positions
of the objects. After each demonstration, the robot reproduces a generalized version of the
task by probabilistically combining the various extracted constraints. Watching the robot
reproducing the task after each demonstration helps the teacher evaluate the reproduction
and generalization capabilities of the robot. The teacher can thus detect the portions of
the task that require refinements or that have not been correctly understood by the robot,
helping the teacher prepare further demonstrations. The model is refined incrementally
after each demonstration, and the user decides to stop the interaction when the robot has
correctly learned the skill.

By extracting the variations and correlations through GMR, we detect at each time
step along the trajectory what the relevant variables composing the task are and how
the different variables are correlated. For some tasks, relevant and irrelevant variables
are clearly separated (Alissandrakis, Nehaniv, Dautenhahn, & Saunders, 2005), defined a
priori, or are constant throughout the task. Here, we consider the most general case where
different levels of constraints are allowed, which can freely change during the skill. We
believe that representing the task constraints in a binary manner (relevant versus irrelevant
features) is not appropriate for continuous movements. Indeed, some goals require different
precisions, that is, they can be described with different degrees of invariance. For example,
the movement used to drop a piece of sugar in a tiny cup of coffee is more constrained than
the movement to drop a bouillon cube in a large pan.

Hardware

The experiments are conducted using a Fujitsu HOAP-3 humanoid robot with 28
degrees of freedom (DOFs), of which only the 16 DOFs of the upper torso are required in
the experiments. Two webcams in its head are used to track objects in 3D Cartesian space
based on color information. The objects to track are predefined in a calibration phase.
Alternatively, the initial positions of the objects can also be recorded by a molding process
where the teacher grabs the robot’s arm, moves it toward the object and puts the robot’s
palm around the object. When the object touches its palm, the robot feels the object by
using a force sensor. It then briefly grasps and releases the object while registering its
position in 3D Cartesian space.

Two different modalities are used to convey the demonstrations (Figure 1). First we
use motion sensors attached to different body parts of the user. The user’s movements
are recorded by 8 X-Sens motion sensors attached to the torso, upper-arms, lower-arms,
hands (at the level of the fingers) and back of the head. Each sensor provides the 3D
absolute orientation of each segment by integrating the 3D rate-of-turn, acceleration and
earth-magnetic field at a rate of 50 Hz and with a precision of 1.5 degrees. For each joint,
a rotation matrix is defined as the orientation of a distal limb segment expressed in the
frame of reference of its proximal limb segment. The kinematics motion of each joint is
then computed by decomposing the rotation matrix into joint angles.

We then use the motor encoders of the robot to record information while the teacher
moves the robot’s arms. The teacher selects what motors to control manually by slightly
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moving the corresponding motors just a few milliseconds before the reproduction starts.
The selected motors are set to passive mode, which allows the user to move freely the
corresponding degrees of freedom while the robot executes the task. In this way, the teacher
can provide partial demonstrations while the kinematics of each joint motion are recorded
at a rate of 1000 Hz. The trajectories are resampled to a fixed number of points T = 100.
The robot is provided with motor encoders for every DOF, except for the hands and the
head actuators.

Probabilistic model

To extract constraints from a set of trajectories {t, ξ} consisting of temporal and
spatial values, we model the joint probability p(t, ξ) with a mixture of Gaussian distri-
butions, trained incrementally by expectation maximization. A generalized version of the
trajectories can then be computed by estimating E[p(ξ|t)], where E[·] represents the ex-
pectation. The constraints are extracted by estimating E[cov (p(ξ|t))], where cov(·) repre-
sents the covariance. If multiple constraints are considered (e.g., considering actions ξ(1)

and ξ(2) on two different objects), the resulting constraint is computed by first estimating
p(ξ|t) = p(ξ(1)|t) · p(ξ(2)|t) and then using E[p(ξ|t)] to reproduce the skill. For a complete
description of the algorithms, the interested reader is referred to Calinon et al. (2007) for
a detailed description of the extraction of constraints and to Calinon and Billard (2007) for
the incremental learning process.

Through the use of Gaussian mixture regression, trajectory constraints take the form
of smooth generalized trajectories with associated covariance matrices describing the vari-
ations and correlations across the different variables. Trajectory constraints are defined for
each object considered in the scenario, which allows the system to model simultaneously
gestures and actions on objects. This probabilistic representation of the trajectory con-
straints is then used to reproduce the task in new conditions, that is, with new positions
of objects that have not been used to demonstrate the skill. Thus, extracting not only a
generalized movement from the demonstrations, but also variability and correlation infor-
mation, allows the robot to use its experience in changing environmental conditions. Using
GMM, this can be setup in an adaptive way without drastically increasing the complexity
of the system when new experiences are provided. Thus, the model does not use historical
data and is flexible enough to adapt to new demonstrations (Calinon & Billard, 2007).

Experiments

We present two experiments to show that different data representations can be used
to model the skill. For the first experiment, the robot collects the joint angle trajectories of
the two arms. The aim of this first experiment is threefold: (1) To show that the method
is generic (the joint angles are the lowest-level data that the robot can collect); (2) to show
that the system can deal with bimanual coordination by learning the correlations across
the joint angles; and (3) to show that the system can efficiently encode high-dimensional
data by projecting them in a latent space of motion. For the second experiment, the robot
also collects the joint angle trajectories of the right arm, but this time a direct kinematics
algorithm is used to convert the joint angles into a 3D Cartesian path for the right hand.
Then, the Cartesian path is computed relative to each object. By doing so, a smaller
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Figure 3. Illustration of the use of motion sensors to acquire gestures from a human model. A
simulation of the robot is projected behind the user to show how the robot collects the joint angles
during the process. The gesture is similar to the one used in Experiment 1, except that the user
does not face the robot and only mimics the grasping of the object.

number of demonstrations is required to learn the task. Indeed, for a task involving the
manipulation of objects, the position of the hand relative to the objects in the environment
is usually highly relevant. The aim of this second experiment is threefold: (1) To show that
adding prior knowledge to the representation of the variables has the advantage of speeding
up learning (i.e., the system does not need to learn by itself the direct kinematics of the
arm); (2) to show that this representation allows the system to learn manipulation skills
using multiple objects; and (3) to show that the learned skill can be generalized to various
initial positions of objects.

Experiment 1: Learning bimanual coordination gesture

This experiment shows how a bimanual skill can be taught incrementally to the robot
in joint angle space using observation and scaffolding. The task consists of grasping and
moving a large foam die (Figures 1 and 3). Starting from a rest posture, the left arm is
moved first to touch the left side of the die, with the head following the motion of the
hand. Then a symmetrical gesture is performed with the right arm. When both hands
grasp the object, it is lifted and pulled back on its base, with the robot’s head turned
toward the object (Figure 3). The teacher wearing the motion sensors performs the first
demonstration of the complete task. This allows the user to demonstrate the full gesture
by controlling simultaneously 16 joint angles. These joint angles are then projected into
a subspace of lower dimensionality using PCA. After observation, the robot reproduces
a first generalized version of the motion. This motion is then refined by kinesthetically
helping the robot perform the gesture, that is, by physically moving its limbs during the
reproduction attempt. The gesture is refined partially by guiding the desired DOFs while
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1st reproduction attempt 3rd reproduction attempt 6th reproduction attempt

Figure 4. Reproduction of the task after the 1st, 3rd and 6th demonstration. In the first attempt,
the robot hits the die when approaching it. In the third attempt, the robot’s skill gets better but
the grasp is still unstable. In the sixth attempt, the die is correctly grasped. The trajectories of the
hands are plotted in the first row, and corresponding snapshots of the reproduction attempts are
represented in the second row.

the robot controls the remaining DOFs. By using this method, the teacher can only move
a limited subset of DOFs by using his or her two arms. It means that the user can move
the two shoulders and the two elbows of the robot simultaneously, but the remaining DOFs
(head, wrists and hands) are controlled by the robot. The user first selects the DOFs to
be control by moving the corresponding joints. The robot detects the motion and sets the
corresponding DOFs to passive mode. Then, the robot reproduces the movement while
recording the movement of the limbs controlled by the user.

Results of the experiment are presented in Figures 4 and 5. We see that the resulting
paths of the hands are similar to the ones demonstrated by the user (Figure 3), even if
training is performed in a subspace of motion where joint angle trajectories have been
projected. The system finds five principal components and five Gaussian components to
efficiently represent the trajectories in this latent space. After the first demonstration of
the movement while wearing motion sensors, the robot can only reproduce a smoothed
version of the joint angles produced by the user. Because the user’s and robot’s bodies
differ (the robot is smaller than the user, but the size of the die does not change), the robot
approaches the die with its hands too close to grasp it. When trying to reproduce the skill,
the robot hits the die by moving its left hand first, making the die fall before moving its right
hand. Observing this, the teacher progressively refines the model by providing appropriate
scaffolds, that is, by controlling the shoulders and the elbows of the robot while reproducing
the skill so that it may grasp the die correctly. In the third reproduction attempt, the robot
lifts the die awkwardly. In the sixth attempt, the robot skillfully reproduces the task by
itself (Figure 5). Therefore, the user decides to stop the teaching process.
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Figure 5. Snapshots of the sixth reproduction attempt.

Experiment 2: Learning the affordances and effectivities of objects

This experiment shows how the system can learn incrementally manipulation skills
in 3D Cartesian space. Through the teacher’s support, the robot extracts and combines
constraints related to different objects in the environment. The aim of the task is to grasp a
red cylinder with the right hand and place it on a yellow cube (Figure 6). The robot learns
simultaneously the affordances of the two objects (i.e., the red cylinder can be stacked on
the yellow cube) and the associated effectivities (i.e., how the robot should use its body to
grasp and bring the cylinder on top of the cube without hitting any object). The specific
constraints related to the two objects are extracted by varying the demonstrations provided
to the robot, that is, by starting with different initial positions of the objects. Thus, the
efficiency of the reproduction mainly relies on the ability of the teacher to provide appro-
priate scaffolds when demonstrating the task by using sufficient and appropriate variability
across the demonstrations. By doing so, the system is able to generalize and reproduce
the skill in new situations that have not been used to demonstrate the task. After each
demonstration, the robot tries to reproduce the skill in two different situations. This helps
the teacher evaluate how well the robot can generalize in new situations.

The system simultaneously learns the 3D Cartesian trajectories relative to the differ-
ent objects in the environment and the actions used to move these objects. As the robot’s
arm is kinematically redundant, we define a posture by the position of the right hand in a
3D Cartesian space and by an additional angular parameter α defining the elevation of the
elbow (angle formed by the elbow and an horizontal plane). For each demonstration, the
hand path and a trajectory of angle α fully describe the gesture. A generalized version of
the hand paths and of the α trajectories are then used to compute (by geometrical inverse
kinematics) the joint angle trajectories required to control the robot. The advantage of this
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Figure 6. Reproduction of actions on objects. The purpose of the task is to grasp the red cylinder
and to bring it on top of the yellow cube. The first snapshot shows the 3D Cartesian frame of
reference used in the experiment.

method over other inverse kinematics algorithm is that a constraint based on the obser-
vation of the user performing the skill is used as an optimization factor, which produces
movements that look natural.

There are n = 6 demonstrations of the task where each trajectory is rescaled to
T = 100 time steps. (After six demonstrations, the user estimated that the robot understood
the task correctly.) The total number of observations is thus given by N = n × T . For
each demonstration i ∈ {1, . . . , n}, the collected data consists of the initial positions of the
M objects {o(h)

i }M
h=1 and of the set of variables {xi,j , αi,j}T

j=1 corresponding to the absolute
right hand paths and to the evolution of the parametric angle α. After each demonstration,
the trajectories of the right hand relative to the M different objects are computed

x
(h)
i,j = xi,j − o

(h)
i

∀h ∈ {1, . . . , M}
∀i ∈ {1, . . . , n}
∀j ∈ {1, . . . , T}.

The constraints of the task are extracted from the training set {x(1), . . . , x(M), α} to
which encoding and generalization are applied separately. By using two objects, a general-
ized version of the trajectories is thus given by {x̂(1), x̂(2), α̂} and the associated covariance
matrices {Σ̂(1), Σ̂(2), Σ̂α}.

Results for encoding, generalization and extraction of constraints are presented in
Figure 7 (Figure 6 for the x1, x2, x3 directions). For the first object, we see that the
trajectory x̂(1) is highly constrained when grasping the object between time steps 20 and
40 (a tight envelope representing the constraints around the generalized trajectory). The
constraints are tighter for the first two variables x̂

(1)
1 and x̂

(1)
2 , defining the movement with

respect to the surface of the table. This is consistent with the shape of the object to grasp
(a cylinder placed vertically on the table). Indeed, the form and orientation of the object
enable it to be grasped with more variability on the third axis x3, defining the vertical
movement. When observing the constraints associated with x̂

(1)
3 , we also see that between

time steps 40 and 70, the generalized trajectories of the hand holding the object follows
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Figure 7. Generalization and extraction of the constraints for the Cartesian trajectories relative
to the two objects, after six demonstrations of the skill. For each object, we have Left: The
six demonstrations observed consecutively; Middle: The Gaussian mixture model (GMM) of four
components used to incrementally build the model; and Right: A representation of the generalized
trajectories and associated constraints extracted by Gaussian mixture regression (GMR).
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Figure 8. Reproduction of the task after the first, third, and sixth demonstrations for two new
initial positions of the objects. A solid line represents the hand path with a point marking the
starting position. A cross and a plus sign represent the cylinder and the cube, respectively.
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a bell-shaped path, which is consistent with the demonstrations provided. For the second
object, we see that the trajectory x̂(2) is highly constrained at the end of the task, when
placing the cylinder on top of the cube.

The reproduction of the task in two new situations are presented in Figure 8. After
the first demonstration, the system is not able to generalize the skill (a similar motion is
used for the two reproduction conditions). After the third demonstration, the constraints
are already roughly extracted. We see that the robot correctly grasps the cylinder, but still
has some difficulty in placing it on the cube. By watching the robot reproduce the skill
in the two different situations, the teacher detects at the third reproduction attempt that
the second part of the task is not fully understood. The teacher then provides appropriate
scaffolds by kinesthetically demonstrating the task with an increased variability in the
initial positions of the cube. Thus, the constraint of placing the object on top of the cube
becomes more salient, and at the sixth attempt, the different constraints are finally fulfilled
for the different reproduction conditions; namely, grabbing the cylinder, moving it with an
appropriate bell-shaped movement, and placing it on top of the cube.

Toward evaluation of the proposed imitation scenario

The two teaching scenarios presented in the previous section have been inspired by
one of the key experiments developed in the Cogniron project. This European project aims
at the development of a cognitive robot companion for use in a domestic environment. One
study in this project is the human perspective of how robots could be useful in domestic
environments; in particular the roles, tasks, and social behavior that will be necessary for
robots to integrate into normal domestic situations. The last phase of the project consists
in evaluating the performance of the different human-robot interaction (HRI) setups devel-
oped by the different partners involved in the project through the use of key experiments.1

The evaluation is performed at different levels: (1) Through technical evaluation of the
algorithms; and (2) through user evaluation studies. Following this idea, user experience
studies have already been proposed within the consortium (Woods, Walters, Koay, & Daut-
enhahn, 2006; Alissandrakis, Nehaniv, Dautenhahn, & Saunders, 2006). The principal aim
of these studies is to bridge the gap between insights from the user’s perspective and the
actual development of algorithms that allow the robot to learn in the context of HRI.

To evaluate an imitation attempt, a metric of imitation performance can be techni-
cally defined, but is not used in the same way as a metric comparing, for example, a visual
tracking system. Indeed, using a probabilistic framework, it is straightforward to evaluate
quantitatively the efficiency of the system in terms of encoding, recognition and generaliza-
tion performance, for a particular dataset. Indeed, the probabilistic GMM representation
can be used to recognize new gestures as well as to evaluate a reproduction attempt. A
metric of imitation is then defined by estimating the likelihood that an observed trajectory
could have been generated by the model, that is, by computing the log-likelihood of a model

1The duration of the project is four years, with the remaining year devoted essentially to the technical
evaluation of the developed setups and to the planning of user studies evaluating the acceptability of the
developed setups.
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when testing a set of N data points ξj

L =
N∑

j=1

log (p(ξj)) ,

where p(ξj) is the probability that the model generates ξj .
This metric can be used easily to determine the imitation and generalization perfor-

mance of the model with respect to a specific dataset ξ. However, it is trickier to measure
the pedagogical quality of the data provided. This issue led us to the design of a teaching
scenario mimicking the human process of teaching. As the different components of the
scenario are tightly intertwined, it is not straightforward to measure separately the advan-
tage of each component composing the complete system. Indeed, teaching involves multiple
perceptual modalities that cannot be clearly separated. Thus, we think that the evalua-
tion should not focus on trying to isolate each components of the system but rather check
whether the combination of these components is satisfying for the end-user and whether it
is computationally advantageous in terms of learning.

To design efficient teaching systems and appropriate benchmarks, we highlight the
importance of taking psychological and social factors into consideration. Even if the learning
efficiency can be measured quantitatively (i.e., measuring how well the system reproduces
the skill and generalizes it with respect to a specific dataset), this evaluation is not sufficient,
because the quality of the dataset also depends on the teaching abilities of the user. It is
thus important to consider the skill transfer process at the user level, by checking whether
the complete HRI setup makes efficient use of the teaching abilities of the user.

We first present several insights that guided us to the design of the current setup, from
various fields of research covering psychology, pedagogy, developmental sciences, sociology
and sports science. For further evaluation of the setup, we then suggest to group these
social and psychological factors into three benchmarks to evaluate the skill transfer from a
user’s perspective.

Insights from psychology

Considering the robot as a peer learner and watching the evolution of its understand-
ing of the skill are important psychological factors for a successful interaction. By drawing
parallels with a caregiver-child interaction (and the associated human social aptitude at
transmitting culture), we see that by watching the evolution and the outcomes of teach-
ing, the teacher can feel psychologically more implicated in the teaching teamwork. In
psychology, benchmarks such as autonomy, moral accountability and reciprocity have been
proposed to evaluate HRI setups (Kahn, Ishiguro, Friedman, & Kanda, 2006). For teach-
ing applications, the robot’s capacity to generalize over different contexts depends on the
number of demonstrations provided to the robot, but more importantly on the pedagogical
quality of these demonstrations (gradual variability of the situations and exaggerations of
the key features to reproduce). To succeed, it is therefore crucial that the teacher feels
implicated in the teamwork. A possible benchmark to measure such success would be to
test whether the teacher understands his or her role in the interaction and whether he or
she naturally becomes a good teacher for the robot by making use of humanlike teaching
skills.
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Indeed, an essential feature of human beings is our natural ability and desire to
transmit skills to the next generation. This transfer problem is complex and involves a
combination of social mechanisms such as speech, gestures, imitation, observational learn-
ing, instructional scaffolding, as well as physical interaction such as molding or kinesthetic
teaching (Salter, Dautenhahn, & Boekhorst, 2006). The humanoid shape of the robot and
the humanlike properties of the teaching system aim at helping the teacher consider the
robot as a peer. As noted by MacDorman and Cowley (2006), a humanoid robot is the
best equipped platform for reciprocal relationships with a human being. When considering
a robot conforming to humanlike appearance and learning behaviors, a psychological factor
related to altruism and reciprocity naturally appears. This may be particulary important
when considering teaching interactions. Creating a humanlike teaching scenario could re-
inforce the user’s feeling that his or her role is to pass on knowledge to the robot, just as
another human might help him or her out in a similar situation. In other words, the user
would act as he or she would like to be treated.

The active teaching process probably evokes some of the feelings normally attributed
to a caregiver-child dyad, in which the robot would elicit a certain form of attention. It would
thus be important to consider benchmarks that look at whether the teacher feels humanly
involved in the interaction, and check whether he or she is pushed by a desire to see the
robot student progress. Indeed, watching the robot progress through the user’s support
may be psychologically relevant in HRI setups. This could be checked by discerning when
the user may actually feel enjoyment during the scenario. The aim would be to discover
whether the user feels enjoyment during the whole training process or only at the final
reproduction phase, and to find out whether this feeling is related to the robot’s progress.
Indeed, watching the increased understanding of the skill by progressively lowering the
scaffolds may be an important psychological factor for the teacher. By defining benchmarks
in imitation, it would thus be useful to determine whether the teaching interaction can be
related to the natural moral disposition of caregivers to teach children, and whether the
user feels self-esteem when teaching the less-knowledgeable robot.

As shown by Lee, Hope, and Witts (2006), behavioral synchronization is also a power-
ful communicative experience, which suggests the use of a relational closeness benchmark in
HRI. Through their experiments, the authors show that in human dyadic interactions, close
relationship partners are more engaged in joint attention to objects in the environments and
to their respective body parts than strangers. Moreover, they are more engaged in discov-
ering and showing activities, sharing experience and exploring the environment together.
Indeed, by contrasting a humanoid robot learning system with a computer language inter-
preting commands executed by a programmer, we see that both processes involve a transfer
of information to the machine by incrementally watching the outcome of the transfer to help
the user refine his or her teaching strategy. However, in the computer language situation,
the machine considered is more of a tool to process the user’s strategy rather than a peer
learner what the user might wish to instruct.

In robotics, Thomaz, Berlin, and Breazeal (2005) presented HRI experiments in which
the user can guide the robot’s understanding of the objects in its environment. The inter-
action creates a form of closeness where the user explores together with the robot its envi-
ronment. Toward this view, it would be important to check whether a kinesthetic teaching
approach also provides such a close relationship with the robot by physically guiding the
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robot’s arms to let it collect kinesthetic experiences. This could be performed by comparing
an unsocial process of data acquisition (e.g., acquisition through motion sensors without
facing the robot) with a social process of data acquisition such as kinesthetic teaching.

Insights from pedagogy

Gergely and Csibra (2005) contrasted observational learning to pedagogy. The au-
thors noted that although such animals as chimpanzees can use tools to achieve a goal, they
tend to discard the tools after using them. Humans however have developed the ability to
recursively use tools (use of a tool to create another tool), attaching functions to objects
that do not directly involve outcomes. This could have led to the development of peda-
gogical skills as powerful social learning mechanisms to enable the transmission of not just
observable behaviors but also unobservable knowledge. Unlike observational learning, ped-
agogy requires an active participation of the teacher which is achieved by a special type of
communication that aims at manifesting the relevant knowledge of a skill. The teacher does
not simply use his or her knowledge but engages in an activity that benefits the learner. To
highlight which features of a skill are relevant, the teacher must first recognize the features
by analyzing his or her knowledge relative to the knowledge of the learner. Indeed, one
does not need to be aware of knowledge content to generate an appropriate behavior (e.g.,
riding a bike may appear easy for a person, even when describing and teaching the skill to
another person is not obvious).

Insights from developmental sciences

Zukow-Goldring (2004) presented experiments in developmental psychology to under-
stand the methods used by caregivers to assist infants as they gradually learn new skills by
engaging in new activities. By analyzing how a child learns manipulation and assembling
skills (using pop beads), the authors show that observation alone is not sufficient for the
child to learn a new activity. The caregiver first focuses the attention of the child to the
affordances of the objects (the possibility to assemble the two objects). Because of the lack
of information concerning the paths to follow to correctly assemble the objects, the child
first fails at reproducing the actions. The caregiver then shows what the child’s body should
do to assemble the objects with the required orientations and paths to follow, demonstrat-
ing the effectivities required to assemble the objects. The caregiver assists the child by
partially demonstrating the action and lets the child resolve progressively the skill by her-
self. Thus, the caregiver’s gestures gradually provide perceptual information that guide the
infant to perform the skill. The task is first simplified and the child is then progressively
put in various situations to experience and generalize the skill. Embodying and putting the
child through the motions draws her attention to the coordination of affordances of the two
objects and effectivities of the body required to connect the two objects. Thus, teaching
is structured to let the child gather information on the characteristics of the objects and
actions specific to each of them.

By providing bodily experience, the caregiver provides the infant the opportunity to
see and feel the solutions to the correspondence problem (i.e., detecting the match between
self and other). Similarly to the teaching process presented in these developmental psychol-
ogy experiments, our proposed human-robot teaching scenario starts with the robot first
observing the task performed by the user (through motion sensors). The robot learner then
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begins to reproduce the task through the teacher’s assistance, gradually performing parts of
the task independently (by selecting the motors to control manually, embodying the robot
and putting it through the motion). In our experiment, the affordances and effectivities
respectively refer to the correct way of assembling the objects and the correct movements
that the robot’s body must adopt to manipulate the objects appropriately.

Rohlfing, Fritsch, Wrede, and Jungmann (2006) also highlighted the importance of
having multimodal cues to reduce the complexity of human-robot skill transfer. In their
work, they consider multimodal information as an essential element to structure the demon-
strated tasks. Through experiments, the authors show that humans transfer their knowledge
in a social interaction by recognizing what current knowledge the learner lacks. They are
thus sensitive to the cognitive abilities of their interaction partner. The authors then sug-
gest taking insights from these studies to reduce the learning complexity of current RPD
frameworks; thus, sharing human adaptability with the less knowledgeable becomes a cen-
tral issue when designing social robots. Therefore, they hypothesize that a human teacher
can also adapt naturally to a robot equipped with specific abilities. We adopt a similar
strategy in our learning framework and show that the skill transfer process could benefit
from the user’s capacity to adapt his or her teaching strategies to the particular context.

Insights from sociology

Vygotsky (1978) introduced the zone of proximal development (ZPD) as a general
term to define the gap between what the learner already knows, namely, the learner’s zone
of current development (ZCD), and what the learner can acquire through the teacher’s
assistance (Wood & Wood, 1996). An efficient teaching strategy consists of exploring and
being familiar with the ZPD of the learner to evaluate what the learner is able to acquire
given his or her current ability. This general paradigm can also be applied to human-robot
interaction, where the role of the teacher is to ascertain the current ZCD of the robot learner
(by testing the robot’s current understanding of the skill), and where its ZPD lies (i.e., to
ascertain what can be achieved by the robot with assistance). Searching for what the robot
already knows can appear time-consuming, but it is also an important psychological factor
for the teacher. It helps the teacher feel involved in collaborative human-robot teamwork.

When designing a human-robot teaching scenario, it is thus important to allow the
teacher to acquire the robot’s ZPD through interaction to provide individualized support
to the robot. This is achieved by anticipating the problems that the robot might encounter,
providing the appropriate scaffolds and gradually dismantling these scaffolds as the learner
progresses (and eventually constructing further scaffolds for the next stage of learning).
Similar to molding behaviors, moving the robot kinesthetically in its own environment
provides a social way of feeling the robot’s capacities and limitations when interacting with
the environment.

Insights from sports science

To transfer a skill between two human partners, different ways of performing demon-
strations can be used depending on the motor skill that must be transferred. Several
methodologies have been investigated for skill acquisition in sports with the aim of provid-
ing advice to sport coaches on how to transfer a motor skill efficiently and how to measure
success depending on the capacities of individual athletes (Horn & Williams, 2004).
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Coaching is the learning support aimed at improving the performance of the learner to
carry out the task by providing directions and feedback; it is highly interactive and requires
that one continuously analyzes the learner performance. To do so, the coach needs to be
receptive to the learner’s current level of performance. Different modalities are traditionally
used by sport coaches to help the athletes acquire the skill (Horn & Williams, 2004), where
the visual observation of a skilled model completing the entire task provides a good basis for
movement production. This also applies to other types of skills, see, for example, training
by expert surgeons (Custers, Regehr, McCulloch, Peniston, & Reznick, 1999). Similarly, in
our system, the principal aim of observing the performance of an expert through motion
sensors is to provide a complete and temporally continuous demonstration of the skill.
By using motion sensors, the human expert can freely perform the task while the robot
observes the full-body motion. However, as noted by Hodges and Franks (2002), optimal
movement templates do not always generalize well across individuals. Thus, individually-
based templates may be more appropriate in refining and achieving consistency in a skill.
This supports the further use of kinesthetic learning to guide the robot’s arms physically
to let the robot experience the skill.

This body of work also states that multiple exposures provide the opportunity to
discern the structure of the modeled task. It allows the teacher to organize and verify what
the learner knows and to focus attention on problematic aspects in subsequent exposures.
This is achieved until a saturation point is reached, determined by the coach, at which
additional demonstrations of the task do not yield learning benefits. Similarly, after each
reproduction by the robot, the user decides whether the robot has correctly acquired the skill
or whether further refinement is required. Several factors affect the amount of additional
benefit that can be derived from multiple observations of a model. Among them is the
isomorphism of the various demonstrations. Indeed, repetition of identical demonstrations
may be of limited utility, whereas extremely diverse demonstrations may generate conflicts
or confusion. To encourage flexibility and adaptability, the coaches often manipulate task
properties (e.g., by using different situations) to provide appropriate variability depending
on the learner’s capacities. Similarly, in our teaching scenario, the user is instructed to
displace progressively the objects after each demonstration to provide variability in the
exposures of the skill.

Defining benchmarks for further evaluation

The insights presented above come from various fields of research but highlight the
importance of having a multimodal and incremental learning system to help the robot
experience various situations and refine its skill gradually. To plan the future evaluations
of our setup, we have organized the different psychological and social factors used to design
our teaching scenario into three different benchmarks.

The first benchmark considers the multimodal cues used to provide the demonstra-
tions. Its aim is to test the practical and psychological advantages of using different teaching
processes and associated modalities (observational learning through the help of motion sen-
sors; molding and scaffolding techniques through the use of kinesthetic teaching). We plan
to test this by teaching a task using both motion sensors and kinesthetic learning, and using
either one or the other method separately. We then suggest measuring the duration of the
teaching process to attain a certain degree of generalization.
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The second benchmark considers the relevance of the incremental process by con-
trasting it to a batch learning process. The generalization capabilities of the model can be
used to evaluate how the incremental process improves the user’s teaching skills. Then, to
evaluate how the reproductions helps the user assess the robot’s current understanding of
the skill, we plan to check if the user stops the experiment after a correct number of demon-
strations. Finally, to measure to what extent the user refines his or her demonstrations
according to the reproduction attempts, we plan to use a Wizard-of-Oz procedure. Before
the experiment, we could record a set of reproductions that do not fulfill some constraints
of the task. Then, by replacing the real reproduction attempts with these trajectories, we
could check whether the user refines his or her demonstrations accordingly.

The third benchmark proposes to check whether the user’s awareness of the robot’s
cognitive capabilities alters the transfer of skill. Indeed, if the user knows how the robot
combines the different demonstrations to learn the skill, he or she may change teaching
styles accordingly. Similarly, the user may teach differently if he or she knows the physical
capabilities of the robot in terms of manipulation, speed, degrees of freedom, or range of
motion. Indeed, in the previous experiments performed with our robot, we observed that
users were showing better teaching and pedagogical skills if they knew in advance what were
the hardware/body and the software/cognitive capabilities of the robot. We plan to set up
a more systematic evaluation by first checking whether the gestures used to teach the robot
are different from the gestures used to simply apply the skill. Then, we plan to assess the
minimum level of instruction required by a naive user to become a “good teacher.”

Conclusion

Throughout this work, we highlighted the importance of designing and evaluating
a RPD framework not only by considering the learning system itself but the interaction
scenario. We proposed an incremental and interactive RPD framework that we tested in
two experiments to teach manipulation skills to a humanoid robot. We emphasized the
active role of the user in the design and evaluation of the system, and showed the advan-
tages of putting the user in the loop of the robot’s learning. By considering several social
and psychological factors induced by teaching mechanisms, we finally suggested possible
benchmarks for the further evaluation of the current setup.
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