The Serotinous Cones of Lodgepole Pine

Behind the scales of a pine cone lie the seeds that promise future generations of pine trees. Even though the seeds are not housed within fruits as they are in angiosperms (i.e. flowering plants), the tough scales of pine cones help protect the developing seeds and keep them secure until the time comes for dispersal. In some species, scales open on their own as the cone matures, at which point winged seeds fall from the tree, taking flight towards their new homes. In other species, the scales must be pried open by an animal in order to free the seed. A third group of species have what are called serotinous cones, the scales of which are sealed shut with resin. High temperatures are required to soften the resin and expose the seeds.

Serotinous cones are a common trait of pine species located in regions where wildfire naturally and regularly occurs. One such species is lodgepole pine (Pinus contorta), which is found in abundance in forests across much of western North America. Lodgepole pine is a thin-barked tree species that burns easily and is often one of the first plants to recolonize after a stand-replacing wildfire. There are 3 or 4 subspecies of lodgepole pine. The one with the largest distribution and the one that most commonly exhibits serotinous cones is P. contorta subsp. latifolia, which occurs throughout the Rocky Mountains, north into the Yukon, and just west of the Cascade Range.

needles of lodgpole pine (Pinus contorta)

Lodgepole pine grows tall and straight, generally maxing out at around 80 feet tall. Its needles are about two and a half inches long, are borne in bundles of two, and tend to twist away from each other, which is one explanation for the specific epithet, contorta. Its cones are egg-shaped with asymmetrical bases, measuring less than two inches long with prickly tips at the ends of each scale. The seeds of lodgepole pine are tiny with little, papery wings that aid in dispersal. The cones can remain attached to the tree for 15-20 years (sometimes much longer), and the seeds remain viable for decades. In non-serotinous cones, the scales start opening on their own in early autumn. Serotinous cones require temperatures of 45-50°C (113-122°F), to release the resin bond between the scales. Some cones that happen to fall from the tree can open when exposed to particularly warm temperatures on the ground. Otherwise, it takes fire to free the seeds.

Serotinous cones aren’t a guarantee, and the percentage of trees with serotinous cones compared to those with non-serotinous cones varies widely across the range of lodgepole pine, both in space and in time. One reason for this is that trees with serotinous cones don’t develop them until they reach a certain age, generally around 20-30 years old, or perhaps as old as 50 or 60. The cones of young trees are all non-serotinous. But some trees never develop serotinous cones at all. Serotiny is a genetic trait, and there are various factors that either select for or against it. A number of factors are at play simultaneously over the life of a tree and across a population of trees, so it is difficult to determine exactly why the percentage of serotinous cones is so variable across the range of the species. What follows are a few potential explanations for this phenomenon.

closed cone of lodgepole pine (Pinus contorta)

As a fire-adapted, pioneer species, lodgepole pine has evolved to live in environments where fire is predictably common. Serotinous cones help ensure that a population won’t be wiped out when a massive wildfire comes through. After the fire has passed and the seeds are released, lodgepole pine can quickly repopulate the barren ground. As long as fire occurs within the lifespan of a population of similarly aged trees, it is advantageous for the majority of individuals to maintain their serotinous trait. If the population is located in an area that historically does not see much fire, serotinous cones may be a disadvantage and can have adverse effects on the longevity of that population.

A study published in Ecology in 2003 looked at the influence that the frequency of fire has on lodgepole pine stands found at low and high elevations in Yellowstone National Park. At lower elevations, where summer temperatures are warmer and precipitation is relatively minimal, fires occur more frequently compared to higher elevations, which tend to be cooler and wetter. The researchers found that at lower elevations when fires occurred at short intervals (less than 100 years between each fire), lodgepole pine was slower to repopulate compared to longer intervals. This suggests that the percentage of serotiny found in stands that experienced short fire intervals was low, and that stands with long fire intervals exhibit a higher percentage of serotiny. After all, as mentioned above, lodgepole pines don’t start developing serotinous cones until later in life.

At higher elevations, where fire occurs less frequently, lodgepole pines were found to have a low percentage of serotinous cones regardless of the age of the stand. Because the trees at high elevations are more likely to die of old age rather than fire, maintaining serotinous cones would be a disadvantage. Open cones are preferred. Thus, at least in this study, a greater percentage of serotinous cones was found in lodgepole pines at lower elevations compared to those at higher elevations. Latitude, elevation, mountain pine beetle attacks, and other environmental factors have all been used to explain differences in serotiny. However, the factor that seems to have the greatest influence is the frequency of fire. As James Lotan writes in a 1976 report: “A high degree of cone serotiny would be expected where repeated, high-intensity fires occur. Where forest canopies are disrupted by factors other than fire, open cones annually supply [seed] for restocking disturbances such as windfalls.”

That being said, one other factor does appear to play a critical role in whether or not lodgepole pines produce serotinous cones, and that is seed predation by squirrels. In a paper published in Ecology in 2004, researchers wondered why the percentage of serotinous cones wasn’t even higher in populations where fire reliably occurred during the lifetime of the stand. To help answer this question they looked at the activities of pine squirrels, which are the main seed predator of lodgepole pine seeds. Pine squirrels visit the canopy of lodgepole pines and consume the seeds found in serotinous cones. Because non-serotinous cones quickly shed their seeds, serotinous cones are a more reliable and accessible food source, and because pine squirrels are so effective at harvesting the seeds of serotinous cones, the researchers concluded that, “in the presence of pine squirrels, the frequency of serotiny is lower and more variable, presumably reflecting,” among a variety of other factors, “the strength of selection exerted by pine squirrels.”

A study published in PNAS in 2014 added evidence to this conclusion. While acknowledging that fire plays a major role in the frequency of serotinous cones, the researchers asserted that “squirrels select against serotiny and that the strength of selection increases with increasing squirrel density.” However, despite making it easier for squirrels to access their seeds, lodgepole pines maintain a degree of serotinous cones, since clearly their main advantage is retaining a canopy-level seed bank from which seeds are released after a fire and by which a new generation of lodgepole pines is born.

open cones of lodgepole pine (Pinus contorta)

Further Reading and Viewing:

The Cedars of Pencils

People interested in pencils have been particularly excited lately about a pencil being made by Musgrave, a 100+ year old pencil company based in Shelbyville, Tennessee (a.k.a. Pencil City). This pencil is especially unique because it is made from the wood of Juniperus virginiana, known commonly as Tennessee red cedar, eastern red cedar, aromatic cedar, and (yes, even) pencil cedar. For anyone who may have been around in the early 1900’s, this wouldn’t seem like anything special, as it was not uncommon for pencils at that time to made from this wood. However, around the mid-20th century J. virginiana was largely replaced by Calocedrus decurrens as the wood of choice for pencil making, and few (if any) have been made with J. virginiana since then. Hence, Musgrave’s new pencil, fittingly named Tennessee Red Cedar, is a momentous occasion.

The Tennessee Red Cedar Pencil

Pencils today are made from a variety of different woods and wood-adjacent materials (see Wopex pencils), each having their pros and cons and each being loved, hated, or something in between by people who care about pencils. However, pencils made from cedar – Juniperus virginiana and Calocedrus decurrens in particular – tend to be among the most preferred. These woods are soft, attractive, rot resistant, sharpen easily without splintering, and take well to wood stain or lacquer, not to mention they smell great. But if you’re like me and you’re interested in plant names and plant taxonomy, you may have already noticed something – the trees these pencils are made of aren’t cedars at all, at least not in the botanical sense.

Calocedurus decurrens, commonly known as California incense cedar (or simply, incense cedar), is a large tree in the cypress family (Cupressaceae) that occurs in western North America, mainly in California and Oregon. It’s known for its drought-tolerance and fire-resistance, and humans have found numerous uses for it over many centuries (millennia, even). Juniperus virginiana is also in the cypress family and naturally occurs in eastern North America. As a pioneer species, it is one of the first trees to colonize recently disturbed landscapes. Its rot resistant wood makes it an ideal choice for fence posts and many other products. Its heartwood has a red-purple color to it, which is particularly attractive, especially when contrasted with its pale sapwood (see photo of pencils above).

General’s Cedar Pointe – a natural, unfinished pencil made from California incense cedar (Calocedrus decurrens)

Both of these species, as well as others that are commonly referred to as cedars, have scale-like leaves and small cones. They are more appropriately referred to as false cedars. True cedars, on the other hand, are members of the genus Cedrus and mainly occur in the Mediterranean region and the western Himalayas. As members of the pine family (Pinaceae), their leaves are needles, which are borne in clusters atop peg-like stems that form along branches. Their cones are large and barrel-shaped and grow on the tops of branches.

So why the common name confusion? This likely comes from the fact that wood harvested from both groups of trees share similar qualities and have similar uses. While there are no trees in the genus Cedrus native to North America, the wood of species in the genera Juniperus, Thuja, Calocedrus, and Chamaecyparis (which are found in North America) have fragrant, soft, rot-resistant wood that makes great construction material for a variety of things, including pencils. The name cedar simply has more to do with the wood than the genetic relationships or morphological similarities among these species.

“Natural cedar” pencils most likely made from Calocedrus decurrens

In addition to their new Tennessee Red Cedar pencil, Musgrave also recently produced a pencil made from old Tennessee red cedar slats that have been sitting in a storage building since the 1930’s. These limited edition pencils are a true throwback to pencils of old. If you write or draw with wood-cased pencils, it’s worth considering the trees they came from. While it’s not always obvious what wood or material a pencil is made of, the story behind “cedar” pencils illustrates that there is more to a pencil than its name alone.

———————

Read more about Tennessee Red Cedar pencils at Pencil Revolution and The Weekly Pencil.

Seed Oddities: Apomixis and Polyembryony

Plants have uncanny ways of reproducing themselves that are unparalleled by most other living things. Offshoots of themselves can be made by sending out modified stems above or beneath the ground which develop roots and shoots (new plants) at various points along the way. Various other underground stem and root structures can also give rise to new plants. Small sections of root, stem, or leaf can, under the right conditions, push out new plantlets in a fashion that seems otherworldly. (Picture chopping off a bit of your finger and growing a whole new you from it.)

These are some of the ways in which plants reproduce asexually, and it’s kind of freaky if you think about it. Plants can clone themselves. But one major disadvantage of reproducing this way is that clonal offspring are genetically identical to the parent plant, which truncates any advantage that might be gained by genetic mixing between two separate plants. For one, it means that a plant population composed of all clones is at risk of being wiped out if something in the environment comes along (such as a disease or change in climate) and none of the plants in the population have adapted any sort of resistance to it.

New plants forming along the lateral stems of Ranunculus flammula – via wikimedia commons

That’s where seeds come in. Seeds are produced sexually, when the gametes of one plant fuse with the gametes of another. Genetic recombination occurs, and a genetically unique individual is born, housed within a seed. Unless, of course, that seed is produced asexually. Then the seed is a clone, and we’re back to where we started.

Apomixis is the process by which seeds are produced asexually. In flowering plants, this means that viable seeds are formed even when flowers haven’t been pollinated. In some cases, pollination stimulates apomixis or is required to produce endosperm; but either way, the result is the same: an embryo containing an exact copy of the genes of its single parent plant.

To understand this process, it’s important to familiarize yourself with the basic anatomy of an ovule, the part of a plant where embryos are formed and which ultimately becomes a seed. In gymnosperms, ovules sit inside cones; in angiosperms, they are surrounded by an ovary. The wall of the ovule is called an integument. A small opening at the top of the ovule, known as a micropyle, is where the pollen tube enters. Diploid cells of the nucellus compose the interior of the ovule, and within the nucellus resides the megasporocyte, which is where meiosis occurs and egg cells are produced. In sexual reproduction, a germ cell introduced through the pollen tube fuses with the egg cell to form a zygote and eventually an embryo. In the case of apomixis, the fusion of germ cells isn’t necessary for an embryo to form.

ovule anatomy via wikimedia commons

There are three main types of apomixis: diplospory, apospory, and adventitious embryony. In diplospory, the megasporocyte skips meiosis and produces diploid cells instead of haploid cells (germ cells). These unreduced cells go on to form an embryo inside of the embryo sac, just like an egg cell would if it had been fertilized with a pollen cell. Additional unreduced cells go on to form endosperm, and the ovule then matures into a seed. This type of apomixis is common in dandelions (Taraxacum officinale). As much as bees love visiting dandelion flowers, their pollination services are not required for the production of viable seeds. Yet another reason you are stuck with dandelions in your yard whether you like it or not.

In apospory, an embryo develops inside of an embryo sac that has been formed from cells in the nucellus. Embryo development within the megasporocyte is bypassed; however, pollination is usually necessary for endosperm to form. Plant species in the grass family commonly produce seeds using this type of apomixis.

Adventitous embryony is also known as sporophytic apomixis because an embryo is formed outside of an embryo sac. Cells from either the integument or the nucellus produce an embryo vegetatively. In this case, a sexually produced embryo can form along with several vegetatively produced embryos. Extra embryos die off and a single, surviving embryo is left inside the mature seed. But not always. Two or more embryos occasionally survive, including the sexually produced one. The mature seed then consists of multiple embryos. This phenomenon is called polyembryony and is common in citrus and mangoes. When it comes to plant breeding, polyembryony is incredibly useful because the asexually derived seedlings are exact copies of their parent, which means the desirable traits of a specific cultivar are retained.

Depiction of seed with three viable embryos after germination.

Polyembryony can occur in a number of ways, and not always as a result of apomixis. In some species, additional embryos “bud off” from the sexually produced embryo. This is called cleavage polyembryony and is known to happen frequently in the pine family (Pinaceae), as well as other plant families. Another common form of polyembryony in gymnosperms is simple polyembryony, in which several egg cells in a single ovule are fertilized resulting in the development of multiple embryos. This doesn’t always mean there will be multiple seedlings sprouting from a single seed. Most embryos usually fail to mature, and only one prevails. However, sometimes more than one survives, and if you’re lucky, you’ll find a seed with multiple plant babies pushing out from the seed coat.

Up Next: Vivipary!

Cedar Confusion

This is a guest post by Jeremiah Sandler. Words by Jeremiah. Photos by Daniel Murphy (except where noted).

———————

What makes a cedar a cedar?

I recently asked this question to a professor of mine because I kept hearing individuals in the field refer to many different species as “cedars”. It was puzzling to me because, being the taxonomy-nerd that I am, most of these plants are in entirely different plant families but still called the same thing. Yes, sometimes common names overlap with one another regionally; avoiding that mix up is the purpose of binomial nomenclature in the first place! So, what gives?! Why are 50+ different species all called cedars?

This professor is a forester, not a botanist. He told me the word “cedar” describes the wood. Turns out, after some research and conversation, that’s all there was to it. As defined by Google, a cedar is:

Any of a number of conifers that typically yield fragrant, durable timber, in particular.

Cedar wood is a natural repellent of moths, is resistant to termites, and is rot resistant. A good choice of outdoor lumber.

I was hoping to find either a phylogenetic or taxonomic answer to what makes a cedar a cedar. I didn’t. Taxonomic relationships between organisms are one of the most exciting parts of biology. Thankfully, some solace was found in the research:

There are true cedars and false cedars.

True cedars are in the family Pinaceae and in the genus Cedrus. Their leaves are short, evergreen needles in clusters. The female cones are upright and fat, between 3 – 4 inches long. Their wood possesses cedar quality, and they are native to the Mediterranean region and the Himalayas.

False cedars are in the family Cupressaceae, mostly in the following genera: Calocedrus, Chamaecyparis, Juniperus, and Thuja. Their leaves are scale-y, fan-like sprays. Female cones are very small, about half an inch long, and remain on the tree long after seed dispersal. The bark is often both reddish and stringy or peely. Their wood possesses cedar quality. It is easy to separate them from true cedars, but less obvious to tell them from one another. These false cedars are native to East Asia and northern North America.

I couldn’t do away with the umbrella term “cedar.” Every naturalist can agree that one of the most pleasurable things while outdoors looking at plants is identifying them. I have set a new objective to correctly identify and differentiate between all of the cedars and false cedars, rather than simply calling them cedars. I guess I’m just fussy like that.