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Abstract

Humanoid robots have become appealing to the research community because of their potential

versatility. However, traditional programming approaches may not reveal their full capabilities.

Thus, an important goal is to develop a humanoid robot that can learn to perform complex tasks

by itself. This paper proposes a method to recognize and regenerate motion in a humanoid robot.

We demonstrate how a sequence of high-dimensional motion data can be automatically segmented

into abstract action classes. The sequence from a 25 degree-of-freedom humanoid robot performing

a ball tracking task is reduced to its intrinsic dimensionality by nonlinear principal component

analysis (NLPCA). The motion data is then segmented automatically by incrementally generating

NLPCA networks with a circular constraint and assigning to these networks data points according

to their temporal order in a conquer-and-divide fashion. Repeated motion patterns are removed

based on their proximity to similar motion patterns in the reduced sensorimotor space to derive a

nonredundant set of abstract actions. The networks abstracted five motion patterns without any

prior information about the number or type of motion patterns. A motion optimization algorithm

ensured motion reproduction by employing the sensorimotor mapping in the low-dimensional space.

Keywords: Automatic segmentation; humanoid robot; motion learning; nonlinear principal component

analysis; pattern recognition

1 INTRODUCTION

The aim of developing a humanoid robot is to have a robot that can work cooperatively with people.

Recently, robotics researchers have succeeded in developing mechanical platforms for humanoid robots.

These robots can walk and perform simple tasks. However, these demonstrations are usually directed by

conventional computer programs that are prepared under specific environmental conditions. The robot

may not be able to perform properly, if the conditions change. Moreover, a humanoid robot must take
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account of too many conditions to perform versatile tasks, and a programmer cannot anticipate and

prepare for all of these conditions [10]. One solution is to develop a robot that can learn to perform in

a human environment.

Reinforcement learning [17] provides a useful method of adapting to environmental change based

on experience. The self-organizing, modular, and hierarchical structure of multi-layered reinforcement

learning extends reinforcement learning to more complicated problems [18]. There are drawbacks to

applying conventional reinforcement learning to a real robot: the requirement of a long learning period

and a well-designed state-action space. By introducing a set of examples to a reinforcement learning

system, the learning time can be shortened [16]. A heuristic algorithm is applied to a sample set

to generate a state-action space and learning modules automatically. The learning modules are also

reusable for learning new complex behavior [19]. The reinforcement learning method works well with

a simple robot, such as a wheeled robot. However, for a humanoid robot that has a large number of

actuators, existing reinforcement learning schemes cannot deal with its huge state-action space directly.

One solution is to apply an abstract state-action space to the hierarchical multi-module reinforcement

learning method [19] instead of using the raw state-action space determined by the sensors and effectors.

Principal components analysis (PCA) is a common linear method of dimensionality reduction. How-

ever, PCA has a problem representing nonlinear humanoid motion data. Tatani et al. [14] were first to

apply nonlinear principal components analysis to human and humanoid motion data, though for dimen-

sionality reduction only. A number of imitation frameworks have been proposed. A nonlinear dynamical

system [4] was crafted to produce primitive behaviors. A framework that is based on human-designed

behaviors may lack the flexibility of behaviors developed through embodiment [11]. The mimesis theory

proposed action acquisition and action symbol generation while accounting for embodiment [5]. How-

ever, action symbols in the mimesis theory are not automatically extracted from the sequence of motion

data. A very similar framework to the work here, which uses dimensionality reduction and segmentation

of motion data in a sensorimotor space of reduced dimensionality [6], also does not segment the motion

data automatically.

We propose an approach that segments humanoid motion data automatically. The segmentation

results can be used as abstract states and abstract actions to facilitate the learning of complex tasks

by hierarchical multi-module reinforcement learning method [19]. We used nonlinear principal compo-

nent analysis [8] to reduce the high-dimensional space of humanoid motion data to a tractable three-

dimensional feature space. Our algorithm then incrementally employs nonlinear principal component

neural networks with a circular constraint (CNLPCA) [7] to learn the data points and divide them

into segments. A CNLPCA neural network tries to learn as many data point in temporal order as its

learning capacity can accept. Once the learning capacity of a network is saturated, the network defines

a segment and a new CNLPCA neural network is employed. The algorithm keeps applying CNLPCA
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neural networks to the data in temporal order until the end of the data is reached. As a result, different

data patterns are automatically divided into segments, which match the original patterns.

Some redundant segments may exist in the result. Our algorithm also minimizes the number of

redundant segments by merging segments that are very close to each other based on the distance

between the segments. As a result, automatically segmented trajectories characterize all the periodic

motion patterns. We also provide a method to regenerate dynamically stable motions by using the

compact representation of motion data in the low-dimensional space to create a model of the casual

relation between the motion commands and their subsequent sensor feedback. From this model, we are

able to derive an optimal action for a dynamically balanced condition at each time step.

2 NONLINEAR PRINCIPAL COMPONENT ANALYSIS WITH

A CIRCULAR CONSTRAINT

The human body has 244 degrees of freedom [21] and a vast array of proprioceptors. Excluding the hands,

humanoid robots generally have at least 20 degrees of freedom. They are considered high-dimensional

systems to which conventional learning algorithm cannot be applied. Fortunately, from the standpoint

of a particular activity, the effective dimensionality may be much lower. Fig. 1 illustrates a data pattern

of a walking motion in a three-dimensional space after applying a dimension reduction algorithm to the

high-dimensional joint angle data. The first two labeled postures in Fig. 1 are intermediate postures

between an initial stable standing pose and points along the periodic gait loop represented by postures

three through eight. Note the low-dimensional space preserves the temporal-order of the data set. This

property increases the likelihood of regenerating the motion from the low-dimensional space.

Given a coding function f : RN 7→ RP and decoding function g : RP 7→ RN that belong to the sets

of continuous nonlinear function C and D, respectively, where P < N nonlinear principal component

networks minimize the error function E :

‖~x− g(f(~x))‖2, ~x ∈ RN (1)

resulting in P principal components [y1 · · · yp] = f(~x) in the feature layer. Kramer [8] first solved

this problem by training a multilayer perceptron as shown in Fig. 2 using backpropagation of error,

although a second order method such as conjugate gradient analysis converges to a solution faster for

many large data sets. We used three-dimensional data at the feature layer, which were produced by an

NLPCA neural network that has three nodes at the feature layer for all of the low-dimensional space

representation throughout this paper.

PCA is a special case of NLPCA in which C and D are linear. A straightforward NLPCA training

may not have a unique solution. Correctly setting the initial weights of the NLPCA network is key
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Fig. 2. Posture subspace and example poses. A three dimensional space
represents the posture of the Fujitsu HOAP2 robot. PCA was used to reduce
dimensionality from robot pose space to the three dimensional space shown.
Blue points along a loop represent different robot postures during a single walk
cycle. Red points mark various example poses as shown in the numbered
images. The first two postures are intermediate postures between an initial
stable standing pose and a point along the periodic gait loop represented by
postures three through eight.

dimensional posture space and expected sensory feedback.

A kernel-based sensory-motor predictor allows for learning

such a non-linear relationship. Finally we select actions that

imitate input postures while maintaining imposed criteria such

as dynamic stability of the body. This procedure is shown in

Figure 1.

II. SENSORY-MOTOR MODELING FRAMEWORK

A. Reduced posture dimensionality

The full posture space Z of a humanoid robot is overly

redundant given a particular class of motion, such as walking,

kicking, or reaching for an object. More precisely, the variance

of posture over time and different styles/instances of an

action is largely distributed in a subspace with far fewer

directions of variance. Thus we apply the well known method

of principal components analysis (PCA) to parameterize the

low dimensional subspace X . Research has revealed that non-
linear methods [11], [12] can also be used to reduce the

dimensionality of Z . For simplicity we use the standard linear
PCA method in this paper.

We construct the reduced dimensionality space or latent

space X using a set of initial training examples Z =
[z1 . . . zL]. Tentatively we are using a rhythmic walking gait
generator [13] for our initial training set. The idea is to use

this motion as a “seed” motion. A reduced set of basis vectors

is obtained corresponding to the m largest eigenvalues of the

covariance of Z after subtracting the mean of each dimension.

The result can be thought of as two linear operators C and C−1

which map from the high to low, and low to high dimensional

spaces respectively. An example of such a space, along with

corresponding postures is shown in Figure 2.
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Fig. 3. Embedded action space of a humanoid walking gait. Training data
points in the reduced posture space (shown in blue) are converted to cylindrical
coordinates relative on the coordinate frame xθ,yθ, zθ . The points are then
represented by a function of the angle Ψ, which forms an embedded action
space (shown in red). This action space represents a single gait cycle, and
forms the basis for our algorithm which discovers an an optimal trajectory
along this loop.

B. Action subspace embedding

High-level control of a humanoid robot can be seen as

selecting a desired angle for each joint servo. As discussed

previously, complex operations in the space of all joint angles

taken together are often intractable. Again we leverage the

redundancy of the full posture space and use X to constrain

target postures. Any desired posture (also referred to as an

action) can be represented by a point a ∈ X . Further, we
show that space of desired postures can be represented more

compactly by a non-linear manifold embedded in X .
Often the set of desired postures for some motion can be

constrained to fewer than m parameters. Figure 2 illustrates

a fixed periodic movement such as walking represented by a

loop (parameterized by time) in X . In the general case we
consider a non-linear manifold representing the space A ⊆ X
of actions. Non-linear parameterization of the space of desired

postures allows for greatly reducing the number of degrees of

freedom in our model-predictive control algorithm detailed in

Section III.

Experiments presented in this paper embed a one dimen-

sional action space in a three dimensional latent posture space.

Using the latent representation of the set of initial training

examples xi = C·zi we first convert each point into cylindrical

coordinates. This is done by establishing a coordinate frame

represented by three basis directions xθ,yθ, zθ in the latent

space. The zero point of the coordinate frame is the empirical

mean of xi, denoted µ. Thus we first center the data around
this new zero point and denote the centered data x̂i. The next

step is to compute the principal axis of rotation zθ accordingly:

zθ =
∑

i

(
x̂i × x̂i+1

)

||
∑

i (x̂i × x̂i+1)|| . (1)

Next xθ is chosen to align with the maximal variance of xi in

Figure 1: A three-dimensional space representation of the postures of the Fujitsu HOAP-2 robot. Blue

points along a loop represent different robot postures during a single walk cycle.
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Figure 2: The structure of the nonlinear principal components network is symmetrical with respect to

its feature layer. The number of input nodes and output nodes are set to the number of dimensions of

the input data. Target values presented at the output layer are set to be identical to input values. The

number of nodes in the encoding layer and the decoding layer increase with the complexity of the data

set. Both the encoding layer and decoding layer contain nonlinear nodes. In this work, the number of

nodes in the input layer, encoding layer, feature layer, decoding layer, and output layer are 20, 25, 3,

25 and 20, respectively.
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for convergence. In 2008 Hinton and Salakhutdinov [3] found an effective way to initialize the weights

of an NLPCA neural network. Unlike PCA and nonparametric methods such as [15], [20], NLPCA

autoencoders give mappings in both directions between high-dimensional space and low-dimensional

space.

This research uses NLPCA for dimensionality reduction, and its performance for that purpose is

acceptable. From our preliminary investigation of the humanoid motion patterns in the feature space of

NLPCA, most of the patterns are closed curves because of their periodic nature. Conventional NLPCA

is unsuitable for learning a closed or self-intersecting curve [12]. However, nonlinear principle component

neural networks with a circular constraint at the feature layer (CNLPCA) can overcome this difficulty

[7]. To represent these closed curves, we use CNLPCA to learn the periodic motion patterns in the

feature space.

Kirby and Miranda [7] constrained the activation values of a pair of nodes p and q in the feature layer

of an NLPCA neural network to fall on the unit circle:

r =
√
p2

0 + q2
0 , (2)

p =
p0

r
and q =

q0

r
. (3)

While p0 and q0 are the input activation, p and q are the output of nodes p and q, respectively.

Thus, the pair of nodes p and q act as a single angular variable

θ = arctan
p

q
. (4)

3 AUTOMATIC SEGMENTATION ALGORITHM

We conceived of automatic segmentation as the problem of uniquely assigning a temporal sequence of

data points in the feature space to CNLPCA neural networks. As the robot begins to move, the first

network is assigned some minimal number of data points, and its training starts with these points. This

gets the network learning started quickly and provides it with sufficient information to determine the

orientation and curvature of the trajectory. A network accepts points based on its prediction. Once

data points from a different pattern are assigned to the learning network, its prediction error rapidly

increases, and a new network will be deployed and start learning those data points. The automatic

segmentation algorithm works as follows:

From Table 1, the automatic segmentation begins to work by deploying a CNLPCA neural network.

Then, a number of data points n in the data sequence in low-dimensional space are assigned to the

network that was created in the previous step. The size of n is not a critical free-parameter of our
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Figure 3: The NLPCA network with a circular constrain at the bottleneck layer. In this work, the

number of nodes in the input layer, encoding layer, feature layer, decoding layer, and output layer of

CNLPCA are 3, 3, 2, 3 and 3 respectively as depicted in this figure.

Table 1: Psedocode for automatic segmentation

1. Initialize a CNLPCA network.

2. Assign n data points in temporal order to the CNLPCA network.

3. Let the network learn the assigned data points.

4. If MSEnew < (1 + α)×MSEold go to step 2.

5. End learning of this segment.

6. Go to step 1 until the end of the data set is reached.

algorithm: n could be any positive integer greater than or equal to one. In other words, the parameter

n is the size of the new data set that is added to the network to learn a pattern for every iteration of

the algorithm. Thus, if we increase n, there will be fewer iterations in Table 1. However, we should

use a value for n that is a fraction of the total number of data points in a segment to avoid biasing the

segmentation. After n data points have been assigned to the network, the network training begins. In

this work, the terminal criterion of network learning is not the number of epochs. The variables MSEnew

and MSEold in step 4, are the mean square error values of the learning network at the current step

and the previous step, respectively. Step 4 is a crucial step of the automatic segmentation algorithm,

because the decision to continue learning on the same segment or to begin learning a new segment is

made at this step. The decision is made by comparing the mean square error of the network before

and after it has attempted to learn the additional n data points. The free parameter α is used in the

6



comparison. The parameter α is a small positive real number that is less than one. It indicates how

much the mean square error value of the learning network is permitted to increase when a new set of n

data points are assigned to it. This condition usually does not lead to a larger value of the mean square

error at the end of segment learning. The mean square error value will have decreased again at the next

iteration of the learning of the network, if the n newly assigned data belong to the same motion pattern.

If learning does not decrease the mean square error, and its value exceeds the condition, the latest n

data points will be rejected from the learning segment, and a new segment will begin to learn the n

data points. The algorithm keeps deploying CNLPCA neural networks and assigning n data points to

them until the end of the data is reached.

Since the algorithm segments different data patterns in accordance with the temporal constraint of

the data set, if there are repeated motion patterns, for example, if the robot walked forward, turned

right, and then walked forward again, there will be two segments that represent the walking forward

pattern with their corresponding networks. One of these two segments may be considered redundant.

We would like for only one network to represent one abstract motion pattern. Thus, the redundant

networks should be removed or at least reduced in number. The following steps minimize network

redundancy:

Table 2: Psedocode for network redundancy minimization

1. For i = 1, . . . n where n is the total number of segments.

2. For each segment i, calculate Dij = 1
d2avg

to segment j, where

i < j ≤ n, and davg is an average distance between the two

segments.

3. For all Dij , if Dij exceeds a threshold, merge and relearn the

segments that Dij refers to.

To calculate the average distance davg between segment i and j, one may calculate the average value

of the output of network j when the output of network i are given as the input data. The output of

network i is obtained by running the angular parameter at the bottleneck layer of the network from

0 to 2π at small increments. The inverse of the square of average distance Dij is used for a clearer

discrimination of the distance between segments.

4 MOTION RECOGNITION: AUTOMATIC SEGMENTATION

This section reports the results of automatic segmentation. We assess the accuracy of the results based

on a manual segmentation of the data and an analysis of how data points are allocated among the
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CNLPCA neural networks. The segmentation results before and after applying network redundancy

minimization are also reported.

We recorded motion data while a human operator manually controlled a Fujitsu HOAP-2 humanoid

robot to play soccer, as shown in Fig. 4. The motion sequences are walking forward, turning right,

turning left, walking forward,1 sidestepping right, sidestepping left, and kicking. Each data point is

constituted by a 20-dimension vector of joint angles.2 After the 20 dimensional joint data were nor-

malized to have zero mean and unity variance, a standard NLPCA network reduced the dimensionality

of the data from 20 dimensions to 3 dimensions. The 3-dimensional data results can be visualized in

Fig. 5. These steps are data preprocessing3 for more efficient automatic segmentation by the CNLPCA

algorithm.

Figure 4: Fujitsu HOAP-2 robot’s ball following behavior.

As explained in the previous section, our algorithm for motion recognition consists of two phases:

automatic segmentation of motion data in the data sequence and network redundancy minimization

based on average spatial distance between segments in the reduced sensorimotor space. We have obtained
1To demonstrate that our algorithm is able to handle redundant motion patterns, the walking forward motion inten-

tionally appears twice in the motion sequence.
2The Fujitsu HOAP-2 robot has 25 joints, but two neck joints, two hand joints, and one torso joint are not used in our

motion patterns.
3Neural network training can be made more efficient when we perform certain preprocessing steps on the network

inputs and targets.
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eight segments of motion data patterns after we performed the automatic segmentation according to the

temporal order of the data. An accuracy analysis of the segmentation results is shown in Fig. 6. The

figure compares the average distances between manually and automatically segmented trajectories. A

data points allocation analysis, which indicates the performance of the algorithm at categorizing different

patterns of motion data into different segments in the data sequence, is shown in Fig. 8. After automatic

segmentation has completed, the routine for redundant network minimization searches for segments

whose positions are very close to each other and merges them. Fig. 5 shows the complete automatic

segmentation routine successfully employed CNLPCA neural networks to separate and generalize five

of the periodic motions without any prior information about the number or type of motion patterns.

 

Figure 3.  The Fujitsu HOAP-1 robots are playing a simplified soccer 

game: RoboCup.  
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Figure 4.  Recognized motion patterns embedded in the dimension of 

the first three nonlinear principal components of the raw proprioceptive 

data. 
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Figure 5.  The average distance between manually segmented networks 

and automatically segmented networks before eliminating redundant 

networks. 
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Figure 6.  The average distance between manually segmented networks 

and automatically segmented networks after eliminating redundant 

networks. 
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Figure 7.  The allocation of data points to each network before applying 

network redundancy minimization. 
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Figure 8.  The allocation of data points to each network after applying 

network redundancy minimization. 

Figure 5: Recognized motion patterns embedded in the dimensions of the first three nonlinear principal

components of the raw proprioceptive data.

One may calculate the average distance from a manually segmented data point to an automatically

segmented data point by providing the manually segmented data point as input to the CNLPCA network

and calculate the average value. Fig. 6 and 7 are analyses of average distances from each automatically

segmented pattern to each manually segmented pattern before and after applying the routine that

minimizes redundant segments. There are eight segments in the automatic segmentation results before

applying the network redundancy minimization algorithm, as shown in Fig. 6. The lowest bar indicates

which known pattern matches the automatically segmented pattern. We notice from Fig. 6 that segment

No. 1, 5, and 8 match the walking pattern. The redundancy among these segments occurred, because

the robot performed this action three times during different time intervals when we recorded the data.

Thus, this is a correct result of the segmentation algorithm based on the temporal ordering. Segment

No. 2 and 3 in Fig. 6 are also redundant. Both represent the turning right action. This is an inaccurate

result, because the robot performed the turning right action only once during the recording of data.
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Figure 7.  The allocation of data points to each network before applying 

network redundancy minimization. 
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Figure 8.  The allocation of data points to each network after applying 

network redundancy minimization. 

Figure 6: The average distance between manually and automatically segmented neural networks before

eliminating redundant networks. (A shorter bar indicates greater similarity with respect to the reference

pattern.)
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Figure 4.  Recognized motion patterns embedded in the dimension of 

the first three nonlinear principal components of the raw proprioceptive 

data. 
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Figure 5.  The average distance between manually segmented networks 

and automatically segmented networks before eliminating redundant 

networks. 
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and automatically segmented networks after eliminating redundant 

networks. 
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Figure 7.  The allocation of data points to each network before applying 

network redundancy minimization. 
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Figure 8.  The allocation of data points to each network after applying 

network redundancy minimization. 

Figure 7: The average distance between manually and automatically segmented neural networks after

eliminating redundant networks. (A shorter bar indicates higher similarity with respect to the reference

pattern.)

10



There should be only one network to represent each motion pattern. Increasing the mean square

error value of the learning network parameter α influences the result. The lower the value of α used,

the higher the number of likely segments. Although the motion sequence might be divided into several

segments at this step, segments that represent the same motion pattern will be merged later by the

routine for network redundancy minimization.

The routine that searches for redundant and partial segments that represent the same abstract action

and merges them is able to achieve this because the segments have a similar curvature and lie near

each other in the reduced sensorimotor space. All of the redundant networks were removed and their

data points were reallocated. Fig. 8 and 9 are an analysis of the allocation of data points before and

after applying network redundancy minimization. Each bar represents the percentage of data points

that belong to each known pattern in an automatically segmented trajectory. This value is the ratio of

the number of data point of each of pattern in a segment to the total number of data points of each

pattern in the entire data set. We observe a very low rate of data point misallocation in Fig. 8. The

allocation of data points after the removal of the redundant networks is also accurate. We can observe

from Fig. 8 that segment No. 5 and 8, which are redundant with respect to segment No. 1, were merged

into segment No. 1 in Fig. 9. Segment No. 3, which is redundant with respect to segment No. 2, was

also merged into segment No. 2 in Fig. 9.

However, our algorithm could not capture the kicking pattern. This is because it appears to be a

very irregular discontinuous curve in the feature space. We plan to fix this problem by using a more

powerful functional approximation algorithm.

Barbic et al. [1] have studied the automatic segmentation algorithm for motion capture data in parallel

with our work. They defined the automatic segmentation precision of each algorithm as the ratio of

reported correct cuts versus the total number of reported cuts.4 They found that the precision of using

principal components analysis, probabilistic principal components analysis (PPCA), and a Gaussian

mixture model (GMM) for automatic segmentation are 0.79, 0.92 and 0.77, respectively. While our

results cannot be compared directly with their results, because the data sets are different, an estimation

of precision of CNLPCA by their method of using cuts is 0.88 before and 1.00 after network redundancy

minimization.

5 MOTION REPRODUCTION BY SENSORIMOTOR MAP-

PING

In section 2 and Fig. 3, one may reproduce a motion pattern for a robot from a segmented motion

pattern by giving input ranging from 0 to 2π for θ at the circularly constrained nodes of the CNLPCA
4A higher number indicates greater precision.
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Figure 3.  The Fujitsu HOAP-1 robots are playing a simplified soccer 

game: RoboCup.  
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Figure 4.  Recognized motion patterns embedded in the dimension of 

the first three nonlinear principal components of the raw proprioceptive 

data. 
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Figure 5.  The average distance between manually segmented networks 

and automatically segmented networks before eliminating redundant 

networks. 
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Figure 6.  The average distance between manually segmented networks 

and automatically segmented networks after eliminating redundant 

networks. 

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

 

Figure 7.  The allocation of data points to each network before applying 

network redundancy minimization. 
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Figure 4.  Recognized motion patterns embedded in the dimension of 

the first three nonlinear principal components of the raw proprioceptive 
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and automatically segmented networks before eliminating redundant 
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Figure 8.  The allocation of data points to each network after applying 

network redundancy minimization. Figure 9: The allocation of data points to each network after applying network redundancy minimization.
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feature layer. However, the resulting motion may be undesirable because of a loss in accuracy resulting

from the decoding layers of the CNLPCA and NLPCA networks. In attempting to reproduce the motion

on a different robot that has a kinematic structure similar to the one that produced the motion, slightly

different dynamical properties of the robots may result in an even more undesirable motion. The desired

motion can be obtained, if the reproduced motion is adjusted using embodied sensory feedback from a

learning process. Thus, in this section we introduce a technique to optimize the sensorimotor mapping

through the low-dimensional space.

For the walking forward motion, the desirable motion is a stable walking gait that makes the robot

walk straight without any unexpected turns.5 Thus, our objective is to search for a set of actions a∗t

that minimizes the expected states of gyroscopic feedback6 during the motion:

a∗t = arg min
at

Γ(ω̃t+1), (5)

Γ(ω̃t+1) = λxω̃
2
x + λyω̃

2
y + λzω̃

2
z . (6)

In other words, at time t, we search for an optimal action a∗t from the set of all possible actions at

such that the objective function Γ in Eq. (6) is minimized. The objective function Γ represents the sum

of squares of the predicted three-axes gyroscope signal of ω̃x, ω̃y, and ω̃z of the next time step t + 1.

The expected gyroscope signals ω̃t+1 is a predicted sensory state st+1 where

st+1 = F (st, st−1, ..., st−n−1, at, at−1, ..., at−n−1) (7)

We assume that the casual relation between sensory feedback st and the motor command at is a

stationary process. The model state predictor Eq. (7) is a Markovian function that estimates state st+1

based on the current causal state-action pair and its historical information. In this paper we use a

time-delay radial basis function (RBF) network [9] to learn the model state predictor. The optimization

process in Eq. (5) can be rewritten in term of state and action:

a∗t = arg min
at

Γ(F (st, . . . , st−n, at, . . . , at−n)). (8)

The singular variable in Eq. (4) can be used as a constrained motor command through the decoder

layers of CNLPCA and NLPCA, respectively. In this paper, we use the second-order state estimator.

Eq. (8) becomes:

θ∗t = arg min
θt∈Θs

Γ(F (ω̃t, ω̃t−1, θt, θt−1)). (9)

5An unexpected turn can occur in a walking gait from factors such as improper step timing or nonuniform friction with

the ground.
6A three-channel gyroscope sensor was placed near the stationary standing center-of-mass of the robot.
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θt−1 < Θs ≤ θt−1 + εθ (10)

0 < εθ < 2π (11)

At each sampling period, the search space Θs is a region of the estimated circular curve in the feature

space defined by Eq. (10) and Eq. (11).

Selected actions will only be optimal if the sensorimotor predictor is accurate. We, therefore, periodi-

cally retrain the prediction model based on the new motor commands a∗t generated by the optimization

algorithm and the predicted sensory feedback obtained from executing these commands. After three

iterations of sensorimotor prediction learning, a desirable walking gait is obtained. Fig. 10 shows a tra-

jectory of the optimized walking gait in the feature space. We can see from Fig. 10 that the optimized

moves skipped some regions and concentrated on other regions of the constraint pattern. The regions

of the motion pattern that were skipped are those causing body oscillation. The algorithm reassigned

walking postures to the parts of the motion pattern that produces lower oscillation.

We tested the optimization result using commercial dynamics simulation software [13]. The simulation

results are shown in Fig. 11. For the optimized motion, the robot walks faster, more erect, and with

fewer unexpected turns than the walking gait that is reproduced without optimization. The robot

appears to swing its legs faster and stay longer in the double-support phase of the walking gait. This is

consistent with the plot in Fig. 10 and consistent with our objective function in Eq. (6). The motion is

not quasi-static but dynamically stable: The robot will fall, if we stop sending motion commands while

it is walking. Although our method does not guarantee dynamic stability, it is minimizing the chance

of the robot falling as learning progresses and enabling the robot to compensate for minor unexpected

perturbations.

6 Conclusion

We have proposed a framework for motion recognition and reproduction in a humanoid robot. In a

space of reduced dimensionality, the algorithm is able to divide sequences of humanoid motion data

into segments of periodic motion. Our motion recognition algorithm has two phases. The first phase

is a temporal ordering segmentation process that combines learning and temporally-constrained data

point assignment among multiple neural networks. The second phase is a process of minimizing re-

dundant networks that merges redundant networks based on the average spatial distance between the

sensorimotor trajectories they generate.

Our algorithm performs well for periodic humanoid motion patterns. Note that, although the joint

angle space used in this research is 20 dimensional, the proposed algorithm is not limited to working

14
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Figure 10: Motion-phase optimization. After three learning iterations of the sensorimotor causal relation,

the optimization algorithm planned a sequence of actions in low-dimensional space based on its objective

function in Eq. (9).

Fig. 7. Simulated HOAP2 robot and gyroscope signal. At left a view of
the Fujitsu HOAP2 robot as simulated by the Webots simulation package [15].
The right side shows the simulated gyroscope signal during several phases of
an training walking gait based on a rhythmic gait generator [13].

lower part of Figure 8, and the corresponding gyroscope data

is shown in the bottom of Figure 10. The root mean square

(RMS) values of the gyroscope reading of these two walking

motions are indicated in Figure 10. The RMS value of the

Y-axis gyroscope (vertical direction) of the optimized walking

gait is significant lower than the original walking gait (0.3221
vs 0.4509 respectively). This indicates that the robot can walk
straighter forward with less unexpected turn. The RMS values

of the X-axis and Z-axis of the optimized walking gait are

also lower than in the original walking gait, indicating that

the optimized walking gait achieves higher dynamic stability

than the original one.

We were also able to show that the optimized walking gait

in Figure 8 is able to achieve a significantly faster walking

speed. Thus, our second experiment was to increase walking

speed of our optimized walking gait, by reducing the time

allowed for one period of the walk cycle. We reached three

times faster speed than the original one, while the original

walking gait failed to perform (often going backward) at that

speed because of the unmatched body dynamics. Figure 9

illustrates that the optimized walking gait achieves less body

oscillation by optimizing the trajectory in the latent space. The

intuition that we have about this result is that the optimization

is able to skip certain actions in the loop that will lead to large

oscillation of the body.

V. CONCLUSION

We have proposed a model predictive control scheme for

dynamic humanoid motion based on sensory-motor mapping

in a low dimensional space. The key contribution of our work

is the sensory-motor mapping in low dimensional space which

greatly reduced computational complexity. Further, we obtain

non-linear dynamic compensation of the biped locomotion

based on purely learning approach.

However, we have not yet tested our algorithm with a data

set from human motion. We are looking forward to test that

in the near future. Due to the non-linear embedding constrain

the optimization algorithm that we implemented in this paper

also simply optimized expected sensory feedback along the a

fixed set of posture only. So, only the sequence of the posture

Fig. 8. Initial and optimized walking gait comparison The top image
depicts the robot for 20 seconds of executing the initial walking gait. Utilizing
our motion optimization framework we achieved the faster and walking gait
shown in the bottom image. In the same time period the optimized motion is
able to walk further and straighter.
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Fig. 9. Optimal action selection in gait stabilization

is modified in order to achieve higher dynamic stability, but

the posture itself is not modified at all. We also plan to extend

our optimization algorithm to be able to perform optimization

in the full reduced space. Then, we can expect new postures

that lead to better dynamic performance of the robot.

ACKNOWLEDGMENT

This research is supported by an NSF Career grant, an NSF

AICS grant, an ONR YIP award, and a Packard Fellowship

to RPNR. The authors would like to thank Olivier Michel for

close cooperation and support in using Webots to simulate the

HOAP2 robot [15].

REFERENCES

[1] M. Vukobratovic and B. Borovac, “Zero moment point-thirty-five years
of its life,” International Journal of Humanoid Robotics, vol. 1, no. 1,
pp. 157–173, 2004.

Figure 11: A comparison of the initial and optimized walking gait. The top figure depicts the robot
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with no more than 20 dimensions. However, the NLPCA network training time will increase as more

dimensions are added. The algorithm abstracted five out of six types of humanoid motion without any

prior information about the number or type of motion patterns. There are three tuning parameters: n,

α, and the threshold for Dij in our algorithm. While values for these parameters cannot be randomly

assigned, the automatic segmentation results are not very sensitive to them. One may refer to the

guideline for assigning values to these parameters in section 3.

In this work, although a CNLPCA neural network divides and conquers the low-dimensional data

in the feature space along the temporal sequence, it cannot distinguish motion patterns that only

differ in frequency, because a CNLPCA network is a static network. In other words, our algorithm

cannot recognize the differences between fast and slow motion patterns that are otherwise kinematically

identical, if such patterns exist. However in practice, a fast walking gait and a slow walking gait have

different postures because of the change in dynamics. This produces different low-dimensional data

patterns in the feature space. Thus, our algorithm will be able to distinguish these data patterns. The

automatic segmentation results can be used to facilitate the learning of complex tasks performed by

humans by deriving an abstract state-action space for reinforcement learning [19].

We demonstrated an algorithm for humanoid robot dynamics optimization for motion regeneration.

The optimal action selection strategy in Eq. (9) selects an action that minimizes the magnitude of

the angular velocity of the robot’s center of mass. This is a simple, implicit strategy to minimize the

angular momentum of the whole-body motion of the robot. Minimizing angular momentum of the

whole-body motion is a condition to achieve a faster dynamically stable gait. We took advantage of

the single angular parameter of the motion in the low-dimensional space to create a compact predictive

sensorimotor mapping model. Then, we used an optimization algorithm to search for an optimal motor

command from the predictive model for each time step. By using a series of optimized motor commands,

we successfully reproduced the motion. Note that even though just the walking straight motion is

demonstrated in this paper, our motion regeneration algorithm can be applied to the other motions in

the motion sequence, such as turning and side-stepping. In this work, the optimization algorithm only

strictly searches on the curve that is constrained by CNLPCA. The optimization results do not yield

any novel posture in the motion. The optimization algorithm only selects a more appropriate posture

in the set of original postures subject to the objective function.

Thus, only the timing of the motion is optimized. For the optimization algorithm to be able to

derive new postures, it may need the ability to search in all three dimensions [2] of the feature space

instead of strictly searching on the one dimensional space of the single angular parameter. When a new

posture is derived from three-dimensional optimization, we can achieve a more stable motion or lower

gyroscope signal oscillation. For example, a high-speed walking gait may require a posture that has

more lateral movement, which cannot be found in the original set of the postures. We plan to study
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this three-dimensional optimization strategy.
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