
Researches on Ingeniously Behaving Agents

Shotaro Kamio Hongwei Liu Hideyuki Mitsuhasi Hitoshi Iba

Graduate School of Frontier Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

{kamio,lhw,mituhasi,iba}@miv.t.u-tokyo.ac.jp

Abstract

We have been studying the techniques for evolutionary
robotics and experimenting with various robots applied evo-
lutionary methods. We have paid special attentions to real
robots and multi-agent problems with them. In this research
domain, we named them as “Ingeniously Behaving Agents
(IBA)”. This paper shows several techniques developed in
our IBA laboratory and their experimental results applied
to simulations and real robots.

1. Introduction

We have been studying the techniques for evolution-
ary robotics by using Genetic Algorithms and Genetic Pro-
gramming. Our goal is to clarify the applicability of the
evolutionary approach to the real-robot learning, especially,
in view of the multi-agent cooperation, the adaptive behav-
ior and the robustness to noisy and dynamic environments.
For this purpose, we use a variety of real robots called “In-
geniously Behaving Agents (IBA)” as follows:

(a) AIBO (Fig. 5): An entertainment four-legged robot by
SONY.

(b) Khepera K-TEAM (Fig. 7): A set of miniature mobile
robots of K-Team S.A.

(c) HOAP-1 (Fig. 14): A miniature humanoid robot by
Fujitsu Automation Limited.

Next sections show techniques developed in our IBA lab-
oratory and their experimental results.

2 Real-time adaptive technique to real robots
by means of integration of GP and RL

When executing tasks by autonomous robots, we can
make the robot learn what to do so as to complete the task

from interactions with its environment but not manually
pre-program for all situations. We know that such learning
techniques as genetic programming (GP)[11] and reinforce-
ment learning (RL)[15] work as means for automatically
generating robot programs.

When applying GP, we should repeatedly evaluate many
individuals over several generations. Therefore, it is diffi-
cult to apply GP to problems that requires too much time
for evaluations of individuals. That is why we find very few
previous studies on learning with a real robot.

To obtain optimal actions using RL, it is necessary to
repeat learning trials time after time. The huge amount of
learning time required presents a great problem when using
a real robot. Accordingly, most studies deal with the prob-
lems of receiving an immediate reward from an action as
shown in [9], or loading the results learned with a simulator
into a real robot as shown in [1, 16].

Although it is generally accepted to learn with a simula-
tor and apply the result to a real robot, there are many tasks
that are difficult to make a precise simulator. Applying these
methods with an imprecise simulator could result in creat-
ing programs which may function optimally on the simu-
lator but cannot provide optimal actions with a real robot.
Furthermore, the operating characteristics of a real robot
show certain variations due to minor errors in the manu-
facturing process or to changes with time. We cannot cope
with such differences of robots only using a simulator.

To solve the above difficulties, we have proposed a tech-
nique that allows a real robot to execute real-time learning
in which GP and RL are integrated[8]. Our proposed tech-
nique does not need a precise simulator because learning
is done with a real robot. As a result of this idea, we can
greatly reduce the cost to make the simulator much pre-
cise and acquire the program which acts optimally in the
real robot. Moreover, learning with a real robot sometimes
makes possible to learn even hardware and environmen-
tal characteristics, thus allowing the robot to acquire unex-
pected actions.

1

GP loop
(Population Learning)

Create initial individuals

Evaluate individuals

Selection

Reproduce individuals
(crossover and mutation)

Reinforcement Learning
(Individual Learning)

(a) Proposed technique of
the integration of GP and
RL.

Evaluate individuals

GP loop
(Population Learning)

Create initial individuals

Reinforcement Learning
(Individual Learning)

Selection

Reproduce individuals
(crossover and mutation)

(b) Traditional method com-
bined GP and RL [6, 3].

Figure 1. The flow of the algorithm.

2.1 Task definition

We used an “AIBO ERS-220” robot sold by SONY as
the real robot in this experiment. AIBO’s development en-
vironment is freely available for non-commercial use and
we can program with C++ language on it [13]. An AIBO is
equipped with a CCD camera on its head.

The task in this experiment was to carry a box to a goal
area. One of the difficulties of this task is that the robot has
four legs. As a result, when the robot moves ahead, we see
cases where the box sometimes is moved ahead or deviates
from side to side, depending on the physical relationship
between the box and AIBO legs. It is extremely difficult, in
fact, to create a precise simulator that accurately expresses
this box movements.

2.2 Proposed technique

As can be seen in Fig. 1(a), RL is outside of the GP loop
in the proposed technique. This technique enables us (1)
to speed up learning in real robot and (2) to cope with the
differences between a simulator and a real robot.

The proposed technique consists of two stages (GP part
and RL part).

1. Carry out GP on a simplified simulator, and formulate
programs that have the standards for robot actions re-
quired for executing a task.

2. Conduct RL after loading the programs obtained in
Step 1 above.

The learning process of RL can be speeded up in the second
step because the state space is divided into partial spaces un-
der the judgment standards obtained in the first step. More-
over, preliminary learning with a simulator allows us to an-
ticipate that a robot performs target-oriented actions from

the beginning of the second stage. We used Q-learning as
RL method in this study.

Although the process expressed by the external dotted
line in Fig.1(a) was not realized in this study, it is a feed-
back loop. We consider that the parameters in a real en-
vironment that have been acquired via individual learning
should ideally be fed back through this loop route.

We see several studies in which GP and Q-learning are
combined as Fig. 1(b) [6, 3]. However, no studies using any
of them with a real robot have been reported because these
techniques must execute Q-learning for numerous individu-
als in the population,

2.2.1 RL part conducted on the real robot

Action set We prepared six selectable robot actions
(move forward, retreat, turn left, turn right, retreat + turn
left, and retreat + turn right). These actions are far from
ideal ones: e.g. “move forward” action is not only to move
the robot straightly forward but also has some deviations
from side to side and “turn left” action is not only to turn
left but also move the robot a little bit forward. The robot
has to learn these characteristics of actions.

State Space The state space was structured based on po-
sitions from where the box and the goal area can be seen
in the CCD image, as described in [1]. We added a mech-
anism to compensate for the surrounding images by swing-
ing AIBO’s head so that state recognition can be conducted
after each action.

Figure 2 is the projection of the box state on the ground
surface. The “near center” position is where the box fits into
the two front legs. The box can be moved if the robot pushes
it forward in this state. The box remains same position “near
center” after the robot turns left or right in this state because
the robot holds the box between two front legs. The state
with the box not being in view was defined as “lost”; the
state with the box not being in view and one preceding step
at the left was defined as “lost into left” and, similarly, “lost
into right” was defined.

We thus defined 14 states for the box. We similarly de-
fined states of the goal area except that “near straight left”
and “near straight right” states do not exist in them. There
are 14 states for the box and 12 for the goal area; hence,
this environment has states of their product, i.e., 168 states
totally.

2.2.2 GP part conducted on the simulated robot

Simulator The simulator in our experiment uses a robot
expressed in circle on a two-dimensional plane, a box, and
a goal area fixed on a plane. The task is completed when
the robot pushes the box forward and overlaps the goal area
on this plane.

2

far
left

far
center

far
right

middle
left

middle
center middle

right

near
left

near
right

near
straight
left

near
straight
right

near
center

AIBO
head

AIBO
leg

AIBO
leg

lost into
 left

lost into
rightlost

Figure 2. States in real robot for the box. The
front of the robot is upside of this figure.

center

right

Agent

box_ahead

lost

lost into
left

lost into
right

left

Figure 3. States for box and goal area in the
simulator. The area box ahead is not the
state but the place where if box ahead ex-
ecutes first argument.

We defined three actions (move forward, turn left, turn
right) as action set and defined the state space in the simu-
lator as Fig. 3. While actions of the real robot are not ideal
ones, these actions in the simulator are ideal ones.

Such actions and a state division are similar to that of a
real robot, but are not exactly the same. In addition, phys-
ical parameters such as box weight and friction were not
measured nor was the shape of the robot taken into account.
Therefore, this simulator is very simple and it is possible to
build it in low cost.

The two transfer characteristics of the box expressed by
the simulator are the followings:

1. The box moves forward if the box comes in contact
with the front of the robot when the robot goes ahead1.

2. After rotation, the box is near the center of the robot if
the box is near the center of the robot when the robot
turns2.

Settings of GP For executing GP in the simulator, we
used terminal set ={ move forward, turn left,
turn right } and function set ={ if box ahead,
box where,goal where,prog2 }. The terminal nodes

1This corresponds to the situation that real robot pushes the box for-
ward.

2This corresponds to the situation in which the box is placed between
the front legs of a real robot when it is turning.

respectively correspond to the “move forward”, “turn left”,
and “turn right” actions in the simulator. The functional
nodesbox where andgoal where are the functions of
six arguments, and they execute one of the six arguments,
depending on the states (Fig. 3) of the box and the goal area
as seen by the robot’s eyes. The functionif box ahead
which has two arguments executes the first argument if the
box is positioned at “box ahead” position in Fig. 3. We
arranged conditions so that only thebox where or the
goal where node becomes the head node of a gene of GP.
The gene of GP is set to start executing from the head node
and the execution is repeated again from the head node if
the execution runs over the last leaf node until reaches max-
imum steps.

A trial starts with the state in which the robot and the box
are randomly placed at the initial positions, and ends when
the box is placed in the goal area or after a predetermined
number of actions are performed by the robot. To make
robot acquire robust actions that do not depend on the initial
position, the average values of 100 trials in which the initial
position is randomly changed was taken when calculating
the fitness of individuals (see [8] for the definition of the
fitness).

Learning was executed for 1,000 individuals of 50 gen-
erations with maximum gene length= 150. Learning costs
about 10 minutes on the Linux system equipped with an
Athlon XP 1800+. We finally applied the individuals that
had proven to have the best performance to learning with a
real robot.

2.2.3 Integration of GP and RL

Q-learning is executed to adapt actions acquired via GP
to the operating characteristics of a real robot. This is
aimed at revising themove forward, turn left and
turn right actions with the simulator to their optimal
actions in a real world.

We allocated aQ-table, on which Q-values were
listed, to each of themove forward, turn left and
turn right action nodes. The states on theQ-tables are
regarded as those for a real robot. Therefore, actual actions
selected withQ-tables can vary depending on the state, even
if the same action nodes are executed by a real robot. Figure
4 illustrates the above situation.

EachQ-table is arranged to set the limits of selectable
actions. This refers to the idea that, for example, “turn
right” actions are not necessary to learn in theturn left
node. In this study, we defined three selectable robot actions
for each action node as Table 1. With this technique, each
Q-table was initialized with a biased initial value3. The ini-

3According to the theory, we can initializeQ-values with arbitrary val-
ues, andQ-values converge with the optimum solution regardless of the
initial value [15].

3

turn_left move_forwardturn_left

turn_left move_forward turn_right

s

a

turn_right turn_right

s s

box_where

Figure 4. Action nodes pick up a real ac-
tion according to the Q-value of a real robot’s
state.

tial value of 0.0001 was entered into the respectiveQ-tables
so that preferred actions were selected for eachQ-table,
while 0.0 was entered for other actions. The actions which
are preferred to select on each action node are described in
Table 1.

The “state-action deviation” problem should be taken
into account when executing Q-learning with the state con-
structed from a visual image [1]. This is the problem that
optimal actions cannot be achieved due to the dispersion of
state transitions because the state composed only of the im-
ages remains the same without clearly distinguishing differ-
ences in image values. To avoid this problem, we redefined
“changes” in states. The redefinition is that the current state
is unchanged if the terminal node executed in the program
remains the same and so does the executing state of a real
robot4. Until the current state changes, theQ-value is not
updated and the same action is repeated.

As for parameters for Q-learning, the reward was set at
1.0 when the goal is achieved and 0.0 for other states. We
set the parameters as the learning rateα = 0.3 and the dis-
count factorγ = 0.9 .

2.3 Experimental results with AIBO

Just after starting learning: The robot succeeded in
completing the task when Q-learning with a real robot
started using this technique. This was because the robot
could perform actions by taking advantage of the results
learned via GP.

At the situation in which the box was placed near the
center of the robot along with robot movements, the robot
always achieved the task with regard to all the states tried.
Whereas, if the box was not placed near the center of the
robot after its displacement (e.g. if the box was slightly
outside the legs), the robot sometimes failed to move the
box properly. The robot repeatedly turned right to face the
box, but continued vain movements going around the box

4We modified Asada et al.’s definition [1] in order to deal with several
Q-tables.

because it did not have a small turning circle, unlike the
actions in the simulator. Figure 5(a) shows typical series of
actions. In some situation, the robot turned right but could
not face the box and lost it in view (at the last of Fig. 5(a)).

This typical example proves that optimal actions with the
simulator are not always optimal in a real environment. This
is because of differences between the simulator and the real
robot.

After ten hours (after about 4000 steps): We observed
optimal actions as Fig. 5(b). The robot selected “retreat”
or “retreat + turn” action in the situations in which it could
not complete the task at the beginning of Q-learning. As
a result, the robot could face the box and pushed the box
forward to the goal, and finally completed the task.

Learning effects were found in other point, too. As the
robot approached the box smoothly, the number of occur-
rence of “lost” was reduced. This means the robot acts more
efficiently than the beginning of learning.

2.4 Comparison with Q-learning in both simula-
tor and real robot

We compared our proposed technique with the method
of Q-learning which learns in a simulator and re-learns in a
real world (we call this method as RL+RL in this section).
For Q-learning in the simulator, we introduced the qualita-
tive distance (“far”, “middle”, and “near”) so that the state
space could be similar to the one for the real robot5.

For this comparison, we randomly selected ten situa-
tions which are difficult to complete at the beginning of Q-
learning because of the gap between the simulation and the
real robot. We measured action efficiency after ten-hour Q-
learning for these ten situations. These tests are executed
in a greedy policy in order that the robot always selects the
best action in each state.

Table 2 shows the result of both methods, i.e., proposed
technique (GP+RL) and Q-learning method (RL+RL). This
table represents the average number of steps to complete
the task and the number of occurrences when the robot
has lost the box or the goal area in completing the task.
While RL+RL performed better than the proposed tech-
nique in four situations on the average of the steps, the
proposed technique performed much better than RL+RL
in other six situations (bold font in Table 2). Moreover,
the robot evolved by the proposed technique less often lost
the box and the goal area than that by RL+RL. This result
proves that our proposed technique learned more efficient
actions than RL+RL method.

Figure 6 shows the changes inQ-values when they are
updated in Q-learning with the real robot. The absolute

5This simulator has 12 states for each of the box and the goal area;
hence, this environment has 144 states.

4

Table 1. Action nodes and their selectable real actions.
action node real actions whichQ-table can select.

move forward “move forward”∗, “retreat + turn left”, “retreat + turn right”
turn left “turn left”∗, “retreat + turn left”, “retreat”
turn right “turn right”∗, “retreat + turn right”, “retreat”

∗ The action whichQ-table prefers to select with a biased initial value.

(a) Failed actions losing the box at the beginning of
learning.

(b) Successful actions after 10-hour learning.

Figure 5. Typical series of actions.

value of theQ-value change represents how far theQ-value
is from the optimal one. According to Fig. 6, large changes
occurred to RL+RL method more frequently than to our
technique. This may be because RL+RL has to re-learn op-
timal Q-values starting from the ones which have already
been learned with the simulator. Therefore, we can con-
clude that RL+RL requires more time to converge to opti-
malQ-values.

3 Multi-agent learning of heterogeneous
robots by evolutionary subsumption

3.1 Evolutionary subsumption

In a multi-robot system several robots simultaneously
work to achieve a common goal via interaction; their be-
haviors can only emerge as a result of evolution and in-
teraction. How to learn such behaviors is a central issue
of Distributed Artificial Intelligence, which has recently at-
tracted much attention[4, 5, 7, 17, 18, 19]. We address the
issue in the context of a heterogeneous multi-robot system,
in which two real robots, i.e., Khepera, are evolved using
GP to solve a cooperative task. Since directly using GP
to generate a program of complex behaviors is difficult, a

5

Table 2. Comparison of proposed technique
(GP+RL) with Q-learning (RL+RL).

GP+RL RL+RL
#. situation avg. lost lost avg. lost lost

steps box goal steps box goal
1 19.6 0 1 20.0 0 1
2 14.7 0 0 53.0 2 2
3 24.0 0 1 26.7 0 1
4 10.3 0 0 11.0 0 0
5 21.6 0 0 88.0 3 3
6 13.5 0 0 10.5 0 0
7 26.7 0 1 26.0 0 1
8 23.0 0 1 13.0 0 0
9 21.5 0 0 10.5 0 0
10 13.5 0 0 29.0 0 1

number of extensions to basic GP have been proposed to
solve these control problems of the robot. For instance, J.
Koza employed GP to generate a subsumption architecture
control program[10]. W. F. Punch et al. proposed an ap-
proach to solve robot navigation problems, it incorporated
subsumption principles into the Echo Augmented Genetic
Programming approach[14].
In our previous researches we studied the emergence of the
cooperative behavior in multiple robots/agents by means
of GP and proposed three types of strategies, i.e., ho-
mogeneous breeding, heterogeneous breeding, and co-
evolutionary breeding, for the purpose of evolving the co-
operative behavior[5]. We used a heterogeneous breeding
approach of GP, evolving a multi-agent learning system, to
solve robot navigation and Tile World problems[7]. We also
applied the proposed GP system to a homogeneous cooper-
ative multi-robot system and tested our approach in an “es-
cape problem”[18]. These researches showed that GP is ef-
ficient in multi-robot/agent learning.
In this section, We report an improvement of GP, called
Evolutionary Subsumption – which combines the GP with
Brooks’ subsumption architecture[2], and test our approach
with an “eye”-“hand” cooperation problem (refer to [12] for
more details).

3.2 “Eye”-“hand” cooperation problem

In this task two heterogeneous robots learn complex
robotic behaviors by cooperation. One of them, which is
mounted with a digital camera, acts as the “eye” and the
other, which is mounted with a gripper, acts as the “hand”
(Fig. 7). Their task is: the “eye” tries to find a cylindri-
cal object and then navigates the “hand” to pick it up and
then navigates it to carry the cylinder to the goal. The two
robots are heterogeneous–they have different sensors and
actuators, and have different roles in the system. Their be-
haviors are complex: including tracking, path planning, and

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

3000 3200 3400 3600 3800 4000

T
he

 c
ha

ng
es

 in
 Q

-v
al

ue
s

Steps

GP+RL

(a) Proposed technique (GP+RL).

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

3000 3200 3400 3600 3800 4000

T
he

 c
ha

ng
es

 in
 Q

-v
al

ue

Steps

RL+RL

(b) Q-learning (RL+RL).

Figure 6. Comparison of changes in Q-values
after about 8-hour to 10-hour Q-learning with
a real robot.

communication, etc.
In this system, since the relative position between “eye”
and “hand” is variable, the “eye” must track two objects–
“hand” and cylinder simultaneously, moreover one of the
two objects–the “hand” is movable, the search space of our
target system is large and the emergence of robots’ rational
strategies is very difficult.
The “eye” must select suitable viewpoints, observe the en-
vironment, and send correct instructions to “hand”. Along
with the moving of the “hand”, the “eye” must be able to
adjust its position and send new instructions according to
the new situation.

3.3 Methodology

3.3.1 Design of architecture

According to analysis in Sect. 3.2, search space of our tar-
get system is very large, it is intractable to search for a
direct solution using Genetic Programming. The divide-
and-conquer approach is an intuitive and efficient method
when we encounter complex problems. Being a divide-
and-conquer approach, the subsumption architecture de-
composes the problem into a set of levels[2] and each level

6

Figure 7. “Eye”-“hand” cooperation problem.

Figure 8. Evolutionary subsumption ap-
proach’s layered architecture.

implements a task-achieving behavior. We employed the
subsumption architecture, dividing the whole behavior into
several simple behaviors. Then each level is automatically
generated by Genetic Programming respectively; the lower
level is formed by Genetic Programming at first, and then
uses lower levels’ output as nodes of the next level of Ge-
netic Programming.

3.3.2 Evolutionary subsumption

The control system is divided into 4 levels: level0 image
processing, level1 distance assessing, level2 path planning,
and level3, scheduling. See Fig. reffig:architecture. The rest
of this section will introduce each level of the architecture.
Level0 image processingThis level gets an input image,

detects whether the “hand” and cylinders appear in the view
or not, and calculates the width of their image. In order to
fix our attention on the task of coordination and not immerse
ourselves in the field of machine vision, we use particular
colors to identify the “hand” and cylinder. See Fig. 9, in-
put at this level is one scan line of the image and outputs
areWhand, Dhand, Wobj , Dobj (i.e., the offset from center

Center

Figure 9. Image processing approach of
level0

of image and the width), and two Boolean variablesBhand

andBobj , they indicate whether the“hand” and the cylinder
are within the image.
Level1 distance assessingLevel1 takes level0’s output

as its input and assesses the distance of “eye”–“hand” and
“eye”–cylinder. Therefore the task of level1 is a symbolic
regression problem:

f(Whand, Dhand, Wobj , Dobj , Bhand, Bobj) =

{Dishand, Vhand, Disobj , Vobj} (1)

WhereDishand andDisobj are the assessed distances, and
Vhand and Vobj indicate whether the assessed distance is
valid or not. These values will be used by the higher levels.
If the objects, i.e., the “hand” and cylinder, do not appear in
view-field of “eye” or are too far from the “eye” thenVhand

andVobj will be set to “False”, otherwise they will be set to
“True”.
This level is trained separately. For each generation, before
training we generate 10 maps, which randomly specify the
position and orientation of the “eye”, the “hand”, and the
cylinder. These 10 maps will be kept constant within one
generation; in the next generation they will be reformed,
i.e., will be different from the prior generations. The fitness
is defined as the average error between the assessed value
and the real value in the 10 maps. Figure 10 shows the
best fitness of this level, we can observe that along with the
evolution, the assessing distance is getting more and more
accurate.
Level2 path planning The task of this level is to gener-

ate rational motor instructions. In our approach we used
central-control architecture. It generates motor instructions
for both “eye” and “hand”. The rational instructions for the
“eye” are to get a better viewpoint and the rational instruc-
tions for the “hand” are to drive it closer to the cylinder. As
we will observe in Sect. 3.3 the two robots will learn to co-
ordinate with each other gradually and the rational strategy

7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

Fitness

Generations

Distance Assessing

Figure 10. Fitness of distance assessing of
level1.

will emerge along with the evolutionary procedure.
Level3 schedulingThis level determines when the “hand”
should pick up the cylinder and when it should put the cylin-
der down. Since the procedure of this level is fixed, we can
write the program for this level manually.

3.4 Experiments with evolutionary subsumption

3.4.1 Environment and experimental setting

We used Webots of Cyberbotics for the experiments. The
size of the environment is100 × 100 cm with high 10 cm
white walls, so that the “eye” can recognize “hand” and
cylinder easily. In order to keep things simple we used
special colors to identify the cylinder and the goal. The
“eye” robot was equipped with a k6300 digital camera tur-
ret and the “hand” robot was equipped with a Gripper turret.
The initial positions of “eye”, “hand”, cylinder, and goal are
placed randomly. The limit of steps is 2 times the linear dis-
tance between “hand” and cylinder. The actions of a robot
are simplified to 4 actions: MF move forward, MB move
backward, MR turn right about 30 degree and move for-
ward, and ML turn left about 30 degree and move forward.
At the beginning of each generation we generate maps by
randomly placing the “eye”, “hand”, and cylinders. These
maps are kept constant only within one generation. They
will be regenerated before evolution to the next generation.
The number of maps, i.e., the fitness cases, increase with
the generations from 1 to 10. That is, along with evolution
the difficulty of the task is increased, finally each individ-
ual must be evaluated on 10 maps. This method is able to
prevent the robots from accomplishing their task by fluke.
Fitness is defined as the maximum distance in all fitness
cases and the distance is between the “hand” and the cylin-
der after the “hand” runs out of its steps.

1 2 3 4

5 6 7 8

9 10 11 12

Figure 11. The skillful cooperative behaviors
emerged.

We used function set F={IFLTE, PROGN2, Datareq, IFV-
hand, IFVobj} and terminal set T={Dhand, Dobj , Scan,
MFe, MBe, MLe, MRe, MFh, MBh, MLh, MRh}, where
the function set is very similar to level1; in the terminal set
Dhand andDobj are the output of level1, the MFe, MBe,
MLe, MRe are the motor instructions of “eye”, the others
are the motor instructions of “hand”. The other parameters
are population size: 2000; crossover rate: 0.85; mutation
rate and elite rate: 0.1; maximum depth: 15.

3.4.2 Result

At the beginning of evolution the two robots show poor co-
ordination. Usually the “eye” and the “hand” move sepa-
rately; the “hand” moves aimlessly before the “eye” surveys
the environment and soon it runs out of its steps unnecessar-
ily. Even in generation 0, there are some individuals better
than others, they approach the cylinder more closely.
Along with the evolution the two robots gain more skill
in cooperation, they show clear rhythm of “observation”–
“action”–“observation”. The “hand” never moves be-
fore the “eye” because it must save its limited steps.
Finally, the two robots are more skillful. They have av-
eraged more than 60% probability to accomplish the task.
Figure 11 shows their trajectory. As shown in Fig. 11, the
two robots show favorable coordination. At first the “eye”
observes the environment and directs the “hand” to move
and then the “eye” observes again adjusting its position
and directing the “hand” to move again. . . We can also ob-
serve that the trajectory of “hand” is getting more and more
smooth along with their interaction. These phenomena in-
dicate that the rational strategy has emerged.
For comparison, we also employed direct GP approaches

to solve the problem. In the direct GP approach, in order to
keep things simple, we did not use the input image directly;
instead, we kept the level0 fixed and just used GP to gener-

8

20%

40%

60%

80%

100%

 0 200 400 600 800 1000 1200

Average success rate

Generations

Comparison of average success rate
Evolutionary Subsumption

Direct GP

Figure 12. Comparison of averaged success
rates (10 runs) of evolutionary subsumption
and direct GP.

ate programs for level1 and level2. The definition of fitness
and the other parameters are the same as in the evolution-
ary subsumption approach. In direct GP approach, although
the “eye” and the “hand” can find the rational strategies and
produce cooperative behaviors, they take almost 3 times the
number of generations of the evolutionary subsumption ap-
proach and often failed to converge due to premature con-
vergence.
Figure 13 shows the comparison of the best individual’s

fitness over the generations and in Fig. 12, we can find the
success rate of the evolutionary subsumption approach su-
perior to the direct GP approach. This seems due to the
reasonable subsumption architecture, we have designed the
suitable framework for the whole system and the GP need
only search the optimal solution for each layer in a relatively
small search space. On the other hand, the direct GP ap-
proach has to search in a large search space and often times
it can not, or it must take a number of generations’ evolu-
tion to decompose the problem into rational components.
Therefore, the final results are inferior to the subsumption
architecture.

4 Applications to humanoid robots

To confirm the real-world effectiveness, we have ap-
plied the above-mentioned techniques to humanoid robots.
These robots are of 20 DOF’s (Degree Of Freedom) and are
equipped with a CCD camera.

We conducted an experiment with the same task under
almost the same condition as described in Sect. 2.1. Note
that the simulator (GP part) in Sect. 2.2 assumed no partic-
ular specification of the robot. Thus, we can use the pro-
posed technique for the sake of experimenting with a hu-
manoid robot as well, provided that the real-robot learning

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000 2500

Average fitness

Generations

Average fitness of best individual
Evolutionary subsumption

Direct GP

Figure 13. Comparison of the best individual’s
averaged fitness (10 runs) of the direct GP
approach and the evolutionary subsumption
approach.

(RL part) is performed in a real humanoid situation. We
have defined five actions (i.e., move forward, turn left, turn
right, side-step left, side-step right) as an action set of a hu-
manoid robot. A new state space was introduced for the
Q-learning with the real robot. As a result of experiments,
the robot succeeded in completing the task. The evolved
humanoid was able to move a target to a goal by kicking it
(Fig. 14). Its behavior was similar to the one acquired by
AIBO in Sect. 2, but not identical because of the real-robot
learning.

5 Conclusions and future works

We presented techniques and experimental results which
have been pursued in our laboratory for evolutionary
robotics. We can conclude the following points as to the
applicability of our evolutionary approach:

• The integrated technique of GP and RL makes pos-
sible to acquire optimal actions with a real robot in
real-time. The comparison result showed that this
technique is more efficient than traditional Q-learning
method. As the learning is done with a real robot, we
can make the simulator much precise.

• Evolutionary Subsumption is efficient in emergence of
a heterogeneous multi-robot system. It shows supe-
riority to both classical subsumption architecture and
GP approach. As a divide-and-conquer method evolu-
tionary subsumption approach can integrate designer’s
knowledge with artificial evolutionary approach, re-
strict the search space of artificial evolution approach,
and thus improve the performance of evolution ap-
proach.

9

Figure 14. The integrated technique of GP and
RL applied to a humanoid robot.

Figure 15. Two humanoid robots approach a
target object in a cooperation task.

We have been applying our techniques to more compli-
cated tasks with real-robot learning. For example, we are
now trying to solve a cooperation task with a set of hetero-
geneous robots (see Fig.15). This is to show the effective-
ness of our approach as a multi-agent learning technique.
We have acquired promising performance via preliminary
results. We will conduct further experiments in pursuit of
the applicability of our proposed approaches.

References

[1] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda. Pur-
posive behavior acquisition for a real robot by vision-based
reinforcement learning. Machine Learning, 23:279–303,
1996.

[2] R. Brooks. A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, 2(1):14–
23, January 1986.

[3] K. L. Downing. Adaptive genetic programs via reinforce-
ment learning. InProc. of the Third Annual Genetic Pro-
gramming Conference, 1998.

[4] D. Floreano, S. Nolfi, and F. Mondada. Competitive co-
evolutionary robotics: From theory to practice. In R. Pfeifer,
editor, Proceedings of the Fifth International Conference
on Simulation of Adaptive Behavior. Cambridge, MA, MIT
Press-Bradford Books, 1998.

[5] H. Iba. Emergent cooperation for multiple agents using ge-
netic programming. InParallel Problem Solving form Na-
ture IV (PPSN96), pages 32–41, 1996.

[6] H. Iba. Multi-agent reinforcement learning with genetic pro-
gramming. InProc. of the Third Annual Genetic Program-
ming Conference, 1998.

[7] H. Iba. Evolving multiple agents by genetic programming.
In L.Langdon, W. U.-A., and P. Angeline, editors,Genetic
Programming 3, pages pp447–466. MIT Press, 1999.

[8] S. Kamio, H. Mitsuhasi, and H. Iba. Integration of genetic
programming and reinforcement learning for real robots. In
Proc. of the Genetic and Evolutionary Computation Confer-
ence (GECCO2003), 2003.

[9] H. Kimura, T. Yamashita, and S. Kobayashi. Reinforcement
learning of walking behavior for a four-legged robot. In40th
IEEE Conference on Decision and Control, 2001.

[10] J. R. Koza. Evolution of subsumption using genetic pro-
gramming. InToward a Practice of Autonomous Systems,
pages pp110–119, 1992.

[11] J. R. Koza.Genetic Programming, On the Programming of
Computers by means of Natural Selection. MIT Press, 1992.

[12] H. Liu and H. Iba. Multi-agent learning of heterogeneous
robots by evolutionary subsumption. InProc. of the Genetic
and Evolutionary Computation Conference (GECCO2003),
2003.

[13] OPEN-R Programming Special Interest Group.Introduction
to OPEN-R programming (in Japanese). Impress corpora-
tion, 2002.

[14] W. F. Punch and W. M. Rand. GP+echo+subsumption =
improved problem solving. InGenetic and Evolutionary
Computation Conference (GECCO2000), pages pp411–418,
2000.

[15] R. S. Sutton and A. G. Barto.Reinforcement Learning: An
introduction. MIT Press in Cambridge, MA, 1998.

[16] Y. Takahashi, M. Asada, S. Noda, and K. Hosoda. Sensor
space segmentation for mobile robot learning. InProceed-
ings of ICMAS’96 Workshop on Learning, Interaction and
Organizations in Multiagent Environment, 1996.

[17] M. Terao and H. Iba. Controlling effective introns for multi-
agent learning by genetic programming. Inthe Genetic
and Evolutionary Computation Conference (GECCO2000),
pages pp419–426, 2000.

[18] K. Yanai and H. Iba. Multi-agent robot learning by means of
genetic programming: Solving an escape problem. InEvolv-
able Systems: From Biology to Hardware, 4th International
Conference (ICES2001), pages pp192–203, 2001.

[19] C. H. Yong and R. Miikkulainen. Cooperative coevolution
of multi-agent systems. Ai01-287, Department of Computer
Sciences, University of Texas at Austin, 2001.

10

