
Development of a physical simulation of a real

humanoid robot

Pascal Cominoli, Diploma Thesis

February 20, 2005

BIRG, Logic Systems Laboratory (LSL)
School of Computer and Communication Sciences
Swiss Federal Institute of Technology, Lausanne

Supervision:
Prof. Auke Jan Ijspeert & Dr. Olivier Michel



2



Acknowledgments

I would like first to thank Auke Jan Ijspeert, for giving me the opportunity to
carry out two interesting projects in his lab.

I also would like to thank Olivier Michel, for our weekly meetings, for all the
changes he introduced in his software to suit my needs, and also for letting me
write some code of his software.

I thank all of the BIRG and LSL people, and specially Yvan Bourquin,
Alessandro Crespi and Ludovic Righetti, who have always been there when I
needed them.

I make a point of thanking the EPFL’s ASL3 laboratory, for helping me to
succeed in controlling the robot, and specially Adrien Brossard, for the assis-
tance he brought me and the critical tests which he carried out in my place.

I would like also to say “ ” 1 to Fumio Nagashima, my con-
tact (and future boss for the next twelve months...) at Fujitsu, Kawasaki, JP,
for providing me within a few hours with the files I needed.

And last but not least, thanks a lot to my family and all of my friends.

1It means “thank you”, and is pronounced “ARIGATOO GOZAIMASU”.

3



4



Contents

List of Figures 7

List of Tables 9

1 Introduction 11

2 Humanoid robotics and available simulators 13
2.1 Humanoid robotics . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Honda series . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Sony series . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Fujitsu series . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Humanoid Robotics Project series . . . . . . . . . . . . . 16
2.1.5 KAIST Humanoid Robot Platform series . . . . . . . . . 17
2.1.6 Toyota series . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Existing robotics simulators . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Honda and Sony simulators . . . . . . . . . . . . . . . . . 18
2.2.2 Fujitsu HOAP simulator . . . . . . . . . . . . . . . . . . . 18
2.2.3 OpenHRP . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 RoboWorks . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 SD/FAST . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.6 Webots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.7 Yobotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 HOAP-2 Design Specification 22
3.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Robot link parameter . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Joint freedom degree and joint composition . . . . . . . . . . . . 22
3.4 Mass property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Local axes orientations . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Joints angle values . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Initialization and initial position . . . . . . . . . . . . . . . . . . 26
3.8 Joints limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.9 Backlash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9.2 HOAP-2 backlash . . . . . . . . . . . . . . . . . . . . . . 28

4 Webots design of the robot 31
4.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Modifications of the semester project model . . . . . . . . . . . . 31
4.3 Robot nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5.1 Initial position . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Joints limitations . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.3 Backlash consequence on the simulator . . . . . . . . . . . 35

5 Changes introduced in Webots 36
5.1 Evaluation of my new Webots version . . . . . . . . . . . . . . . 40

5



6 How to design a new (humanoid) robot on Webots 42

7 Controllers developed 46
7.1 csv2Webots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 hoap2moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 postures protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Postures protocol 48
8.1 Worlds evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9 Reproduction of dynamical moves 55
9.1 The m01 walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.2 The CPG walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.3 Standing up after lying on its back . . . . . . . . . . . . . . . . . 58

9.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.4 Standing up after lying on its elbows . . . . . . . . . . . . . . . . 59

9.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.5 HOAP-2 performing sumo moves . . . . . . . . . . . . . . . . . . 60

9.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10 Humanoids 2004 conference 61

11 Further developments and conclusion 62

Bibliography 64

12 Appendix 66
12.1 HOAP-2 inspection report . . . . . . . . . . . . . . . . . . . . . . 66
12.2 Humanoids 2004 conference . . . . . . . . . . . . . . . . . . . . . 72

6



List of Figures

1 EPFL’s HOAP-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Honda ASIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Honda evolution in humanoid robotics from 1986 to 2005 . . . . 14
4 Sony series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Fujitsu series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 Humanoid Robotics Project series . . . . . . . . . . . . . . . . . 16
7 KAIST series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8 Toyota walking robot . . . . . . . . . . . . . . . . . . . . . . . . . 18
9 HOAP-1 simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 19
10 OpenHRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
11 Roboworks screen shot . . . . . . . . . . . . . . . . . . . . . . . . 20
12 Webots stages of development of a robotics simulation . . . . . . 21
13 Yobotics simulation screen shot . . . . . . . . . . . . . . . . . . . 21
14 Parameter definition of HOAP-2 link length . . . . . . . . . . . . 23
15 HOAP-2 joints positions . . . . . . . . . . . . . . . . . . . . . . . 24
16 HOAP-2 local axes orientations . . . . . . . . . . . . . . . . . . . 24
17 HOAP-2 on the joint initial setting jig . . . . . . . . . . . . . . . 27
18 HOAP-2 initial position . . . . . . . . . . . . . . . . . . . . . . . 28
19 Backlash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
20 Effect of backlash on HOAP-2 initial position . . . . . . . . . . . 29
21 Evaluation of the backlash . . . . . . . . . . . . . . . . . . . . . . 30
22 HOAP-2 robot and its Webots model . . . . . . . . . . . . . . . . 31
23 HOAP-2 scale drawing . . . . . . . . . . . . . . . . . . . . . . . . 32
24 hoap2 initial position . . . . . . . . . . . . . . . . . . . . . . . . . 34
25 Modified initial position of the simulation . . . . . . . . . . . . . 35
26 ODE body coordinate frame . . . . . . . . . . . . . . . . . . . . . 38
27 Simple world to test Webots . . . . . . . . . . . . . . . . . . . . . 41
28 Another simple world . . . . . . . . . . . . . . . . . . . . . . . . 41
29 Webots scene tree . . . . . . . . . . . . . . . . . . . . . . . . . . 43
30 Webots physics tree . . . . . . . . . . . . . . . . . . . . . . . . . 44
31 Performing postures protocol on HOAP-2 . . . . . . . . . . . . . 49
32 Worlds used for the posture protocols . . . . . . . . . . . . . . . 50
33 HOAP-2 and its Webots model performing a walk . . . . . . . . 55
34 Torso center of mass position from the WORLD7 . . . . . . . . . 56
35 HOAP-2 and its Webots model performing the CPG walk . . . . 56
36 HOAP-2 and its Webots model standing up after lying on its back 58
37 HOAP-2 and its Webots model standing up after lying on its elbows 59
38 HOAP-2 and its Webots model performing sumo moves . . . . . 60
39 Torso center of mass position from the WORLD8 . . . . . . . . . 61
40 Webots poster at Humanoids 2004 conference . . . . . . . . . . . 61

7



8



List of Tables

1 HOAP-2 link length . . . . . . . . . . . . . . . . . . . . . . . . . 23
2 HOAP-2 joint location and allowance motion . . . . . . . . . . . 25
3 HOAP-2 weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 hoap2 world definition . . . . . . . . . . . . . . . . . . . . . . . . 33
6 Postures protocol results . . . . . . . . . . . . . . . . . . . . . . . 53
7 Evaluation of the different worlds of the postures protocol . . . 53

9



10



1 Introduction

HOAP-2 is a compact, light weight, and easy-to-treat genuine humanoid robot
with two arms and two legs. HOAP-2’s gesture expression has been enhanced
from its first version HOAP-1 with moving head, waist, and hands. Using motor
current control, the movements are much smoother. Its connection to a PC is
really easy, so one can use it as a human robotics research tool for studying
areas, such as movement control and communications with humans. It is only
50[cm] tall, weights less than 7[kg], so it can be handled by a single person,
what is a great advantage.

The Swiss Federal Institute of Technology purchased one HOAP-2 during
the summer 2004. So it was really important to develop a simulator for this
robot. Performing tests on the real robot could damage it, depending on the
kinds of things one is doing. And knowing the price of such a robot, one could
really easily understand that a simulator is necessary. The real robot needs to
be handled carefully, calibrations need to be done. There is no such issues on a
simulated robot. If one performs a mistake with a simulated robot, just reload
the simulation, and everything is fine. There is no calibrations, no problems of
simultaneous access to one robot shared by many people. It also allows someone
not having access to a robot, like a stand alone student or small universities, to
perform good simulations.

This simulator will be used for performing for example walking controllers,
or various manipulations, that could be dangerous or hazardous if they were
performed first on the real robot. After a validated test on the simulator –
meaning that the real robot will not suffer any harm, the user could then upload
its controller on the real robot. The simulator could also be used to do genetics
evolution much faster than on the real robot. On a good computer, simulation
can run up to ten times real time, what is unrealizable on a real robot.

It is then important to have a physical simulator, instead of just a kinematic
simulator. The simulator must no only look like the real robot, but also react
like it, with the same physical laws. A physical simulator takes care of the
forces, the torques, what includes the gravity, the slipping it could have with
the ground, etc., contrary to the kinematic simulator, that does not take care of
the physics, but only off the velocities. The BIRG laboratory being interested in
biped humanoid walking for example, it would have been impossible to realize
it with a simple kinematic simulator. A good physical simulator makes it then
possible to perform realistic dynamical moves. Capabilities of the real robot
motors should also be respected, in order to have a “realistic” simulation.

The goal of this diploma project was the development of a physical simula-
tion of that HOAP-2 robot. I already began developing it during the summer
semester 2004, as my last semester project[3]. But the work was still not over
at the end of the semester, and we decided I could continue improve it as a
diploma work.

I used the mobile robotics simulation software Webots, developed by Cyber-
botics Ltd, which is collaborating with my laboratory, the Biologically Inspired
Robotics Group (BIRG). In this report, I will suppose you have basic knowl-
edge about that software, such as world definition, format, nodes, and so on.
Please do refer to its website for more informations. I think that you also should
first quickly traverse the report I wrote for my semester project[3], this could
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help you understand what I already did during the semester before my diploma.
You should also have a look at the web page I made for this thesis. It contains
movies, pictures, etc[1].

My last semester project, and this diploma work, was the very first attempt
to create an accurate design of an humanoid robot in Webots. There was al-
ready a humanoid robot (Sony QRIO) implemented in Webots, but it hadn’t
been made with respect to accurate values or data, and just been reversed engi-
neered from pictures and feelings[7]. My work allowed us to realize there were
limitations on this software, and also a few bugs. These last ones have all been
corrected, and new features have been implemented.

Figure 1: EPFL’s HOAP-2
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2 Humanoid robotics and available simulators

2.1 Humanoid robotics

”The 90s was the era of the PC and the Internet. The first decade
of the 21st century will be dominated by robots.”

Toshitada Doi, Vice President of Sony Corporation

Humanoid robotics is a an emergent field. And like many new technologies,
the early generations are costly curiosities, mainly useful for entertainment and
for research. To date, there is not much humanoid robots in our surroundings,
but, in time, they will accomplish a wide variety of tasks in homes but also in
various places where human beings do not like to be, doing hazardous tasks like
taking care of nuclear plants, rescuing people after a disaster, etc. So let’s have
a look at the most important and famous humanoid robots. Most of them are
just demonstration ones, and are not supposed to be sold, at least recently. And
most of them come from Japan.

2.1.1 Honda series

ASIMO Honda describes its ASIMO (Advanced Step in Innovative MObility,
or from the Japanese ashi[leg or foot] and mo[move or mobility]) as the most
advanced humanoid robot in the world. Designed at its research and devel-
opment Wako Fundamental Technical Research Center in Japan, ASIMO took
more than 18 years of persistent study, research, trial and error before Honda
engineers achieved their dream of creating an advanced humanoid robot (see
figure 3).

Figure 2: Honda ASIMO

ASIMO is then the culmination of nearly two decades of humanoid robotics
research by Honda scientists and engineers, and it was the world’s first humanoid
robot to walk dynamically, as humans walk, when it was introduced to the
world, October 31st, 2000. It is 120[cm] tall, weights about 52[kg], and has
26 degrees of freedom (DOF). ASIMO can walk on uneven slopes and surfaces,
turn smoothly, climb stairs, reach for and grasp objects, switch lights on and
off, and open and close doors. Now, ASIMO can also comprehend and respond
to simple voice commands. ASIMO has the ability to recognize the face of
a selected group of individuals. Using its camera eyes, ASIMO can map its
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Figure 3: In 1986, Honda engineers set out to create a walking robot (E0).
Early models (E1, E2, E3) focused on developing legs that could simulate the
walk of a human. The next series of models (E4, E5, E6) were focused on walk
stabilization and stair climbing. Next, a head, body and arms were added to
the robot to improve balance and add functionality. Honda’s first humanoid
robot, P1, was rather rugged at 187[cm] tall, and 175[kg]. P2 improved with a
more friendly design, improved walking, stair climbing/descending, and wireless
automatic movements. The P3 model was even more compact, standing 157[cm]
tall and weighing 130[kg]. ASIMO is then the culmination of nearly two decades
of humanoid robotics research by Honda scientists and engineers

environment and register stationary objects. It can also yield to pedestrians in
its path until they have cleared its path. It can walk at 1.6[km/h], even if some
special experimental versions of the robot can reach the double.

Currently, there is no plan of selling ASIMO. It serves as a tour guide in
museums and as a greeter at high-tech companies in Japan, and there is only
about thirty ASIMO around the world. But in the future, Honda hopes that
ASIMO may serve as another set of eyes, ears, hands and legs for all kinds of
people in need. Someday ASIMO might help with important tasks like assisting
the elderly or a person confined to a bed or a wheelchair. ASIMO might also
perform certain tasks that are dangerous to humans, such as fighting fires or
cleaning up toxic spills.[17][18]
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2.1.2 Sony series

QRIO Sony’s QRIO(Quest for CuRIOsity) was introduced September 2003.
It is a lot smaller than the ASIMO, as it is only 60[cm] tall, and weights 7[kg]
not including battery. QRIO is a remarkable assemblage of three powerful mi-
croprocessors, 38 DOF, three accelerometers, two charge coupled device (CCD)
cameras, and seven microphones. It can hear, speak, sing, recognize objects and
faces, walk, run, dance, and grasp objects. It can even pick itself up if it falls.
At the moment, there are dozens of QRIOSs in existence, and it is not yet for
sale, but it is the one that will probably be the first to be sold, as Sony already
sell to dog AIBO[13].

Figure 4: Sony Corporation originally developed a small biped walking robot
”SDR” (3X and 4Xprototype). The right picture shows the SDR-3x. They are
the previous series before the release of the QRIO (left)

2.1.3 Fujitsu series

Fujitsu designed two humanoid robots, the HOAP-1 (Humanoid for Open Ar-
chitecture Platform), in 2001, and then the HOAP-2, in 2003 (see figure 5). To
date, they are the only open source commercial robots, with a research purpose.

HOAP-2 HOAP-2 is designed as an aid to robotics research and therefore
runs on open source, Linux-based software, and is sold since July 2003. It has
25 DOF, is 70[cm] tall, and weights around 7[kg] including battery. This is the
robot I used in this project, so I will come back to this latter on.

HOAP-1 Fujitsu Automation Limited and Fujitsu Laboratories Ltd. released
HOAP-1 on September the 10th, 2001. It has been designed for wide application
in research and development of robotics technologies. This robot has been, from
the beginning, designed for domestic sales. Weighting 6[kg] and standing 48[cm]
tall, the light and compact HOAP-1 can be used for developing motion control
algorithms in such areas as two-legged walking, as well as in research on human-
to-robot communication interfaces. Fujitsu is disclosing the internal interface
architecture of HOAP-1 to allow users to freely develop their own programs.
The wide range of use and safe and efficient program development environment
make of HOAP-1 an ideal tool for research and development work in robotics.[22]
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Figure 5: Fujitsu HOAP-2 (left) and HOAP-1 (right)

2.1.4 Humanoid Robotics Project series

“For research and development of humanoid robot performing applications tasks,
the Ministry of Economy, Trade and Industry (METI) of Japan had run Hu-
manoid Robotics Project (HRP for short) from 1998 to 2002. The final goal of
HRP is to create ’useful’ humanoids robots. Toward the goal, HRP have devel-
oped a humanoid robot called HRP-2 that can walk, lie down and get up.”[12]

Figure 6: HRP-2 (left) and earlier version HRP-2P (middle). The height, mass,
and DOF of the HRP-2 are the same as the HRP-2P that was released in March,
2002. The HRP-1 (right), is an even earlier model looking a lot like the Honda
P3 robot with a large external backpack and rigid torso.

HRP-2 HRP-2’s height is 154[cm] and mass is 58[kg] including batteries.
With its size and weight, the HRP-2 is the first humanoid robot to be human-
sized. It has 30 DOF including two DOF for its hip. Its highly compact elec-
trical system packaging allows it to forgo the commonly used ”backpack” used
on other humanoid robots. HRP-2 will be used for experiments to further de-
velop robotics technologies in the areas of walking on uneven surfaces (HRP-2’s
feet are designed for that), tipping-over control, getting up from a fallen posi-
tion, and ”human-interactive operations in open spaces. The beautiful external
appearance of HRP-2 was designed by Mr. Yutaka Izubuchi, a mechanical ani-
mation designer famous for his robots that appear in Japanese anime.

16



Kawada Industries is renting HRP-2 as a humanoid robot R&D platform.
Internal API for HRP-2 is expected to be open to the public and its users will
be able to develop their own software. It is anticipated that HRP-2s will greatly
enhance humanoid robot technology research activities. Users will be able to
develop application software due to open architecture.[12]

2.1.5 KAIST Humanoid Robot Platform series

The Korea Advanced Institute of Science and Technology (KAIST) has pro-
duced a series of robots on the way to a practical humanoid. KAIST is develop-
ing a ”remote-brained” robot –meaning it is connected to a central server whose
computing capacity may be expanded.

Figure 7: HUBO or KHR-3 (left) and its predecessor KHR-2 (right). Compared
to the KHR-2, the HUBO is more streamlined and has smoother, more natural
walking, has fingers instead of claws, voice recognition, and faster response
times.

HUBO The HUBO (or KAIST Humanoid Robot Platform, KHR) is 150[cm]
tall, weighs 67[kg], and has a range of 3[km]. The robot apparently does primary
processing of sound and vision, and then sends its ”perceptions” to a central
computer, which does actual decision-making. This allows it to learn and inter-
act using a computer that would be too heavy to carry. The HUBO debuted in
December 2004.

2.1.6 Toyota series

Toyota has introduced lately a suite of robots –one destined for health care,
one for factories, one for a human exoskeleton, and one for entertainment. The
walking robot is the one designed for health care. Among other features, it can
blow air through a trumpet and finger the valves to actually play a musical
instrument, what shows a significant advance over the Honda robots. Its legs
are less ”bent knee” than the Honda ASIMO and its walk seems more natural.
Toyota promises an entire robot orchestra by 2005. Toyota wants its partner
robots to have human characteristics, such as being agile, warm and kind and
also intelligent enough to skillfully operate a variety of devices in the areas
of personal assistance, care for the elderly, manufacturing, and mobility. The
walking robot is 120[cm] tall, and weights 35[kg]. These robots are to be unveiled
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at Expo 2005 (Nagoya, JP), starting March 2005. The company also announced
the creation of a new division chartered with developing “partner robots”, with
the aim of commercializing humanoid robots by 2010.

Figure 8: Toyota walking robot

2.2 Existing robotics simulators

2.2.1 Honda and Sony simulators

As the ASIMO and the QRIO are not (at least currently) commercial robots,
there is no available simulator for them. But I am sure that Sony and Honda
have one, because it is almost mandatory. If you want to improve the way
the robot behaves toward its surroundings, one has to do some of the work in
simulation, since it would be to difficult and expensive to do it on the real robot
directly. But these companies do not let filter many information on this subject.

2.2.2 Fujitsu HOAP simulator

Fujitsu sells HOAP-1 with a basic simulation software (see figure 9). It enables
virtual trial-runs of the control programs prior to actual implementation. The
simulator and the user-developed programs are designed to run on RT-Linux on
an operating command PC, which communicates with the robot through a USB
interface. The included PC uses C/ C++ language with VRML model data to
allow 3D simulation of actual robot actions before attempting action with the
robot. So one has to have purchased a HOAP-1 to have the simulator. HOAP-2
is not provided with a simulator.

2.2.3 OpenHRP

OpenHRP (Open Architecture Humanoid Robotics Platform) is a software plat-
form for humanoid robotics, and consists of a dynamics simulator, view (camera)
simulator, motion controllers and motion planners of humanoid robots (see fig-
ure 10). OpenHRP has been developed by AIST, the University of Tokyo and
MSTC. OpenHRP is integrated with CORBA, and each module, including the
dynamics simulator, is implemented as a CORBA server. Users can develop
their own software on OpenHRP as well as replace its building blocks by one
of their own. The dynamics simulator and the view simulator from OpenHRP
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Figure 9: Comprised of a neural network display/edit unit, a robot simula-
tion unit, and a mechanical interface, this system enables even people without
any expertise in the field of dynamics to generate the desired movements in
humanoid robots

are distributed for free for non-commercial use[11]. One can design whatever
kind of robot on OpenHRP, a model of the HRP-2 robot is contained in this
software, and some teams designed HOAP-1 models also.

Figure 10: OpenHRP

2.2.4 RoboWorks

RoboWorks is a commercial software developed by Newtonium, founded in
March 2000. “RoboWorks is an easy to use software tool for 3D modeling,
simulation and animation of any physical system [...]. When using RoboWorks
you will benefit from an extremely intuitive model development, and a high
quality, fully interactive 3D graphics with full animation, even while building
your model.”[20]

19



Figure 11: Roboworks screen shot

2.2.5 SD/FAST

“SD/FAST was developed by Michael Sherman and Dan Rosenthal of Sym-
bolic Dynamics and has been distributed by PTC since January 2001. With
over 31,000 customers worldwide, PTC is the leader in providing product de-
velopment solutions for manufacturing. SD/FAST provides physically-based
simulation of mechanical systems by taking a short description of an articulated
system of rigid bodies (bodies connected by joints) and deriving the full nonlin-
ear equations of motion for that system. The equations are then output as C or
Fortran source code, which can be compiled and linked into any simulation or
animation environment. The symbolic derivation of the equations provides the
fastest possible simulations. Many substantial systems can be executed in real
time on modest computers.”[21]

2.2.6 Webots

Webots is a commercial software developed by Cyberbotics Ltd. It is “a mo-
bile robotics simulation software that provides you with a rapid prototyping
environment for modeling, programming and simulating mobile robots. The
provided robot libraries enable you to transfer your control programs to sev-
eral commercially available real mobile robots. WebotsTMlets you define and
modify a complete mobile robotics setup, even several different robots sharing
the same environment. For each object, you can define a number of properties,
such as shape, color, texture, mass, friction, etc. You can equip each robot
with a large number of available sensors and actuators. You can program these
robots using your favorite development environment, simulate them and op-
tionally transfer the resulting programs onto your real robots. Webots has been
developed in collaboration with the Swiss Federal Institute of Technology in
Lausanne, thoroughly tested, well documented and continuously maintained for
over 7 years.”[4]

This software already contains models of many existing robots, mostly wheeled
ones. It also contains a representation of a QRIO-like[7]. This is the software I
used for this project.
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Figure 12: Webots stages of development of a robotics simulation

2.2.7 Yobotics

Yobotics Inc. was founded in January 2000 by four graduates of the M.I.T. Leg
Laboratory, and as they say on their web page, they are “a cutting-edge robotic
design, consulting, and research firm specializing in biomimetic robots, pow-
ered leg orthotics, and force-controllable actuators”[19]. Among other fields,
they designed a simulation tool. “The Yobotics Simulation Construction Set is
a full-featured software package for easily and quickly creating simulations of
robots, biomechanical systems, and mechanical devices. With it you can accu-
rately and quickly simulate rigid body physics, access all joint positions, veloc-
ities, and torques, plot real-time graphs of any variable, playback and rewind
your simulations, easily generate 3D graphics with texture mapping and cam-
era controls [...]. The Simulation Construction Set is easy to use, yet powerful
for creating complex simulations of robotic devices. Simulations of multi-joint
devices can be created in a matter of minutes. Arbitrary control can be added
to these devices as each degree of freedom automatically has a simulated actu-
ator associated with it. For power users, the simulations are easily extensible,
as they are implemented in 100% Java, with a well-documented Application
Programmers Interface (API).”[19]

Figure 13: Yobotics simulation screen shot
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3 HOAP-2 Design Specification

3.1 Foreword

This section contains the mechanical datas about the real HOAP-2 robot. I
extracted these informations from the HOAP-2 instruction manual, and from
the inspection report. I also got some results by measuring it on the robot. One
can find here all the informations I needed to design my robot under Webots,
such as link lengths, weights, positions, physical limitations, etc.

3.2 Robot link parameter

During [3], I thought that the specs were false concerning the length of arm link3.
After a few contacts with the real robot, I realized I was wrong. On the other
hand, a few lengths were different from a few centimeters. So I modified my
model in consequence. The table 1 contains the length of every link contained
on the figure 14.

3.3 Joint freedom degree and joint composition

Here there was a few errors in the specs I had during [3]. The user manual is
now more accurate, and there is no errors in it, as far as I know. The table 2
contains the motion and the motion range of every joint from the picture 15.

3.4 Mass property

I now have a very precise definition of the robot body parts weights, what was
really not the case during my last semester project. In HOAP-2 inspection
report, there is the weight of every link belonging to a joint, with the position
of the center of mass of the corresponding link. I also have the inertia tensor
at the center of mass position. These values were given with respect to the
local axis orientation2. So it was really easy the update my model in order
to correspond to the given weights, just by changing the mass field from the
physics node. For the inertia matrices and the center of mass values, it has been
a little bit more difficult, but I will come back to this latter on. The table 3
contains the weight of every joint, and one can find the center of mass position
and inertia tensor values in the inspection report in appendix 12.1.

3.5 Local axes orientations

In HOAP-2 specs, the rotation of every joint is effective around the Z axis. So
the orientation at every joint is different. The figure 16 contains these local
orientations. I will explain in section 5 how I had to modify Webots, in order to
respect this orientation that affect not only the inertia matrix on the concerned
solid, but also its center of mass position.

2See section 3.5.
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Figure 14: Parameter definition of HOAP-2 link length

Link Length (m)
ARM LINK1 0.0995
ARM LINK2 0.101
ARM LINK3 0.146
LEG LINK1 0.039
LEG LINK2 0.100
LEG LINK3 0.100
LEG LINK4 0.037

BODY LINK1 0.090
BODY LINK2 0.034
HEAD LINK1 0.081
HEAD LINK2 0.008
WAIST LINK1 0.055
WAIST LINK2 0.034

Table 1: HOAP-2 link length
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Figure 15: HOAP-2 joints positions

Figure 16: HOAP-2 local axes orientations
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Part Joint name Motion Motion range[deg]
Min. Max.

Right
leg

RLEG JOINT[1] Thigh joint
twist -91 31

RLEG JOINT[2] Thigh joint
left & right -31 21

RLEG JOINT[3] Thigh front
& back -82 71

RLEG JOINT[4] Knee -1 130

RLEG JOINT[5] Ankle front
& back -61 61

RLEG JOINT[6] Ankle left &
right -25 25

Left
leg

LLEG JOINT[1] Thigh joint
twist -31 91

LLEG JOINT[2] Thigh joint
left & right -21 31

LLEG JOINT[3] Thigh front
& back -82 71

LLEG JOINT[4] Knee -1 130

LLEG JOINT[5] Ankle front
& back -61 61

LLEG JOINT[6] Ankle left &
right -25 25

Right
arm

RARM JOINT[1] Shoulder
front & back -91 151

RARM JOINT[2] Shoulder left
& right -96 1

RARM JOINT[3] Shoulder
twist -91 91

RARM JOINT[4] Elbow -115 1

RARM JOINT[5] Finger open
& close -60 60

Left
arm

LARM JOINT[1] Shoulder
front & back -91 151

LARM JOINT[2] Shoulder left
& right -1 96

LARM JOINT[3] Shoulder
twist -91 91

LARM JOINT[4] Elbow -115 1

LARM JOINT[5] Finger open
& close -60 60

Waist BODY JOINT[1] Waist front
& back -1 90

Head
HEAD JOINT[1] Neck twist -60 60

HEAD JOINT[2] Head front &
back -15 60

Table 2: HOAP-2 joint location and allowance motion
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Joint Weight ([kg])
R LEG JOINT 1 3.93880−2

L 3.93880−2

R LEG JOINT 2 1.72696−1

L 1.72696−1

R LEG JOINT 3 4.38575−1

L 4.38537−1

R LEG JOINT 4 2.85982−1

L 2.85827−1

R LEG JOINT 5 1.71128−1

L 1.71128−1

R LEG JOINT 6 1.36753−1

L 1.36753−1

R ARM JOINT 1 1.99031−1

L 1.99031−1

R ARM JOINT 2 2.01439−1

L 2.01439−1

R ARM JOINT 3 2.20645−1

L 2.18287−1

R ARM JOINT 4 1.67552−1

L 1.67592−1

R ARM JOINT 5 0.47200−1

L 0.47200−1

HEAD JOINT 1 2.08892−2

HEAD JOINT 2 6.69886−2

BODY JOINT 1 2.37622+0

BODY JOINT 2 4.97680−1

Total 7.0256448

Table 3: HOAP-2 weights

3.6 Joints angle values

On the real robot, joints angle values are expressed in pulse, one degree being
equal to ± 209 [pulses]. In fact, for some joints, you divide the value in pulses
by 209 to get the value in degrees, and for some other joints, you divide the
value by -209[2].

3.7 Initialization and initial position

Before using the HOAP-2 it has to be initialized. You can see on figure 17
how it has to be done. This procedure will allow the robot to know its current
position, and has to be done every time you start working with it.

Once that the robot has been initialized, it can be used, and the motors can
be set to angle values. If you set all motors to an angle value of 0[pulse], it is
then in its initial position. This is really important to know this position. And
one needs to respect it when one designs a simulator, otherwise the angle values
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Figure 17: HOAP-2 initialization consists in putting the robot in a very precise
position on a jig. The purpose of this manipulation is to put the robot on a
known position (start position), and to pre-set the encoders counters of the joints
in that posture. By knowing its start position, the robot can then calculate its
current position.

will not be correct when you set them on the simulated robot. The figure 18
shows that initial position. You maybe realize that the real robot seems to be
leaning ahead a little bit. I will come back to this in section 3.9.1.

3.8 Joints limitations

The joints on the real robot have of course limitations. Every joint has an allow-
able movement range, included between a maximum and a minimum position
(see table 2). It also has a maximum speed and a maximum acceleration that
it can not exceed. And last but not least, there is a maximum torque that can
be applied to a joint, if you do not want to break it.

In the HOAP-2 user manual, one can find the min and max positions for
every joint. But there is not the maximum speed and acceleration, so it had
to be measured on the real robot. The EPFL ASL3 laboratory calculated that
the maximum speed for every joint was 57[pulse/ms], and that the maximum
acceleration was about 5[pulse/ms2]. But this first value depends on the kind of
command that is sent to the robot, and the second of the value of the surround-
ings joints. This maximum speed value is the default value in the mode direct
command, but it can be raised up to 70 by the user, by changing the value of a
register. In the other mode (fixed command), the maximum speed that can be
reached is 114[pulse/ms]. For the maximum acceleration, these 5[pulse/ms2] is
to some extent the smallest maximum value that can be reached by every joint,
in whatever position. Some joints, in some special positions, can reach higher
accelerations. The maximum acceleration depends not only on the joint, but
also on the angle value of the other joints, for example the shoulder acceleration
depends on the value of the elbow joint, so it is impossible to know precisely
this value in every situation[15].

The robot has hardware protections, preventing the user to set a too high
joint value (an out of bounds one). If the value is out of bounds, the motor
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Figure 18: HOAP-2 initial position

stops a few pulse before the limit. So one can not exceed the fixed range. But
as far as I know, there is no protection if the user sets a value too different from
the current joint position (not reachable in the given time at max velocity). So
one must be careful not to exceed the maximum speed.[15]

Concerning the maximum torque, there was no information about it in the
instruction manual, and the ASL3 lab has unfortunately not calculated these
values.

3.9 Backlash

3.9.1 Definition

The backlash is the purposeful clearance between mating components, or the
play between mating teeth, and it is present in most mechanical systems (see
figure 19). Without backlash, a system would be subject to overloading and
overheating, and then as a consequence, the failure of the whole system. The
backlash allows also a good lubrication of the teeth, what is important. One can
then easily understand that the backlash is necessary, and can not be completely
avoided. And it is also important to realize that the backlash is not constant
for a system, as the teeth are not all perfectly identical, and that the wear
increases backlash over time. The consequence of this backlash is of course the
decrease of the control performance, and this problem is a well known one in
robotics[8][9][10].

3.9.2 HOAP-2 backlash

On HOAP-2, there is backlash. Effectively, when the robot is in its initial po-
sition (all motors in position 0), the robot is not able to stand in a perfectly
vertical position (see figure 20). I calculated the difference between the “perfect”
initial position, and the “backlashed” initial position with the help of the two
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Figure 19: Backlash

pictures, and of the measure tool of the Gimp software 3, allowing to measure
angles, because it was impossible to calculate this precisely on the real robot
with the tools I had in my possession. And I realized that there was about 2[o]
of difference with the [R and L]leg5 joints (ankle front and rear), and also about
2[o] difference with the [R and L]leg3 joints (hips front and rear). These angles
are represented by the red lines in figure 20.

Figure 20: In the top left picture, the robot is leaning ahead a little bit, due to
the backlash. But if the robot is hold, as in the top right picture, the robot then
stands in a perfectly vertical position, and its arms are perfectly horizontal. If
one keeps the robot in the same motors position, but just hang the robot in the
air, or lean it on its back, as in the bottom picture, then one observes that the
feet stand perfectly at the wanted position. This is then effectively backlash,
and the robot is bending under its own weight.

3www.gimp.org
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As a test to see the accuracy of my measurements, I did the three pictures
of the figure 21. It is pretty hard to realize that there is two robots on the last
picture of figure 21. But that is exactly what I wanted to demonstrate: after
these two transformations of 2[o], the position is then virtually the same.

Figure 21: The left picture is just both initial positions (the one with backlash,
and the one without) superposed with transparency on the same picture. The
picture from the middle is the bended initial position, but I rotated parts of the
picture with the help of Gimp, the whole robot by 2[o] around the leg5 joints,
and the torso and arms by 2[o] around the leg3 joints. The right picture is the
incrustation of the picture of the middle, in the picture of the robot without
backlash (top right of figure 20)
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4 Webots design of the robot

4.1 Foreword

My simulator is contained in the hoap2.wbt Webots’ world. I will not explain
clearly here how I designed it under Webots, since it is not really exciting or
interesting. Basically, I just followed the instructions explained on the Webots
user manual on how to design a new robot under Webots. I used both the scene
tree editor and a simple text editor to write it. In the section 6, you can find a
few hints and recommendations on how to design a new robot easily.

Figure 22: HOAP-2 robot and its Webots model

4.2 Modifications of the semester project model

A few weeks before the end of my semester project[3], I still had no precise specs
of the robot. I found a very precise scale drawing (see figure 23) of the robot, on
the Fujitsu Japan web site a few days before the dead line, so it was to late to
take care of this during this semester project. At the beginning of my diploma
work, I have also been given two very important docs: the HOAP-2 instruction
manual[2] 4, and the inspection report 5 of the robot the EPFL bought. This
last document has been made by Fujitsu’s Engineers, and it is the very precise
specifications of the robot. Basically, after they built the robot, they studied
every part of the robot, every joint 6, every sensor, etc. And then they came
with that document, concerning only our robot, containing, for every joint, the
mass values, center of mass positions, and inertia matrices 7, precise at 10−5[kg]
and 10−5[mm]. And all of this for every single joint. So it was very useful for
the realization of my simulator.

So I had in my possession a very precise design of the shapes, and of the
weight of the different parts of the robot. I also had almost permanent access
to the real robot. I shall then be able to design an accurate model of it.

4This document was to big to find its place in this report, but it is easy to find it on Fujitsu
website, so I did not put it as an appendix.

5See Appendix 12.1.
6For the real robot, I will talk of joints and of motors. In Webots the name servo is used

to design whatever kind of servo motor.
7This is a matrix that describes how the body’s mass is distributed around the center of

mass.
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Figure 23: HOAP-2 scale drawing

4.3 Robot nodes

The table 4 is an overview of the hoap2 world definition, including the HOAP-2
robot. The Webots version is the 5.0.0.. The level of indentation of the text
reflects the hierarchy in the model.

4.4 Shapes

I had already designed the shapes of the robot during[3], using a software called
Art Of Illusion (AOI) 8. It is a free, open source 3D modeling and rendering
studio, entirely written in Java. I only changed a few details from these initial
shapes, like their sizes, when they were not correct (just remember that I had
no precise data about the size of the shapes during[3]). I also changed the shape
of the battery. But most of the time I just had to rescale the shapes.

8http://www.artofillusion.org
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# Webots version 5.0.0
# Hoap-2 world ”hoap2.wbt” – structure of the world
# Lists the structure of the world, and for the robots the servo and sensor structure
WorldInfo ”Model of a hoap-2”

”Pascal Cominoli”
”Date: WINTER 2004-05”

Viewpoint
Background
PointLight
PointLight
GROUND Solid
TATAMI Solid ”ground”

WHITE CENTER Shape texture ”hoap2/fuji.png”
RED BORDER Shape
STAGE Shape

CustomRobot ”Hoap2 0”
back 1 0 Servo ”body joint 1”

left hip 1 0 Servo ”lleg joint 1”
left hip 3 0 Servo ”lleg joint 3”

left hip 2 0 Servo ”lleg joint 2”
left knee 0 Servo ”lleg joint 4”

left ankle 1 0 Servo ”lleg joint 5”
left ankle 2 0 Servo ”lleg joint 6”

TouchSensor ”left touch”
right hip 1 0 Servo ”rleg joint 1”

right hip 3 0 Servo ”rleg joint 3”
right hip 2 0 Servo ”rleg joint 2”

right knee 0 Servo ”rleg joint 4”
right ankle 1 0 Servo ”rleg joint 5”

right ankle 2 0 Servo ”rleg joint 6”
TouchSensor ”right touch”

left shoulder 1 0 Servo ”larm joint 1”
left shoulder 2 0 Servo ”larm joint 2”

left shoulder 3 0 Servo ”larm joint 3”
left elbow 0 Servo ”larm joint 4”

left hand 1 0 Servo ”larm joint 5”
right shoulder 1 0 Servo ”rarm joint 1”

right shoulder 2 0 Servo ”rarm joint 2”
right shoulder 3 0 Servo ”rarm joint 3”

right elbow 0 Servo ”rarm joint 4”
right hand 1 0 Servo ”rarm joint 5”

neck 0 Servo ”head joint 1”
neck tilt 0 Servo ”head joint 2”

Emitter ”emitter” range 100
GPS ”gps”
controller ”hoap2”

Table 4: hoap2 world definition
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Figure 24: hoap2 initial position

4.5 Joints

4.5.1 Initial position

I did not know the initial position (see figure 24) of the robot during[3]. So
as soon as I knew it, I modified my model accordingly. Basically I rotated the
shapes that were not oriented correctly, and I changed the positions of some
joints, to correspond with the robot initial position. So if you set a joint at
a certain position on the real robot, the position is exactly the same on the
simulated robot, what is of course mandatory for a simulator. As I already told
you, the real robot suffers some backlash 9. I will explain in section 4.5.3 how I
tried to adapt my model to correct this problem.

4.5.2 Joints limitations

It was really important to respect the real robot joints restrictions on the simu-
lated robot, because it is crucial that prohibited or impossible moves on a real
robot are not realizable on the simulated one. Otherwise when one will export
its simulation on a real robot, one will be really disappointed to see that the
real robot can not perform this move, or one could be far more than just disap-
pointed, if this impossible move broke an arm of the robot. So one can easily
understand that only the moves allowed on the real robot should be allowed on
the simulated one.

For the maximum velocity and maximum acceleration, as I said in sec-
tion 3.8, there is no precise values valuable in every situation, and some values
are reachable only in special cases. So it can not be precisely set in a simulator.
So I decided to set the maximum speed of the joints in my simulator at the value
of 57[pulse/ms], which is a value that can be reached by every joint in whatever
situation and whatever kind of command sent to the robot. But one must just
keep in mind that this value is only the default value of the real robot, and that
if the user decides to change this value contained in a register to a smaller value,
this could be problematic. But on the usual cases, users are not supposed to
change this register. For the maximum acceleration, I used the 5[pulse/ms2]

9see section 3.9.1

34



value, which is a already good approximation, since I am sure that every joint
is able to reach at least this value.

In Webots, one can set these min positions, max acceleration, etc. values,
in the servo node. I let you have a look at the section 6 to see how one can set
these fields.

So if one asks for an impossible move, for example if a joint value is 0.0[rd]
at time T, and you set it at 1.0[rd] (with a controller or with Webots’ sliders)
at time T+1ms, then you will see the joint reach max acceleration, then max
speed, then slow down, and finally stop smoothly at position 1.0 after a lot more
than just 1ms.

But this will not prevent the user to upload this controller on the real robot,
and then maybe damage it. The only thing it does is that the simulated robot
will perform the asked move as fast as it can, respecting the real joints specs. So
we decided to implement a procedure directly in Webots source code, showing a
warning in the log window when one is asking too much to a joint 10. So one is
sure that if one’s controller functions properly and without warnings on Webots,
it can be safely uploaded on the HOAP-2.

4.5.3 Backlash consequence on the simulator

Now that we know that there is backlash on HOAP-2, we need to find a way
to take care of this in Webots. The motors I use in simulation are effectively
supposed to be perfect ones, and without backlash. But in real life, a motor
is never perfect. Two motors engineered on the same construction line, by
the same tools, will not be 100% identical. There is always a few differences.
The backlash is another problem that is very difficult to realize perfectly in
simulation, since it depends on the kind of motor, on the weight of the robot,
on its construction, on the motor wear, and as I said is not perfectly constant
on a single motor. Webots 5.0.0 does not handle the motor backlash (and I do
not know if it will in the future), and I had not the time to implement it by
myself. So I could not render this realistically, and the only thing I could do
during this project, was to modify the angle values of the initial position of my
simulated robot, to make it bend like the real one, as you can see in figure 25 11.

Figure 25: This modified initial position consists just in setting the servos from
the ankle (front and rear) and from the hips(front and rear) to a value of 2[o]

10At the time I was handing this report, this was still a project, and its implementation
had not been done by Olivier.

11See section 8.
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5 Changes introduced in Webots

Working on the design of my HOAP-2 model, I sometimes realized that there
were bugs –or things that we could simply not do– in Webots. Then it was
always the occasion of big talks between me and Olivier Michel, searching for
how to correct the bug, or how to implement a new functionality that would be
really useful for me, and for the next users.

For example, on a previous Webots version (<4.0.27), a servo’s center of
mass and center of rotation were indissociable. And we can reasonably assume
that it is rarely the case in robotics. So Olivier implemented a new field, allowing
to move the center of rotation of a servo, the center of mass being the center
of the servo. But I succeeded in convincing him that it was not appropriate for
the design of a robot.

Effectively, when one designs a new robot, most of the time, what one is sure
of, is the relative position of the servos, not the positions of the different centers
of mass. For example in my situation, during [3], I knew perfectly the positions
of the servos, but I had not a single clue about the centers of mass positions.
Hence, if I had to design my robot starting from the positions of the centers of
mass, I would have had to imagine where they were, and then to displace every
center of rotation to its well known position. And if I suddenly realized that
one center of mass was not where I thought it should be, I would have had to
modify its position, then the position of the corresponding center of rotation,
and then do exactly the same for every servo inheriting from this servo, moving
center of mass, and then center of rotation. It would really not be practical.

And even now that I have precise position of both centers of mass and of cen-
ters of rotation, I really do not think it would be convenient to base everything
on the centers of mass. I do know the positions of the centers of rotation. And
theses values are fixed and will never change. But I will maybe have to modify
by a few the center of mass’ positions, to be more accurate with real robot 12. If
centers of rotation position was dependent of centers of mass position, it would
be a big mess to rearrange it every time I think I should displace a center of
mass by a few millimeters.

So we managed it the other way, having the center of the servo (its transla-
tion) as the center of rotation, and then allowing the user to displace the center
of mass, if he wants to. With an additional field (Joint), it is also possible to
displace the servos center of rotation (as an offset from the translation). I did
not use this last field, but it had been added to Webots for a long time. Due to
the ascendant compatibility that Olivier Michel wants to keep on his software,
we kept this node.

But I then realized that there was a problem with the center of mass posi-
tion. We had decided to enter its value in the inertiaMatrix field, the three firsts
of its values being it (as it is implemented in ODE 13). But it didn’t seem to
have a single effect on the simulation. Having, for a servo, its center of mass in
(0,0,0) or in (10,0,0) –so ten meters away, there was no reaction. After searching

12See section 8.
13As you probably know, Webots relies on ODE for every physics simulation.
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a little bit, on ODE forums and archives, I became conscious that on ODE, the
center of mass position was always equal to the body center position (=(0,0,0)),
and that there is no way of changing it. Hence, moving it to a different position
was not even taken in account.

We then again had to modify Webots software. Instead of letting the body
in this position, and moving its center of mass, we decided to translate the whole
body, at the position where we wanted to put the center of mass. Hence the
center of mass was still in (0,0,0), and everything was fine. In fact, we created
the ODE bodies at the position of their center of mass. Then, after ODE has
calculated all the physics at time t, and its effects on the bodies, we translated
every body back to the wanted position (basically, we applied the inverse trans-
formation than the one that was applied on the body). We used for this two
new fields: translation and rotation, both located in the physics node. The
field translation contains the position of the center of mass, relative to the local
axes. These local axes are taken from the rotation node. We effectively added
the possibility to give a new orientation to a servo, allowing for example the
user to have rotations always effective around the same axis. In the inspection
report, I had inertia matrices and center of mass positions that were relative to
every servo given orientation (corresponding to a rotation around the Z axis).
This new rotation field allows the user to modify the local orientation of the
axes. If we had not implemented that new functionality, I would have had to
rotate every inertia matrix and center of mass position, to be corresponding
with Webots axes orientation.

Olivier then gave me the sources of Webots, and let me add this new func-
tionality by myself. As I already said, we wanted to implement to following:

• The center of mass of a solid is located at a position equal to the body
translation field, plus the offset represented by the field translation from
the Physics node.

• The position of this center of mass can be rotated. This rotation also
rotate the inertia matrix of the solid. This rotation is contained in the
rotation field from the Physics node.

So I had to face two main problems: displace and rotate the center of mass,
but also rotate the mass. But first of all, let me just explain quickly what are a
Body and a Geom in ODE.

Body An ODE Body has various properties from the point of view of the
simulation. Some properties change over time, like the position vector and the
orientation. Some other properties are usually constant over time: the mass,
the position of the center of mass, and the inertia matrix (this is a 3x3 matrix
that describes how the body’s mass is distributed around the center of mass).
It is equivalent to the Solid node in Webots.

Geom Geometry objects (or “geoms” for short) are the fundamental objects
in the collision system. A geom is usually represented as a single rigid shape
(such as a sphere or box). The geom is used by ODE to calculate the collisions
between objects. The easiest way to represent it, is to see it as a box surrounding
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the object, and that is used to calculate collision detection with the other objects
geom, without caring of the object real shape. It is equal to the BoundingObject
in Webots.

Conceptually each body has an x-y-z coordinate frame embedded in it, that
moves and rotates with the body, as shown in figure 26.

Figure 26: ODE body coordinate frame

To use the collision engine in a rigid body simulation, geoms are associated
with body objects. This allows the collision engine to get the position and
orientation of the geoms from the bodies. Note that geoms are distinct from
rigid bodies in that a geom has geometrical properties (size, shape, position and
orientation) but no dynamical properties (such as velocity or mass). A body
and a geom together represent all the properties of the simulated object. [23]

So I had to take care of this in four Webots functions:
createGeomFromTransform (sets the geom for a body), setBody (sets the
corresponding body), runAfter (recover the body position after ODE applied
the involved forces on the bodies, in order to display them correctly under
Webots), and addMass (assigns a mass to a body).

−→
V 1 = BoundingObject->translation
−→
V 2 = Physics->translation

createGeomFromTransform() The center of mass (CoM) is the center
of the ODE body. But I want to have the center of my bounding ob-
ject in the position BO. So I have to subtract the Physics->translation to
the BoundingObject->translation in order to get back to the bounding ob-
ject 14. But we must not forget that the translation contained in the Physics

14Bounding object position inherits from the corresponding body’s position. So this trans-
lation is only locally effective.
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node might be rotated by Physics->rotation. So I have to rotate the vec-
tor Physics->translation by the rotation Physics->rotation before withdraw-
ing it from the BoundingObject->translation. And it all goes with matri-
ces calculations. I calculated the Rotation Matrix with the ODE function
dRFromAxisAndAngle, that takes a vector and an angle (here equal to the
Physics->rotation field), and returns a rotation matrix. I then had to multi-
ply my vector Physics->translation by this rotation matrix, to get my vector
correctly rotated. Mathematically: a b c

d e f
g h i


︸ ︷︷ ︸
−−−−−−−−−−−−→
Rotation Matrix

×

 X
Y
Z


︸ ︷︷ ︸

−−−−−−−−−−−−−−−−−−→
physics− > translation

=

 a ∗X + b ∗ Y + c ∗ Z
d ∗X + e ∗ Y + f ∗ Z
g ∗X + h ∗ Y + i ∗ Z


︸ ︷︷ ︸

−−−→
result

I can then set my geom to the position −−−−−−−−−−−−−−−−−−−−−−→BoundingObject->translation - −−−→result.
Concerning its rotation, I just have to rotate the BO with the possible rotation
BoundingObject->rotation. I do not need to care with the body rotation, since
as I said, the BO inherits from its body translation and rotation.

setBody() The CoM is the position at which I want to set the body, but
this body is by default at the position SOLID (equal to Solid->translation).
So I have to take the field Physics->translation from the Solid node, and rotate
it by the field Physics->rotation, and then again by the field Solid->rotation,
which is the orientation of the solid in the world, and changes throughout the
simulation. The vector obtained is then added to the field Solid->translation,
to get the position of the center of mass of this solid. Finally, I set the rotation
of the solid, that is equal to the rotation contained in the matrix solid.matrix[],
that is the OpenGL 4x4 matrix, maintained by Webots to know the absolute
transformation that gives the position and orientation of a Solid. Then we check
if the body has children, and if it is the case, we apply recursively the setBody()
function on them.

runAfter() This is the procedure that took me the most time to correct.
I had to recover the body positions after ODE made its job and applied the
physics on the different bodies that are concerned by the physic. Basically, I
had to compute exactly the inverse transformation that I applied on the body
in the setBody function. So I had to go from the CoM position that ODE
knows, to the body position. For this, I took the relative position of the current
body center of mass (−→V 2), that I rotated by the Physics->translation, to get
its rotated position. I then had to rotate this point by the body orientation by
using the body rotation contained in solid.matrix[]. If this body has no parents,
then the position of the body is the body position returned by ODE, at which I
subtracted the vector I got from the previous matrix calculations. On the other
hand, if the body has a parent, we need to get the position relative to its parent,
because it has been constructed this way. So we need to get the body position
relatively to its parent, in order to set its position and rotation relatively to its
parent. I used for this the ODE::dBodyGetPosRelPoint() function, that takes
a point in global coordinates and returns the point’s position in body-relative
coordinates. The problem is that the point it gives us back is the CoM position
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of the ODE body, and I need the Webots body position. So I need to rotate the−→
V 2 vector of its parent by the Physics->rotation of its parent, and then add the
result to the previously got vector, to finally get what I wanted.

addMass The best way I found to rotate the mass (and trust me, I tried
many) was to do it before it was assigned to a body. So in the procedure
addMass(), I checked if the field Physics->rotation was set, and in this case
I applied the corresponding rotation to the mass. This rotation induces a
rotation of the inertia matrix from the corresponding body, but does not
modify the position and the orientation of the body. It is only the effect of the
mass on the body that is changed.

5.1 Evaluation of my new Webots version

Before I could go any further, I had to verify that this new Webots version was
correctly calculating the physics. So I designed some little worlds with just a
few simple boxes to test the improvements, as one can see in the two examples
from figures 27 and 28. And I got really good results. So now that Webots
had been improved, and that the results I got with simple physic tests seemed
correct, I was able to continue the development of my simulator 15.

15For more informations about these modifications, see section 6, and I will also let you
have a look at Webots change log, and at its user guide and reference manual, available on its
website.
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Figure 27: This world only contains a white floor (in fact an elevated tatami)
and a red box. I designed it to test if the center of mass rotation was correctly
effective, by putting the box on the edge of the tatami, with the box center that
was on the tatami, and by moving and rotating the center of mass to a position
that was outside the tatami. By doing it while Webots was in run mode, one
could see exactly when the balance limit was reach. And it was when the center
of mass was outside the tatami. So one can say that this test is a valid one.

Figure 28: This world contains three boxes and a floor (light green). The brown
box is standing on the red one, and an extra blue box is standing on the brown
on. The little cross in the middle of the brown box is its center (SOLID). One
can see that it is centered perfectly on the red box. The other cross on the left
side of the top face is the position of the box center of mass. The blue box is
then situated at exactly the same distance from the middle of the brown box,
than the center of mass. Both brown and blue boxes weight exactly the same.
So physically, the system is supposed to be stable, as both masses are at equal
distance at the point at which the forces are effective (the contact point between
brown and red boxes). And if one runs the simulation, the system happens to
be effectively stable, as it stands in this position and does not fall. But as soon
as the blue box or the center of mass of the brown box are displaced by a little
offset, system becomes unstable, and the three boxes fall on the ground. So
again, the test is valid.
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6 How to design a new (humanoid) robot on
Webots

As I already said, this project was the first one, which aim was to develop a very
precise simulation of a real humanoid robot on Webots. The QRIO model was
the first humanoid developed on Webots, but it had been done without a single
precise information about the real robot. They did not get the specs from Sony,
and they had to recover the shapes from pictures (as I did during [3], before
having precise specs). They had no weights, velocity, etc information. And
they also had no real QRIO to make experiments, to check if their model was
accurate. For me it was totally different, while I had access to the real robot,
and had precise specs. I think thanks to my work, one is now able to design
quite easily whatever kind of humanoid robot in Webots. There has been a lot
of Webots updates since this project about QRIO[7]. And a lot of things have
changed. So here is a little procedure, about how to design a new humanoid
robot on Webots, and a little explanation of every important node and fields. I
won’t talk here about the very first nodes, like the WorldInfo, or the definition
of the ground. I won’t neither talk about the way one creates and inserts nodes
using the scene tree window. Please refer to [4] for further informations, if
needed. The easiest way to perform such a design is probably to do it with the
scene tree editor of Webots. During[3], I worked only with a simple text editor,
and did not use the scene tree editor. But now, it has been a lot improved, and
is a lot more stable.

But before starting with this little tutorial, I just would like to warn you. In
this section, I will introduce two new fields contained in the physics node, called
physics->translation and physics->rotation. I implemented this on Webots,
and it is working just fine (see section 5). But the names of these two fields
might change very soon, as we were unsure with Olivier of the correct names
for it. So maybe these names will be changed to something like centerOfMass
for the first one, and orientation for the second one. But the location, the
use and the functionality of it will not change. During my diploma (winter
2004-2005), the current Webots version was Webots 5.0.0.. I just hope that
this protocol will still be valid for the next versions 16.

The first node one will need is a CustomRobot node (1 17). Its position in
space (its translation and rotation fields (2)) is somehow the initial position
of your robot. As its children (3), one has a transform node containing the
corresponding shape, the torso for example (21). The other children will be the
servos, respecting the hierarchy. In my case for example, I had the body servo
(4), the left shoulder servo (front and rear) (5), the right shoulder servo (front
and rear) (6), the neck servo (20), etc. One can give them a DEF name for
every of them, but this is not mandatory. On the other hand, you should give
them a name. It will allow you to get them back in the controllers you will write
to control your robot.

16Depending on the current Webots version at the time when you begin your design, you
would better read the reference manual, or even ask Olivier Michel, before starting, to be sure
that there has not been too many modifications since I wrote this report.

17See figure 29.
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Figure 29: Webots scene tree

And then one continue the hierarchy, with the following servos. For example,
the children (9) of the right shoulder servo (front and rear) will be the right
shoulder servo (right and left) (10), and so on, until the hand servos. And for
every servo node, as its second child, one has the shape of the corresponding
body part, if needed. Every servo will contain in its translation field (7) the
translation needed to go from previous servo, to the current one. Here for
example, the right shoulder servo is located (-0.0995,0.09,-0.0315) meters from
the initial position 2 –notice also that translations are expressed in meters. This
position is the center of rotation of the servo. If for whatever reason you would
like to displace it, you can put an offset in the Joint field (14).

In its rotation field (8), one will insert the axis around which the servo is
rotating. For example if the rotation is effective around the X axis, one would
put rotation 1 0 0 0.
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For every servo, one needs also to set its boundingObject (12). This bounding
object is needed to perform the collisions detections. One can design it as
accurate as one needs it to be. There is many predefined shapes, like boxes,
cylinders, but one can also use complex shapes, like the precise shape of the
corresponding body part. But the most complex your bounding object will be,
the slower the simulation will run. Predefined shapes are already good enough
for usual cases. This bounding object can be a Transform node or directly a
shape. Use a Transform node if the boundingObject is not centered around the
current body origin, or if you need to rotate the bounding object.

If many servos or solids are defined at the same position 18, one does not
need to design a shape and a bounding box for each of them. One just has to
design it for one of them (usually the last servo/solid in the hierarchy), and then
either one does not define the unwanted bounding objects, or defines them with
very small sizes (∼ 0.001).

The maxVelocity (15), maxForce (16), controlIP (17) and acceleration (18)
are all used to control the rotation of the servo. Refer to the user manual for
more informations. Both maxPosition and minPosition (19) define the servo
allowable movement range for the corresponding servo. The values are radians
angles. They can be positive or negative.

If one wants to design a precise simulator, one needs precise physics defi-
nitions. This is easily feasible, thanks to the physics (13) node. In this node,
there is many fields:

Figure 30: Webots physics tree

• translation (26): this allows to translate the center of mass of the corre-
sponding solid (or servo). By default, the center of mass position is equal
to the rotation center (the translation field (7) of the servo node). But it
is seldom the case in robotics. So the value of this translation field is the
offset added to the position of the servo, to reach the center of mass.

18For example in the shoulder, there is often much more than just a single servo, since one
performs the right-left rotation (6), an other one the front-rear (10), etc.
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• density and mass (22): one can set one of these fields to the value of
density or mass of the current servo. If one defines a density, the mass
must be set to -1. If one sets the mass to a value, then it is the density
that must be set to -1.

• inertiaMatrix (23): as its name shows it, it contains the inertia matrix of
the servo. It contains 9 values, even if only the last 6 are used: (COM1,
COM2, COM3, I11, I22, I33, I12, I13, I23), represented as follow:

inertiaMatrix =

 I11 I12 I13
I12 I22 I23
I13 I23 I33


COM1-3 should always be set to zero. We only realized recently that these
three first values are not used by ODE 19. But we decided to let it this
way, to keep ascendant compatibility. Effectively, the field inertiaMatrix
is present in Webots for a long time. We did not want to change it. If
one does not set these three first values to zero, one will get a warning.
As you already know, the center of mass position is set thanks to the
translation (26) field from the Physics node. This matrix is ignored if this
field contains not exactly 9 values.

• bounce and bounceVelocity (24): the bounce parameter defines the bounci-
ness of a solid. This restitution parameter is a floating point value ranging
from 0 to 1. 0 means that the surfaces are not bouncy at all, 1 is maximum
bounciness. When two solids hit each other, the resulting bounciness is
the average of the bounce parameter of each solid. If a solid has no Physics
node, and hence no bounce parameter defined, the bounce parameter of
the other solid is used. The bounceVelocity parameter defines the mini-
mum incoming velocity necessary for bounce. Incoming velocities below
this will effectively have a bounce parameter of 0.

• coulombFriction and forceDependentSlip (25): The coulombFriction pa-
rameter defines the friction parameter which applies to the solid regardless
of its velocity. Friction approximation in ODE relies on the Coulomb fric-
tion model and is documented in the ODE documentation. The forceDe-
pendentSlip parameter defines the force-dependent-slip (FDS) for friction,
as explained in the ODE documentation. FDS is an effect that causes the
contacting surfaces to side past each other with a velocity that is propor-
tional to the force that is being applied tangentially to that surface. If you
have no idea of values for these two fields, just put values like 0.995 for
the coulombFriction, and around 0.005 for the forceDependentSlip. This is
just to be sure that you will not have the kind of strange behaviors, that
one can have if these fields are at their default values.

• rotation (27): this field is useful for modifying the orientation of the local
axes. Sometimes in robotics, a convention specifies that a rotation is
always effective around the Z axis. But it is not the case in Webots. This
field allows then one to modify the local orientation of the axes. This will
of course affect the position of the center of mass, and the values of the
inertia matrix.

19See section 5.
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7 Controllers developed

7.1 csv2Webots

The purpose of this controller is to allow the user to run a csv 20 file on the
simulated robot. This controller does the following:
When one runs the world, it will ask for a (csv) file. The program will idle until
one will provide it with a file. When it finds it, it first interpolates the moves
from its initial position, to the start position of the file. One will then see the
robot move smoothly until the start position of your file (basically the first line)
is reached. Then it will execute the position file. At the end of the file, it will
ask for the next file to be executed. If one is not running a file, one can move the
robot with the sliders, what allows to start the simulation in whatever wanted
position.

7.2 hoap2moves

The purpose of this controller is to allow the user to give the wanted position
for a servo as a text input, and to watch the robot smoothly reach this position.
An interpolation is effectively set between the current position and the wanted
position, in order to have smooth and safe moves. The working of this controller
is easy: on the standard input, one can see the value of every servo, in radians
and in pulse 21. Then, to increase the servo number 04 by 0.3 radians, one just
writes 04 0.3 and press return. One can also reset a single servo position to
its initial value (0 ), or reset every servo at the same time. To reset a single
servo, one puts the servo number, followed by an angle of 9. To reset all servos,
one puts whatever number of servo, followed by 666 as the angle. It is also
possible to write the current position to a csv file, by putting the angle value
as 999 (and whatever servo number). This is very useful, for example when I
was doing balance tests, it allowed me to bend smoothly the robot, and as soon
as the robot reached the ultimate balance posture, I asked for this csv file, and
then I could very easily test it on the real robot, with exactly the same file, to
verify if my model was accurate.

7.3 postures protocol

This one was very useful to me, and will also be to the next people in charge
of the updating of the simulator. This controller (and its dedicated supervisor)
performs 16 balance tests, measuring the maximum angle that can be applied
to some servos, before the fall of the robot. This fall is recognized thanks to
foot sensors I put on the feet of the robot. When the value returned by the foot
sensor is different from 1, it means that the robot is falling, because one foot is
loosing contact with the ground.

For example for the first test (leg3 Back) 22, both lleg3 and rleg3 are incre-
mented at every step by a small amount of angle, until the robot fall. And at

20A csv file is a position file, containing, every X ms (usually 2ms), the position for every
motor, a line in this text file being one time step. These files can be easily generated on
the HOAP-2 computer. Some demo csv files were also provided with the robot, like the m01
walking sequence.

21The pulse is the unity used by the robot, and 1 degree is equal to 209[pulse].
22See section 8.
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every step, the robot controller sends to its supervisor the current angle value
(the angle is the same for both servos, so one only needs to know the value
for one of them), followed by the touch sensor value. At the same time, the
supervisor sends to the robot the number of the test to perform (1-16). As soon
as one foot sensor is different from 1 (value that the sensor has when the foot
is on the ground), then the supervisor realizes that the robot is falling, records
the current angle value the robot sent him, and finally reload the simulation,
asking the robot to perform the next test. At the end of the tests, the supervisor
writes the results for the 16 tests in a text file. This file contains the measured
value for each of the sixteen tests, followed by the real value 23, and then by
the difference between the two, what is a good way of evaluating the current
version of the simulator. Thanks to this controller, it is then really easy to
perform postures and balance tests on a new model of the hoap2. One just has
to run this new world with these two controllers, and collect the results to see
the accuracy of the new world. And by running it in fast mode, only about ten
minutes are necessary to have the complete evaluation.

23See section 8.
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8 Postures protocol

The goal of this diploma work was the realization of an accurate simulator of
a real HOAP-2. So my simulator should react exactly like the real one. Hence
it does not only concern the fact that when one applies some angle to a servo,
it shall apply exactly the same angle on my simulator. Physics must also be
reacting correctly. I then took a lot of time to proceed to precise measurements
of balance tests. I first performed the tests on the real robot, by choosing some
“key” moves. I chose 16 moves, reflecting well the effect off the gravity on
the robot 24. For every test, I started from the initial position of the robot,
and then slowly incremented (or decremented) one or two servos, to have a
symmetrical move. For example for test one, I incremented both LLEG JOINT3
and RLEG JOINT3 (front and rear thigh joint), until the fall. It is not really
easy and safe to do it on a real robot, but I managed it by hanging the robot,
and then uploading a csv file corresponding to the wanted final position. I then
put the robot on a flat ground (I checked if the ground I used was flat with the
help of a level), and looked if the robot could stay up with such angle values.
Depending on the answer, I changed the csv file, by increasing or decreasing the
concerned servos, until I got the balance limit.

On the simulated robot, I used the controller postures protocol I developed.
Before I had designed this controller, I did my balance tests by the hand, in-
creasing slowly the wanted servos, and stopping right when the robot fell, by
using the hoap2moves controller. But it took a lot of time, and was not very
precise. So this first controller was of a great help. And running it in the fast
mode, it ran about seven times faster than real time, so in about ten minutes I
have precise results in a text file.

That kind of tests allowed me to realize that there was problems with mass
repartition on Webots 4.0.27, because my results were far from identical between
simulation and real. Effectively, for example with the body servo, the difference
between the limit angle in simulation and in real was bigger than 30 degrees.
So we modified Webots accordingly 25. I did not get excellent results for all
situations, but I did my best to get something accurate.

The tests I did are really important, because the results I got will never
change, since the real robot (and probably also earth gravity...) will never
change, and will always behave almost the same way. On the other hand, the
simulator and Webots will assuredly change. Hence, every time modifications
are brought to my model or to the software, it will be necessary to perform new
tests on the simulator, to watch if it still behaves like the real one. And by the
fact that I have this automatic world evaluation, one will just have to run the
world with the postures protocol controller, and verify that the behavior and the
accuracy have been improved.

I made many tests, with different worlds, and the results are contained in
the table 6. The first column (Move) is the name of the kind of the move I
did. It corresponds to a servo, and an orientation. For example, leg3 Back is
the simultaneous modification of the servos RLEG JOINT3 et LLEG JOINT3,
in order to make to robot fall backward. The L ARM stands for arm lowered.

24See table 6 for the different tests I performed.
25See section 5.
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Figure 31: Performing postures protocol on HOAP-2

There is 16 different tests, and the different worlds I tested are represented in
figure 32.

The column Value contains first the name of the world used, and then the
angle value: The different worlds I tested are represented in figure 32. The last
column is the difference between the real value, that I measured on the real
robot, and the simulated one. For every test, I made a movie of the real robot
(that is available on my project web page[1]).
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Figure 32: These pictures represent the robot torso from the different worlds
that have been tested. WORLD1 is hoap2 in the 4.0.27 Webots version (where
the CoM == center of rotation). WORLD2 is the same world than WORLD1,
but with extra solids put at the centers of mass positions of the links, in order
to simulate the correct weights at the correct positions. WORLD3 is hoap2 in
Webots 5.0.0, after I had improved it, so with centers of mass correctly posi-
tioned, and it corresponds exactly to the real robot specifications. WORLD4 is a
world where I tried to represent backlash by setting both (R & L)LEG JOINT3
and both (R & L)LEG JOINT5 from the WORLD3 world at an initial value
of 2[o] (see section 3.9.1). WORLD5 is hoap2 in Webots 5.0.0, with a first try
of displaced center of mass of the torso. And finally WORLD6 is the same
world than WORLD5, but with an extreme and impossible torso CoM posi-
tion. I made these worlds to try to find the best position for the center of
mass position of the torso, which is the heaviest part of the robot, so changing
it imply significant changes in the results. To improve pictures legibility, as I
only changed the torso center of mass position, robot arms and head have been
removed. The moving cross between the pictures is the torso center of mass
position.
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Move Value [rd] Difference[rd]

leg3 Back

real 0.4676
WORLD1 0.9218 -0.4542
WORLD2 0.4098 0.0578
WORLD3 0.4052 0.0624
WORLD4 0.5227 -0.0551
WORLD5 0.5477 -0.0801
WORLD6 0.3932 0.0744

leg3 Back L Arm

real 0.2672
WORLD1 0.9457 -0.6785
WORLD2 0.2116 0.0556
WORLD3 0.2206 0.0466
WORLD4 0.3522 -0.0850
WORLD5 0.4033 -0.1361
WORLD6 0.2766 -0.0094

leg3 Front

real -0.3424
WORLD1 -0.8154 0.4730
WORLD2 -0.7536 0.4112
WORLD3 -0.7857 0.4433
WORLD4 -0.6597 0.3173
WORLD5 -0.6438 0.3014
WORLD6 -0.4084 0.0660

leg3 Front L Arm

real -0.6597
WORLD1 -1.4309 0.7712
WORLD2 -1.1279 0.4682
WORLD3 -1.1457 0.4860
WORLD4 -0.9993 0.3396
WORLD5 -1.0336 0.3739
WORLD6 -0.6286 -0.0311

Body Front

real 0.5189
WORLD1 1.5696 -1.0507
WORLD2 1.1665 -0.6476
WORLD3 1.2206 -0.7017
WORLD4 0.9567 -0.4378
WORLD5 1.0971 -0.5782
WORLD6 0.5953 -0.0764

Body Front L Arm

real 1.0021
WORLD1 1.5696 -0.5675
WORLD2 1.5696 -0.5675
WORLD3 1.5697 -0.5676
WORLD4 1.3279 -0.3258
WORLD5 1.5697 -0.5676
WORLD6 0.9017 0.1004

leg5 Back

real 0.1545
WORLD1 0.2298 -0.0753
WORLD2 0.1268 0.0277
WORLD3 0.1283 0.0262
WORLD4 0.1398 0.0147
WORLD5 0.1752 -0.0207
WORLD6 0.1559 -0.0014
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Move Value [rd] Difference[rd]

leg5 Back L Arm

real 0.0838
WORLD1 0.2140 -0.1302
WORLD2 0.0739 0.0099
WORLD3 0.0623 0.0215
WORLD4 0.0254 0.0584
WORLD5 0.1120 -0.0282
WORLD6 0.1003 -0.0165

leg5 Front

real -0.1050
WORLD1 -0.1562 0.0512
WORLD2 -0.2308 0.1258
WORLD3 -0.2417 0.1367
WORLD4 -0.2301 0.1251
WORLD5 -0.1948 0.0898
WORLD6 -0.1659 0.0609

leg5 Front L Arm

real -0.2004
WORLD1 -0.1815 -0.0189
WORLD2 -0.3025 0.1021
WORLD3 -0.3269 0.1265
WORLD4 -0.3158 0.1154
WORLD5 -0.2786 0.0782
WORLD6 -0.2375 0.0371

leg4 Back

real 0.2422
WORLD1 0.3783 -0.1361
WORLD2 0.1837 0.0585
WORLD3 0.2028 0.0394
WORLD4 0.2763 -0.0341
WORLD5 0.2763 -0.0341
WORLD6 0.2294 0.0128

leg4 Back L Arm

real 0.1418
WORLD1 0.3582 -0.2164
WORLD2 0.1023 0.0395
WORLD3 0.1013 0.0405
WORLD4 0.1748 -0.0330
WORLD5 0.1826 -0.0408
WORLD6 0.1512 -0.0094

leg6 Right

real -0.2505
WORLD1 -0.1149 -0.1356
WORLD2 -0.1148 -0.1357
WORLD3 -0.2394 -0.0111
WORLD4 -0.2523 0.0018
WORLD5 -0.2524 0.0019
WORLD6 -0.2192 -0.0313

leg6 Right L Arm

real -0.2589
WORLD1 -0.1144 -0.1445
WORLD2 -0.1144 -0.1445
WORLD3 -0.2232 -0.0357
WORLD4 -0.2350 -0.0239
WORLD5 -0.2363 -0.0226
WORLD6 -0.2026 -0.0563
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Move Value [rd] Difference[rd]

leg6 Left

real 0.2672
WORLD1 0.2477 0.0195
WORLD2 0.2391 0.0281
WORLD3 0.2388 0.0284
WORLD4 0.2517 0.0155
WORLD5 0.2518 0.0154
WORLD6 0.2187 0.0485

leg6 Left L Arm

real 0.2756
WORLD1 0.2595 0.0161
WORLD2 0.2201 0.0555
WORLD3 0.2229 0.0527
WORLD4 0.2347 0.0409
WORLD5 0.2359 0.0397
WORLD6 0.2023 0.0733

Table 6: Postures protocol results

8.1 Worlds evaluation

The table 7 contains an evaluation of the results obtained with the posture
protocol for the six different worlds.

World Total [rd] Average
[rd] [o]

WORLD1 4.9388 0.3087 17.69
WORLD2 2.9352 0.1835 10.51
WORLD3 2.8263 0.1766 10.12
WORLD4 2.0234 0.1265 7.25
WORLD5 2.1073 0.1317 7.55
WORLD6 1.4104 0.0880 5.05

Table 7: Evaluation of the different worlds of the postures protocol

First of all, one can see that between Webots 4.0.27 (WORLD1) and Webots
5.0.0 (WORLD3), there is a big difference. WORLD1 has effectively the worst
results, what is normal since the centers of mass were not at the correct positions.
I made WORLD2 while I was upgrading Webots 4.0.27 to take care of the
centers of mass, and wanting to know if I was heading in the good direction.
Its results are pretty much the same than the one from WORLD3, which is
the first Webots 5.0.0 world, and the only one that is perfectly respecting the
HOAP-2 specifications. It is supposed to be the exact reproduction of the real
HOAP-2, but there is an average error of 10.12[o], which is huge. In fact all the
tests that make the robot fall in front have bad results (difference between 0.1
and 0.7[rd] with the real robot). On the contrary, the backward moves, and on
the left and right sides, are much better, with only small differences with the
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real robot. The left and right side moves have pretty good results, what seems
to indicate the world is well balanced in these directions. So to improve the
results, I designed WORLD4, by trying to add some artificial backlash. The
results are then a little bit better than WORLD3, but there is still an average
error of 7.25[o]. The problem with this artificial backlash I added, is that it is
just a very simple approximation of the effect of the backlash. And for the tests
that are on the leg5 or leg3 joints, the results become then almost equal to the
ones from WORLD3, as we are changing the angles that were set to new initial
positions. This world was then just a little test, to see if that could improve
the results, but it has not been really conclusive. And as soon as the robot is
moving, like in the dynamical moves from section 9, these default angles would
change, and it is impossible to do it this way. So I tried many other worlds,
always by moving the center of mass of the torso, as it is the robot heaviest
part, and by this fact the one that is the most effective on the robot balance.
I only moved it in the front and rear direction, since the results in the left and
right direction were already pretty good. I was in fact trying to find the best
approximation of the real robot, what is really not an easy task. In WORLD5
and 6, I displaced the center of mass in front. WORLD6 is an impossible one
(at least physically), as the body center of mass is not contained into the body,
what is off course impossible. But it is this world that gave me the best results,
with an average error of only 5.05[o]. I have not find a better world that could
give me better results than this WORLD6.

54



9 Reproduction of dynamical moves

To perform statical tests 26 in order to check that a model is accurate is already
a good thing. But it is even better to verify the accuracy with dynamical moves.
So I used some of the csv trajectory files provided with the robot, and I got
also some new csv files by asking to Mr. Nagashima, my contact at Fujitsu.
Then it was really easy to use these csv files on Webots, using the ”csv2webots”
controller I developed 27.

It is pretty hard to realize what these moves look like, just by looking at
a few pictures, and by reading my descriptions. You should look at my home
page to see these movies[1]. I tried all of the moves, with the many different
worlds I had, to see which of them was the closer one to the real robot. I did
not use the WORLD4, as it would be absolutely useless for dynamical tests.

9.1 The m01 walk

The HOAP-2 robot was supplied with a walk move (m01.csv). It is a simple
and slow forward motion. For the real robot, as you can see in the left picture
of figure 33, I just put it on a table, and let it walk, even if I kept hanging it,
not wanting to break the robot, in case of a fall. The real robot walked about
60.5[cm] in 16.1[s], what represents a speed of 0.0375[m/s] (0.1353[km/h]). But
this value can vary a lot, since it depends on the kind of floor on which the
robot is walking. The table I used here was totally flat and perfectly horizontal,
but the robot was a little bit slipping. I tried a softer but a lot less slippery
ground, but the robot could not walk on this surface, so I have no other results
than this one for the real robot.

Figure 33: HOAP-2 and its Webots model performing a walk

9.1.1 Results

In simulation, with the robot in the original configuration (WORLD3 in sec-
tion 8), the robot walks in a strange manner, not really smooth, just like if it
was not able to put its feet correctly on the ground to get a good balance. But
it walks, and does not fall. I measured a distance of 40.5[cm], what represents a
speed of 0.0252[m/s] (0.0906[km/h]). The difference with the real robot is then

26See section 8.
27See section 7.
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of 0.0123[m/s], which means that my simulated robot covers 1.2[cm] less every
second than the real robot. This result off course depends a lot on the world I
use. By changing the position of the body center of mass, I was able to improve
the results. By using WORLD5 from section 8, I got 0.0288[m/s], and by using
the WORLD6, I got 0.0276[m/s]. I then continued with new worlds, by con-
tinuing displacing the torso CoM. And I found a good position (see figure 34),
that made the robots walk at 0.03[m/s], in an almost smooth manner. So the
smallest difference I got is 7.54[mm] less a second. I made a test of posture

Figure 34: Torso center of mass position from the WORLD7

protocol on this new world, but the result was not better than the WORLD3,
unfortunately.

9.2 The CPG walk

The second walk is a better and smoother one than he m01. The robot moves
faster, and it has no problem to put its feet correctly on the ground. It scarcely
slips, even if I performed this move on the same table than the m01. The robot
covered the whole table in about 12.5[s]. So its speed is about 0.0844[m/s]
(0.304[km/h]). For information, to date, Fujitsu engineers succeeded in making
it walk at a speed of 1.44[km/h]. As a comparison, Honda ASIMO, that is
70[cm] taller, can reach 3.2[km/h].

Figure 35: HOAP-2 and its Webots model performing the CPG walk
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9.2.1 Results

Unfortunately, the world WORLD3 is not even able to perform the first step,
and falls immediately on its back. So we get the same results than in the
postures protocol, the weight seems to be situated a little bit to much in the
back of the robot, and it is not balanced enough in the front. With WORLD5,
it can only perform 2 step, before falling on its back. So WORLD5 is better
than WORLD3, as we already realized during 8. With the physically impossible
world WORLD6, the result is not better than for WORLD5. WORLD7 is also
the best world I found for this move. The robot was then able to go all over
the tatami without falling, and without slipping. The simulated robot traversed
a distance of 1.355m in 17s. So its speed is of 0.0797m/s (0.287km/h). So it
gives us a difference of 4.7mm/s, what is I think really impressive, as I was not
expecting such a close value.
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9.3 Standing up after lying on its back

At the beginning of this move, the robot is lying on its back. It then manages to
stand up, by helping itself with both arms to raise it torso, and then by bringing
its feet closer to its body, by lying its feet on the ground, and then by stretching
its legs, still helping with its arms to keep balance.

Figure 36: HOAP-2 and its Webots model standing up after lying on its back

9.3.1 Results

The WORLD3 model is not able to get up, since it can not get the balance
to avoid falling backward when its arms are not touching the ground anymore.
Both WORLD5 and WORLD6 are able to get up, as well as WORLD7, that
runs perfectly, and its move is smooth. I also found some other worlds that
allowed hoap2 to succeed in standing up (but that are not working for the CPG
walk), and this time again, the posture protocol tests were not better than the
one I already got.
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9.4 Standing up after lying on its elbows

In this move, the robot starts lying on both elbows and feet. It then brings its
arms closer to its feet, and then by a little folding of the knees, the robot stands
up.

Figure 37: HOAP-2 and its Webots model standing up after lying on its elbows

9.4.1 Results

Once again, WORLD3 does not succeed in realizing this dynamical move. It
seems that there is not much missing, but as soon as the robot stands on feet
and hands, and then tries to get up, it falls, but in front this time. WORLD6
has a center of mass so badly situated, that the robot falls on its head, and is
even worst than WORLD3. WORLD5, as well as WORLD7 are able to realize
this move.
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9.5 HOAP-2 performing sumo moves

This move is probably the most interesting and awesome one, as a dynamical
test. The robot performs the kind of moves a real sumotori performs before a
fight. At the beginning, it stands straight on its feet, and then starts to move,
first by shifting smoothly on its right without even moving its feet. It then
stands only on the right foot, the other leg standing in the air. Then it puts the
left leg back on the ground, and then stands only on its right leg, performing
even some kind of a big leg split(see figure 38). It then continues with some
more moves, that are always so impressive. I have to say that even for the real
robot, it was pretty hard to stay up at the end of the show. Sometimes, the
robot fell. I had to try it many times, to successfully perform that move, as one
can see on my web page.

Figure 38: HOAP-2 and its Webots model performing sumo moves

9.5.1 Results

As one could expect it, WORLD3 is not able to play the sumotori. But it is not
that bad, since it is able to execute the first moves, during about 30[s]. But at
this moment, the robot is executing a move where it bends pretty fast both hips,
knees and ankles, in order to stay as if it was seated in the air. And WORLD3 is
not able to stay in this position. In fact, none of the worlds I already used that
far were able to perform from the beginning to the end these fighting moves,
and all fell at approximately the same time. So I designed a new world, with a
torso center of mass that was even more shifted in front than the WORLD7 (see
figure 39). The WORLD8 does not have allowed either to improve the postures
protocol from section 8.
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Figure 39: Torso center of mass position from the WORLD8

10 Humanoids 2004 conference

Figure 40: Webots poster at Humanoids 2004 conference

The Humanoids 2004 conference 28 took place at Santa Monica, California,
USA. Olivier sent me there to represent Cyberbotics Ltd.. My work there con-
sisted in presenting a poster about the Webots software, its models of humanoid
robots, and of course my work with the HOAP-2. I designed a poster contain-
ing some text about the software and its great possibilities. I also added a few
pictures, representing some real robots, opposed to their models on Webots. I
also left a 4/3 sized blank space, allowing me to broadcast Webots videos in
it. This has been a really good experience for me. I spoke with many people
from leading fields in humanoid robotics, and assisted to many important and
interesting conferences, under the Californian sun...
You can find a bigger version of this poster in the appendix 12.2.

28http://www.humanoids.ws/humanoids04/
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11 Further developments and conclusion

The first further development that should be apported to this project, is the im-
plementation of a cross compiler for the HOAP2, that would allow the transfer
to the real robot of the controllers designed on Webots. Webots already includes
transfer systems for a number of existing real robots including Khepera, Hemis-
son, LEGO Mindstorms, Aibo, etc, and developing a cross-compilation system
for HOAP-2 would allow the users to recompile their Webots controller on the
real robot, what is an important feature that a good simulator should have.
Because effectively, the final goal of a simulation is very often the realization
of the same behavior on the real robot once that the user is satisfied with his
simulation. The user could then develop its Webots controller for the hoap2
world, do simulation for some times, and then recompile directly exactly the
same controller on HOAP-2, and to watch in the real world how the robot is
behaving. Knowing that HOAP-2 runs on real-time Linux, it should not be a
difficult task to develop this cross compilator.

With the controllers I developed, one is already able to run csv files in the
simulation, and to get the same motion than the real robot. So it could be
useful to have a cross compiler, to reproduce the simulation’s controllers on the
real robot.

Then one could also implement the HOAP-2 foot sensors, because they are
really important, for example for the bipedal locomotion, and it could allow to
perform ZMP calculation to simulate smooth walking motions.

It could also be interesting to design more precisely the HOAP-2 hands.
In my current model, I have not designed the hands precisely, since I was not
really interested in the hands shapes and their use. But it could be a good
thing to design them, in order to perform grasping simulations that could easily
be reproduced with the real robot.

Concerning my project, I must say that I found very interesting the way
Olivier and I have interacted, with the big talks we had, trying to find a way
to improve Webots that would satisfy both of us, me as a user needing new
functionalities to be able to design my new world, and Oliver as a software de-
veloper wanting to keep his software as competitive as possible, and ascendantly
compatible. It has also been very interesting to write my own code to adapt
Webots, in order to better suit my needs. Unfortunately, there has been times
during which I was waiting for Olivier to release a new Webots version, and
there was not much things I could do during these waiting times. So my schedule
has been oscillating between days during which I could not make good progress
in my work (I used this time by writing my report, performing tests on the real
robot, and reading documents), and had to occupy myself, and weeks during
which I just could not stop working, because of all the things I was then able to
do, and had time to get back. So there has been a lot of drawbacks with these
Webots bugs, that made me waist a few days of work, for example when I was
waiting for a Webots version on which I could set my centers of mass, version
that I finally upgraded by myself, what was not scheduled in my job description.

Concerning the evaluation of the current version of the simulator, I do not
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think that the results are excellent. They have always been improving since
the beginning of my Thesis, but I think the results are still not satisfactory.
WORLD3 is the world corresponding exactly to both HOAP-2 instruction man-
ual, and inspection report. But this world results are not very impressive, as
we have seen. The problem is also that I have not found a world that was able
to reproduce correctly every moves, and that got good results in the posture
protocols. So maybe the problem comes from a bug that I would have missed
in Webots, but I am not sure of that, since I performed lots of tests to be sure
that it was correct.

There is also a big interrogation point on the accuracy and precision of the
inspection report. It is conceivable that it could have some errors in it. That
could be a way of explaining some bad results I had. But it will be really
difficult to discover if there is effectively errors in the robot specifications.

I think also that the most obvious reason of the bad results I have, is
this backlash problem. And it will be really difficult to take care of this on
Webots, since it is almost impossible to simulate correctly and efficiently the
backlash. As I already said, it depends on the motor construction, its wear,
etc. and is not even constant for a single motor. I think it could be possible
to have some randomly generated backlash, but that would then be almost
impossible to make it correspond to a real motor. And I think that measure
the backlash of every motor, to then set it on Webots, is not efficaciously feasible.

This project allowed to bring important modifications to Webots, because
it is obvious that the concept of center of mass is mandatory for a physical
simulator. Thanks to the tests I performed, I think that it is working properly.
And I think that this hoap2 world could be a great motivation to buy a Webots
license, for a team or a school wanting to do humanoid robotics, since a Webots
license cost about 25 times less than a real HOAP-2, and is a lot less restricting
than the real HOAP-2.

I really much enjoyed working on this simulator, and to play with this won-
derful robot. And I will continue working on the HOAP-2 for one more year, but
this time by doing this not on the side of the development of a simulation, but
with the real robot, since I will perform an industrial internship at Fujitsu Lab-
oratories, in Kawasaki, Japan, where I will probably work on Motion Learning
Method using CPG/NP.
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12 Appendix

12.1 HOAP-2 inspection report
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Table :  Mass Property of the LINK belong to joint data A-1

RLEG_JOINT[1] MASS =  3.93880e-02 KILOGRAM 

CENTER OF GRAVITY with respect to RJ1_LINK_CS coordinate frame:

X   Y   Z     4.05183e-07  -3.83869e+00  2.19162e+01  MM

INERTIA at CENTER OF GRAVITY with respect to RJ1_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 2.77458e+01, 2.48926e-06, 1.08060e-06

-Iyx  Iyy -Iyz 2.48926e-06, 9.57690e+00,-1.29806e+00

-Izx -Izy  Izz  1.08060e-06,-1.29806e+00, 2.37104e+01

RLEG_JOINT[2] MASS =  1.72696e-01 KILOGRAM 

CENTER OF GRAVITY with respect to RJ2_LINK_CS coordinate frame:

X   Y   Z    -3.28966e+00   5.01030e-01   3.47170e+00  MM

INERTIA at CENTER OF GRAVITY with respect to RJ2_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz  6.31338e+01,-6.18885e-01, 1.01226e+00

-Iyx  Iyy -Iyz -6.18885e-01, 5.55820e+01, 3.28855e-01

-Izx -Izy  Izz  1.01226e+00, 3.28855e-01, 4.51904e+01

RLEG_JOINT[3] MASS =  4.38575e-01 KILOGRAM 

CENTER OF GRAVITY with respect to RJ3_LINK_CS coordinate frame:

X   Y   Z    -7.18179e+01  7.58280e+00 -1.42801e+00  MM

INERTIA at CENTER OF GRAVITY with respect to RJ3_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz  2.31713e+02, 1.44579e+01, 1.32330e+01

-Iyx  Iyy -Iyz  1.44579e+01, 4.72676e+02,-9.52495e+00

-Izx -Izy  Izz  1.32330e+01,-9.52495e+00, 4.35755e+02 

RLEG_JOINT[4] MASS =   2.85982e-01 KILOGRAM 

CENTER OF GRAVITY with respect to RJ4_LINK_CS coordinate frame:

X   Y   Z   -4.29165e+01   1.17240e+01   -2.82151e+00 MM

INERTIA at CENTER OF GRAVITY with respect to RJ4_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 1.84076e+02,-3.29998e+00, 4.55079e+00

-Iyx  Iyy -Iyz  -3.29998e+00, 2.95317e+02,-8.29468e+00 

-Izx -Izy  Izz 4.55079e+00,-8.29468e+00, 2.25932e+02 

RLEG_JOINT[5] MASS =  1.71128e-01 KILOGRAM 

CENTER OF GRAVITY with respect to RJ5_LINK_CS coordinate frame:

X   Y   Z     3.24289e+00  4.65209e+00  -7.32177e-01  MM

INERTIA at CENTER OF GRAVITY with respect to RJ5_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 5.94587e+01,-4.08202e-01,-7.20727e-02

-Iyx  Iyy -Iyz -4.08202e-01, 4.59388e+01,-5.54424e-01

-Izx -Izy  Izz -7.20727e-02,-5.54424e-01, 5.11179e+01

RLEG_JOINT[6] MASS =  1.36753e-01 KILOGRAM 

CENTER OF GRAVITY with respect to RJ6_LINK_CS coordinate frame:

X   Y   Z    -2.48732e+01  7.85960e-02   3.82498e+00 MM

INERTIA at CENTER OF GRAVITY with respect to RJ6_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz  1.55016e+02,-7.14057e-02, 1.70683e+01 

-Iyx  Iyy -Iyz -7.14057e-02, 1.39643e+02, 3.80602e-01

-Izx -Izy  Izz 1.70683e+01, 3.80602e-01, 5.97968e+01 
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RARM_JOINT[1] MASS =  1.99031e-01 KILOGRAM 

CENTER OF GRAVITY with respect to RHJ1_LINK_CS coordinate frame:

X   Y   Z     5.69887e-02  3.59362e+01   1.10127e+01 MM

INERTIA at CENTER OF GRAVITY with respect to RHJ1_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 1.42087e+02,-5.75840e-02,-7.51591e-02

-Iyx  Iyy -Iyz -5.75840e-02, 6.52462e+01, 3.39010e+01

-Izx -Izy  Izz -7.51591e-02, 3.39010e+01, 1.17938e+02   

RARM_JOINT[2] MASS =   2.01439e-01 KILOGRAM 

CENTER OF GRAVITY with respect to RHJ2_LINK_CS coordinate frame:

X   Y   Z     -1.00180e-02   -9.91178e+00   -2.28432e+00  MM

INERTIA at CENTER OF GRAVITY with respect to RHJ2_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 1.53251e+02, 2.71682e-01, 2.07022e-01

-Iyx  Iyy -Iyz 2.71682e-01, 1.35628e+02,-1.53672e+01   

-Izx -Izy  Izz 2.07022e-01,-1.53672e+01, 7.07822e+01 

RARM_JOINT[3] MASS =   2.20645e-01 KILOGRAM 

CENTER OF GRAVITY with respect to RHJ3_LINK_CS coordinate frame:

X   Y   Z     7.84674e-02  -2.96507e+00  -3.23713e+01  MM

INERTIA at CENTER OF GRAVITY with respect to RHJ3_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 1.22386e+02, 9.41629e-02,-1.85832e-02

-Iyx  Iyy -Iyz 9.41629e-02, 1.09558e+02,-8.27732e-01  

-Izx -Izy  Izz  -1.85832e-02,-8.27732e-01, 5.65823e+01  

RARM_JOINT[4] MASS =  1.67552e-01 KILOGRAM 

CENTER OF GRAVITY with respect to RHJ4_LINK_CS coordinate frame:

X   Y   Z     -5.29589e+000  4.62381e+01  5.06259e+00  MM

INERTIA at CENTER OF GRAVITY with respect to RHJ4_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 2.80658e+02,-2.40293e+00,-1.29926e+00

-Iyx  Iyy -Iyz -2.40293e+00, 3.40780e+01, 1.85149e+01   

-Izx -Izy  Izz -1.29926e+00, 1.85149e+01, 2.70963e+02   
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LLEG_JOINT[1] MASS =  3.93880e-02 KILOGRAM 

CENTER OF GRAVITY with respect to LJ1_LINK_CS coordinate frame:

X   Y   Z      4.05183e-07  -3.83869e+00   2.19162e+01  MM

INERTIA at CENTER OF GRAVITY with respect to LJ1_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz  2.77458e+01, 2.48926e-06, 1.08060e-06 

-Iyx  Iyy -Iyz  2.48926e-06, 9.57690e+00,-1.29805e+00   

-Izx -Izy  Izz  1.08060e-06,-1.29805e+00, 2.37104e+01 

LLEG_JOINT[2] MASS =  1.72696e-01 KILOGRAM 

CENTER OF GRAVITY with respect to LJ2_LINK_CS coordinate frame:

X   Y   Z     -3.28965e+00  -6.32384e-01  3.47170e+00  MM

INERTIA at CENTER OF GRAVITY with respect to LJ2_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 6.30681e+01, 2.93348e-01, 1.01227e+00 

-Iyx  Iyy -Iyz 2.93348e-01, 5.55820e+01,-3.50678e-01  

-Izx -Izy  Izz 1.01227e+00,-3.50678e-01, 4.51248e+01  

LLEG_JOINT[3] MASS =  4.38537e-01 KILOGRAM 

CENTER OF GRAVITY with respect to LJ3_LINK_CS coordinate frame:

X   Y   Z    -7.19284e+01  7.57808e+00  1.34158e+00  MM

INERTIA at CENTER OF GRAVITY with respect to LJ3_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 2.31801e+02, 1.49663e+01,-1.45158e+01 

-Iyx  Iyy -Iyz 1.49663e+01, 4.73478e+02, 1.04350e+01  

-Izx -Izy  Izz -1.45158e+01, 1.04350e+01, 4.36352e+02

LLEG_JOINT[4] MASS =   2.85827e-01 KILOGRAM 

CENTER OF GRAVITY with respect to LJ4_LINK_CS coordinate frame:

X   Y   Z    -4.29459e+01  1.17224e+01  2.97258e+00  MM

INERTIA at CENTER OF GRAVITY with respect to LJ4_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 1.82049e+02,-2.84645e+00,-4.79234e+00

-Iyx  Iyy -Iyz -2.84645e+00, 2.91216e+02, 8.37920e+00   

-Izx -Izy  Izz -4.79234e+00, 8.37920e+00, 2.22810e+02  

LLEG_JOINT[5] MASS =  1.71128e-01 KILOGRAM 

CENTER OF GRAVITY with respect to LJ5_CS coordinate frame:

X   Y   Z     3.24289e+00  4.65210e+00  7.81358e-01  MM

INERTIA at CENTER OF GRAVITY with respect to LJ5_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz  5.94459e+01,-4.08202e-01, 4.99529e-01

-Iyx  Iyy -Iyz -4.08202e-01, 4.59261e+01, 6.50510e-01

-Izx -Izy  Izz 4.99529e-01, 6.50510e-01, 5.11179e+01 

LLEG_JOINT[6] MASS =  1.36753e-01 KILOGRAM 

CENTER OF GRAVITY with respect to RJ6_LINK_CS coordinate frame:

X   Y   Z    -2.48732e+01 7.85960e-02  3.82498e+00  MM

INERTIA at CENTER OF GRAVITY with respect to RJ6_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 1.55016e+02,-7.14057e-02, 1.70683e+01

-Iyx  Iyy -Iyz  -7.14057e-02, 1.39643e+02, 3.80602e-01

-Izx -Izy  Izz 1.70683e+01, 3.80602e-01, 5.97968e+01 
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LARM_JOINT[1] MASS =   1.99031e-01 KILOGRAM 

CENTER OF GRAVITY with respect to LHJ1_LINK_CS coordinate frame:

X   Y   Z    -5.69861e-02  3.59362e+01 -1.10127e+01  MM

INERTIA at CENTER OF GRAVITY with respect to LHJ1_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz  1.42087e+02, 5.75829e-02,-7.51502e-02

-Iyx  Iyy -Iyz  5.75829e-02, 6.52462e+01,-3.39010e+01 

-Izx -Izy  Izz -7.51502e-02,-3.39010e+01, 1.17938e+02  

LARM_JOINT[2] MASS =  2.01439e-01 KILOGRAM 

CENTER OF GRAVITY with respect to LHJ2_CS coordinate frame:

X   Y   Z    -1.02610e-01  -9.91178e+00  -2.28305e+00  MM

INERTIA at CENTER OF GRAVITY with respect to LHJ2_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 1.53253e+02,-1.60475e-01, 2.49619e-01

-Iyx  Iyy -Iyz -1.60475e-01, 1.35627e+02,-1.53617e+01  

-Izx -Izy  Izz 2.49619e-01,-1.53617e+01, 7.07801e+01 

LARM_JOINT[3] MASS =  2.18287e-01 KILOGRAM 

CENTER OF GRAVITY with respect to LHJ3_LINK_CS coordinate frame:

X   Y   Z     -2.62502e-02  2.94852e+00  -3.26378e+01  MM

INERTIA at CENTER OF GRAVITY with respect to LHJ3_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 1.20095e+02, 2.35113e-01,-2.30691e-01

-Iyx  Iyy -Iyz 2.35113e-01, 1.07647e+02, 8.96281e-01 

-Izx -Izy  Izz -2.30691e-01, 8.96281e-01, 5.56209e+01  

LARM_JOINT[4] MASS =  1.67592e-01 KILOGRAM 

CENTER OF GRAVITY with respect to LHJ4_LINK_CS coordinate frame:

X   Y   Z    -5.29948e+00   4.62509e+01  -5.06689e+00  MM

INERTIA at CENTER OF GRAVITY with respect to LHJ4_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz  2.81004e+02,-2.39305e+00, 1.29841e+00

-Iyx  Iyy -Iyz -2.39305e+00, 3.40730e+01,-1.84659e+01  

-Izx -Izy  Izz 1.29841e+00,-1.84659e+01, 2.71298e+02  
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BODY_JOINT[1] MASS =  2.37622e+00 KILOGRAM

*1 WAIST coordinate difinition

CENTER OF GRAVITY with respect to BODY1_LINK_CS coordinate frame:

X   Y   Z    -6.29381e+01  2.80136e-01  6.71528e+01  MM

*2)Loading item

CPU unit : On INERTIA at CENTER OF GRAVITY with respect to BODY1_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

Wireless LAN Unit : On 

Battery : On INERTIA TENSOR:

 Ixx -Ixy -Ixz 8.05592e+03,-4.72994e+01,-7.02973e+02

-Iyx  Iyy -Iyz -4.72994e+01, 9.24194e+03, 1.01937e+00  

-Izx -Izy  Izz -7.02973e+02, 1.01937e+00, 7.03308e+03  

BODY_JOINT[1] MASS =  1.59374e+00 KILOGRAM 

*1 WAIST coordinate difinition

CENTER OF GRAVITY with respect to BODY1_LINK_CS coordinate frame:

X   Y   Z    -4.86368e+01  1.19112e-02  8.60519e+01  MM

*2)Loading item

CPU unit : On INERTIA at CENTER OF GRAVITY with respect to BODY1_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

Wireless LAN Unit : Off

Battery : Off INERTIA TENSOR:

 Ixx -Ixy -Ixz  4.77151e+03,-7.27252e+01, 5.49937e+02

-Iyx  Iyy -Iyz -7.27252e+01, 5.33640e+03, 5.71186e+01  

-Izx -Izy  Izz 5.49937e+02, 5.71186e+01, 5.51773e+03  

BODY_JOINT[1] MASS =  1.48198e+00 KILOGRAM 

*1 WAIST coordinate difinition

CENTER OF GRAVITY with respect to BODY1_LINK_CS coordinate frame:

X   Y   Z    -4.40262e+01  5.45960e-01  8.43444e+01  MM

*2)Loading item

CPU unit : Off INERTIA at CENTER OF GRAVITY with respect to BODY1_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

Wireless LAN Unit : Off

Battery : Off INERTIA TENSOR:

 Ixx -Ixy -Ixz 4.54319e+03,-2.41738e+01, 3.87040e+02

-Iyx  Iyy -Iyz  -2.41738e+01, 4.76232e+03, 3.64751e+01  

-Izx -Izy  Izz 3.87040e+02, 3.64751e+01, 4.94122e+03

BODY_JOINT[2] MASS =  4.97680e-01 KILOGRAM 

CENTER OF GRAVITY with respect to BODY2_LINK_CS coordinate frame:

X   Y   Z     -2.57370e+01  5.56017e+00  -3.62639e-01  MM

INERTIA at CENTER OF GRAVITY with respect to BODY2_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz  7.26374e+02, 2.81664e+01, 1.02147e+01

-Iyx  Iyy -Iyz 2.81664e+01, 7.89590e+02,-5.05608e+00

-Izx -Izy  Izz 1.02147e+01,-5.05608e+00, 2.74925e+02 

HEAD_JOINT[1] MASS =  2.08892e-02 KILOGRAM 

CENTER OF GRAVITY with respect to HEAD1_LINK_CS coordinate frame:

X   Y   Z     2.06780e+00  5.98154e-01  5.68043e+01  MM

INERTIA at CENTER OF GRAVITY with respect to HEAD1_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz  9.51077e+00,-7.41228e-02,-1.05256e+00

-Iyx  Iyy -Iyz -7.41228e-02, 6.40490e+00,-3.02325e-01

-Izx -Izy  Izz -1.05256e+00,-3.02325e-01, 4.97111e+00   

HEAD_JOINT[2] MASS =  6.69886e-02 KILOGRAM 

CENTER OF GRAVITY with respect to HEAD2_LINK_CS coordinate frame:

X   Y   Z     5.29518e-01  -3.94438e+00  -2.35576e-01  MM

INERTIA at CENTER OF GRAVITY with respect to HEAD2_LINK_CS coordinate frame:  (KILOGRAM * MM^2)

INERTIA TENSOR:

 Ixx -Ixy -Ixz 3.20353e+01,-5.04880e+00,-6.55641e-02

-Iyx  Iyy -Iyz  -5.04880e+00, 3.51472e+01, 4.54066e-02

-Izx -Izy  Izz -6.55641e-02, 4.54066e-02, 2.59511e+01  
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